Not Applicable
Not Applicable
Not Applicable
James Bernard Sumpter, the Inventor, has the following prior disclosures:
There have been numerous inventions that have dealt with the generation of electrical power that is derived from human motion. Most of these inventions have to do with power that is generated by the movement of the limbs. A smaller subset are inventions that derive energy based on the general motion of the human subject. However, there are three versions of prior art that derive their power by converting motion, due to human respiration, to electrical energy. They operate when they are worn, whether the user is sedentary or in motion, just as the current invention does. In addition, the earliest of these inventions (U.S. Pat. No. 2,029,148 A) uses a ratchet and pawl assembly (although different from the current invention) to assist in converting reciprocal motion to rotary motion. The second invention (U.S. Pat. No. 4,245,640 A) relies on a change in magnetic flux to generate power. Although, its configuration is different from the current invention in that its motion is purely reciprocal and limited to the unmodified low frequencies of natural respiration, which results in a lower energy output. The third and most recent invention (U.S. Pat. No. 11,699,962 B2) uses a generator similar to the first invention, but a different method of converting reciprocal motion to rotary motion.
The significant distinction of this invention is that it produces substantially more power. For example, the second invention likely produces power in the microwatt range, at about 1/400th the power output of the current invention. The first invention likely has a power output similar to the most recent prior art. The most recent prior art claims to produce 0.01 watt of power, which when compared to the current invention, is less than 1/13th the power on the low end and less than 1/78th the power on the high end. In addition, unlike the most recent prior art, the current invention uses no control circuitry or LED displays, thereby losing no power to these features, which could consume more than 0.01 watt. In addition, the current invention uses a DC-to-DC converter as the final output stage of the preferred embodiment. This feature allows for a regulated output and a range of output voltages.
This invention has to do with the generation, conversion, or distribution of electrical power worn by humans and the conversion of reciprocal motion to rotary motion. Specifically, this invention deals with power that is generated due to human respiration.
The Following is a description of the related art:
The Variable Reluctance and Human Respiration Power Generator (VRHRPG) invention is a system worn by humans, in the mid torso area (where there is maximum expansion during inhalation) to produce a DC power output. The invention uses the motion from human respiration, variable reluctance (VR) sensors and rotation from exciting magnets to generate power. The rotation of the magnets is driven by the torso expansion and contraction due to respiration.
This invention provides an independent portable source of power that can be used to power electronic devices wherever the user chooses, including remote locations and power deserts.
This invention uses no external source of power and contains no internal power source, such as batteries.
The features of this invention will now be described with reference to the drawings of the bench embodiment as applied to a preferred embodiment, which are intended to illustrate and not limit the invention.
Along with the description of the bench embodiment, a detailed description of a preferred embodiment is provided herein. It is to be understood, however, that the present invention may be embodied in various forms. Therefore, specific details disclosed herein are not to be interpreted as limiting, but rather as a basis for the claims and as a representative basis for teaching one skilled in the art to employ the present invention in virtually any appropriately detailed system, structure, or manner.
An adult's respiration frequency, at rest, is 12 to 20 breaths a minute. During vigorous exercise, an adult's respiration frequency can reach 60 breaths a minute. This invention will operate over this range to provide between 0.130 and 0.156 watts of power (see section on enhancements to the preferred embodiment: pp 24-28), when the user is awake or asleep, standing, walking, or sitting; and up to 0.782 watts, while the user is running or doing other vigorous activity; 24 hours a day.
The VR sensor is a device, which contains a permanent magnet wrapped in a wire coil, with the magnet fixed to a ferromagnetic pole piece. The number of turns in the wire coil is designated by the letter (N). The VR sensor, when its pole piece is exposed to a change in magnetic flux, produces a sinusoidal or near sinusoidal voltage pulse. Typically, a variable reluctance sensor's voltage pulse is used to determine the speed or position of a ferromagnetic target. This invention uses variable reluctance sensors, in a novel way, to produce electrical power. In this invention, the VR sensors' sinusoidal voltage is converted to DC voltage using a full wave Schottky diode bridge rectifier. In the VRHRPG system, the pulses from the variable reluctance sensors are generated by rotating a plurality of magnets perpendicular to and in close proximity to the VR sensors pole piece. The power (P) of the VRHRPG system is the product of the rectified VR sensor voltage (V) and the system current (I). In the VRHRPG system, the voltage (V) is a function of the magnetic flux, Φ(phi), of the magnets on the rotatable disk and a function of the magnitude of the flux rate of change
of the VR sensors, which is dependent on the speed of the rotatable disk. The VRHRPG system uses human respiration, which is a reciprocal motion, to drive the rotatable disk with magnets. To drive the rotatable disk, the respiration's reciprocal motion is converted to rotary motion using a ratchet and pawl assembly in combination with a gear train.
