The present application is related generally to x-ray window support structures.
It is important for support members in support structures, such as x-ray window support structures, to be strong but also small in size. X-ray windows can include a thin film supported by the support structure, typically comprised of ribs supported by a frame. The support structure can be used to minimize sagging or breaking of the thin film. The support structure can interfere with the passage of x-rays and thus it can be desirable for ribs to be as thin or narrow as possible while still maintaining sufficient strength to support the thin film. The support structure and film are normally expected to be strong enough to withstand a differential pressure of around 1 atmosphere without sagging or breaking.
Such support structures can comprise a support frame defining a perimeter and an aperture, a plurality of ribs extending across the aperture of the support frame and carried by the support frame, and openings between the ribs. Stresses can occur at the junction of the ribs and the support frame. It can be important to reduce such stresses in order to avoid failure at this junction.
It has been recognized that it would be advantageous to have a strong x-ray window support structure, and advantageous to minimize stresses at a junction of the ribs to the support frame. The present invention is directed to an x-ray window support structure that satisfies these needs. The support structure comprises a support frame defining a perimeter and an aperture, a plurality of ribs extending across the aperture of the support frame and carried by the support frame, and openings between the plurality of ribs. A rib taper region can extend from a central portion of the ribs to the support frame. The taper region can include a non-circular, arcuate pair of fillets on opposing sides of the ribs and an increasing of rib width from the central portion to the support frame.
As illustrated in
Shown in
When the thickness t of the ribs 12 is sufficiently thin, stress on the rib material can become very large near the junction 14 of the ribs 12 with the support frame 11. A rib taper region 12t (shown in
Shown in
The support structures 30 and 40 described herein may be further defined or quantified by the shape of the ribs 12, such as having a long length relative to an increase in rib width W in the rib taper region 12t. The support structures 30 and 40 described herein may also be defined or quantified by the shape of the openings 13 in the rib taper region 12t, such as a relationship of rib length in the rib taper region 12t to an opening width, a relationship of radius of curvature at a taper beginning to a radius of curvature at the support frame 11, or elliptical shaped openings 13. These definitions can be used to quantify the non-circular, arcuate shape of the fillets 33a- and 33b of the rib taper region 12t.
As shown on support structures 30 and 40 in
In another aspect, the central rib width Wc, the junction rib width WJ, and the taper length TL can satisfy the equation:
These equations can quantify a long length of the ribs 12 relative to an increase in rib width W in the rib taper region 12t.
As shown on support structure 40 of
in one aspect, or between 1.4 and 2.2
in another aspect. These equations can quantify a long length of the ribs 12 in the rib taper region 12t relative to an opening width Ow at the taper beginning Tb.
As shown on support structure 50 of
in one aspect. The central radius Rc divided by the junction radius RJ can be between 20 and 50
in another aspect. These equations can quantify a large radius of curvature at the taper beginning Tb relative to a substantially smaller radius of curvature at a junction 14 of the ribs 12 with the support frame 11, thus quantifying the non-circular, arcuate shape of the ribs 12.
The larger radius of curvature closer to the central portion 12c of the ribs 12 can result in reduced stress in the ribs 12, and thus greater rib strength and reduced risk of rib failure. The gradually and continually decreasing radius of curvature towards the junction 14 can allow ribs 12 to be packed closer together. Thus, if a larger spacing between ribs 12 is allowed, such as if a relatively strong film 21 is used, then the central radius Rc divided by the junction radius RJ can be relatively smaller. If a smaller spacing between ribs 12 is allowed, such as if a thinner or relatively weaker film 21 is used, then the central radius Rc divided by the junction radius RJ may need to be larger.
As shown on support structure 60 of
These equations can quantify the shape of openings 13 in the rib taper region 12t.
