The present invention relates to a variable specifications, multiple functional blocks integrated circuit system suitable for chip on board applications. In an embodiment, a function block integrated circuit directs the function of the system in response to the specific value of an external resistor detected.
Traditional integrated circuit, generally termed as IC comprises of a micro-controller, input/output ports and additional functional specific circuits designed to perform special functions. Other application specific functional circuits such as resistor identification circuits are provided outside the integrated circuit making use of discrete digital, analog components, or additional special function IC such as operational amplifiers and comparators. Since application circuit requirements vary, manufacturers are required to provide a family of micro-controllers IC each having a different functional, performance, or interfacing specifications to meet the different application needs of the users. Applicant's prior art disclosure, a toy designed by the applicant for Mattel Toys named ARCO—Once Upon A Time Playset during April 1994, discloses a simple low cost resistor sensing circuit which trigger a voice generating microcontroller chip to produce different voice response in according to the contact of four different resistor values.
Prior art Zoellick, U.S. Pat. No. 6,094,045 disclosed an input ranging circuit for an electronics instrument such as a multimeter. The design of Zoellick comprises five major components: (1) a mechanical mode switch 12 to select Ohms, DCV or ACV measurement modes; (2) A monolithic resistor array such as a thick film resistor array to provide precision values of reference resistor 36, feedback resistors 30, 32 and a divider resistor array 14 to 26; (3) operational amplifiers 34 and 38; (4) analog switch array 18 in the form of an IC; and (5) transistor 42 to control voltage drop of the external resistor to be measured. In the Ohms mode, the output of the circuit of Zoellick is a scaled voltage drop across the resistor to be measured. This voltage drop is ready to be measured by a voltage measuring equipment and the measured voltage can be scaled to represent the true resistance value of the resistor to be measured. All the five major components of Zoellick are made with different technologies and therefore expensive to be manufactured. Since the resistance identification method of the subject invention is a low cost circuit provided to identify predefined specific values of resistors, and not to measure precise value of a resistor, so as to point each resistor value measured in a program flow to a particular object such as a member of an accessory toy family, the design goal and circuit requirements of the subject invention is completely different as compared with the precision instrument scaling circuit of Zoellick. It is the objective of the subject invention to have a resistor based object identification circuit to be provided by an IC that is further preferred to be programmable to provide different programmable responses according to different object detected. In order to conserve power consumption of this IC, it is a further objective to provide a design to switch the IC from a low power standby mode into a normal higher power operation mode when a resistor is in contact with the contact terminals of the identification circuit. It is also another objective of the subject invention to provide a current low cost, low standby current amplifier to enhance the sensitivity of the subject circuit.
The present invention is first directed to the design of a single chip integrated circuit (IC) capable of providing an audio or visual response towards the contact of a commercial passive component, such as a resistor or a capacitor. This design of the IC is configured to provide a selected combination of the following preferred characteristics:
In a first application example of this IC, a doll having a voice generating chip is provided with two conductive contacts located at the lips of the doll. Food articles of different colors or shapes are provided with the play set. Each food article is provided internally a specific valued resistor connected to two conductive contacts exposed on the surface of the food article. When the doll is fed with a selected accessory object representing a particular food article, the conductive contacts of the doll are connected with the internal resistor of the food article. The detection circuit inside the IC directs the voice generation circuit to produce a different accessory object, or food specific voice message in accordance to the identity of resistance value detected. As illustrated in this application example, it is critical for the detection circuit to differentiate a wide range of resistor values, each separated in a tight ±5% tolerance values, in order to identify a high number of identity articles. It should be noted that the design objective of the subject invention is not to measure the exact value of an external resistor, but to differentiate and identify different external commercial standard resistors under the industrial standard of resistance tolerance, so as for each resistance identified to refer to different responses in a program flow. Enlisted below are the standard commercial resistor values:
Ohm range (discarding resistance value below 100 ohm): 100, 110, 120, 130, 150,180, 200, 220, 240, 270, 300, 330, 360, 390, 430, 470, 510, 560, 620, 680, 750, 820, 910; total 24 different values. The k-ohm range is obtained by multiplying the above resistance values by 10 to provide another 24 different resistor values. The 10 k-ohm range is obtained by multiplying the above range of resistor values by 100 to provide an additional resistor values. The 100 k-ohm range resistor values is again obtained by multiplying the above resistor values by 1000 to provide further 24 resistor values. The total number of commercially available resistor values in between 100 ohm to 1M ohm is [(24×4)+1]=97. It means the high precision circuit provided by the subject invention is able to identify 97 different identity articles making use of a single commercial standard resistor in each article. If two resistors are provided in each article for identification detection, the total number of combination is 97×97=9,409 which is more than enough for regular toy applications. It should be noted that among the 97 resistor values identified, some of the resistor values are less popular and can be considered as a secondary standard resistor value. Examples of these values are 130 ohm, and 240 ohm.
