1. Field of the Invention
Exemplary embodiments of the present invention relate to a variable-precision distributed arithmetic (VPDA) multi-input multi-output (MIMO) equalizer for power- and area-efficient 112 Gb/s optical dual-polarization quadrature phase-shift-keying (DP-QPSK) system.
2. Discussion of the Background
Coherent optical dual-polarization quadrature phase-shift-keying (DP-QPSK) systems with electrical domain dispersion compensation at a wavelength of 1550 nm are being adapted for 112 Gb/s long-haul optical communication links in order to combat chromatic dispersion (CD).
An exemplary embodiment of the present invention discloses a variable-precision distributed arithmetic (VPDA) multi-input multi-output (MIMO) equalizer connected to outputs of a plurality of analog-to-digital converters (ADCs) based on time-interleaved successive approximation registers, the VPDA MIMO equalizer comprises a plurality of sub-equalizers classified into a first sub-equalizers group and a second sub-equalizers group, wherein each of sub-equalizers included in the first sub-equalizers group is connected to outputs of a first ADC group and each of sub-equalizers included in the second sub-equalizers group is connected to outputs of a second ADC group, and a decision unit configured to determine output signals using outputs of the plurality of sub-equalizers, wherein one sub-equalizer included in the first sub-equalizers group relates to other one sub-equalizer included in the second sub-equalizers group, and one output signal among the output signals is determined by the decision unit based on outputs of the one sub-equalizer and the other one sub-equalizer.
Each of the plurality of sub-equalizers comprises a plurality of additional-equalizers for distributed arithmetic, and each additional-equalizers corresponds to one of bits according to a resolution of the ADCs.
One additional-equalizer of the one sub-equalizer relates to other one additional-equalizer of the other one sub-equalizer, and the one output signal is determined by the decision unit based on an output of the one additional-equalizer and an output of the other one additional-equalizer.
Outputs of the ADCs corresponding to i-th bit of the bits is inputted to i-th additional-equalizers of the plurality of sub-equalizers.
Each of the plurality of additional-equalizers comprises a plurality of finite impulse responses (FIR) filters.
One part of the plurality of FIR filters is connected to outputs of one ADC of the first ADC group (or the second ADC group), and another part of the plurality of FIR filters is connected to outputs of other one ADC of the first ADC group (or the second ADC group).
The plurality of additional-equalizers configured to computing outputs according to a sequence from the most significant bit (MSB) of the bits towards the least significant bit (LSB) of the bits.
The VPDA MIMO equalizer further comprises a range checker configured to determine whether further computing outputs for next bit of the sequence is required based on a equalized symbol determined by outputs for present bit and a decision threshold.
Coefficients with each of bits according to a resolution of the ADCs are combined with filter coefficients of FIR filters by at least one of a distributed arithmetic (DA) scheme and a least mean square (LMS) algorithm.
Each of outputs of the ADCs is multiplied with the combined coefficients and each of outputs of the FIR filters is combined.
An exemplary embodiment of the present invention discloses a dual-polarization quadrature phase-shift-keying (DP-QPSK) receiver comprises a plurality of analog-to-digital converters (ADCs) based on time-interleaved successive approximation registers, a variable-precision distributed arithmetic (VPDA) multi-input multi-output (MIMO) equalizer connected to outputs of the ADCs, wherein the VPDA MIMO equalizer comprises a plurality of sub-equalizers, and each of sub-equalizers comprises a plurality of additional-equalizers and a decision unit configured to determine output signals using outputs of the additional-equalizers.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.
The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention, and together with the description serve to explain the principles of the invention.
The invention is described more fully hereinafter with reference to the accompanying drawings, in which exemplary embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these exemplary embodiments are provided so that this disclosure is thorough, and will fully convey the scope of the invention to those skilled in the art. In the drawings, the size and relative sizes of layers and regions may be exaggerated for clarity. Like reference numerals in the drawings denote like elements.
