The present invention relates generally to a variable rate bushing utilized on a vehicle stabilizer bar of a vehicle suspension system which passively interacts with the stabilizer bar to minimize vehicle roll.
Vehicles are commonly equipped with suspension systems for absorbing road shock and other vibrations, while providing for a smooth and comfortable ride. A suspension component, such as a stabilizer bar, is often used to increase roll rigidity and improve the steering stability of the vehicle. The stabilizer bar is generally attached to the lower A-arms of the suspension system and controls sway as the vehicle turns and provides a pull down force during cornering. This is especially important in sports utility vehicles, which have a higher tendency to roll when the driver attempts an emergency maneuver due to the high center of gravity.
As a vehicle turns, the body of the vehicle rolls to the outside of the turn. The suspension components on the outside of the turn are generally compressed, while the suspension components on the inside of the turn are generally extended. The stabilizer bar counters this motion by pushing up on the suspension components collapsed and compressing the suspension components expanded through torsion in the stabilizer bar.
During cornering, it is desirable that the stiffness of the stabilizer bar be increased. If the stabilizer bar is too compliant, the vehicle will not respond well during cornering, increasing the likelihood of rolling over. However if the stabilizer bar is too stiff, the ride and handling will be compromised during normal vehicle operation. Therefore, it is desirable that the stiffness of the stabilizer bar be variable to adjust for changing driving conditions.
In a proposed vehicle suspension system, a pair of selectively activated variable clamping devices clamp the stabilizer bar to the vehicle body. When a roll sensor detects vehicle roll above a predetermined threshold, a solenoid valve actuates at least one of the clamping devices to provide a clamping force on the stabilizer bar, varying the torsional length of the stabilizer bar. In this prior system, the clamping force is provided by fluid which flows into chambers in the clamping device. As the flow of fluid increases, the clamping force increases to stiffen the stabilizer bar.
In another prior stabilizer bar system, the bar contacts a frame stop after a limited amount of movement. Once the bar contacts the stop, roll stiffness increases dramatically.
This invention relates to a variable rate bushing utilized on a stabilizer bar of a vehicle suspension system to minimize vehicle roll.
A variable rate bushing is positioned on a stabilizer bar to passively control the rate and stiffness of the stabilizer bar. In one embodiment, the bushing includes at least one void extending along the length of the bushing. In preferred embodiments, the void may be teardrop shaped, arc shaped, or bone shaped. During normal vehicle operation, the void is fully expanded, and the stabilizer bar is compliant. When the vehicle turns and the stabilizer bar axially twists, the voids are compressed by the stabilizer bar, increasing the stiffness rate of the bushing. When the voids are fully compressed, opposing edges of the voids contact, reducing axial twist of the stabilizer bar. The stiffness of the stabilizer bar increases, reducing the chance of rollover.
In a second embodiment, the bushing includes an inner layer of softer material proximate to the stabilizer bar and a surrounding outer layer of harder material. During turning when the stabilizer bar begins to axially twist, the stabilizer bar first compresses the softer material and is more compliant. As the stabilizer bar continues to twist, the stabilizer bar eventually presses into the harder material of the bushing, stiffening the stabilizer bar and preventing rollover.
In a third embodiment, a molded insert is positioned in the bushing. The insert is preferably made of metal or Kevlar. As the vehicle turns, the stabilizer bar presses into the insert, reducing axial twist and increasing the stiffness of the stabilizer bar.
Accordingly, the present invention provides a variable rate bushing utilized on a stabilizer bar of a vehicle suspension system to minimize vehicle roll.
These and other features of the present invention will be best understood from the following specification and drawings.
The various features and advantages of the invention will become apparent to those skilled in the art from the following detailed description of the currently preferred embodiment. The drawings that accompany the detailed description can be briefly described as follows:
The variable rate bushing 34 of the present invention passively controls the rate and stiffness of the stabilizer bar 20. As shown in
Returning to
As the stabilizer bar 20 continues to axially twist and slightly translate, the stabilizer bar 20 presses along the inner surface 44 of void 40, and the stiffness of the stabilizer bar 20 increases. Eventually, the stabilizer bar 20 presses onto the inner surface 44 of the void 40 proximate to the tapered portion 48. As the inner surface 44 and the outer surface 46 are proximate to each other at the tapered portion 48, the void 40 at the tapered portion 48 may collapse, as shown in FIG. 3A. Once the inner surface 44 and the outer surface 46 contact, the rate of the bushing 34 becomes high, and further axial twist of the stabilizer bar 20 is reduced, increasing the stiffness of the stabilizer bar 20. The vehicle is less prone to rollover because the vehicle does not lean further during cornering.
The voids 40 are preferably located in the bushing 34 such that when the stabilizer bar 20 beings to twist, the stabilizer bar 20 first presses into the enlarged portion 42. Eventually, the stabilizer bar 20 will twist such that the stabilizer bar 20 presses into the tapered portion 48, increasing the stiffness of the stabilizer bar 20. One skilled in the art would know the proper placement of the voids 40.