The ratchets assemblies 32 and 33 are mounted on support frame 49 and are configured so that when the torso garment 21 expands (due to inhalation by user), support frame 49 and the ratchet assemblies 32 and 33, together, translate from their base position and the horizontal ratchet pawl assembly 32 engages the ratchet gear 34 and causes it to rotate in an initial direction. When the torso garment 21 contracts (due to exhalation by user), a retracting spring force is applied to support frame 49, which then translates, along with ratchet assembles 32 and 33, toward their base position; and the horizontal ratchet pawl assembly 32 disengages from the ratchet gear 34. During inhalation, engagement of the ratchet gear 34 is achieved by a spring 37, one end of which is attached to and pushes the ratchet pawl assembly 32 toward the ratchet gear 34. The non spring end of ratchet pawl assembly 32 is fixed but allowed to pivot by pivot pin 31. Pivot pin 31 and one end of spring 37 are attached to the support frame 49.
In addition, when the user exhales, a second ratchet pawl assembly 33 engages the ratchet gear 34 and drives it in the same direction as the initial direction. When ratchet pawl assembly 32 is engaged, ratchet pawl assembly 33 is disengaged. When ratchet pawl assembly 33 is engaged, ratchet pawl assembly 32 is disengaged. During exhalation, engagement of ratchet pawl assembly 33 is caused by the force generated by spring 35, one end of which is attached to and pushes the ratchet pawl assembly 33 toward the ratchet gear 34. The non spring end of ratchet pawl assembly 33 is fixed, but allowed to pivot by pivot pin 39. Pivot pin 39 and one end of spring 35 are attached to the support frame 49. The ratchet pawl assemblies, 32 and 33, automatically disengage when the ratchet pawl assemblies are pushed away by the ratchet gear 34 motion.
The ratchet pawl assemblies 32 and 33 and support frame 49, together, translate away from the base position when the user inhales and the translate in the opposite direction when the user exhales. The pawl assemblies 32 and 33 and support frame 49, together, can translate an initial distance and a return distance that are each, at least, equal to the maximum torso expansion from inhalation.
A second view (
Calculation for Gear Multiplier and VR Sensor Output Frequency
For the preferred embodiment, the overall gear multiplier is calculated to achieve a VR sensor output frequency that is at least comparable to the bench embodiment. Thus, the calculation of the overall gear multiplier is based on the following:
Assume the following:
For Respiration rate=12 b/min (breaths per minute):
F=RR*TEC*Pulses/rev÷Distance/rev÷60 sec/min*GMb
F12 b=12 b/min*20.32 cm/b*12 p/rev÷31.93 cm/rev÷60 sec/min*GMb
(F12 b=12 b/min*8 in/b*12 p/rev÷12.57 in/rev÷60 sec/min*GMb)
15.38=12 b/min*20.32 cm/b*12 p/rev÷31.93 cm/rev÷60 sec/min*GMb
(15.38=12 b/min*8 in/b*12 p/rev÷12.57 in/rev÷60 sec/min*GMb)
15.38=1.527*GMb
GMb=15.38÷1.527=10.06
For the preferred embodiment set GM=11 (note: a GM of 11 implies an effective gear ratio of 1:11).