In previous figures, ribs 12 were shown packed closely together, such that where the rib taper for one rib 12 ended at the support structure 11, a rib taper for another rib 12 began. As shown on support structure 70 of
The central portion 12c of the ribs 12 can have a substantially constant width W, and ribs 12 can be substantially parallel with each other, as is shown on support structure 10 in
The ribs 12 and/or the support frame 11 can comprise low atomic number elements such as aluminum, beryllium, boron, carbon, fluorine, hydrogen, nitrogen, oxygen, and/or silicon. Use of such low atomic number elements can result in minimized x-ray spectrum contamination. The ribs 12 and/or the support frame 11 can comprise boron carbide, boron hydride, boron nitride, carbon fiber composite, carbon nanotube composite, kevlar, mylar, polyimide, polymer, silicon nitride, diamond, diamond-like carbon, graphitic carbon, pyrolytic graphite, and/or amorphous carbon. The openings 13, ribs 12, and support frame 11 can be formed by laser ablation. Manufacturing of the support structure from a carbon composite wafer is described in U.S. patent application Ser. No. 13/667,273, filed on Nov. 2, 2012, and in U.S. patent application Ser. No. 13/453,066, filed on Apr. 23, 2012, which are hereby incorporated herein by reference. If a carbon composite support structure is used, carbon fibers in the carbon composite can be directionally aligned with the ribs 12.
The film 21, described previously in the description of
Priority is claimed to U.S. Provisional Patent Application Ser. No. 61/689,458, filed on Jun. 6, 2012; which is hereby incorporated herein by reference in its entirety. This is a continuation-in-part of U.S. patent application Ser. No. 13/667,273, filed on Nov. 2, 2012, which is a continuation-in-part of U.S. patent application Ser. No. 13/453,066, filed on Apr. 23, 2012, now U.S. Pat. No. 8,989,354, which claims priority to U.S. Provisional Patent Application No. 61/486,547 filed on May 16, 2011, 61/495,616 filed on Jun. 10, 2011, and 61/511,793 filed on Jul. 26, 2011; all of which are hereby incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
1276706 | Snook et al. | May 1918 | A |
1881448 | Forde et al. | Oct 1932 | A |
1946288 | Kearsley | Feb 1934 | A |
2291948 | Cassen | Aug 1942 | A |
2316214 | Atlee et al. | Apr 1943 | A |
2329318 | Atlee et al. | Sep 1943 | A |
2340363 | Atlee et al. | Feb 1944 | A |
2502070 | Atlee et al. | Mar 1950 | A |
2663812 | Jamison et al. | Mar 1950 | A |
2683223 | Hosemann | Jul 1954 | A |
2952790 | Steen | Sep 1960 | A |
3397337 | Denholm | Aug 1968 | A |
3538368 | Oess | Nov 1970 | A |
3665236 | Gaines et al. | May 1972 | A |
3679927 | Kirkendall | Jul 1972 | A |
3691417 | Gralenski | Sep 1972 | A |
3741797 | Chavasse Jr. et al. | Jun 1973 | A |
3751701 | Gralenski et al. | Aug 1973 | A |
