The present technique disclosed herein generally relates to a variable ram of a blowout preventer, and more specifically, to a packer member used in such variable ram.
Wellbores in hydrocarbon reservoirs are formed by rotating a drill bit coupled to a drill string/drill pipe. Typically, a wellbore so formed includes a wellhead casing through which the drill bit and the drill string are inserted into the hydrocarbon reservoirs for extraction of hydrocarbons (fluid) from the hydrocarbon reservoirs. A blowout preventer (BOP) is usually mounted on top of the wellhead casing for regulating pressure of the wellbore. Further, the BOP often includes a variable ram to shut (close) the wellhead casing should pressure in the wellbore become uncontrollable.
Such a variable ram typically includes ram packer assemblies having elastomeric packers and metallic inserts, which may be configured to close on the drill strings inserted within the wellhead casing, to prevent blowout of fluid from the wellbore. At high pressure and high temperature conditions, the elastomeric packers at a bore face of such variable ram undergo significantly large deformation, which damages the bore face thereby resulting in leakage of the fluid from the wellhead casing.
Thus, there is a need for an improved variable ram that is configured to minimize or prevent leakage of fluid from the wellhead casing, and also minimize damage caused to an elastomeric packer in the variable ram.
In accordance with one embodiment, a variable ram is disclosed. In accordance with aspects of the present technique, the variable ram includes a ram block and a ram packer assembly disposed at least in part within the ram block. The ram packer assembly includes a plurality of inserts and a packer member. The plurality of inserts is configured to form an insert array, where the insert array includes a peripheral surface. The peripheral surface of the insert array is disposed facing an opening configured to receive a tubular member. The packer member is coupled to at least a portion of the plurality of inserts for providing a unitary structure to the ram packer assembly. The packer member protrudes from the peripheral surface of the insert array into the opening to define a bore face of the variable ram. The packer member includes an elastomeric material.
In accordance with another embodiment, a blowout preventer is disclosed. In accordance with aspects of the present technique, the blowout preventer includes a housing having an opening configured to receive a tubular member and a pair of variable rams disposed facing each other within the housing. The pair of variable rams is configured to selectively move in and out of the housing. Each variable ram includes a ram block and a ram packer assembly disposed at least in part within the ram block. The ram packer assembly includes a plurality of inserts and a packer member. The plurality of inserts is configured to form an insert array, where the insert array includes a peripheral surface. The peripheral surface of the insert array is disposed facing the opening. The packer member is coupled to at least a portion of the plurality of inserts for providing a unitary structure to the ram packer assembly, where the packer member protrudes from the peripheral surface of the insert array into the opening to define a bore face of the variable ram. The packer member includes an elastomeric material.
In accordance with yet another embodiment, a method for controlling flow of a fluid from a wellbore through a blowout preventer is disclosed. In accordance with aspects of the present technique, the method includes receiving the fluid along a wellhead casing disposed around the wellbore. The wellhead casing includes a tubular member configured to extract the fluid from the wellbore. The blowout preventer is mounted on the wellhead casing, where the blowout preventer includes a housing and a pair of variable rams disposed facing each other within the housing. The housing has an opening configured to receive the tubular member. The method further includes moving the pair of variable rams out of the housing towards the opening, to close a bore face of each variable ram of the pair of variable rams, against the tubular member to restrain the flow of the fluid along the wellhead casing. Each variable ram includes a ram block and a ram packer assembly disposed at least in part within the ram block. The ram packer assembly includes a plurality of inserts configured to form an insert array, where the insert array includes a peripheral surface, and where the peripheral surface of the insert array is disposed facing the opening. The ram packer assembly further includes a packer member coupled to at least a portion of the plurality of inserts for providing a unitary structure to the ram packer assembly. The packer member protrudes from the peripheral surface of the insert array into the opening to define the bore face of the variable ram and where the packer member includes an elastomeric material.
These and other features and aspects of embodiments of the present technique will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
Embodiments discussed herein disclose a blowout preventer and a pair of variable rams disposed within the blowout preventer. In some embodiments, the blowout preventer includes a housing having an opening configured to receive a tubular member, such as a drill pipe. The opening may be a vertical through-hole disposed along an axial direction of the blowout preventer. The blowout preventer further includes a pair of variable rams disposed facing each other within the housing and configured to selectively move in and out of the housing relative to the opening. The blowout preventer is mounted on a wellhead casing having the drill pipe configured to extract hydrocarbons (fluid) from a wellbore, where the wellhead casing is disposed around the wellbore.
In one embodiment, each variable ram of the pair of variable rams includes a ram block and a ram packer assembly disposed at least in part within the ram block. The ram packer assembly includes a plurality of inserts and a packer member. The plurality of inserts is configured to form an insert array, where the insert array includes a peripheral surface disposed facing the opening. In some embodiments, the packer member is coupled to at least a portion of the plurality of inserts for providing a unitary structure to the ram packer assembly. Further, in these embodiments, the packer member protrudes from the peripheral surface of the insert array into the opening to define a bore face of the variable ram. In certain embodiments, the packer member includes an elastomeric material.
