The present invention relates to cryogenic refrigerators, particularly such refrigerators operated by a compressed gas such as helium gas.
Helium gas compressors find use in supplying refrigerators for cooling superconducting magnets such as used in magnetic resonance imaging (MRI) systems. The refrigerators, supplied by the helium compressors, serve to maintain the superconducting magnets at a cryogenic temperature sufficiently cold to ensure that the coils of wire used to produce a magnetic field are superconducting. When the magnets are in use, for example during an imaging sequence, an increased amount of heat is generated, as compared to when the magnet is in a standby state, not performing any imaging.
In order to ensure that sufficient refrigeration power is available to maintain the superconducting magnet cooled during an imaging sequence, current practice is to operate the refrigeration system, and so correspondingly also the compressor, constantly at maximum power regardless of the refrigeration power actually required at any particular time. The electrical power consumption required to provide this constant maximum refrigeration power may be considered excessive, for example 9 kW. With the increasing awareness of environmental issues and increasing power costs, it is required to reduce the mean power consumption of such refrigeration systems.
Much of the electrical power consumed in operating such a refrigeration system is consumed by the helium compressor. The present invention seeks to reduce the mean power consumption of a gas compressor, thereby reducing the cost of ownership, and reducing the environmental impact of the use of the compressor.
Furthermore, wear of the component parts of the compressor would be reduced if the mean electrical power consumption of the compressor could be reduced. The present invention therefore also seeks to reduce the rate of wear of component parts of a gas compressor, thereby reducing the cost of ownership, and reducing the environmental impact of the ownership of a compressor, for example by reducing the need for replacement of parts, and increasing the useful life of the compressor.
The present invention accordingly provides apparatus and methods as set out in the appended claims.
The above, and further, objects, advantages and characteristics of the present invention will become more apparent from consideration of the following description of certain embodiments, given by way of examples only, wherein:
It is possible to reduce the power consumption of the gas compressor by at least three alternative methods. Firstly, the operating speed of the compressor may be varied. This option is not preferred in the present invention, since variation in operating speed of the compressor leads to a change in operating speed of the associated refrigerator, which may in turn lead to interference with imaging in an MRI system due to change in the frequency or speed of motion of a magnetic mass within the refrigerator. Another method is to cycle the compressor on and off. This is not preferred as this causes accelerated wear to the compressor and refrigerator, and may also interfere with imaging in an MRI system.
The present invention allows the gas compressor to operate at a reduced input power, and providing a reduced level of refrigeration in an associated refrigeration system, by allowing a reduction in the static charge pressure within a closed gas circuit supplied by the compressor. A typical arrangement comprises a gas compressor connected to a refrigerator by a relatively high pressure output line and a relatively low pressure input line. The gas circuit comprises the supply line, the return line and gas volumes within the compressor and the refrigerator. When the compressor is inoperative, the gas circuit will at least notionally settle to a stable, constant pressure throughout the circuit. This pressure is determined by the mass of gas present in the circuit, the volume of the circuit and the temperature of the gas in the circuit, and is known as the static charge pressure.
The refrigeration power delivered by a cryogenic refrigerator supplied by compressed gas is typically approximately proportional to the input electrical power consumed by the gas compressor. The inventors have found that lowering the static charge pressure in the closed gas circuit supplied by the compressor will reduce the electrical power drawn by the compressor, at the expense of reduced refrigeration power. As described above, the gas compressor and the associated cryogenic refrigerator are typically designed and operated to provide a level of refrigeration sufficient to maintain a superconducting magnet of an MRI system cooled under the most demanding operating conditions—typically encountered during an imaging operation. At other times, such levels of refrigeration are not required. By recognising this, and providing a simple manner in which to control the static charge pressure within the gas circuit, the present invention provides reduced mean power consumption and enhanced operating life of the gas compressor.
The present invention uses variation of the static charge pressure within the gas circuit. It has been found that a reduction in static charge pressure within the gas circuit leads to a reduced operating power consumption in the compressor. The reduction in static charge pressure may be used as an alternative to variation in the speed of operation of the compressor, or these two methods may be used together in some embodiments of the invention. An advantage of varying only the static charge pressure is that the compressor and the refrigerator run at a constant speed, and therefore do not adversely affect the image quality in an MRI system which may otherwise occur due to a varying speed or frequency of a moving magnetic mass within the refrigerator.