3801847 | Dietz | Apr 1974 | A |
3828190 | Dahlin et al. | Aug 1974 | A |
3882339 | Rate et al. | May 1975 | A |
3962583 | Holland et al. | Jun 1976 | A |
3970884 | Golden | Jul 1976 | A |
4007375 | Albert | Feb 1977 | A |
4075526 | Grubis | Feb 1978 | A |
4160311 | Ronde et al. | Jul 1979 | A |
4163900 | Warren et al. | Aug 1979 | A |
4178509 | More et al. | Dec 1979 | A |
4184097 | Auge | Jan 1980 | A |
4250127 | Warren et al. | Feb 1981 | A |
4368538 | McCorkle | Jan 1983 | A |
4393127 | Greschner et al. | Jul 1983 | A |
4463257 | Simpkins et al. | Jul 1984 | A |
4463338 | Utner et al. | Jul 1984 | A |
4521902 | Peugeot | Jun 1985 | A |
4532150 | Endo et al. | Jul 1985 | A |
4573186 | Reinhold | Feb 1986 | A |
4576679 | White | Mar 1986 | A |
4584056 | Perret et al. | Apr 1986 | A |
4591756 | Avnery | May 1986 | A |
4608326 | Neukermans et al. | Aug 1986 | A |
4645977 | Kurokawa et al. | Feb 1987 | A |
4675525 | Amingual et al. | Jun 1987 | A |
4679219 | Ozaki | Jul 1987 | A |
4688241 | Peugeot | Aug 1987 | A |
4696994 | Nakajima et al. | Sep 1987 | A |
4705540 | Hayes | Nov 1987 | A |
4777642 | Ono | Oct 1988 | A |
4797907 | Anderton | Jan 1989 | A |
4818806 | Kunimune et al. | Apr 1989 | A |
4819260 | Haberrecker | Apr 1989 | A |
4862490 | Karnezos et al. | Aug 1989 | A |
4870671 | Hershyn | Sep 1989 | A |
4876330 | Higashi et al. | Oct 1989 | A |
4878866 | Mori et al. | Nov 1989 | A |
4885055 | Woodbury et al. | Dec 1989 | A |
4891831 | Tanaka et al. | Jan 1990 | A |
4933557 | Perkins et al. | Jun 1990 | A |
4939763 | Pinneo et al. | Jul 1990 | A |
4957773 | Spencer et al. | Sep 1990 | A |
4960486 | Perkins et al. | Oct 1990 | A |
4969173 | Valkonet | Nov 1990 | A |
4979198 | Malcolm et al. | Dec 1990 | A |
4979199 | Cueman et al. | Dec 1990 | A |
5010562 | Hernandez et al. | Apr 1991 | A |
5063324 | Grunwald et al. | Nov 1991 | A |
5066300 | Isaacson et al. | Nov 1991 | A |
5077771 | Skillicorn et al. | Dec 1991 | A |
5077777 | Daly | Dec 1991 | A |
5090046 | Friel | Feb 1992 | A |
5105456 | Rand et al. | Apr 1992 | A |
5117829 | Miller et al. | Jun 1992 | A |
5153900 | Nomikos et al. | Oct 1992 | A |
5161179 | Suzuki et al. | Nov 1992 | A |
5173612 | Imai et al. | Dec 1992 | A |
5196283 | Ikeda et al. | Mar 1993 | A |
5217817 | Verspui et al. | Jun 1993 | A |
5226067 | Allred et al. | Jul 1993 | A |
RE34421 | Parker et al. | Oct 1993 | E |
5258091 | Imai et al. | Nov 1993 | A |
5267294 | Kuroda et al. | Nov 1993 | A |
5343112 | Wegmann | Aug 1994 | A |
5391958 | Kelly | Feb 1995 | A |
5400385 | Blake et al. | Mar 1995 | A |
5422926 | Smith et al. | Jun 1995 | A |
5428658 | Oettinger et al. | Jun 1995 | A |
5432003 | Plano et al. | Jul 1995 | A |
5465023 | Garner | Nov 1995 | A |
5469429 | Yamazaki et al. | Nov 1995 | A |
5469490 | Golden et al. | Nov 1995 | A |
5478266 | Kelly | Dec 1995 | A |
5524133 | Neale et al. | Jun 1996 | A |
