The present disclosure relates generally to gas turbine engines, and more specifically to fans used with gas turbine engines.
Gas turbine engines are used to power aircraft, watercraft, power generators, and the like. Gas turbine engines typically include a compressor, a combustor, and a turbine. The compressor compresses air drawn into the engine and delivers high pressure air to the combustor. In the combustor, fuel is mixed with the high pressure air and is ignited. Products of the combustion reaction in the combustor are directed into the turbine where work is extracted to drive the compressor and, sometimes, a fan to generate thrust to propel the aircraft. Left-over products of the combustion are exhausted out of the turbine and may provide additional thrust in some applications.
In some propeller driven aircraft, the propeller blades are configured to pivot about their respective axis to vary a pitch of the propeller blades. The pitch of the blades may be controlled using actuators and/or counterweights coupled directly to the propeller blades. However, such control methods may be limited by design space and weight allocations when incorporated into fans used with gas turbine engines.
The present disclosure may comprise one or more of the following features and combinations thereof.
According to embodiments of the present disclosure, a variable-pitch fan for use with a gas turbine engine includes a fan disk, a fan blade, and a mount system. The fan disk is mounted for rotation about a central axis and is formed to include a disk aperture that extends radially into the fan disk. The fan blade is coupled to the fan disk for primary rotation with the fan disk about the central axis to produce thrust and for variable-pitch rotation about a pitch axis that extends radially from the central axis. The fan blade includes a shank arranged in the disk aperture and an airfoil that extends radially away from the fan disk.
In illustrative embodiments, the mount system is configured to support the shank of the fan blade in the disk aperture. The mount system includes an inner bearing unit, an outer bearing unit, and a retention plate. The inner and outer bearing units are located in the disk aperture and are arranged between the fan blade and the fan disk to bear force loads applied between the fan blade and the fan disk.
In illustrative embodiments, the retention plate is arranged around the shank of the fan blade. The retention plate is configured to couple selectively with the fan disk to block movement of the fan blade with the outer bearing unit out of the disk aperture and is configured to uncouple selectively from the fan disk to allow radial outward movement of the fan blade with the outer bearing unit out of the disk aperture relative to the central axis.
In illustrative embodiments, the inner bearing unit includes a roller bearing unit configured to bear radial force loads relative to the pitch axis. The outer bearing unit includes a spherical tapered roller bearing unit configured to bear axial and radial force loads and configured to tolerate misalignment of the shank of the fan blade in the disk aperture. In some embodiments, the outer bearing unit includes a tapered roller bearing unit. The inner bearing unit and the outer bearing unit are the only bearings arranged around the shank of the fan blade.
In illustrative embodiments, the inner bearing unit is spaced apart radially from the retention plate relative to the central axis and the outer bearing unit is located radially between the inner bearing unit and the retention plate. The inner bearing unit is spaced apart radially from the retention plate relative to the central axis and the outer bearing unit is located radially between the inner bearing unit and the retention plate.
In illustrative embodiments, the airfoil includes composite material and the shank includes metallic material and the airfoil is coupled to the shank for movement therewith. The shank includes a shank shaft and a shoulder body. The shank shaft extends axially into the disk aperture relative to the pitch axis from the shoulder body. The shoulder body extends radially outward from the shank shaft relative to the pitch axis. The shank shaft forms an inner race of the inner bearing unit.
In illustrative embodiments, the variable-pitch fan further includes a pitch controller configured to rotate about the central axis with the fan disk. The pitch controller includes a spline shaft that extends radially away from the central axis into the disk aperture and a rotator control coupled to the spline shaft and configured to rotate the spline shaft about the pitch axis. The shank shaft is formed to include a shank aperture that extends axially into the shank shaft relative to the pitch axis and the spline shaft of the pitch controller extends into the shank aperture to couple the fan blade with the pitch controller.
Another aspect of the present disclosure includes a variable-pitch fan for use with a gas turbine engine. The variable-pitch fan includes a fan disk, a fan blade, and a mount system. The fan disk is mounted for rotation about a central axis. The fan blade extends into the fan disk for primary rotation with the fan disk about the central axis and for variable-pitch rotation about a pitch axis that extends radially from the central axis. The fan blade includes a shank that extends into the fan disk and an airfoil that extends radially away from the fan disk.
In illustrative embodiments, the mount system includes an outer bearing unit and a retention plate. The outer bearing unit is coupled to the shank of the fan blade. The retention plate is arranged around the shank of the fan blade and is configured to couple selectively with the fan disk to block movement of the fan blade and the outer bearing unit away from the fan disk and is configured to uncouple selectively from the fan disk to allow movement of the fan blade and the outer bearing unit away from the fan disk.
In illustrative embodiments, the mount system further includes an inner bearing unit and the outer bearing unit and the inner bearing unit are the only bearing units arranged around the fan blade. The inner bearing unit includes a roller bearing unit and the outer bearing unit includes a spherical tapered roller bearing unit. The inner bearing unit is spaced apart radially from the retention plate relative to the central axis and the outer bearing unit is located radially between the inner bearing unit and the retention plate.
