The present invention relates to the field of shaving razors and more particularly to manual shaving devices that utilize no motors or electricity.
The majority of manual razors used today for personal grooming where the handle is reusable fall into one of two categories. There are classic safety razors, where the blade is replaceable and the head and handle are reusable, and there are cartridge razors, where the whole head is replaced when the shaving performance deteriorates.
Classic safety razors generally only have one or two blades. While they are generally found to be more economical than cartridge razors, they have several drawbacks. Classic safety razors typically only have one or two blades and cannot offer the shaving experience that a 3 or more bladed cartridge razor can. More blades provide a closer shave and can reduce skin irritation. Also, many classic safety razors had problems aligning the blades, required modifying the blades to install them in the razor, or required a unique blade for each blade location in the head. Classic safety razors typically do not have a pivoting mechanism which increases the skill level required by the user. Pivoting heads, found on modern cartridge razors, help ensure the user is always using the correct angle between the blades and their skin. It is also easy for users to injure themselves on classic safety razors. Excess pressure during shaving can lead to cuts. Even just handling the blades can lead to injury as the blades must be loaded onto the razor by hand. Picking a razor blade up off of a counter or floor can be very difficult to do without injury to the user. Another problem with classic safety razors is that they lack any form of lubrication. The user will typically apply shaving gel, cream, or other products to act as a lubricant on their face. This is both a time consuming process and leaves the user's hands messy.
Cartridge razors solve a lot of the problems mentioned above. They have a pivot to adjust the angle and a guard to reduce excess pressure on the blades. They have a three dimensional profile so they are easier to pick-up off of surfaces and floors without injury. They typically have lubricating strips to improve the comfort during the shave. While they have a lot of advantages over the classic shaving razor, they suffer from two major draw backs. The cartridges generally cost more to replace than the blades of classic shaving razors. They also generate a lot of waste. Each cartridge razor represents one configuration. If a user wants to try a different razor, they generally have to buy a new handle. Also, if the spring wears out, they have to buy a new handle. This leads to a lot of razor handles ending up in landfills. Most razors come with some sort of stand. These stands frequently get lost or break. Even when they last, many are designed only to accept the razor that stand comes with. All of this leads to more waste in landfills.
What is needed is a razor that competes on cost with a classic safety razor; offers the performance, comfort, quality, and safety of a modern cartridge razor; reduces disposable and non-reusable components; and offers a wider range of shaving experiences all within the same design and components.
The present disclosure describes a re-configurable or customizable hair shaving instrument (i.e., a “razor apparatus,” or simply a “razor”) that can be adjusted by the end user to best fit the end user's needs or preferences.
As shown in
With reference to
The bottom member 112 may contain a plurality of cut outs or recesses 112a. The female fasteners 122 grab the pins 114 within the recesses 112a and are tightened to compress the plurality of spacers 120 and razor blades 118 between the cap 110 and the base 112. In an alternate embodiment where the recesses 112a do not exist but the pins 114 are still attached to the cap 110, the female fasteners 122 would grab the pins 114 below the base 112.
With reference to
As shown in
As shown in
As shown in
The razor is intended to operate like the majority of manual razors on the market today where the user translates the razor across their face and the blade or blades cut hairs as the razor passes over them. While the design disclosed herein discusses a multi-bladed razor, the user may opt for a single blade shaving experience. As such, for ease of discussion, further description of the razor will be with respect to multiple blades. However, it is to be understood that the razor can be configured by the user to contain only a single razor blade thus creating an experience closer to that of a classic safety razor. One advantage of using this razor in the single blade configuration over a classic safety razor is the handle grip. The grip may have two flat spots or only slightly curved surfaces near the shaving end of the razor to allow for a better pinch grip than on a round handle. Another advantage is the pivoting mechanism reduces the skill level required to use the razor and helps provide a more comfortable shave. The guard may also reduce the skill level required to use the razor and help provide a more comfortable shave.
The user first assembles the head by stacking spacers and razor blades on the pins that may be attached to the cap, using any quantity or arrangement of spacers and blades that the user believes will provide them with the best shaving experience. They then slide the base on the pins and attach the female fastener(s). They then thread down the nut to tighten the head and compress the assembly or stack of spacer(s) and razor blade(s) together. The user can verify the blades are sitting in the proper position by checking that all of the razor blades in the cutting stack are in contact with the two prongs that are closest to shaving plane. The prongs act both as a reference plane for guiding the blades and as a visual guide. Any misalignment of the razor blades would cause a gap between the prongs and the razor blades. A gap between two surfaces is easier to see than the misalignment of the blades and how far they are out of alignment with an invisible plain. This allows the user to quickly detect any problems and reduces the chances of any injury. If the alignment were made by only using the two internal pins, the user would have no visual reference to check if the blades seated in the correct position in the head.