During operation, the packer member and the plurality of inserts are configured to close the bore face of each variable ram of the pair of variable rams against the drill pipe to restrain (i.e. seal) a flow of the fluid along the wellhead casing. In one or more embodiments, the ram packer assembly is configured to provide a uniform and high contact pressure and a substantially large contact area between the packer member and the drill pipe, thereby preventing leakage of the fluid. The ram packer assembly is further configured to decrease space between the packer member and the drill pipe, thus reducing shear and tensile strains applied on the bore face by the drill pipe.
The BOP 14 is mounted on an upper end (not labeled in
In certain embodiments, each variable ram 16 may include a ram block and a ram packer assembly disposed at least in part within the ram block. In such embodiments, the ram packer assembly may include a plurality of inserts (not shown in
It should be noted that in a cylindrical coordinate system, reference numeral 34 represents an axial direction of the variable ram 16, reference numeral 36 represents a radial direction of the variable ram 16, and reference numeral 38 represents a circumferential direction of the variable ram 16.
During operation, the drill pipe is configured to excavate the wellbore 22 and extract hydrocarbons (fluid) from the reservoirs along the wellhead casing 12. In such embodiments, the extracted fluid from the reservoirs may be transported to a distant fluid storage facility through pipelines coupled to the wellhead casing 12. In some embodiments, during certain transient operating conditions, each of the biasing devices 32 is configured to move a corresponding variable ram 16 out of the housing 28 towards the opening 30. In such embodiments, a bore face 60 of each variable ram 16 seals the drill pipe 26 so as to restrain a flow of the fluid from the wellhead casing 12. In particular, the bore faces 60 of the pair of variable rams 16 are closed against the drill pipe 26 to restrain flow of the fluid along the wellhead casing 12. In some other embodiments, during certain transient operating conditions, the second blowout preventer 18 may be configured to cut through the drill pipe 26 as the pair of blind shear rams closes off the wellhead casing 12 to seal the wellbore 22 from an external environment. In one or more embodiments, the transient operation conditions may include extreme high pressure in the wellbore 22 and/or uncontrolled flow of the fluid along the wellhead casing 12.
In one or more embodiments, the pair of variable rams 16 is configured to provide a uniform and high contact pressure and a large contact area between a packer member and the drill pipe 26, thereby preventing leakage of the fluid. Further, the pair of variable rams 16 is configured to decrease spacing between the packer member and the drill pipe 26, thus reducing shear and tensile strains applied on the bore face 60 by the drill pipe 26.
It should be noted herein that the term “uniform contact pressure” refers to a substantially equal contact stress applied across the bore face, such as the bore face 60, and a circumference of the drill pipe, such as the drill pipe 26. Further, the term “high contact pressure” refers to a compressive load applied on the bore face and the drill pipe. Moreover, the term “large contact area” refers to a substantially greater surface area of the drill pipe that is in contact with the bore face as compared to contact area between the drill pipe and the bore face in conventional systems. Additionally, the term “decreased spacing” refers to a substantially less radial gap between the drill pipe and the bore face as compared to conventional systems.
The ram packer assembly 42 is disposed at least in part within the ram block 40. In one embodiment, the ram packer assembly 42 includes a plurality of inserts 44 and a packer member 46. In the illustrated embodiment, each insert 44 of the plurality of inserts 44 includes a top plate 52, a bottom plate 54, and a central web 56 interconnecting the top plate 52 with the bottom plate 54. In certain embodiments, the plurality of inserts 44 is made of a metal. The plurality of inserts 44 is disposed adjacent to each other to form an insert array 48. In one embodiment, the insert array 48 includes a peripheral surface 50 which is disposed facing an opening 30 configured to receive a drill pipe 26 (as shown in
In one embodiment, the packer member 46 is coupled to at least a portion of the plurality of inserts 44 for providing a unitary or integral structure to the ram packer assembly 42. In certain embodiments, the packer member 46 protrudes from the peripheral surface 50 of the insert array 48 into the opening 30 to define a bore face 60 of each variable ram 16. Specifically, the packer member 46 protrudes inwardly towards the opening 30 along a radial direction 36 of the variable ram 16. Further, the packer member 46 extends along a circumferential direction 38 of the variable ram 16. In some embodiments, the packer member 46 is made of an elastomeric material. Non-limiting examples of the elastomeric material may include rubber, neoprene, nitrile rubber, hydrogenated nitrile rubber, carboxylated nitrile rubber, natural rubber, butyl rubber, ethylene-propylene rubber, epiclorohydrin, chlorosulfunated polyethylene, fluororelastomers, or combinations thereof. The packer member 46 is discussed in greater detail below.