For Respiration rate=12 b/min:
F12=12 b/min*20.32 cm/b*12 p/rev÷31.93 cm/rev÷60 sec/min*GM
(F12=12 b/min*8 in/b*12 p/rev+12.57 in/rev+60 sec/min*GM)
F12=12 b/min*20.32 cm/b*12 p/rev=31.93 cm/rev÷60 sec/min*11
(F12=12 b/min*8 in/b*12 p/rev÷12.57 in/rev÷60 sec/min*11)
F12=16.8 p/sec=16.8 Hz
For Respiration rate=20 b/min:
F20=20 b/min*10.16 cm/b*12 p/rev÷31.93 cm/rev÷60 sec/min*GM
(F20=20 b/min*4 in/b*12 p/rev÷12.57 in/rev÷60 sec/min*GM)
F20=20 b/min*10.16 cm/b*12 p/rev÷31.93 cm/rev÷60 sec/min*11
(F20=12 b/min*4 in/b*12 p/rev÷12.57 in/rev÷60 sec/min*11)
F20=14.0 p/sec=14.0 Hz
For Respiration rate=60 b/min:
F60=20 b/min*20.32 cm/b*12 p/rev÷31.93 cm/rev÷60 sec/min*GM
(F60=60 b/min*8 in/b*12 p/rev÷12.57 in/rev÷60 sec/min*GM)
F60=60 b/min*20.32 cm/b*12 p/rev÷31.93 cm/rev÷60 sec/min*11
(F60=60 b/min*8 in/b*12 p/rev÷12.57 in/rev÷60 sec/min*11)
F60=84.0 p/sec=84.0 Hz
Thus, in the preferred embodiment, the output frequency will be 16.8 Hz for a respiration rate of 12 breaths per minute, 14 Hz for a respiration rate of 20 breaths per minute and 84 Hz for a respiration rate of 60 breaths per minute. In addition, in the preferred embodiment, the waveform magnitudes will increase because of the increase in frequency and because of the improved distance tolerance between the magnet 40 face and the VR sensor's 44/45 pole piece 46. The reconfigured version of the VR sensor 45 and pole piece 46 is shown in
While the invention has been described in connection with a preferred embodiment, it is not intended to limit the scope of invention to the particular form(s) set forth, but on the contrary, it is intended to cover such alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the patent claims. For example, the DC-to-DC buck converter 80 could be replaced with a different type of DC-to-DC converter or an energy storage device.
The preferred embodiment of the VRHRPG system is based on the bench embodiment (See
The power P of the VRHRPG system is the product of the VR sensor (44)/(45) rectified voltage (V) and the system current (I). The power P can be increased by increasing the current (I) and/or the voltage (V). The system current (I) can be increased by increasing the number of VR sensors 44/45 in the system and/or the number of magnets 40 on rotatable disk 42, such that the number of VR sensor output pulses 60 per disk 42 revolution is increased.
The voltage V can be increased by increasing the value of N (which is the number of coil turns in the VR Sensor) and/or the
magnitude of the VR Sensors. In addition, the
magnitude can be increased by increasing the magnetic flux Φ and/or by increasing the VR sensor's 44/45 target velocity, where target velocity is the linear velocity of magnet 40 relative to the proximate VR sensor 44/45. Target velocity can be increased by increasing rotatable disk 42 diameter and/or by increasing the rotatable disk's 42 rotation speed, which is a function of respiration rate, the ratchet gear system 30 and the ratios of gears 36 and 38.
The power P of the VRHRPG system can be maximized by insuring the smallest practical air gap between the VR sensor's 44/45 pole piece 46 and the magnet's 40 face, with the minimum target air gap being 0.0127 cm (0.005 in). In addition, the maximum power P can be achieved when the VR sensor's 44/45 pole piece 46 fully passes over the magnet's 40 face. Therefore, the VR sensors 44/45 should be positioned in their fixture so that the VR sensors' pole pieces 46 overlap the space inside and adjacent to the rotatable disk's 42 circumference.
A description of the VRHRPG system enhancements of the preferred embodiment follows:
VR Sensor Design
Increasing the number of VR sensors 44/45 from 4 to 8 (with appropriate rectification from a corresponding rectifier bridge circuit 72) will produce twice the signal current and therefore an increase in the system output power by 200%.
Magnetic FluxΦ
and output power, increase of 43.5%
Rotatable Disk Diameter
which increases output voltage 60 (and therefore the power). The resulting power increase is a ratio of the VR sensors' 44/45 target velocities, which is a ratio of the rotatable disks' 42 circumferences. Therefore, the power increase is:
C15.24÷C10.16=47.87 cm÷31.93 cm=1.50
(C6+C4=18.84 in÷12.57 in=1.5)
Thus, the output power will increase by 150%. In addition, increasing the rotatable disk's 42 diameter to 15.24 cm (6 in) will permit the addition of 6 magnets 40. This will increase the magnet 40 count from 12 to 18. This will result in 150% increase in overall VR sensor 44/45 current, which will result in a power increase of 150%. In addition, increasing the rotatable disk 42 diameter to 15.24 cm (6 in) will increase the rotatable disk's 42 circumference from 31.93 cm (12.57 in) to 47.88 cm (18.85 in). This will permit the addition of 4 VR sensors 44/45 (for a total of 12), which will increase the current and therefore the output power by 150%. The resulting power increase from increasing the rotatable disk diameter from 10.16 cm (4 in) to 15.24 cm (6 in) is 1.50*1.50*1.50, which equals 3.38 or 338%.