With the compressor inoperative, the static charge pressure is 13.5 bar (13.5×105 Pa). With the compressor operative, this static charge pressure represents a mean gas pressure throughout the circuit.
According to an aspect of the present invention, the gas circuit includes a buffer volume 20 connected to the high pressure output line 14 by a controlled inlet valve 22 and connected to the low pressure input line 12 by a controlled outlet valve 24. These valves may be controlled manually, electrically, pneumatically, hydraulically or otherwise. In a preferred embodiment, discussed in more detail below, the inlet and outlet valves 22, 24 are solenoid-operated valves, controlled by a controller of an MRI system.
Gas may be allowed to flow into and out of the buffer volume 20 by appropriate control of inlet valve 22 and outlet valve 24, along paths 23 and 25 respectively. The total volume of the gas path in the compressor 1, the input and output lines 12, 14, the buffer volume 20 and associated paths 23, 25, valves 22, 24 and cryogenic refrigerator 4, supplied by the compressor, may be referred to as a charge volume; the pressure within the input line may be referred to as the input pressure and the pressure within the output line may referred to as the output pressure.
From consideration of the arrangement of
Applying the simple Boyle's law formula P1V1=P2V2 to such an arrangement operating under varying pressure conditions,
VHP.OP1+VLP.IP1+VB.BP1=
VHP.OP2+VLP.IP2+VB.BP2=
(VHP+VLP+VB).SCP
OP1 and IP1 are output and input pressures with a first pressure BP1 of gas within the buffer volume;
OP2 and IP2 are output and input pressures with a second pressure BP2 of gas within the buffer volume; and
SCP is the static charge pressure of gas throughout the charge volume with the compressor inoperative and at least one of the inlet and outlet valves 22, 24 open. As the whole arrangement is sealed, the total mass of gas within the charge volume is constant.
Essentially, the present invention operates as follows. When imaging is taking place, or at other times that full refrigeration power is required, the pressure within buffer volume 20 is reduced to the input pressure, BP1=IP1, reducing the mass of gas within the buffer volume and maximising the mass of gas, and so the static charge pressure, within the gas circuit comprising the high-pressure volume and the low pressure volume. Conversely, when reduced refrigeration power can be tolerated, for example when an associated MRI system is in a standby state, the pressure within buffer volume 20 is increased to the output pressure, BP2=OP2, increasing the mass of gas within the buffer volume and reducing the mass of gas, and so the static charge pressure, within the gas circuit comprising the high-pressure volume and the low pressure volume.
As the total mass of gas remains constant,
at high static charge pressure within the gas circuit:
VHP.OP1+(VLP+VB).IP1=
at low static charge pressure within the gas circuit:
(VHP+VB).OP2+VLP.IP2=
at static charge pressure throughout the charge volume:
(VHP+VLP+VB).SCP
Knowing the high-pressure and low-pressure volumes VHP and VLP, the full-power inlet and outlet pressures IP1 and OP1, and the desired change in static charge pressures of the gas circuit comprising the high-pressure volume, and the low pressure volume, the required volume of buffer volume 20 can be calculated.
A particular embodiment of the present invention will now be described in more detail.
In a normal operating mode, where the compressor is operating at full power, the inlet valve 22 is closed. The volume of the output line is unchanged from the conventional arrangement, the static charge pressure in the gas circuit is at its high value and full refrigeration power is available from refrigerator 4 supplied by the gas compressor. Outlet valve 24 is preferably opened, and the buffer volume 20 will contain gas at the input pressure IP1. Once the pressure in the buffer volume has stabilised, outlet valve 24 may be closed.
According to an aspect of the present invention, when a reduction in cooling performance may be tolerated in order to reduce electrical power consumption, outlet valve 24 is closed and inlet valve 22 is opened between the high pressure output line 14 and the buffer volume 20. Gas at the high output pressure OP1, in this example 20 bar (20×105 Pa), flows into the buffer volume. This increases the mass of gas in the buffer volume, and correspondingly lowers the mass of gas, and so the pressure, in the gas circuit comprising the high-pressure volume and the low pressure volume. In an embodiment of the present invention, the buffer volume 20 is of a size such that the output pressure OP2 is reduced to 18 bar (18×105 Pa) by the opening of inlet valve 22 into the buffer volume 20. This lower output pressure decreases electrical power consumption by the compressor, giving a saving in electrical power consumption, and reducing the mechanical load on the components of the compressor capsule 10.