5561342 | Roeder et al. | Oct 1996 | A |
5567929 | Ouimette | Oct 1996 | A |
RE35383 | Miller et al. | Nov 1996 | E |
5571616 | Phillips et al. | Nov 1996 | A |
5578360 | Viitanen | Nov 1996 | A |
5607723 | Plano et al. | Mar 1997 | A |
5621780 | Smith et al. | Apr 1997 | A |
5627871 | Wang | May 1997 | A |
5631943 | Miles | May 1997 | A |
5680433 | Jensen | Oct 1997 | A |
5682412 | Skillicorn et al. | Oct 1997 | A |
5696808 | Lenz | Dec 1997 | A |
5729583 | Tang et al. | Mar 1998 | A |
5740228 | Schmidt et al. | Apr 1998 | A |
5774522 | Warburton | Jun 1998 | A |
5812632 | Schardt et al. | Sep 1998 | A |
5835561 | Moorman et al. | Nov 1998 | A |
5870051 | Warburton | Feb 1999 | A |
5898754 | Gorzen | Apr 1999 | A |
5907595 | Sommerer | May 1999 | A |
6002202 | Meyer et al. | Dec 1999 | A |
6005918 | Harris et al. | Dec 1999 | A |
6044130 | Inazura et al. | Mar 2000 | A |
6062931 | Chuang et al. | May 2000 | A |
6069278 | Chuang | May 2000 | A |
6075839 | Treseder | Jun 2000 | A |
6097790 | Hasegawa et al. | Aug 2000 | A |
6133401 | Jensen | Oct 2000 | A |
6134300 | Trebes et al. | Oct 2000 | A |
6184333 | Gray | Feb 2001 | B1 |
6205200 | Boyer et al. | Mar 2001 | B1 |
6282263 | Arndt et al. | Aug 2001 | B1 |
6288209 | Jensen | Sep 2001 | B1 |
6307008 | Lee et al. | Oct 2001 | B1 |
6320019 | Lee et al. | Nov 2001 | B1 |
6351520 | Inazaru | Feb 2002 | B1 |
6385294 | Suzuki et al. | May 2002 | B2 |
6438207 | Chidester et al. | Aug 2002 | B1 |
6477235 | Chornenky et al. | Nov 2002 | B2 |
6487272 | Kutsuzawa | Nov 2002 | B1 |
6487273 | Takenaka et al. | Nov 2002 | B1 |
6494618 | Moulton | Dec 2002 | B1 |
6546077 | Chornenky et al. | Apr 2003 | B2 |
6567500 | Rother | May 2003 | B2 |
6646366 | Hell et al. | Nov 2003 | B2 |
6658085 | Sklebitz | Dec 2003 | B2 |
6661876 | Turner et al. | Dec 2003 | B2 |
6740874 | Doring | May 2004 | B2 |
6778633 | Loxley et al. | Aug 2004 | B1 |
6799075 | Chornenky et al. | Sep 2004 | B1 |
6803570 | Bryson, III et al. | Oct 2004 | B1 |
6803571 | Mankos et al. | Oct 2004 | B1 |
6816573 | Hirano et al. | Nov 2004 | B2 |
6819741 | Chidester | Nov 2004 | B2 |
6838297 | Iwasaki | Jan 2005 | B2 |
6852365 | Smart et al. | Feb 2005 | B2 |
6876724 | Zhou et al. | Apr 2005 | B2 |
6956706 | Brandon | Oct 2005 | B2 |
6962782 | Livache et al. | Nov 2005 | B1 |
6976953 | Pelc | Dec 2005 | B1 |
6987835 | Lovoi | Jan 2006 | B2 |
7035379 | Turner et al. | Apr 2006 | B2 |
7046767 | Okada et al. | May 2006 | B2 |
7085354 | Kanagami | Aug 2006 | B2 |
7130380 | Lovoi et al. | Oct 2006 | B2 |
7130381 | Lovoi et al. | Oct 2006 | B2 |
7203283 | Puusaari | Apr 2007 | B1 |
7206381 | Shimono et al. | Apr 2007 | B2 |
7215741 | Ukita | May 2007 | B2 |
7224769 | Turner | May 2007 | B2 |
7233647 | Turner et al. | Jun 2007 | B2 |
7286642 | Ishikawa et al. | Oct 2007 | B2 |
7305066 | Ukita | Dec 2007 | B2 |