Generally speaking, the spacers and razor blades will alternate in the stack but the user could opt not to. For example, the user could opt to put two spacers to create a bigger gap for better hair evacuation and easier cleaning of the razor. The user could also opt to increase the number of razor blades for a closer shave. If the user wishes to save money or just reduce the waste generated by their shaving, they could opt to use fewer razor blades. While the blades are generally considered to be disposable, the spacers are reusable and thus help reduce landfill waste.
For people who desire a very close shave, multi-blade razors can get very close due to a process called hysteresis. As each blade passes, the hair is pulled out a little bit before it is cut. This leaves a little bit more hair exposed for the next blade to cut. On cartridge razors, the more blades they have, the smaller the gap between the blades tends to be. The finer the spacing of the blades, the less room the skin has to stick up between the blades. This reduces the chances of the user getting cut. For people with sensitive skin who get a lot of razor bump, a more conservative shave can be desirable. For these applications, fewer blades with less aggressive hair cutting may be desired. The razor described herein has the ability to be adjusted by the user to take advantage of both situations without the user running out to the store to buy a different razor or cartridge. The number and spacing of the blades is may be optimized by the individual user. A stack of spacers, where each individual spacer's thickness can be anywhere from 0.001″ up to 0.100″, is used with razor blades that are identical in shape to the other razor blades in the stack. The spacers may have recesses to allow for more debris to move away from the cutting edge of the razor blades. The blades and spacers are stacked by the user instead of at the factory to help reduce the cost to the end user.
When the user pushes the head of the razor against their skin, the razor will rotate about the pivot to orient the razor parallel to the skin at the guard. The guard absorbs a large portion of the pressure reducing the chances of the user using excessive pressure and cutting themselves. The spring helps orient the head and keep the blades in contact with the skin with the right amount of pressure. If the spring starts to wear out, the user can turn the knob on the spring plunger to partially compress or preload the spring in the spring plunger. According to Hooke's law, the more a spring is compressed, the stronger the force it produces. This allows the user to compensate for a wearing out spring or provide more pressure for their shaving experience. If the spring were to be damaged, the user can replace the spring by simply unscrewing the spring plunger all of the way and threading back in a replacement. In this embodiment, no tools are required for the replacement of the spring plunger. Other embodiments of spring plungers may require a tool to install or set their installation depth.
The handle segments may be threaded together. A variety of shapes and diameters of the extension handle segment can be used together to allow the user to customize the grip. For example, if a user has big hands, they could purchase one or more larger diameter extension handle segments to make the razor easy to hold. If the user desires a longer handle, they can install additional extension handle segments.
A magnet may be used in the final or tail segment of the handle. The tail segment may be used to hold the razor in an upright position by sticking the magnet to a ferromagnetic surface or item already owned by the user. This may be as simple as a metal box. It may also be used to hang the razor upside down from a ferromagnetic surface such as a metal cabinet, towel holder, screw, or other metallic object. This saves the need for a stand and thus reduces the amount of waste that ends up in landfills. When loading razor blades into the razor, it is easy for the user to cut or injure themselves. The magnet on the handle may be used to pick-up razors off of surfaces. The handle segment with the magnet in it may be disconnected and used to pick up razor blades and set them onto the pins. To release the razor blades from the magnet, the user only has to slide the razor blade part way down the pins and drag the magnet tangentially away from the razor blade. The razor blades will be caught on the pins and will fall down into position when the magnet is removed.
The piston is designed to hold and deliver a cream, gel, or fluid to the head of the razor for lubrication or comfort purposes. A cavity, hollow section, hollow part, or hollow portion of the handle is used to store the cream, gel, or fluid until the piston rod is pushed in. Shaving cream or gel is the primary intended product but other products can be delivered using the same mechanism such as but not limited to preshave oils, after shave lotions, after shave oils, and aloe.
In said embodiment, the piston rod may be drawn back with the head submerged in the product desired to be used in the razor. Pulling back the piston rod creates a vacuum in the handle which causes the product to be sucked backwards through the openings in the head of the razor through the manifold and into the handle. This will fill the piston's cavity similar to how a medical professional fills a syringe. Alternatively, the piston rod may be removed and the product added directly into the opening. The rod can then be reinstalled by pushing it back in part way into the opening.
To apply the product, the user pushes the piston rod. This forces the product out of the handle into the head through the manifold, where it is split into multiple flow paths, and out the openings in the face of the razor. The razor may then be translated across the desired area to be shaved. The user may push more product from the piston assembly as necessary to maintain the optimal comfort and performance level. This process eliminates the need for washing any product off of the user's hands after application. It also makes it easier to reapply product if going over the same area more than once.