I. Introduction
In this paper, we propose a power-and-area-efficient variable-precision distributed arithmetic (VPDA) multi-input multi-output (MIMO) equalizer for coherent optical dual-polarization quadrature phase-shift-keying (DP-QPSK) systems suitable for Metro dense wavelength division multiplexing (DWDM) applications which require performance, low power and miniaturization. For example, the target distance may be 80 km. Significant reduction in power and area is achieved on the basis of the following two factors: (i) digital equalizer in this proposed design compensates for the channel dispersion as well as the non-idealities of the analog-to-digital converter (ADC) without hardware overhead, which does not necessitate area-hungry analog domain calibration circuits, and (ii) each dispersed symbol is equalized with the minimum required resolution. The latter factor leads to dynamic power reduction of 45% in the digital equalizer. Section II depicts the proposed receiver architecture and Section III describes the distributed arithmetic (DA) MIMO channel equalizer architecture which also compensates for various mismatches and non-linearities of the successive approximation register (SAR) ADC. Then, section IV describes the variable-precision concept applied to the DA MIMO architecture for the dynamic power reduction. Section V provides the simulation results of the VPDA MIMO equalizer and finally, section VI summarizes the discussion.
II. Receiver Architecture
The VPDA MIMO equalizer is intentionally designed to operate in time domain because the frequency domain counterparts have higher level of complexity in 80 km metro applications where the chromatic dispersion is less than 1280 ps/nm.
III. Compensation of ADC Non-Ideality
Digital signal processing methods to overcome either the mismatch or nonlinearity have been reported. The proposed DA MIMO architecture integrates these two methods together with the channel equalizer without hardware overhead over conventional finite impulse response (FIR) channel equalizers employed in 112 Gb/s coherent optical DP-QPSK systems.
A. Mismatch Compensation
It has been shown that the MIMO equalization method can compensate for the offset, gain and sampling time mismatches of a time-interleaved parallel ADC.
VI[n]=[VI1[n]VI2[n] . . . VI112[n]]T [Equation 1]
Similarly, the n-th output matrix of the ADC may be the following Equation 2.
VO[n]=[VO1[n]VO2[n] . . . VO112[n]]T [Equation 2]
Various mismatch effects of the ADC can be interpreted using linear MIMO matrices. Let the matrix G, P and O represent the gain, phase and offset mismatches of the time-interleaved ADC, respectively. VI and VO satisfy the following Equation 3.
[G]112×112·[P]112×112Øc[VI]112×1+[O]112×1=[VO]112×1 [Equation 3]
The mathematic operator denotes the element-by-element convolution. The quantization noise is not considered for simplicity. The gain mismatch G is a diagonal matrix, which is given by the following Equation 4.
wherein gi represents the gain of the i-th ADC. The sampling phase mismatch P can be described using linear interpolation between adjacent samples in VI, as the following Equation 5.
P112×112=Φ112×112−1+Φ112×1120+Φ112×1121Φi,jk[n]=φi,j,kδ[112n+i−j−k], i,j=1 . . . 112 [Equation 5]
wherein φi,j,k is the phase coefficient for the i-th ADC input and δ[n] denotes the discrete time delta function. Because the input signal VI is 2× oversampled, the P matrix models the phase mismatch with sufficient accuracy.
The offset vector O is a 112×1 matrix, as given by the following Equation 6.
O=[O1O2 . . . O112]T [Equation 6]
Wherein Oi represents the offset of the i-th ADC.
A coherent DP-QPSK receiver requires four 56 GS/s ADCs, as shown in
wherein SI and SQ denote the in-phase and quadrature-phase signals in a QPSK system, respectively. Equation 3 can be expanded to include all four ADC inputs SI and SQ as the following Equation 8.
MISI+j·MQSQ+C=RI+j·RQ [Equation 8]
wherein MI and MQ may be represented by the following Equation 9. Also, C and RI+j·RQ may be represented by the following Equation 10.
Ideal ADC outputs SI and SQ can be retrieved as the following Equation 11.
SI+jSQ=MI−1RI+j·MQ−1RQ+C′ [Equation 11]
wherein C′ may be represented by the following Equation 12.
C′=−MI−1CI−j·MQ−1CQ [Equation 12]
Let the 2× oversampled transmitted QPSK signal vectors through X and Y polarizations are XI,Q and YI,Q, respectively. XI,Q and YI,Q can be written in 112×1 matrix as given by the following Equation 13.