In illustrative embodiments, the shank includes a shank shaft and a shoulder body. The shank shaft extends into the fan disk and the shoulder body extends radially outward from the shank shaft relative to the pitch axis. The shank shaft forms an inner race of the inner bearing unit.
In illustrative embodiments, the variable-pitch fan further includes a pitch controller configured to rotate about the central axis with the fan disk. The pitch controller includes a spline shaft that extends radially away from the central axis into the spline shaft and a rotator control coupled to the spline shaft and configured to rotate the spline shaft about the pitch axis.
Another aspect of the present disclosure includes a method of replacing an individual fan blade. In illustrative embodiments, the method includes providing a variable-pitch fan including a fan disk mounted for rotation about a central axis, a plurality of fan blades coupled to the fan disk for primary rotation around the central axis, and a respective mount system for each of the fan blades. Each mount system includes an inner bearing unit coupled to the fan disk, an outer bearing unit coupled to the fan blade radially outward of the inner bearing unit, and a retention plate coupled to the fan disk radially outward of the outer bearing unit.
In illustrative embodiments, the method further includes moving the fan blade, the outer bearing unit, and the retention plate radially outward away from the fan disk to separate the fan blade, the outer bearing unit, and the retention plate from the fan disk. The fan blade includes an airfoil and a shank coupled to the airfoil and the shank forms an inner race of the inner bearing unit. The inner bearing unit includes a roller bearing unit and the outer bearing unit includes a spherical tapered roller bearing.
These and other features of the present disclosure will become more apparent from the following description of the illustrative embodiments.
For the purposes of promoting an understanding of the principles of the disclosure, reference will now be made to a number of illustrative embodiments illustrated in the drawings and specific language will be used to describe the same.
A gas turbine engine 10 having a variable-pitch fan 12 in accordance with the present disclosure is shown in
The gas turbine engine 10 includes the variable-pitch fan 12, a compressor 14, a combustor 16, and a turbine 18 as shown in
The illustrative variable-pitch fan 12 includes a fan disk 20, the plurality of fan blades 22, and the mount system 24 all arranged to rotate about the central axis 11 as suggested in
Each fan blade 22 includes a shank 23 arranged in the disk aperture 26 and an airfoil 25 that extends radially outward from the fan disk 20 as shown in
The shank 23 includes a shank shaft 31 and a shoulder body 33 as shown in
The mount system 24 of each fan blade 22 allows for individual replacement of respective fan blades 22 while minimizing the size of the fan disk 20. Specifically, a hub to tip ratio of the variable-pitch fan 12 is minimized. Additionally, the amount of components within disk aperture 26 used to support the shank 23 and the fan blade 22 on the fan disk 20 is minimized.
The mount system 24 includes an inner bearing unit 28, and outer bearing unit 30, and a retention plate 32 as shown in
The inner bearing unit 28 and the outer bearing unit 30 are located in the disk aperture 26 of the fan disk 20 and are arranged between the shank 23 and the fan disk 20 to bear force loads applied between the fan blade 22 and the fan disk 20 as shown in
In the illustrative embodiment, the outer bearing unit 30 includes a spherical tapered roller bearing unit as suggested in
The outer bearing unit 30 includes a roller-bearing housing 34, spherical tapered roller bearings 36, and a spanner nut 38 as shown in
The inner bearing unit 28 is configured to bear radial force loads relative to the fan-blade pitch axis 27 from the fan blade 22 to the fan disk 20 as suggested in
The inner bearing unit 28 includes a roller bearing housing 40, roller bearings 42, and a spanner nut 44 as shown in
The retention plate 32 is coupled selectively to the fan disk 20 to retain the fan blade 22 and at least a portion of the mount system 24 to the fan disk 20 as shown in
The retention plate 32 defines a footprint when viewed radially inward toward the central axis. The outer bearing unit 30 fits within the footprint of the retention plate 32. The inner bearing unit 28 may fit within the footprint of the retention plate 32. The inner bearing unit 28 may fit within a footprint of the outer bearing unit 30.
The spanner nut 38 is coupled around the shank 23 against the roller-bearing housing 34 to integrate the fan blade 22 and the outer bearing unit 30 together. The spanner nut 38 may be threaded and coupled to the shank 23 via complementary threads formed on the shank 23 or may be coupled to the shank 23 with any other suitable method. The retention plate 32 is secured to the fan disk 20 with fasteners that extend through the fastener apertures 52 and into corresponding apertures formed in the fan disk 20.
