Claims
- 1. A differential gear mechanism of the type including a gear case defining a gear chamber, differential gear means disposed in said gear chamber, said differential gear means including at least one input gear and first and second output gears; lock-up means for locking up said differential gear means to retard differentiating action, said lock-up means including clutch means operable between an engaged condition, effective to retard relative rotation between said gear case and said output gears, and a disengaged condition; said lock-up means further including cam means operatively associated with said clutch means, and including first and second cam members, said second cam member being axially movable relative to said first cam member in response to relative rotation therebetween to effect said engaged condition of said clutch means; said clutch means comprising active clutch means disposed immediately adjacent said second cam member and affecting the time of engagement of said clutch means; characterized by:
- (a) said active clutch means comprising at least a pair of engaging clutch surfaces, one of said pair of said clutch surfaces comprising a pyrolytic carbon friction material, and the other of said pair of said clutch surfaces comprising a non-pyrolytic carbon friction material; and
- (b) said clutch means further comprising inactive clutch means disposed adjacent said active clutch means, and operable to provide a major portion of the torque-transmitting capacity of said clutch means, said inactive clutch means comprising a plurality of pairs of engaging clutch surfaces, all of said clutch surfaces comprising a non-pyrolytic carbon friction material.
- 2. A differential gear mechanism as claimed in claim 1, characterized by said non-pyrolytic carbon friction material comprises a stamped, steel clutch disc.
- 3. A differential gear mechanism as claimed in claim 1, characterized by said active clutch means comprises two pairs of engaging clutch surfaces, one of each of said pairs of clutch surfaces comprising a pyrolytic carbon friction material, and the other of each of said pairs of clutch surfaces comprising a non-pyrolytic carbon friction material.
- 4. A differential gear mechanism as claimed in claim 1, characterized by said active clutch means comprises a plurality N of clutch discs and said inactive clutch means comprises a plurality of at least 2N clutch discs.
- 5. A differential gear mechanism as claimed in claim 1, characterized by said inactive clutch means comprises a first inactive clutch pack, disposed immediately adjacent said active clutch means, and operably associated with said first output gear, said inactive clutch means further comprising a second inactive clutch pack, operably associated with said second output gear.
- 6. A differential gear mechanism as claimed in claim 5, characterized by said active clutch means comprises a plurality N of clutch discs and said first and second inactive clutch packs together comprise a plurality of at least 3N clutch discs.
- 7. A differential gear mechanism of the type including a gear case defining a gear chamber, differential gear means disposed in said gear chamber, said differential gear means including at least one input gear and first and second output gears; lock-up means for locking up said differential gear means to retard differentiating action, said lock-up means comprising clutch means including first clutch means operably associated with said first output gear and second clutch means operably associated with said second output gear, each of said first and second clutch means having an engaged condition and a disengaged condition; said lock-up means further including cam means operatively associated with said first clutch means, and including first and second cam members, said second cam member being axially movable relative to said first cam member in response to relative rotation therebetween to effect said engaged condition of said first clutch means; said first clutch means comprising active clutch means disposed immediately adjacent said second cam member and affecting the time of engagement of said clutch means, and said second clutch means comprising inactive clutch means, operable to provide a major portion of the torque-transmitting capacity of said mechanism; characterized by:
- (a) said active clutch means comprising at least a pair of engaging clutch surfaces, one of said pair of said clutch surfaces comprising a pyrolytic carbon friction material and the other of said clutch surfaces comprising a non-pyrolytic carbon friction material; and
- (b) said inactive clutch means of said second clutch means comprising a plurality of pairs of engaging clutch surfaces, all of said clutch surfaces comprising non-pyrolytic carbon material.
- 8. A differential gear mechanism as claimed in claim 7, characterized by said first clutch means further comprising a plurality of inactive clutch means, all of said inactive clutch means of said first clutch means comprising non-pyrolytic carbon friction material.
- 9. A differential gear mechanism as claimed in claim 8, characterized by said active clutch means of said first clutch means comprising a plurality N of clutch discs and said inactive clutch means comprises a plurality of at least 2N clutch discs.
- 10. A differential gear mechanism of the type including a gear case defining a gear chamber, differential gear means disposed in said gear chamber, said differential gear means including at least one input gear and first and second output gears; lock-up means for locking up said differential gear means to retard differentiating action, said lock-up means including clutch means operable between an engaged condition, effective to retard relative rotation between said gear case and said output gears, and a disengaged condition; said lock-up means further including cam means operatively associated with said clutch means, and including first and second cam members, said second cam member being axially movable relative to said first cam member in response to relative rotation therebetween to effect said engaged condition of said clutch means, said first and second cam members defining a nominal cam angle; said clutch means comprising active clutch means disposed immediately adjacent said second cam member and affecting the time of engagement of said clutch means; characterized by:
- (a) said active clutch means comprising at least a pair of engaging clutch surfaces, one of said pair of said clutch surfaces comprising a pyrolytic carbon friction material, and the other of said pair of said clutch surfaces comprising a non-pyrolytic carbon friction material;
- (b) said clutch means further comprising inactive clutch means disposed adjacent said active clutch means and operable to provide a major portion of the torque-transmitting capacity of said clutch means, said inactive clutch means comprising a plurality of pairs of engaging clutch surfaces, all of said clutch surfaces comprising a non-pyrolytic carbon friction material; and
- (c) said first and second cam members defining a modified cam angle (A), greater than said nominal cam angle.
CROSS-REFERENCE TO RELATED APPLICATION
This application is a continuation-in-part of U.S. application Ser. No. 29,083, filed Mar. 10, 1993, now abandoned.
US Referenced Citations (9)
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
29083 |
Mar 1993 |
|