XI,Q=[XI,Q1[n]XI,Q1[n]XI,Q2[n]XI,Q2[n] . . . XI,Q56[n]]T
YI,Q=[YI,Q1[n]YI,Q1[n]YI,Q2[n]YI,Q2[n] . . . XI,Q56[n]]T [Equation 13]
wherein XI,Qi[n]=XI,Q[56n+i] and YI,Qi[n]=yI,Q[56n+i]. Note that xI,Q and yI,Q denote transmitted symbols. CD in the radix-112 matrix format may be represented by the following Equation 14.
CDij[n]=cd[112n+i−j], i,j=1 . . . 112 [Equation 14]
wherein cd[n] denotes the 2× oversampled complex impulse response of CD.
The first-order polarization mode dispersion (PMD) can also be written as a radix-112 matrix, as the following Equation 15.
PMD adds a phase delay of _ to each polarization and attenuates the transmitted signal by rotating the polarization angle by α. The combined channel dispersion matrix H including CD and PMD may be represented by the following Equation 16.
Let matrix {circumflex over (D)} denote the combined transmitted signal as given by the tollowing Equation 17.
Because the received dispersed signal at the input of the ADC may be related to {circumflex over (D)} as the following Equation 18.
[{circumflex over (D)}]224×1=[H]224|×224−1SI+j·[H]224×224−1SQ [Equation 18]
the transmitted data matrix {circumflex over (D)} can be retrieved from nonideal outputs of the ADCs by using Equation 11 and Equation 18 as the following Equation 19.
{circumflex over (D)}=ÂRI+j·{circumflex over (B)}RQ+Ĉ″ [Equation 19]
wherein  and {circumflex over (B)} may be represented by the following Equation 20 and Ĉ″ may be represented by the following Equation 21.
Â224×224=H−1MI−1, {circumflex over (B)}224×224=H−1MQ−1 [Equation 20]
C″=H−1C′ [Equation 21]
However, because the received signal is 2× eversampled, only half of the components in {circumflex over (D)} must be equalized. Therefore, D may be represented by the following Equation 22.
D=ARI+j·BRQ+C″ [Equation 22]
Wherein A and B may be represented by the following Equation 23. Also, D and C″ may be represented by the following Equation 24.
Equation 22 can be realized with a MIMO equalizer and the mismatches in the parallel ADCs and the channel dispersion can be compensated for simultaneously by adapting the coefficients of A, B, and C″ using a least mean square (LMS) algorithm.
The MIMO equalizer doesn't require a front-end equalizer for the compensation of the gain and phase mismatches of an optical hybrid. It is because the MIMO equalizer can compensate for such non-idealities together with the gain and phase mismatches of an ADC.
XA1[112×n+k]=A1,k[n]k=1 . . . 112,
YA1[112×n+k−112]=A1,k[n]k=113 . . . 224,
XB1[112×n+k]=B1,k[n]k=1 . . . 112,
XB1[112×n+k−|112]=B1,k[n]k=113 . . . 224.
The total number of parallelized sub-equalizers for one polarization is 56, as 112 parallelized ADCs are oversampling the received signal by a factor of 2. The total number of real value multiplications required for the reconstruction of two transmitted symbols XIQ and XIQ in the MIMO equalizer is L×8×2=16×L as shown in the following Table 1 (a). Note that the factor of 2 is multiplied because the filter coefficients are complex numbers.
B. ADC Nonlinearity Compensation
SAR ADC is considered as most suitable type for coherent optical communication. It has been shown that the nonlinearity of a SAR ADC can be compensated for using a digital-domain signal processing method. Unlike the previous work which uses a reference ADC for calibration, the proposed DA MIMO equalizer can compensate for the nonlinearity of a SAR ADC and channel dispersion simultaneously by using the estimated output mean square error. Because this compensation process is an interpretation rather than a calibration scheme to deal with the non-linearity, a certain amount of SNR penalty at the final output can exist.
A SAR ADC may consist of a capacitance array for digital-to-analog conversion (DAC), a comparator for the decision, and a digital logic block for the DAC control.
where ΔVi denotes the voltage change at Vi, Ctot=τi=16Ci and Cp is the parasitic capacitance. The total voltage change ΔVx may be represented by the following Equation 28.
ΔVx=Σi=16KiΔVi=Σi=16Ki(−VR−Vin) [Equation 23]
The capacitor array receives digital codes d1˜d5 from the digital logic block and adds the corresponding analog voltage to the sampled input signal Vin using a charge redistribution process. The digital logic block uses a binary search algorithm to find the digital code which takes Vx to the sub-LSB level. Vx is related to the digital code d1˜d5, Vin and VR as given by the following Equation 29.
wherein Ktot may be represented by the following Equation 30.