A second type of the bushing 434 is shown in FIG. 4. The bushing 434 includes an inner layer of softer material 50 and an outer layer of harder material 52. During normal vehicle operation, the bushing 434 has a low rate and the stabilizer bar 20 is compliant. When the stabilizer bar 20 begins to axially twist, the stabilizer bar 20 first presses into the inner layer of softer material 50. As the stabilizer bar 20 continues to axially twist and slightly translate, the stabilizer bar 20 presses into the outer layer of harder material 52. When the stabilizer bar 20 presses into the outer layer of harder material 52, the bushing 434 has a high rate and axial twist of the stabilizer bar 20 is reduced, stiffening the stabilizer bar 20 and preventing vehicle roll.
A third type of the bushing 534, as shown in
The bushing can also include different combinations of voids 40, layers 50 and 52, and inserts 54. For example, the bushing 34 can include a teardrop shaped void 40 and an insert 54, or an arc shaped void 140 positioned in a bushing 34 including a layer of softer material 50 and a layer of harder material 52. One skilled in the art would know what combinations to use, as well as the placement of the voids 40, layers 50 and 52, and inserts 54.
There are several advantages to utilizing the variable rate bushings 34, 134, 234, 334, 434, and 534 of the present invention on a stabilizer bar 20. For one, the stiffness and the rate of the stabilizer bar 20 can be continually passively modified according to ride conditions. During normal vehicle operations, the stabilizer bar 20 is compliant, allowing for a smooth and comfortable ride. When the vehicle turns and the stabilizer bar 20 axially twists, the stabilizer bar 20 interacts with a variable rate bushing positioned about the stabilizer bar 20 to modify the stiffness of the bar 20. The chance of vehicle roll is reduced, especially in sports utility vehicles. The stabilizer bar 20 provides additional roll stabilization during extreme maneuvers and roll over conditions. The stabilizer bar 20 can have low compliance for normal driving, and a high compliance for cornering.
Accordingly, the present invention provides a variable rate bushing utilized on a stabilizer bar of a vehicle suspension system to minimize vehicle roll.
The foregoing description is only exemplary of the principles of the invention. Many modifications and variations of the present invention are possible in light of the above teachings. The preferred embodiments of this invention have been disclosed, however, so that one of ordinary skill in the art would recognize that certain modifications would come within the scope of this invention. It is, therefore, to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specially described. For that reason the following claims should be studied to determine the true scope and content of this invention.
Number | Name | Date | Kind |
---|---|---|---|
2417019 | Sherman | Mar 1947 | A |
2901240 | Fikse | Aug 1959 | A |
2961253 | Allison | Nov 1960 | A |
3254902 | Vittone | Jun 1966 | A |
3269747 | Forge | Aug 1966 | A |
3392971 | Herbenar et al. | Jul 1968 | A |
3448994 | King et al. | Jun 1969 | A |
3963261 | Hiruma | Jun 1976 | A |
4113278 | Rissberger | Sep 1978 | A |
4206935 | Sheppard et al. | Jun 1980 | A |
4281850 | Studer | Aug 1981 | A |
4589678 | Lund | May 1986 | A |
4613153 | Shibahata et al. | Sep 1986 | A |
4614358 | Wymann | Sep 1986 | A |
4623164 | Cassel et al. | Nov 1986 | A |
4648620 | Nuss | Mar 1987 | A |
4664408 | Saotome et al. | May 1987 | A |
4765650 | Kameshima et al. | Aug 1988 | A |
4796911 | Kuroki et al. | Jan 1989 | A |
4805929 | Shibata et al. | Feb 1989 | A |
4834419 | Kozaki et al. | May 1989 | A |
4884790 | Castrilli | Dec 1989 | A |
5161822 | Lund | Nov 1992 | A |
5178406 | Reynolds | Jan 1993 | A |
5186486 | Hynds et al. | Feb 1993 | A |
5217245 | Guy | Jun 1993 | A |
5295670 | Tsukamoto et al. | Mar 1994 | A |
5303907 | Holzheimer | Apr 1994 | A |
5374038 | Hein | Dec 1994 | A |
5382007 | Holzheimer | Jan 1995 | A |
5447325 | DePue et al. | Sep 1995 | A |
5505480 | Pascarella | Apr 1996 | A |
5687960 | Moon | Nov 1997 | A |
5882017 | Carleer | Mar 1999 | A |
6022030 | Fehring | Feb 2000 | A |
6022034 | Santo et al. | Feb 2000 | A |
6145858 | Foulquier | Nov 2000 | A |
6149166 | Struss et al. | Nov 2000 | A |
6161843 | Carleer | Dec 2000 | A |
6419214 | Palinkas | Jul 2002 | B2 |
6474631 | Hadano et al. | Nov 2002 | B2 |
Number | Date | Country | |
---|---|---|---|
20030111818 A1 | Jun 2003 | US |