Flexion and extension exercise machines, more specifically a flexion and extension exercise machine having hydraulic or other resistance means with a fixed and a moveable end, the moveable end fixed by a link to two points, one a point on a frame and the second a point on a user actuated drive arm.
Common exercise machines work specific muscle groups by resisting motion in a single degree of freedom, generalized direction. Typically, power is transmitted cyclically over the range of joint motion from the user's muscles, to the skeleton, through the machine interface and mechanical linkage, to the resistance mechanism. The resistance mechanism may be a guided weight, spring, friction belt, hydraulic cylinder or the like.
Biomechanical factors, such as force-length and force-velocity properties of muscle (Zajac 1989), muscle moment arms, and skeletal geometry, influence the capacity of the user to produce force in the generalized direction. These factors result in a generalized strength for the user on a particular machine which varies with both position and velocity over the range of exercise motion. Similarly, the resistance response of the machine may vary with position and velocity due to the mechanical advantage (MA) of the linkage and the properties of the resistance mechanism.
Typical prior art flexion and extension machines such as those used for elbows are illustrated in
Prior art machines link, for example, a hydraulic cylinder, a fixed point on the cylinder body pivotally to the frame and a point on the removed end of the rod of the hydraulic cylinder to the drive arm. This gives the benefit of balancing user strength and machine resistance by providing variable resistance. Some other existing exercise equipment, such as a Nautilus, employs cables, cams and weight to provide an appropriate variable resistance. In the prior art, “2-bar linkage designs” as set forth in
This “low-high-low” mechanical advantage change as the flexion angle changes between about zero and about 120 degrees tends to balance the generalized strength of the typical user, who is weaker at the lower angles, stronger around 60-80 degrees and then weaker again at high flexion angles greater than about 60-80 degrees. Thus, the variable resistance machine such as the 2-bar design illustrated in
However, Applicant provides a novel linkage that yields better balance in a variable resistance 4-bar pivoting drive arm exercise machine in order to optimize exercise benefits.
Applicant achieves these results in a novel 4-bar flexion and extension machine which typically comprises a hydraulic cylinder having a movable plunger or piston and a hydraulic cylinder body. The hydraulic cylinder body is pivotally attached to a stationary frame or an upright. Also attached to the upright is a pivoting drive arm, actuated by the exerciser machine user. The removed end of the plunger is located, by links, pivotally, to both the stationary frame or upright and the pivoting drive arm.
The result is an improved exercise machine that better balances the variable resistance provided by the machine to the typical general muscle strength variation of user so as to achieve balance and smoothness of movement and consistency of velocity over the desired range of motion.
Exercise device (10) is provided, more specifically exercise device (10) for providing variable resistance to flexion and extension motion in the limb of the exercise machine operator.
Exercise device (10) includes a fixed upright (12), typically anchored to or part of a frame attached to or supported by the floor. Pivotally attached to fixed upright (12) is a drive arm (14), the drive arm (14) having a near end (14A) and a removed end (14B). A hand, wrist or distal end of the forearm may engage the removed end of the drive arm to move it pivotally between a position represented by extension of the forearm and a position represented by flexion of the same. Drive arm (14) engages fixed upright (12) at drive arm/upright pivot (15), which pivot point may be affected by use of a bolt or fastener or other means known in the art.
A hydraulic cylinder (16) is provided for engagement between the fixed upright and the drive arm as more specifically set forth below, the hydraulic cylinder (16) or other resistance mechanism to provide resistance to the pivot action (driven by the exerciser) of the drive arm (14).
It is seen with respect to
More specifically, it is seen that Applicant provides for a hydraulic cylinder (16) that is pivotally coupled at a first end to the fixed upright or frame of an exercise machine and, at a removed end of the plunger of the hydraulic cylinder, is pivotally coupled through a member to the upright and which removed end is also pivotally coupled to the drive arm through a second member. The net effect of using such a “4-bar” mechanism is to provide a variable resistance to the exertion force of the user muscles. This variable resistance force closely matches the variable torque applied by the user throughout the angular movement of the drive arm. Matching machine resistance to user applied torque effects a smooth constant angular velocity (“balance”) through the angular positions between flexion to extension.
Note in
Further, standoffs may be provided on the drive arm to pivotally mount the coupler link thereto. Likewise, standoffs are illustrated in all of the embodiments, to provide attachment of the rocker link to the upright, however standoffs need not necessarily be used.