Hence, the input signal Vin may be represented by the following Equation 31.
wherein Kos VQ are the comparator offset and the quantization noise, respectively. Equation 31 shows that the input signal Vin can be accurately reconstructed from digital codes d1˜d5 by multiplying adequate coefficients with each bit and adding a proper offset in a SAR ADC.
The corrected output signal VO,corr of a five-bit SAR ADC can be written as the following Equation 32.
VO,corr=Σi=15ai×di+oc [Equation 32]
wherein ai and oc are the coefficient and offset for the correction, respectively. The correction factors ai and oc were retrieved using a slow-but-accurate reference ADC in the earlier work. However, ai can be combined with the filter coefficients of the digital FIR filter by using a DA scheme as shown in
where the correction factor aik may satisfy the following Equation 34.
VO1,corrk=Σi=15aik×dik+ock,
VO3,corrk=Σi=15aik+112×di(k+112)+ock+112 [Equation 34]
In summary, channel dispersion and ADC nonlinearity can be compensated for simultaneously by multiplying different FIR filter coefficients Aj,k1 . . . Aj,k5 with each ADC output bit and combining them at the output. The offset correction factor oc is implemented in the last stage of the DA MIMO equalizer by subtracting the average values of output Ei,j from the recovered symbols. This process aligns the center of the QPSK signal space of each sub-equalizer to the origin.
Iv. A Variable-Precision Distributed Arithmetic (VPDA) MIMO Equalizer
The VPDA MIMO equalizer reduces the dynamic power consumption of the DA MIMO equalizer by using only the minimum required resolution for the equalization of each dispersed symbol.
The estimated power ratio of the VPDA MIO equalizer over the DA MIMO equalizer may be approximately represented by the following Equation 35.
where PVPDA and PDA are the power consumptions of the VPDA MIMO and the DA MIMO equalizers, respectively, and Pr(Enk) denotes the probability that a single bit equalizer at each resolution step is being enabled as shown in
The probability Pr(Enk) is determined by both SNR and the area of suspicious region at each resolution step. Proper selection of the suspicious region in the signal space is crucial for the VPDA MIMO equalizer because premature inaccurate decisions caused by insufficient area of the suspicious regions increase BER penalty. Therefore, the design target for the dynamic power minimization of the VPDA MIMO equalizer is to minimize the average ADC resolution by minimizing the area of the suspicious regions without a significant BER penalty. The transition rate, defined as the probability of an equalized symbol being in the suspicious region in the kth stage depends on both the size of the suspicious region in the current stage and the transition rate in the previous stages. Thus, the size of the suspicious regions should be determined sequentially from MSB to LSB. The suspicious region of the first stage, Sus1, is determined based on the BER while assuming that the suspicious regions in the subsequent stage are infinite and that no extra bit-error occurs from the variable-precision architecture. The estimated BER at the output of the first stage may be represented by the following Equation 36.
BER=Pr(bit error∩P1c)+Pr(bit error∩P1∩P5c) [Equation 36]
wherein Pk denotes the set of events that the output symbol in the kth stage, Symk=(Xk, Yk), is in the suspicious region and Pkc denotes the complementary set of Pk. In case symbol (1, 1) is transmitted, Pr (bit error∩Pkc) can be expanded as the following Equation 37.
wherein Ekx, Eky and Ekxy are the sets of erroneous events, as given by the following Equation 38.
Ekx={SymkεERRxk}
Eky={SymkεERRyk}
Ekxy={SymkεERRxyk} [Equation 38]
wherein ERRxk, ERRyk and ERRxyk denote the areas shown in
Because the two-dimensional probability density function of Symk is symmetric with respect to Yk=Xk, the Equation 37 can be simplified to the following Equation 4.
Because the noise in each equalized symbol is a linear combination of independent and identically distributed (i.i.d) additive noises caused by quantization and limited input signal-to-noise ratio in each sample, it can be assumed to show a Gaussian distribution according to the central limit theorem. Then, the probabilities Pr(Ekx) and Pr(Ekxy) are given by the following Equation 41 and Equation 42.
wherein σk is the standard deviation of the noise at kth stage and g(x,μ,σ) is a Gaussian function, as given by the following Equation 43.
