Flow systems may operate by modulating a fluid pressure upstream of a flow restricting structure. Expanding the magnitude of flow range in such systems can be challenging. To that end, present disclosure generally relates to flow control systems, methods employing flow restrictors that can accurately regulate flow magnitudes.
In an exemplary embodiment, a flow system comprises a fluid flow path connected to a reaction chamber, at least one sensor connected to the fluid flow path, and configured to generate signals based on flow of fluid past the at least one sensor. A flow restrictor is connected to the fluid flow path and located upstream from the chamber.
The flow restrictor may comprise an adjustable flow restriction aperture defined by the flow path region between a first element and a second element of the flow restrictor. A drive unit may be configured to adjust the relative positioning of the elements to modify the fluid flow path across the aperture. In particular, the first or second element may provide a curved boundary in the aperture flow path to form a converging region, a region of closest approach and a diverging region, within the flow path. The system can comprise a controller configured to receive signals from the at least one sensor and control the flow exiting the flow restrictor based on the signals.
In another exemplary embodiment, a method of providing variable flow restriction measurement comprises providing a flow restrictor upstream from a reaction chamber where the flow restrictor comprising an adjustable flow restriction aperture. A first flow rate is selected which corresponds to a first aperture setting. The fluid flow rate upstream from the aperture is then measured to determine a verified flow rate through the aperture. The selected flow rate is compared with the verified flow rate and the aperture is setting is changed based on the error between the flows rates.
In yet another embodiment, the flow restrictor comprises a drive unit configured to adjust the relative positions of the elements. The drive unit may comprise a feedback loop for continuously monitoring and adjusting the relative positions of the elements to maintain a flow rate the chamber.
Flow control systems and methods are often used in semiconductor manufacturing processes where a gas supply is provided to a reaction chamber at a controlled rate. In particular, Fluid mass flow control apparatus can operate by modulating a fluid pressure upstream of a flow restricting aperture which may adopt several different architectures. In accordance with an exemplary embodiment the system depicted in
In the exemplary embodiments, the flow restrictor is configured to adjustably manage the flow rate of gas to a reaction chamber. Accordingly, the exemplary flow restrictor 100 shown in
The exemplary embodiments enable measuring instantaneous fluid flow rate using the temperature and pressure of the fluid upstream of the flow restriction aperture. Since volumetric flow through an aperture is primarily driven by pressure drop across the aperture, and fluid density at a specific temperature increases with increasing pressure, the pressure dependent mass flow through an aperture behaves according to a product of the square-root of pressure drop and inlet pressure. A distinction is often made between operating regimes wherein the pressure drop amounts to more than about half the absolute inlet pressure. The specifics of this critical ratio depend upon properties of the gas and whether the flow is considered compressible or incompressible. Nonetheless, when the ratio of upstream to downstream absolute pressures is greater than about two to one the flow is often referred to as choked (the velocity through the aperture being equal to the speed of sound in the gas) and less than two to one may be called sub-critical or un-choked. Mass flow in choked conditions is nearly linear with inlet pressure while significantly nonlinear is sub-critical conditions. This behavior makes for difficulties achieving a wide dynamic range.
Flow restriction may be achieved using restricting apertures to expand the range of flow magnitudes that may be accurately controlled by a single device. One example includes a direct touch type metal diaphragm valve positioned by a stepping motor and a ball screw mechanism wherein a ring-shaped gap between the valve seat and the diaphragm serves as the variable aperture. However, viscous flow through the aperture and the sonic flow out of the ring-shaped gap need to be accounted for. Since in such designs the pressure drop can be a cubic function of the gap height, appropriate flow calculation using the upstream pressure may not yield accurate results.
Generally, instantaneous flow calculations can be particularly difficult in low flow rate regimes where the valve openings are very small and the viscous forces are significant. To that end, the exemplary embodiments provide flow restrictors comprising mechanically adjustable flow restriction apertures, which are designed to mitigate the viscosity issue, among other things. As mentioned earlier, a flow restriction aperture may be formed from one or more elements. In an exemplary embodiment, the adjustable flow restriction aperture is defined by the flow path region between a first element and a second element of the flow restrictor. The shape and the relative position of the element(s) may be used to determine the flow characteristics through a restrictor.