While the preferred embodiments show single coupler links and single rocker links, of course they could be a pair adjacent to one another to form the same link that is achieved with a single bar member. Further, as seen in
The machine's resistance response increases nonlinearly with increasing velocity at each joint position. However, due to the force/length properties of muscle, the strength capacity of the elbow decreases with increasing angular velocity. During exercise, the machine naturally operates at the angular velocity where the machine resistance intersects strength capacity for the joint at each elbow angle.
To achieve balance between machine resistance and participant's strength, prior art machines have been modified so that the natural operating speed would be theoretically constant throughout the range of joint motion. The use of Applicant's novel 4-bar mechanism results in operating speeds (angular velocity and degrees per second) nearly constant over flexion angles from less than 20 degrees to greater than 120 degrees indicating an improved balance between resistance response of the machine and generalized strength of the user.
Applicant's cylinder provides increased force response to increased displacement velocity—indeed almost quadratically. That is to say, if one attempts to pivot the drive arm at a greater velocity, the cylinder responds nonlinearly, indeed almost quadratically to increase the resistance force. This is important in that a relatively weak user and a relatively strong user will achieve generally similar angular velocities even with a difference in the torque applied to the machine.
While the extension and flexion device is illustrated here with respect to flexion and extension the arm at the elbow, in fact it could be used with any type of machine, including those exercising the legs, knees, chest press/back pull, abdominal rotation, or other parts of the body. Furthermore, in place of a hydraulic cylinder a friction type device such as friction belt or the like or other velocity dependent (more resistance with increased velocity of drive arm) resistance means could be used.
Further, the specifications disclose a method of providing a friction device, such as a hydraulic cylinder, which friction device may include a resistance rod or arm. The novel method will affix one part of the friction device (such as the body of an hydraulic cylinder) to the frame of the exercise arm and link the resistance arm pivotally to both the frame of the machine and the machine user activated drive arm.
While upright (12) is illustrated, it is intended to cover any stationary part of a frame of the machine, and it need not be vertical.
The illustrations show a dampener with a removed end of the plunger mounted as set forth with the two links. However, it is also possible to mount the cylinder so that the removed end of the body has the coupler and rocker links engaged therewith.
Although the invention has been described with reference to specific embodiments, this description is not meant to be construed in a limited sense. Various modifications of the disclosed embodiments, as well as alternative embodiments of the inventions will become apparent to persons skilled in the art upon the reference to the description of the invention. It is, therefore, contemplated that the appended claims will cover such modifications that fall within the scope of the invention.
This application claims priority from, incorporates by reference, and is a continuation of U.S. patent application Ser. No. 10/966,010, filed Oct. 15, 2004 now abandoned.
Number | Name | Date | Kind |
---|---|---|---|
D255136 | Brentham | May 1980 | S |
4275882 | Grosser et al. | Jun 1981 | A |
4387894 | Baumann | Jun 1983 | A |
D271603 | Berner | Nov 1983 | S |
4426077 | Becker | Jan 1984 | A |
4477071 | Brown et al. | Oct 1984 | A |
4618140 | Brown | Oct 1986 | A |
4618144 | Gibson | Oct 1986 | A |
4627610 | Ishida et al. | Dec 1986 | A |
4786051 | Mullican | Nov 1988 | A |
4790530 | Maag | Dec 1988 | A |
4880227 | Sowell | Nov 1989 | A |
5031905 | Walsh | Jul 1991 | A |
5037090 | Fitzpatrick | Aug 1991 | A |
5039088 | Shifferaw et al. | Aug 1991 | A |
5058888 | Walker et al. | Oct 1991 | A |
5277684 | Harris | Jan 1994 | A |
5352171 | Lin | Oct 1994 | A |
5419750 | Steinmetz | May 1995 | A |
5505679 | McBride et al. | Apr 1996 | A |
5605524 | Husted | Feb 1997 | A |
5616107 | Simonson | Apr 1997 | A |
5665034 | Hwang | Sep 1997 | A |
5676623 | Yu et al. | Oct 1997 | A |
5685810 | Chung | Nov 1997 | A |
5743832 | Sands et al. | Apr 1998 | A |
5785635 | Gerschefske et al. | Jul 1998 | A |
6290630 | Boland | Sep 2001 | B1 |
20050101464 | Campitelli | May 2005 | A1 |
Number | Date | Country |
---|---|---|
643 744 | Jun 1984 | CH |
Number | Date | Country | |
---|---|---|---|
20080032875 A1 | Feb 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10966010 | Oct 2004 | US |
Child | 11973206 | US |