7358593 | Smith et al. | Apr 2008 | B2 |
7382862 | Bard et al. | Jun 2008 | B2 |
7428298 | Bard et al. | Sep 2008 | B2 |
7448801 | Oettinger et al. | Nov 2008 | B2 |
7448802 | Oettinger et al. | Nov 2008 | B2 |
7486774 | Cain | Feb 2009 | B2 |
7526068 | Dinsmore | Apr 2009 | B2 |
7529345 | Bard et al. | May 2009 | B2 |
7618906 | Meilahti | Nov 2009 | B2 |
7634052 | Grodzins | Dec 2009 | B2 |
7649980 | Aoki et al. | Jan 2010 | B2 |
7657002 | Burke et al. | Feb 2010 | B2 |
7684545 | Damento et al. | Mar 2010 | B2 |
7693265 | Hauttmann et al. | Apr 2010 | B2 |
7709820 | Decker et al. | May 2010 | B2 |
7737424 | Xu et al. | Jun 2010 | B2 |
7756251 | Davis et al. | Jul 2010 | B2 |
7983394 | Kozaczek | Jul 2011 | B2 |
8498381 | Liddiard | Jul 2013 | B2 |
8929515 | Liddiard | Jan 2015 | B2 |
8989354 | Davis et al. | Mar 2015 | B2 |
20020075999 | Rother | Jun 2002 | A1 |
20020094064 | Zhou et al. | Jul 2002 | A1 |
20030096104 | Tobita et al. | May 2003 | A1 |
20030117770 | Montgomery et al. | Jun 2003 | A1 |
20030152700 | Asmussen et al. | Aug 2003 | A1 |
20040076260 | Charles, Jr. et al. | Apr 2004 | A1 |
20040131835 | Schmitt et al. | Jul 2004 | A1 |
20050018817 | Oettinger et al. | Jan 2005 | A1 |
20050141669 | Shimono et al. | Jun 2005 | A1 |
20050207537 | Ukita | Sep 2005 | A1 |
20060098778 | Oettinger et al. | May 2006 | A1 |
20060233307 | Dinsmore | Oct 2006 | A1 |
20060269048 | Cain | Nov 2006 | A1 |
20070025516 | Bard et al. | Feb 2007 | A1 |
20070111617 | Meilahti | May 2007 | A1 |
20070133921 | Haffner et al. | Jun 2007 | A1 |
20070165780 | Durst et al. | Jul 2007 | A1 |
20070183576 | Burke et al. | Aug 2007 | A1 |
20080296479 | Anderson et al. | Dec 2008 | A1 |
20080296518 | Xu et al. | Dec 2008 | A1 |
20080317982 | Hecht | Dec 2008 | A1 |
20090086923 | Davis et al. | Apr 2009 | A1 |
20100096595 | Prud'Homme et al. | Apr 2010 | A1 |
20100126660 | O'Hara | May 2010 | A1 |
20100140497 | Damiano, Jr. et al. | Jun 2010 | A1 |
20100239828 | Cornaby et al. | Sep 2010 | A1 |
20100243895 | Xu et al. | Sep 2010 | A1 |
20100248343 | Aten et al. | Sep 2010 | A1 |
20100285271 | Davis et al. | Nov 2010 | A1 |
20100323419 | Aten et al. | Dec 2010 | A1 |
20110017921 | Jiang et al. | Jan 2011 | A1 |
20110089330 | Thomas | Apr 2011 | A1 |
20110121179 | Liddiard | May 2011 | A1 |
20120025110 | Davis | Feb 2012 | A1 |
20120087476 | Liddiard | Apr 2012 | A1 |
20120213336 | Liddiard | Aug 2012 | A1 |
20130051535 | Davis | Feb 2013 | A1 |
20130064355 | Davis | Mar 2013 | A1 |
20130077761 | Sipila | Mar 2013 | A1 |
20130089184 | Sipila | Apr 2013 | A1 |
20130094629 | Liddiard | Apr 2013 | A1 |
20130315380 | Davis et al. | Nov 2013 | A1 |
20150016593 | Larson et al. | Jan 2015 | A1 |
Number | Date | Country |
---|---|---|
1030936 | May 1958 | DE |
4430623 | Mar 1996 | DE |
19818057 | Nov 1999 | DE |
0297808 | Jan 1989 | EP |
0330456 | Aug 1989 | EP |
