The invention relates to object models and in particular to using namespace variables and scoping of variables within the context of object models.
In general, a variable name within an object model must be unique so that there is no ambiguity within a set of names. It would be helpful, however, to be able to disambiguate variables within an object model having different origins but the same name. Likewise, it would be helpful to be able to group related variables together so that the variables are instantly recognizable as belonging to the same group.
In general, in an object model, variables used within an object such as a container or other subsection of an object model are accessible to other objects in the model. Sometimes, however, it would be helpful to restrict the accessibility of a variable to a particular container within the object model.
Providing for the utilization of namespaces in connection with an object model variable enables variables to be differentiated by associating each variable with one of a number of available namespaces. Related variables can be grouped together by associating a group of variables with a particular namespace, thereby making it easier to recognize related variables.
Providing scoping capabilities for a variable is enabled by associating a variable with the object that created it and making that variable inaccessible to another object within the execution environment. This may increase the safety of the variable because only the object that created the variable may read or modify the value of the created variable. Third-party developers may find this feature particularly useful because plug-in components may require their variable values to be protected from external manipulation.
The foregoing summary, as well as the following detailed description of illustrative embodiments, is better understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention, there is shown in the drawings exemplary constructions of the invention; however, the invention is not limited to the specific methods and instrumentalities disclosed. In the drawings:
a is an exemplary display of variables differentiated by namespace in an object model in accordance with one embodiment of the invention;
b is a flow diagram of an exemplary method for differentiating variables in an object model by namespace in accordance with one embodiment of the invention;
Overview
An object model may be defined as a collection of objects and relationships. Each of the objects may be associated with one or more properties that govern the execution behavior of the object.
In an illustrative implementation, a Data Transformation Service (DTS) provides a set of tools that allows for the extraction, transformation/consolidation and loading of data from one or more sources into one or more destinations supported by DTS connectivity. By using DTS tools to graphically build DTS packages or by programming a package with the DTS object code, custom data movement solutions tailored to the specialized business needs of an organization may be created.
A DTS package is an organized collection of connections, DTS tasks, DTS transformations and workflow constraints assembled either programmatically or with a DTS tool and saved to MICROSOFT® SQL Server™, a structured storage file, an XML file or a Microsoft Visual Basic® file. Generally, each package includes one or more steps that are executed sequentially or in parallel when the package is run. When executed, the package connects to the appropriate data source(s), extracts data from the source(s), (optionally) transforms the data, and loads the transformed data into one or more destinations.
A DTS task is a discrete set of functionality, executed as a step in a DTS package. Each task defines a work item to be performed as part of the data movement and data transformation process, or as a job to be executed. Examples of commonly used DTS tasks include importing and exporting data, transforming data, copying database objects, and sending messages to and receiving messages from other users and packages, and so on. A DTS transformation may include one or more functions or operations applied to a piece of data before the data is loaded into the destination. A DTS transformation may be composed of a number of DTS sub-transformations, connected together into a transformation chain; that is, the output of a first sub-transformation may be input to the next sub-transformation in the chain and so on.
A DTS package may be associated with one or more variables, which may be implemented as objects. A variable object in a package may be used in a way similar to the way a variable is used in a traditional programming language, that is, a DTS variable object may be created, its value may be changed or updated, the variable may be associated with a particular type (e.g., read-only, temporary, etc.) and so on.
In the DTS object model, an object may be wrapped by a host object that isolates the object from the rest of the object model. Often the hosted object needs access to the properties of other objects in the object model, but because of the benefits of isolation, it is not desirable to permit the object access to the other objects directly.
System variables are variable objects created by the DTS runtime, (the execution environment that handles the execution time behavior of the DTS object model), to expose certain critical properties of the object model to an isolated hosted object. The collection of system variables is accessible by the hosted object, and may be identified by using a specified naming convention. In this way, the hosted object has access to required or useful system information, yet the hosted object remains isolated.
A variable created by an object within the object model may be associated with a namespace. Variables having the same namespace need not have originated from the same object. Hence, a group of related variables can be readily identified by associating the group of related variables with one namespace. Similarly, two variables with the same name (e.g., created by two different objects within the object model) can be distinguished from one another by associating one of the variables with one namespace (perhaps indicative of the source of the variable) and the other variable with a second namespace.
A variable can be hidden or made inaccessible to other parts of an object model by scoping a variable to a subsection of an object model.