In certain embodiments, the packer member 46 may include BOP sealers having self-healing agents (not shown in
The BOP sealers having such self-healing agents contemplated herein may include microcapsules filled with, for example, thermosetting polymers, or alternatively, liquid additives which may aid in healing of cracks. Non-limiting examples of BOP sealers material including liquid additives may include polyethyleneimines. Non-limiting examples of the self-healing agents may include nitrocellulose cements, cyanoacrylate adhesives, epoxy based adhesives, aliphatic polyurethanes, isocyanate terminated aliphatic urethane prepolymers, dicyclopentadiene (DCPD), and the like, or combinations thereof.
During normal operating conditions, the packer member 46 may be subjected to a temperature range of about 0 deg. C. to about 180 deg. C. and pressure range from about 15 ksi to about 20 ksi. Under such conditions, the microcapsules may not break open by themselves and the liquid additive may not trigger healing of the elastomer. However, during high temperatures (HT) and high pressure (HP) operating conditions and/or cyclic loading conditions, cracks may be formed in the packer member 46, such as micro-cracks due to slippage between polymer chains of the elastomeric matrix. Under such conditions, the microcapsules may break open and initiate healing of the elastomer matrix, alternatively or in addition, the liquid additive may initiate healing of the elastomer matrix.
In one embodiment, the ram packer assembly 42 further includes a pair of wing seals 62, a packer side seal 64, and a pair of pins 66. The packer side seal 64 is coupled to another peripheral surface 70 of the insert array 48, disposed opposite to the peripheral surface 50. Each wing seal of the pair of wing seals 62 is coupled to a corresponding peripheral side of the ram packer assembly 42. Each pin of the pair of pins 66 is coupled to a corresponding wing seal of the pair of wings seals 62. In such embodiments, the ram packer assembly 42 is disposed at least in part in the ram block 40 and coupled to the ram block 40 via the pair of pins 66 and a corresponding pair of slots (not shown in
During operation, the ram packer assembly 150 is configured to provide a uniform and high contact pressure and a substantially large contact area between the packer member 154 and a drill pipe 26 (as shown in
Advantageously, the ram packer assembly 150 is configured to decrease spacing between the packer member 154 and the drill pipe 26, thereby reducing shear and tensile strains that are applied on the bore face 164 by the drill pipe 26. In one embodiment, the spacing between the packer member 154 and the drill pipe 26 is decreased in a range from about 150 mils to about 250 mils. In one embodiment, the ram packer assembly 150 facilitates reduction of the shear and tensile strains experienced by the bore face 164 from about 14 percent to about 18 percent of the shear and tensile strains experienced by a bore face in a conventional ram packer assembly, such as the ram packer assembly 100 of
During high pressure (HP) and/or high temperature (HT) conditions, the conventional packer member 104 (see
As with the packer member 154 of
In one embodiment, the ram packer assembly 250 is designed to increase contact pressure on the bore face 264 and the drill pipe 26 in a range from about 10 percent to about 15 percent of a contact pressure on a bore face and a drill pipe of a conventional ram packer assembly, such as the ram packer assembly 100 of
Referring now to
In the illustrated embodiment, the packer member 354 has a first thickness “T1” at the top portion 380 of the peripheral surface 358 and a second thickness “T2” at the bottom portion 382 of the peripheral surface 358. In one embodiment, the first thickness “T1” and the second thickness “T2” extends inwardly in a radial direction 36 of a variable ram. In the illustrated embodiment, the bore face 364 when viewed from a side may have a concave shape. Further, the thicknesses “T1” and “T2” are substantially uniform. In such embodiments, the thicknesses “T1” and “T2” is in a range from about 150 mils to about 250 mils. In some other embodiments, the thicknesses “T1” and “T2” are substantially different depending on the application and design criteria. In such embodiments, the thickness “T1” is in a range from about 175 mils to 225 mils and the thickness “T2” is in a range from about 200 mils to about 250 mils. It should be noted that the packer member 354 with greater thickness “T2” may provide higher pressure bearing capability and may further ensure uniform deformation of the packer member 354 at the bottom portion 382, which faces a flow of the fluid along a wellhead casing.
Advantageously, the packer member 354 at the bore face 364 is configured to prevent leakage by increasing the contact pressure between the bore face 364 and a drill pipe 26 (as shown in
The ram packer assemblies 150, 250, 350 discussed in the embodiments of
In accordance with one or more embodiments discussed herein, a packer member having a protruded portion into an opening, to define a bore face of a variable ram is configured to minimize or prevent leakage of a fluid by increasing contact pressure between the bore face and a drill pipe. Further, the packer member may reduce damage to the bore face by minimizing shear and tensile strains magnitude. The packer member at the bore face may deflect to one or more regions on the drill pipe, where a low contact pressure and narrow contact area exist, to ensure a uniform contact pressure and large contact area between the packer member and the drill pipe. Thus, the packer member may improve performance and reliability of the variable ram. Further, the packer member may increase fatigue life of the variable ram.
While only certain features of embodiments have been illustrated and described herein, many modifications and changes will occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as falling within the spirit of the invention.