0400655 | May 1990 | EP |
0676772 | Mar 1995 | EP |
1252290 | Nov 1971 | GB |
57082954 | Aug 1982 | JP |
S6074253 | Apr 1985 | JP |
S6089054 | May 1985 | JP |
3170673 | Jul 1991 | JP |
05066300 | Mar 1993 | JP |
5135722 | Jun 1993 | JP |
06119893 | Jul 1994 | JP |
6289145 | Oct 1994 | JP |
6343478 | Dec 1994 | JP |
8315783 | Nov 1996 | JP |
2001179844 | Jul 2001 | JP |
2003007237 | Jan 2003 | JP |
2003088383 | Mar 2003 | JP |
2003510236 | Mar 2003 | JP |
20033211396 | Jul 2003 | JP |
4171700 | Jun 2006 | JP |
2006297549 | Nov 2006 | JP |
10-2005-0107094 | Nov 2005 | KR |
WO 9965821 | Dec 1999 | WO |
WO 0009443 | Feb 2000 | WO |
WO 0017102 | Mar 2000 | WO |
WO 03076951 | Sep 2003 | WO |
WO 2008052002 | May 2008 | WO |
WO 2009009610 | Jan 2009 | WO |
WO 2009045915 | Apr 2009 | WO |
WO 2009085351 | Jul 2009 | WO |
WO 2010107600 | Sep 2010 | WO |
Entry |
---|
PCT application EP12167551.6; filed May 10, 2012; Robert C. Davis; European search report mailed Nov. 21, 2013. |
U.S. Appl. No. 12/899,750; filed Oct. 7, 2010; Steven Liddiard; Notice of Allowance dated Jun. 4, 2013. |
U.S. Appl. No. 13/855,575; filed Apr. 2, 2013; Robert C. Davis. |
Anderson et al., U.S. Appl. No. 11/756,962, filed Jun. 1, 2007. |
Barkan et al., “Improved window for low-energy x-ray transmission a Hybrid design for energy-dispersive microanalysis,” Sep. 1995, 2 pages, Ectroscopy 10(7). |
Blanquart et al.; “XPAD, a New Read-out Pixel Chip for X-ray Counting”; IEEE Xplore; Mar. 25, 2009. |
Comfort, J. H., “Plasma-enhanced chemical vapor deposition of in situ doped epitaxial silicon at low temperatures,” J. Appl. Phys. 65, 1067 (1989). |
Das, D. K., and K. Kumar, “Chemical vapor deposition of boron on a beryllium surface,” Thin Solid Films, 83(1), 53-60, Sep. 4, 1981. |
Das, K., and Kumar, K., “Tribological behavior of improved chemically vapor-deposited boron on beryllium,” Thin Solid Films, 108(2), 181-188, Oct. 14, 1983. |
Grybos et al.; “DEDIX—Development of Fully Integrated Multichannel ASIC for High Count Rate Digital X-ray Imagining systems”; IEEE 2006; Nuclear Science Symposium Conference Record. |
Grybos, “Pole-Zero Cancellations Circuit With Pulse Pile-Up Tracking System for Low Noise Charge-Sensitive Amplifiers”; Mar. 25, 2009; from IEEE Xplore. |
Grybos, et al “Measurements of Matching and High Count Rate Performance of Multichannel ASIC for Digital X-Ray Imaging Systems”; IEEE Transactions on Nuclear Science, vol. 54, No. 4, 2007. |
Hanigofsky, J. A., K. L. More, and W. J. Lackey, “Composition and microstructure of chemically vapor-deposited boron nitride, aluminum nitride, and boron nitride + aluminum nitride composites,” J. Amer. Ceramic Soc. 74, 301 (1991). |
Hexcel Corporation; “Prepreg Technology” brochure; Mar. 2005 http://www.hexcel.com/Reso2882urces/DataSheets/Brochure-Data-Sheets/Prepreg—Technology.pdf. |