Inlet valve 22 may then be closed, to trap a volume of gas under output pressure within the buffer volume 20. Alternatively, the inlet valve may be left open, at least until it is required to open the outlet valve to reduce the mass of gas in the buffer volume 20.
The compressor and any associated refrigeration system may be left to operate in this state while an associated MRI system is in a standby state and high-power compression and refrigeration is not required.
Later, high-power compression and refrigeration will be required again. At that time, the mass of gas within the buffer volume 20 must be reduced to its former value, so as to restore the former input and output pressures IP1, OP1. According to an aspect of the present invention, this is achieved by ensuring that the inlet valve 22 is closed and then opening outlet valve 24, discharging the relatively high-pressure gas from the buffer volume 20 into the relatively low-pressure input line 12. The pressure in the buffer volume, in this example, will drop from 18 bar (18×105 Pa) to 4 bar (4×105 Pa), discharging gas into the gas circuit, increasing the input and output pressures IP1, OP1 and so increasing the cooling power delivered by the refrigerator 4. This causes an increase in the electrical power consumed by the compressor. The outlet valve 24 may then be closed, closing the buffer volume to hold a charge of gas at the input pressure. Alternatively, the outlet valve 24 may be left open, at least until it is required to open the inlet valve 22 to increase the mass of gas in the buffer volume 20.
Results of an experiment will now be presented, in which the effects of varying the static charge pressure of the gas circuit on electrical power consumption of a helium gas compressor are measured.
Increased electrical power saving could be achieved if the volume of buffer volume 20 was larger, such that the compressor was allowed to run at a yet lower static charge pressure in the gas circuit during low-power operation.
As discussed above, the reduction in the static charge pressure of the gas circuit leads to a reduction in the cooling power of the refrigerator 4.
The recondensing margin represents the cooling power delivered by a refrigeration system associated with the helium compressor, in excess of the cooling power required to just recondense helium vapour being boiled off by the cooled magnet operating with liquid helium cooling. Typically, only 100 mW recondensing margin is required. However, conventionally, the refrigerator is operated so as to provide at least 100 mW recondensing margin when an associated MRI system is performing an imaging sequence, and the cooled magnet is generating a maximum amount of heat, and is operated continuously at this power, providing an unnecessarily large recondensing margin at other times.
As illustrated in
It may be expected that a further significant reduction of static charge pressure in the gas circuit, such as a further 2.5 bar (2.5×105 Pa) would result in further reductions in electrical power consumption while still maintaining a recondensing margin of well over 100 mW when the MRI magnet system is in a standby, non-imaging state.
The compressor 1 comprises compressor capsule 10 and the required electrical connections, and also includes the buffer volume 20 and inlet and outlet Valves 22, 24. The present invention accordingly delivers a solution which is able to achieve input electrical power savings when an associated MRI system is in a power saving mode, for example when the system is in stand-by, by tolerating reduced refrigeration power at such times.
In the arrangement of
While the present invention has been described by reference to certain embodiments, it will be appreciated by those skilled in the art that numerous variations and modifications of the present invention are contemplated and covered by the scope of the appended claims. For example, while the invention has been particularly described with reference to a compressor for supplying compressed helium to a refrigerator for cooling superconducting coils of a magnet of an MRI system, the present invention may be applied to any gas compressor, whether helium or otherwise, and for any application.
While the present invention has been particularly described with reference to electrically powered gas compressors, it will also be apparent to those skilled in the art that non-electrically powered compressors may be used, such as those operated by stored mechanical energy, combustion engines, driven by a turbine, or other energy sources. In the case of these alternatively-powered compressors, the reduction in power consumption may still be a valuable benefit of the present invention. The reduction in mechanical wear of the compressor will be a welcome benefit regardless of the manner in which the compressor is driven.
Number | Date | Country | Kind |
---|---|---|---|
0724713.3 | Dec 2007 | GB | national |