Exemplary Computing Environment
Although not required, the invention can be implemented via an application programming interface (API), for use by a developer, and/or included within the network browsing software which will be described in the general context of computer-executable instructions, such as program modules, being executed by one or more computers, such as client workstations, servers, or other devices. Generally, program modules include routines, programs, objects, components, data structures and the like that perform particular tasks or implement particular abstract data types. Typically, the functionality of the program modules may be combined or distributed as desired in various embodiments. Moreover, those skilled in the art will appreciate that the invention may be practiced with other computer system configurations. Other well known computing systems, environments, and/or configurations that may be suitable for use with the invention include, but are not limited to, personal computers (PCs), automated teller machines, server computers, hand-held or laptop devices, multi-processor systems, microprocessor-based systems, programmable consumer electronics, network PCs, minicomputers, mainframe computers, and the like. The invention may also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network or other data transmission medium. In a distributed computing environment, program modules may be located in both local and remote computer storage media including memory storage devices.
With reference to
Computer 110 typically includes a variety of computer readable media. Computer readable media can be any available media that can be accessed by computer 110 and includes both volatile and nonvolatile media, removable and non-removable media. By way of example, and not limitation, computer readable media may comprise computer storage media and communication media. Computer storage media includes both volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data. Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CDROM, digital versatile disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by computer 110. Communication media typically embodies computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism and includes any information delivery media. The term “modulated data signal” means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media includes wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared, and other wireless media. Combinations of any of the above should also be included within the scope of computer readable media.
The system memory 130 includes computer storage media in the form of volatile and/or nonvolatile memory such as read only memory (ROM) 131 and random access memory (RAM) 132. A basic input/output system 133 (BIOS), containing the basic routines that help to transfer information between elements within computer 110, such as during start-up, is typically stored in ROM 131. RAM 132 typically contains data and/or program modules that are immediately accessible to and/or presently being operated on by processing unit 120. By way of example, and not limitation,
The computer 110 may also include other removable/non-removable, volatile/nonvolatile computer storage media. By way of example only,
The drives and their associated computer storage media discussed above and illustrated in
A monitor 191 or other type of display device is also connected to the system bus 121 via an interface, such as a video interface 190. A graphics interface 182, such as Northbridge, may also be connected to the system bus 121. Northbridge is a chipset that communicates with the CPU, or host processing unit 120, and assumes responsibility for accelerated graphics port (AGP) communications. One or more graphics processing units (GPUs) 184 may communicate with graphics interface 182. In this regard, GPUs 184 generally include on-chip memory storage, such as register storage and GPUs 184 communicate with a video memory 186. GPUs 184, however, are but one example of a coprocessor and thus a variety of coprocessing devices may be included in computer 110. A monitor 191 or other type of display device is also connected to the system bus 121 via an interface, such as a video interface 190, which may in turn communicate with video memory 186. In addition to monitor 191, computers may also include other peripheral output devices such as speakers 197 and printer 196, which may be connected through an output peripheral interface 195.
The computer 110 may operate in a networked environment using logical connections to one or more remote computers, such as a remote computer 180. The remote computer 180 may be a personal computer, a server, a router, a network PC, a peer device or other common network node, and typically includes many or all of the elements described above relative to the computer 110, although only a memory storage device 181 has been illustrated in
When used in a LAN networking environment, the computer 110 is connected to the LAN 171 through a network interface or adapter 170. When used in a WAN networking environment, the computer 110 typically includes a modem 172 or other means for establishing communications over the WAN 173, such as the Internet. The modem 172, which may be internal or external, may be connected to the system bus 121 via the user input interface 160, or other appropriate mechanism. In a networked environment, program modules depicted relative to the computer 110, or portions thereof, may be stored in the remote memory storage device. By way of example, and not limitation,
One of ordinary skill in the art can appreciate that a computer 110 or other client device can be deployed as part of a computer network. In this regard, the present invention pertains to any computer system having any number of memory or storage units, and any number of applications and processes occurring across any number of storage units or volumes. The present invention may apply to an environment with server computers and client computers deployed in a network environment, having remote or local storage. The present invention may also apply to a standalone computing device, having programming language functionality, interpretation and execution capabilities.
Providing Information To An Isolated Hosted Object Via System-Created Variables
In
An execution environment (e.g., a runtime) may execute container 204. Container 204 may include one or more host objects such as host object 206. A host object may wrap a hosted object and expose properties of the hosted object and other properties and behavior. Host object 206 may host one or more hosted objects such as hosted object 208.