http://www.orau.org/ptp/collection/xraytubescollidge/MachelettCW250.htm, 1999, 2 pgs. |
Komatsu, S., and Y. Moriyoshi, “Influence of atomic hydrogen on the growth reactions of amorphous boron films in a low-pressure B.sub.2 H.sub.6 +He+H.sub.2 plasma”, J. Appl. Phys. 64, 1878 (1988). |
Komatsu, S., and Y. Moriyoshi, “Transition from amorphous to crystal growth of boron films in plasma-enhanced chemical vapor deposition with B.sub.2 H.sub.6 +He,” J. Appl. Phys., 66, 466 (1989). |
Komatsu, S., and Y. Moriyoshi, “Transition from thermal-to electron-impact decomposition of diborane in plasma-enhanced chemical vapor deposition of boron films from B.sub.2 H.sub.6 +He,” J. Appl. Phys. 66, 1180 (1989). |
Lee, W., W. J. Lackey, and P. K. Agrawal, “Kinetic analysis of chemical vapor deposition of boron nitride,” J. Amer. Ceramic Soc. 74, 2642 (1991). |
Lines, U.S. Appl. No. 12/352,864, filed Jan. 13, 2009. |
Lines, U.S. Appl. No. 12/726,120, filed Mar. 17, 2010. |
Maya, L., and L. A. Harris, “Pyrolytic deposition of carbon films containing nitrogen and/or boron,” J. Amer. Ceramic Soc. 73, 1912 (1990). |
Michaelidis, M., and R. Pollard, “Analysis of chemical vapor deposition of boron,” J. Electrochem. Soc. 132, 1757 (1985). |
Micro X-ray Tube Operation Manual, X-ray and Specialty Instruments Inc., 1996, 5 pages. |
Moore, A. W., S. L. Strong, and G. L. Doll, “Properties and characterization of codeposited boron nitride and carbon materials,” J. Appl. Phys. 65, 5109 (1989). |
Nakajima et al; Trial Use of Carbon-Fiber-Reinforced Plastic as a Non-Bragg Window Material of X-Ray Transmission; Rev. Sci. Instrum.; Jul. 1989; pp. 2432-2435; vol. 60, No. 7. |
Nakamura, K., “Preparation and properties of amorphous boron nitride films by molecular flow chemical vapor deposition,” J. Electrochem. Soc. 132, 1757 (1985). |
Neyco, “SEM & TEM: Grids”; catalog; http://www.neyco.fr/pdf/Grids.pdf#page=1 , Sep. 2009. |
Panayiotatos, et al., “Mechanical performance and growth characteristics of boron nitride films with respect to their optical, compositional properties and density,” Surface and Coatings Technology, 151-152 (2002) 155-159. |
Perkins, F. K., R. A. Rosenberg, and L. Sunwoo, “Synchrotronradiation deposition of boron and boron carbide films from boranes and carboranes: decaborane,” J. Appl. Phys. 69,4103 (1991). |
Powell et al., “Metalized polyimide filters for x-ray astronomy and other applications,” SPIE, pp. 432-440, vol. 3113. |
Rankov. A. “A Novel Correlated Double Sampling Poly-Si Circuit for Readout System in Large Area X-Ray Sensors”, 2005. |
Roca i Cabarrocas, P., S. Kumar, and B. Drevillon, “In situ study of the thermal decomposition of B.sub.2 H.sub.6 by combining spectroscopic ellipsometry and Kelvin probe measurements,” J. Appl. Phys. 66, 3286 (1989). |
Scholze et al., “Detection efficiency of energy-dispersive detectors with low-energy windows” X-Ray Spectrometry, X-Ray Spectrom, 2005: 34: 473-476. |