Rotatable Disk Speed (Gear Ratio)
Increasing the system gear ratio (ratio of gear 36 to gear 38) increases the rotation speed of rotatable disk 42. As a result, doubling the gear ratio will result in a 200% increase in the VR sensor's 44/45 target velocity and therefore a 200% increase in the VR sensor's
This will result in a 200% increase in the VR sensor's 44/45 output voltage 60, and therefore a 200% increase in system output power.
Therefore, the resulting output power increase due to all of the above enhancements is:
(2*2*1.375*2*1.435*3.38×2)=106.70(10,670%).
The measured output power of the bench system at a frequency of 15.38 Hz is 0.001344 Watts, where system frequency is defined by the rotatable disk's 42 rotation speed and the number of magnets 40 it hosts. However, because of the chosen gear multiplier (11) the frequency at 12b/min will be 16.8 Hz. which will increase the output by a factor of 1.09, which equals (F12÷FB), which equals (16.8÷15.38). Thus, the enhanced output power in the preferred embodiment will be at least 0.1563 Watts (0.001344*1.09*106.70)—assuming 12 breaths/min; or 0.1303 Watts (0.1563*F20÷F12)—assuming 20 breaths/min; and 0.7815 Watts (0.1563*F60÷F12) assuming 60 breaths/min, where: F12=16.8 Hz; F20=14 Hz; and F60=84 Hz.
While the invention has been described in connection with a preferred embodiment and certain enhancements, it is not intended to limit the scope of invention or possible enhancements to the particular form(s) set forth, but on the contrary, it is intended to cover such alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the patent claims.
application Ser. No.:18/459,061 (Utility Patent)Filing Date:Aug. 31, 2023Title:Variable Reluctance and Human Respiration Power GeneratorInventor:James Bernard Sumpter, Noblesville, INApplicant:James Bernard Sumpter, Noblesville, INApplication 63/412,818 (Provisional Patent)Number: Filing Date:Oct. 3, 2022Title:Variable Reluctance and Human Respiration Power GeneratorInventor:James Bernard Sumpter, Noblesville, INApplicant:James Bernard Sumpter, Noblesville, IN This application is a Divisional Application and claims the benefit of U.S. Utility patent Ser. No. 18/459,061 filed Aug. 31, 2023 the specification of which is incorporated herein in its entirety by reference; and this application also claim the benefit of Provisional Patent Application No. 63/412,818, filed Oct. 3, 2022 the specification of which is incorporated herein in its entirety by reference.
Number | Name | Date | Kind |
---|---|---|---|
2029148 | Archer | Jan 1936 | A |
3268845 | Whitmore | Aug 1966 | A |
4245640 | Hunt | Jan 1981 | A |
4912769 | Erbe | Mar 1990 | A |
5358461 | Bailey, Jr. | Oct 1994 | A |
7638889 | Yeh | Dec 2009 | B2 |
8581426 | Seike | Nov 2013 | B2 |
9190886 | Stanton | Nov 2015 | B2 |
9362803 | Panousis | Jun 2016 | B2 |
10263494 | Spencer | Apr 2019 | B2 |
10454297 | Zhang | Oct 2019 | B2 |
10491003 | Amin | Nov 2019 | B2 |
11133730 | Petrovic | Sep 2021 | B2 |
11779796 | Larson | Oct 2023 | B2 |
20060184206 | Baker, III | Aug 2006 | A1 |
20070096469 | Yeh | May 2007 | A1 |
20090243303 | Yeh | Oct 2009 | A1 |
20150207384 | Panousis | Jul 2015 | A1 |
20160100651 | Rastegar | Apr 2016 | A1 |
20170063198 | Spencer | Mar 2017 | A1 |
20200099319 | Wang | Mar 2020 | A1 |
20210305914 | Yang | Sep 2021 | A1 |
Number | Date | Country |
---|---|---|
2855148 | Dec 2014 | CA |
1664291 | Sep 2005 | CN |
109843390 | Jun 2019 | CN |
113452284 | Sep 2021 | CN |
202009007913 | Oct 2009 | DE |
102017208069 | Nov 2018 | DE |
2411708 | Sep 2005 | GB |
3152645 | Aug 2009 | JP |
20190143779 | Jan 2019 | KR |
WO-2016005584 | Jan 2016 | WO |
WO-2017035467 | Mar 2017 | WO |
WO-2018071646 | Apr 2018 | WO |
WO-2018175762 | Sep 2018 | WO |
WO-2018206679 | Nov 2018 | WO |
Number | Date | Country | |
---|---|---|---|
63412818 | Oct 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 18459061 | Aug 2023 | US |
Child | 18634927 | US |