A razor according to the present disclosure may provide many advantages. For instance, it may be used in a large number of configurations without replacing the whole razor. This greatly cuts down on waste going to landfills. It allows the user to rapidly try a bunch of different configurations and to shave with a configuration that is optimized for them instead of a standard configuration. It uses inexpensive blades and by stacking them can produce a similar shave to cartridge razors but without all of the cost that goes into assembling the cartridge heads at the factories. The pivot and spring reduce the skill required to use the razor by automatically setting the correct angle between the blades and the skin. The adjustable spring and replaceable spring plunger will save many handles from going to the landfills when the rest of the handle is still usable. The reconfigurable handle allows each razor to be customized to the user's hands. The magnet eliminates the need for a stand and can be used as a safety tool. The hollow handle and passages through the head reduce the mess from shaving.
In light of the principles and example embodiments described in the present disclosure by text and/or illustration, one with skill in the art will recognize that the described embodiments can be modified in arrangement and detail without departing from the principles described herein. Furthermore, this disclosure uses expressions such as “one embodiment” and “another embodiment” to describe embodiment possibilities. However, those expressions are not intended to limit the scope of this disclosure to particular embodiment configurations. For instance, those expressions may reference the same embodiment or different embodiments, and those different embodiments are combinable into other embodiments. In view of the wide variety of useful permutations that may be readily derived from the example embodiments described herein, this detailed description is intended to be illustrative only, and should not be construed as limiting the scope of coverage.
This application claims the benefit of U.S. Provisional Patent Application Application No. 62/988,401, filed Mar. 12, 2020 by Michael Friedman, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
775134 | Gillette | Nov 1904 | A |
1234834 | Warren | Jul 1917 | A |
1920711 | Pelizzola | Aug 1933 | A |
2385859 | Jacobson | Oct 1945 | A |
3832432 | Perry | Aug 1974 | A |
3950848 | Goldstein | Apr 1976 | A |
4831731 | Elits | May 1989 | A |
5222300 | Althaus et al. | Jun 1993 | A |
5412872 | Iderosa | May 1995 | A |
5501014 | Hegemann | Mar 1996 | A |
5524347 | Prochaska | Jun 1996 | A |
5590468 | Prochaska | Jan 1997 | A |
5911480 | Morgan | Jun 1999 | A |
6161288 | Andrews | Dec 2000 | A |
6473970 | Prochaska | Nov 2002 | B1 |
6568084 | McCool et al. | May 2003 | B2 |
6725550 | Shah | Apr 2004 | B1 |
6769180 | Coffin | Aug 2004 | B2 |
6880253 | Gyllerstrom | Apr 2005 | B1 |
6915580 | Dassel | Jul 2005 | B2 |
7028407 | Ehrlich | Apr 2006 | B2 |
7047646 | Coffin | May 2006 | B2 |
8438735 | De Klerk | May 2013 | B2 |
9308658 | Coviello | Apr 2016 | B2 |
9579809 | Hawes | Feb 2017 | B2 |
9604377 | Tong | Mar 2017 | B2 |
10647012 | Robertson | May 2020 | B2 |
10863803 | Strum | Dec 2020 | B2 |
20030177648 | Zeiter | Sep 2003 | A1 |
20040107585 | Helmrich | Jun 2004 | A1 |
20050126008 | Pennella | Jun 2005 | A1 |
20120325236 | Macove | Dec 2012 | A1 |
20160121497 | Johnson | May 2016 | A1 |
20160144519 | Hahn et al. | May 2016 | A1 |
20190084169 | Bonk | Mar 2019 | A1 |
20200070376 | Petratou | Mar 2020 | A1 |
20200238550 | Sarve | Jul 2020 | A1 |
Number | Date | Country |
---|---|---|
20120130818 | Dec 2012 | KR |
Entry |
---|
Joe Borrelli, Saiver 2.0 Twin Blade Double Edge Safety Razor, Jun. 9, 2017 https://sharpologist.com/saiver-2-0-safety-razor-twin-blade-double-edge-safety-razor/. |
MJClark, Post #15, Jul. 21, 2016, https://www.badgerandblade.com/forum/threads/review-of-the-saiverd-profimed-from-russia-dual-blade-open-comb-safety-bar-razor.391638/. |
Smedley, Double Layer—DE Razor?, Post#10, Badger and Blade, Jul. 13, 2007, https://www.badgerandblade.com/forum/threads/double-layer-de-razor.22750/. |
The Mvltiplex Razor: A Marriage of Art & Machine, At least as early as Nov. 27, 2019, http://www.geocities.ws/safetyrazors/Multiplex/mvltiplex.htm. |
EFSK, Shaving Universe, Sep. 24, 2019, https://shavinguniverse.com/community/threads/mvltiplex.2358/. |
Michael Friedman, Sep. 15, 2022, Savier 2.0 Razor Disclosure. |
Number | Date | Country | |
---|---|---|---|
62988401 | Mar 2020 | US |