Hosted object 208 in some embodiments of the invention may be an isolated object, that is, hosted object 208 may execute within the environment of host object 206 and be unaware of container 204 or anything external to host object 206. In other words, hosted object 208 may be wrapped by a host (e.g., host object 206) that isolates hosted object 208 from the rest of the object model. In some embodiments of the invention, the hosted object 208 may be extensible. An object type that may be extended, modified, replaced or created by a third party may be considered an extensible object. Exemplary extensible objects include but are not limited to a new object type that “plugs in” to an existing object model and an object type from which a new object type may be derived.
Container 204 may be associated with one or more properties or other information about the environment such as counters, enumerators, environment variables, execution parameters or the like, represented in
A DTS package such as DTS package 304 may be associated with one or more properties (e.g., PackageName, PackageVersion, PackageID, etc.) or other system environment information including counters, enumerators, environment variables, execution parameters or the like. The collection of properties and other system environment information is represented in
An exemplary DTS package 304 in
Data extracted from source 320 may be transformed as determined by transformations 328. Transformations 328 may be composed of one or more steps in a transformation chain, as represented by sub-transformations 330, 332, etc. in
A DTS package such as DTS package 304 may include one or more hosted objects, representing functionality within the DTS package. DTS hosted objects may be tasks, connection managers, (also called connections), log providers and so on. Hosted objects may be hosted by respective host objects such as ConnectionHost, TaskHost, LogProviderHost and so on.
DTS package 304 may include a number of hosted objects, such as exemplary hosted objects 352, 364 and 366 hosted respectively by host objects 354, 362 and 368 in
For example, referring again to
Variable Namespaces
A namespace in accordance with some embodiments of the invention, enables the complexity of a software system to be hidden by allowing variables on objects to be differentiated and/or grouped together by associating one variable or a group of variables with a particular namespace. In some embodiments of the invention, a variable namespace is implemented as an extra name on a variable that identifies the variable as part of a group or as associated with a particular task.
An exemplary DTS package 304 in
Data extracted from source 320 may be transformed as determined by transformations 328. Transformations 328 may be composed of one or more steps in a transformation chain, as represented by sub-transformations 330, 332, etc. in
Package 304 may include one or more containers or components represented by SQL task 502 and container 512 in
The double colon (“::”) here serves as a token to identify the end of the namespace identifier and the beginning of the variable name. It will be apparent that any suitable namespace and variable names may be used and any token character or group of characters may be selected to distinguish between namespace and variable name. The namespace differentiated variable(s) may be stored in a variables area 514. In some embodiments of the invention, the namespace differentiated variables are stored in a separate variables area than other object model variables.
As the number of components in a package increases, the value of this feature may increase. For example, identical variables names used with different components may be disambiguated. For example, suppose another component “QueryInactiveUsers”, represented in
a illustrates an exemplary display 600 in which the above is conveyed. Line 1602 represents the namespace information (element 606) for variable 502 and line 2604 represents the namespace information (element 608) for variable 508.
b illustrates an exemplary method for generating namespace variables in accordance with some embodiments of the invention. One or more of the steps illustrated in
Scoping of Variables
In some embodiments of the invention, a scoping feature enables variables created on one object to be invisible to another object.
The scoped nature of the variables is indicated by the variable list displays 714 and 716 in
The various techniques described herein may be implemented in connection with hardware or software or, where appropriate, with a combination of both. Thus, the methods and apparatus of the present invention, or certain aspects or portions thereof, may take the form of program code (i.e., instructions) embodied in tangible media, such as floppy diskettes, CD-ROMs, hard drives, or any other machine-readable storage medium, wherein, when the program code is loaded into and executed by a machine, such as a computer, the machine becomes an apparatus for practicing the invention. In the case of program code execution on programmable computers, the computing device will generally include a processor, a storage medium readable by the processor (including volatile and non-volatile memory and/or storage elements), at least one input device, and at least one output device. One or more programs that may utilize the creation and/or implementation of domain-specific programming models aspects of the present invention, e.g., through the use of a data processing API or the like, are preferably implemented in a high level procedural or object oriented programming language to communicate with a computer system. However, the program(s) can be implemented in assembly or machine language, if desired. In any case, the language may be a compiled or interpreted language, and combined with hardware implementations.
While the present invention has been described in connection with the preferred embodiments of the various figures, it is to be understood that other similar embodiments may be used or modifications and additions may be made to the described embodiments for performing the same function of the present invention without deviating therefrom. Therefore, the present invention should not be limited to any single embodiment, but rather should be construed in breadth and scope in accordance with the appended claims.
This application is related to Attorney Docket No. MSFT-3521, “PROVIDING INFORMATION TO AN ISOLATED HOSTED OBJECT VIA SYSTEM-CREATED VARIABLE OBJECTS”, filed herewith.