Sheather, “The support of thin windows for x-ray proportional counters,” Journal Phys,E., Apr. 1973, pp. 319-322, vol. 6, No. 4. |
Shirai, K., S.-I. Gonda, and S. Gonda, “Characterization of hydrogenated amorphous boron films prepared by electron cyclotron resonance plasma chemical vapor deposition method,” J. Appl. Phys. 67, 6286 (1990). |
Tamura, et al “Developmenmt of ASICs for CdTe Pixel and Line Sensors”, IEEE Transactions on Nuclear Science, vol. 52, No., 5, Oct. 2005. |
Tien-Hui Lin et al., “An investigation on the films used as teh windows of ultra-soft X-ray counters.” Acta Physica Sinica, vol. 27, No. 3, pp. 276-83, May 1978, abstract only. |
Vandenbulcke, L. G., “Theoretical and experimental studies on the chemical vapor deposition of boron carbide,” Indust. Eng. Chem. Prod. Res. Dev. 24, 568 (1985). |
Viitanen Veli-Pekka et al., Comparison of Ultrathin X-Ray Window Designs, presented at the Soft X-rays in the 21st Century Conference held in Provo, Utah Feb. 10-13, 1993, pp. 182-190. |
Wagner et al, “Effects of Scatter in Dual-Energy Imaging: An Alternative Analysis”; IEEE; Sep. 1989, vol. 8. No. 3. |
Winter, J., H. G. Esser, and H. Reimer, “Diborane-free boronization,” Fusion Technol. 20, 225 (1991). |
Wu, et al.; “Mechanical properties and thermo-gravimetric analysis of PBO thin films”; Advanced Materials Laboratory, Institute of Electro-Optical Engineering; Apr. 30, 2006. |
www.moxtek.com, Moxtek, AP3 Windows, Ultra-thin Polymer X-Ray Windows, 2 pages, Sep. 2006. |
www.moxtek.com, Moxtek, DuraBeryllium X-Ray Windows, 2 pages, May 2007. |
www.moxtek.com, Moxtek, ProLine Series 10 Windows, Ultra-thin Polymer X-Ray Windows, 2 pages, Sep. 2006. |
www.moxtek.com, Moxtek, Sealed Proportional Counter X-Ray Windows, 3 pages, Oct. 2007. |
www.moxtek.com, X-Ray Windows, ProLINE Series 20 Windows Ultra-thin Polymer X-ray Windows, 2 pages, Sep. 2006. |
Yan, Xing-Bin, et al., Fabrications of Three-Dimensional ZnO-Carbon Nanotube (CNT) Hybrids Using Self-Assembled CNT Micropatterns as Framework, 2007. pp. 17254-17259, vol. III. |
U.S. Appl. No. 12/640,154; filed Dec. 17, 2009; Krzysztof Kozaczek. |
U.S. Appl. No. 12/783,707; filed May 20, 2010; Steven D. Liddiard. |
U.S. Appl. No. 12/899,750; filed Oct. 7, 2010; Steven Liddiard. |
U.S. Appl. No. 13/018,667; filed Feb. 1, 2011; Lei Pei. |
U.S. Appl. No. 13/307,579; filed Nov. 30, 2011; Dongbing Wang. |
U.S. Appl. No. 13/312,531; filed Dec. 6, 2011; Steven Liddiard. |
Number | Date | Country | |
---|---|---|---|
20130064355 A1 | Mar 2013 | US |
Number | Date | Country | |
---|---|---|---|
61486547 | May 2011 | US | |
61495616 | Jun 2011 | US | |
61511793 | Jul 2011 | US | |
61689458 | Jun 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13667273 | Nov 2012 | US |
Child | 13670710 | US | |
Parent | 13453066 | Apr 2012 | US |
Child | 13667273 | US |