Because Pk is symmetrical with respect to Yk=Xk, Pr(bit error∩Pm∩Pnc), m≦n can be written using Equation 40 as the following Equation 44.
Let Nm,n be the noise added to the equalized output signal when ADC resolution is reduced from n bit to in bit. Nm,n can be modeled by a Gaussian distribution of N(0,√{square root over (σm2−σn2)}). Then, Pr(Enx∩Pm) may be given by the following Equation 45.
The Equation 45 is changed to the following Equation 46.
Similarly, Pr(Enx∩Pm) may be represented by the following Equation 47.
Assuming that the random variables Xn, Yn, Nm,nx and Nm,ny are independent, Equation 45 becomes the following Equation 48.
wherein Fm,n(x) may be defined in the following Equation 49.
Similarly, Pr(Enxy∩Pm) may be given by the following Equation 50.
The addition of the Equation 48 and the Equation 50 renders the conditional probability of Pr({bit error∩Pnc}∩Pm). Then, the relationship between Sus1 and BER can be achieved from (36) and the minimum Sus1 satisfying a BER target can be chosen. The relationship between BER and Sus2 with the minimum Sus1 value chosen above may be the following Equation 51.
Pr(bit error∩P1∩P2∩P5c) can be simplified to Pr(bit error∩P2∩P5c) given that Sus2 is smaller than Sus1; thus, P1∩P2≈P2. In general, the relationship between BER and Susk with a predetermined minimum Sus1 . . . Susk−1 may be given by the following Equation 52.
provided that the following Equation 53.
Pr(P1∩P2 . . . Pk)≈Pr(Pk) [Equation 53]
wherein Pr(Pk) is derived in the following Equation 54. Finally, the dynamic power reduction ratio of the VPDA MIMO equalizer can be estimated by using the Equation 35 because Pr(Pk)=Pr(Enk+1).
V. Simulation
The simulation setup of the VPDA MIMO equalizer is shown in
σC
Ck=25-k×C6, k=1 . . . 5
C5=C6
wherein α is a process parameter. In this simulation α is set to 0.4. The standard deviation of the comparator offset is set to 40 mV and the full scale of the ADC is set to ±400 mVpeak-peak. Total 112 randomly generated nonlinear characteristics of a single ADC are shown in
The analytic results (lines) discussed in section IV closely match the simulation results (hollow circle). The normalized suspicious regions with respect to the QPSK signal space for each level of ADC precision from MSB to LSB are set to 1.82, 0.86, 0.44 and 0.19 as shown in
The estimated dynamic power ratio of the proposed VPDA MIMO equalizer over the DA MIMO equalizer is 0.55 from the Equation 35 and thus 45% of dynamic power consumption can be reduced.
VI. Summary
A power-and-area efficient BER-aware VDPA MIMO architecture for a 112 Gb/s DP-QPSK coherent receiver is presented. The VPDA MEMO equalizer achieves 45% dynamic power reduction compared to conventional FIR equalizers and does not require area-hungry analog domain calibration circuits for the ADC.
The exemplary embodiments according to the present invention may be recorded in computer-readable media including program instructions to implement various operations embodied by a computer. The media may also include, alone or in combination with the program instructions, data files, data structures, and the like. The media and program instructions may be those specially designed and constructed for the purposes of the present invention, or they may be of the kind well-known and available to those having skill in the computer software arts.
It will be apparent to those skilled in the art that various modifications and variation can be made in the present invention without departing from the spirit or scope of the invention. Thus, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
The present application is a U.S. nonprovisional application that claims priority to U.S. provisional application No. 61/617,229, filed Mar. 29, 2012, which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
6115419 | Meehan | Sep 2000 | A |
20030035236 | Satoh et al. | Feb 2003 | A1 |
20030208516 | Ao et al. | Nov 2003 | A1 |
20050271135 | Shida | Dec 2005 | A1 |
20060256892 | Momtaz | Nov 2006 | A1 |
20070116162 | Eliaz et al. | May 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20130259112 A1 | Oct 2013 | US |
Number | Date | Country | |
---|---|---|---|
61617229 | Mar 2012 | US |