The roller-bearing housing 34 of the outer bearing unit 30 includes an outer-bearing race 39 and an inner-bearing race 43 as shown in
The roller-bearing housing 40 of the inner bearing unit 28 includes an outer-bearing race 45 as shown in
The variable-pitch fan 12 further includes a pitch controller 54 that is configured to rotate about the central axis 11 with the fan disk 20. The pitch controller 54 is configured to vary the pitch of the fan blade 22 and includes a spline shaft 56 and a rotor control 58 as shown in
The spline shaft 56 includes a plurality of splines 57 disposed on an outer surface 59 of the spline shaft 56 as shown in
Individual fan blades 22 may be replaced by removing the fasteners from the fastener apertures 52 formed in the retention plate 32 as suggested in
With the fan blade 22 and the mount system 24 removed, the components of the variable-pitch fan 12 may be inspected and reassembled. Additionally, one or more components may be replaced and then reassembled. To reassemble the variable-pitch fan 12, the airfoil 25, the shank 23, the outer bearing unit 30, and the retention plate 32 are moved radially inward into the disk aperture 26. The retention plate 32 is then fastened to the fan disk 20.
In illustrative embodiments, the spline shaft 56 is included in a pitch change mechanism. The spline shaft 56 allows fan blade 22 replacement by staying in place during blade replacement. The spline may transfer moment between the fan blade 22 (via the blade shank) and the pitch change mechanism 54. The centrifugal load of the spline shaft 56 may react against a shoulder in the blade shank. In this way, the centrifugal loads may be transferred through the tapered bearings into the fan hub (sometimes called the disk 20).
In illustrative embodiments, a metallic blade shank 31 is attached to the bottom of the blade 25. This blade shank is attached to the base of the composite fan blade 25 by means such as adhesive, pinning, both adhesive and pinning, composite forming around retention features, etc. Via the attachment, the blade shank 31 retains the fan airfoil 25 and may transfer loads from the airfoil into the bearings. The blade shank 31 provides mounting for the spherical tapered roller bearing at the outboard end of the blade shank 31. The blade shank 31 provides the inner race surface for the roller bearing 28. By integrating the roller bearing inner race into the blade shank 31, the space claim may be minimized and may enable the lowest possible hub to tip ratio.
The shank 31 includes splines that extend along a length of the shank 31. The shank 31 further includes pilot diameters and pilot lengths on each side of the splines. The pilot diameters and pilot lengths may allow the splines to have much better durability and the pilot lengths are set to manage the order of engagement, making assembly easier. The pilot diameters are machined to a close tolerance and are generally in round. The pilot diameters extend along a distance of the pilot lengths.
In some embodiments, the roller bearing unit 28 includes an inner race that is removably coupled to the blade shank 31. The removable inner race may increase the spherical tapered roller bearing inner diameter and may increase the minimum hub diameter of the fan. The option could be used to allow replacement of the roller bearing inner race without machining or replacing the blade shank 31 and/or fan blade. Optionally, this may allow for a more optimum blade shank material to be chosen.
In illustrative embodiments, a spherical tapered roller bearing 30 is coupled to the outboard end of the blade shank 31. The tapered roller bearing 30 is attached to the blade shank 31 via a spanner nut 38. The tapered roller bearing 30 may transfer centrifugal loads and moment couple radial loads (paired with the roller bearing). The spherical tapered roller bearing 30 may allow more forgiveness for tolerances and misalignment (for example, up to 3 degrees misalignment). The tapered roller bearing 30 may provide an effectively larger distance between the bearings when transferring the moment couple and may reduce the required size of the bearings. The tapered roller bearing 30 may reduce the number of bearings needed since a tapered roller bearing may carry both axial and radial loads at the same time. In some embodiments, the outer bearing unit is a tapered roller bearing unit (non-spherical).
In illustrative embodiments, a roller bearing 28 is coupled to the inboard end of the blade shank 31. The roller bearing 28 is held in place in the fan hub via a spanner nut. The roller bearing 28 remains in the fan hub during fan blade replacement. The inner race of the roller bearing 28 may be integrated with the blade shank 31. This arrangement may result in a much smaller space claim.
In illustrative embodiments, a blade retention plate 32 is coupled to the fan hub. Bolts may be accessible on the wing for single blade replacement. Socket head capscrews in counterbores may maximize aerodynamics of the bolt arrangement. The retaining plate 32 may provide a face against which the spherical tapered roller bearing transfers centrifugal loads.
In illustrative embodiments, the arrangement and assembly of the bearings may allow for single blade replacement and may minimize space claim. Also this arrangement may allow on wing replacement of single blades and inspection and replacement of the blade bearings on the wing. Another aspect of the disclosure is to minimize the fan hub diameter using the features described herein.
While the disclosure has been illustrated and described in detail in the foregoing drawings and description, the same is to be considered as exemplary and not restrictive in character, it being understood that only illustrative embodiments thereof have been shown and described and that all changes and modifications that come within the spirit of the disclosure are desired to be protected.
This application is a continuation of and claims priority to and the benefit of U.S. patent application Ser. No. 15/787,294, filed 18 Oct. 2017, the disclosure of which is now expressly incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 15787294 | Oct 2017 | US |
Child | 16582527 | US |