In exemplary embodiments, the adjustable flow restriction aperture may be seen as comprised of two main elements when viewed in cross-section. For instance, as shown in
The fluid flow path, including the gap size, may be modified by adjusting the relative position of the first 20 or second element 30. In the exemplary embodiments of
In the exemplary embodiments, one element may be repositioned axially to increase or decrease a gap between it and the other element which remains fixed. In this scenario, the first element may be female in character and conical with a straight wall cross-section, while the second element may be male in character and have a generally spherical portion, and thus a curved cross section. Alternatively, the first element may be male in character and conical with a straight wall, while the second element may be female in character generally formed as a curved annular ring. The tapered wall of the conical element may be somewhat curved, rather than straight, provided that its curvature radius is substantially greater than the curvature radius of the curved annular ring element in order to preserve the converging to diverging flow path cross-section.
In an exemplary embodiment, the first element 20 is stationary with a curved cross-section, and the second element 30 is adjustable axially 40 as shown in
As described earlier, the drive unit may comprise one or more actuators for adjusting the position of at least one element. The present disclosure contemplates essentially any actuator type suitable for carrying out the exemplary embodiments. Advantageously, the drive unit comprises a mechanically stiff actuator with low hysteresis which provides easy and repeatable positioning of the adjustable element. Other types of actuators include, but are not limited to, Piezoelectric, magnetostrictive, thermally activated micromachined silicon, or electromagnetic solenoid actuator (which may include a suitable mechanical linkage).
It may also be appreciated that, so long as there is no binding or rubbing between the adjustable and fixed elements, the relative motion between the two elements need only be generally axial in direction. For instance, a minor cant of one element axis relative to the other element axis can change the resulting aperture dimension from circular to elliptical. Nevertheless, the region of closest approach would still have effectively no flow length along the flow direction within the gap. This absence of flow path length obviates concerns about maintaining parallelism as needed in the case of flat plate flow restriction designs.
Sensing of actuator position may also prove beneficial in the design of positioning control systems. Position sensing may be accomplished by various techniques including, but not limited to, capacitive, inductive, optical sensing. In an exemplary embodiment, the drive unit comprises a stepper motor for setting the position of the adjustable element. Advantageously, such a mechanism could provide an easy and reliable method of adjusting the position of an adjustable element without requiring a position sensor or feedback.
In the exemplary embodiments, an in-situ flow rate verification may be performed using a pressure-volume-temperature (PVT) method of determining flow rates, which null any repeatability problems with the variable flow restriction and actuator whenever an adjustable aperture setting is changed. For instance, as shown in
The flow diagrams in
Next in 510 and 520, the flow rate of the fluid upstream from the flow restrictor is measured. For example, as illustrated in
The verified flow rate is then compared to the selected flow rate to determine the degree of error between rates, per 610 and 620. This error difference can be used in connected with to adjust the aperture size to correct for the difference in 630. For example, one of the elements in
Having thus described several aspects of the exemplary embodiments, it is to be appreciated various alterations, modifications, and improvements will readily occur to those skilled in the art. Such alterations, modifications, and improvements are intended to be part of this disclosure, and are intended to be within the scope of the embodiments. Accordingly, the foregoing description and drawings are by way of example only and are non-limiting.
This application is a National Stage application of the International application No. PCT/US17/52346, which claims the benefit of U.S. Provisional Patent Application No. 62/396,809, filed Sep. 19, 2016, entitled as “System and Methods for Reference Volume for Flow Calibration”, U.S. Provisional Patent Application No. 62/396,808, filed on Sep. 19, 2016, entitled as System, Apparatus and Methods for Variable Restriction for Flow Measurements and U.S. Provisional application No. 62/396,807, filed on Sep. 19, 2016, entitled as apparatus and Methods for Self-Correcting Pressure based mass flow controller, each of which are incorporated herein by reference in their entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2017/052346 | 9/19/2017 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62396807 | Sep 2016 | US | |
62396808 | Sep 2016 | US | |
62396809 | Sep 2016 | US |