The ±5% resolution of the resistors is imposing a very difficult challenge to the single chip IC circuit design, especially for it to work under a very lax supply voltage range desirably between 2.2V to 5V. Another challenge of the invention step is to provide a very low standby current, preferably to be lower than 10 uA; while still be able to initiate the detection circuit when a resistor is connected to the detection circuit input terminal. This requirement rules out the use of mass market commercial analog comparators or operational amplifiers, as the standby current of these components is well above the desirable limit suitable for battery operation. Another difficulty of the input circuit design is for it to sense a broad range of resistance value, from 100 ohm to 1M ohm, and initiate the IC from the low current standby mode to start performing the resistance detection process. In order to minimize the cost of the IC chip, the number of pins required by the resistor connection terminal is preferably to be limited to two pins as compare with three to four pins for lower resolution dual resistor detection circuit.
In accordance to the research of the invention, the preferred technology for fabricating the IC is CMOS. In a first embodiment, a group of N or P channel MOS gates, each can be switched on and off, provides a different reference resistance to the detection circuit for checking the external resistor value. The reference resistance is arranged to form a potential divider with the external resistor to trigger a voltage comparison circuit or an internal threshold switching circuit. In an alternate embodiment, the switched reference resistance can be used to control the current flowing through the external resistor for creating a reference voltage drop across the external resistor. Theoretically this voltage is proportional to the value of the external resistance and therefore it can be used to indirectly identify the external resistor. The detecting process requires a micro-controller programmed to properly switch the group of NMOS or PMOS gates, according to a predefined detection algorithm. Each of these gates represents a resistance value.
Due to the tight resistor tolerance and the lax voltage supply requirements, an external reference calibration component, preferably another low cost calibration resistor is added to calibrate the circuit during the resistance identifying process. The reference calibration component helps to compensate errors due to fabrication process of the IC, variation of the battery voltage and variation of logic transition threshold level inside the IC. It should be noted that the resistance ratio of a potential divider circuit is relatively independent of power supply voltage variation.
Once an external resistor is identified by the detecting circuit, the controller directs an output response circuit in accordance to the resistance value detected. Typical output responses including generating of different voice messages, starting or stopping a motor or to turn on and off an LED.
In order to eliminate the requirement of an operational amplifier, the logic transition threshold of an IC can be used to detect the reference voltage created by an external resistor. Technically the sensitivity of an IC logic level transition switching threshold circuit is incomparable with that of an operational amplifier or a voltage comparator. In order to improve the detection sensitivity, an external transistor is included to amplifier the sensing current feeding to the input detection circuit. Alternately, the transistor can be reconfigured to form a switching circuit, which creates an external threshold switching sensor, that eliminates the variation caused by the fabrication process of the IC. To further improving the sensitivity, two external transistors are configured in the form of a Darlington pair to further increasing the current gain of a single transistor. Because of the high fluctuation of beta gain in the external transistors, the concept of an external reference component or a calibration process is more important for the circuit to be able to resolve the 5% resistance tolerance. It should be noted that the external bipolar transistors are not suitable to be integrated into the IC when it is fabricated with CMOS technology.
When the resistance identification circuit is used to trigger different voice messages, the IC is required to provide a memory location to store compressed digital information representing the predefined messages. This memory location can be represented by ROM (Read Only Memory) or RAM (Random Access Memory) or other different kinds of logic storage memory including Flash memory. The duration of the voice message stored depends on the size of the storage memory and the compression ratio of the voice encoding/decoding algorithm, which also affects the voice quality. Existing commercially available voice generation chips are provided with different memory sizes to optimize the cost of voice chip for use in different applications that require different total voice durations. For example, each IC body of a typical voice generation IC product line may compose of a standard decoding circuit, Digital to Analog conversion circuit and a speaker driver circuit, but a choice of different ROM sizes to provide 3 seconds, 6 seconds and up to multiple minutes for voice storage. Each of these IC members of the product line, although using substantially the same decoding circuit, requires a separated set of mask to build the IC. Each member IC of the product line requires engineering time and overhead to reroute the IC during it's development stage. Accordingly the cost to develop the IC product line is proportional to the number of IC members designated in the product line according to the marketing requirement. Assuming a voice IC product line has ten different members, each providing a different total voice duration; by introducing an integrated resistor identity detection circuit, the product line is required to be expanded to 20 different IC members, ten with resistor identification capability and ten without. On the other hand, different IC applications require different number of IO (input and output) pads. Applications involving high number of keypads and an array of light indicators such as a child size follow me learning piano requires substantially more IO pads than a push a button, get a sound kind of simple toy. The number of IO pads forms a significant portion of the cost of an IC especially when the dice size of the IC is small. Accordingly in addition to the variation of memory size, different IC members may be included in the product line to tailor for different IO pads requirements. Assuming there are ten different ROM sizes variations and five different IO pads variations, the total possible chip combination s is 5×10=50. When the optional resistor directive feature is added, the number of possible combinations is extended to 100 that is well beyond the reasonable number of IC members to be included in an IC product line.
In addition to the optional resistor identification circuit, there are other kinds of optional functional blocks to be added for enriching the capabilities of an IC family, such as LCD driver; infrared signal transmission/receiving interface; keyboard scanning circuit; high output current output port suitable for driving speaker directly with PWM modulation and also RF communication circuit such as bluetooth interfacing circuit. Each of these circuits may not be optimally fabricated by the same kind of technology. For example, most logic circuit is desirable to use CMOS technology; power circuit is more suitable to be fabricated by traditional power MOS technology or bipolar technology. RF circuit may require a further different technology. In order to provide an optimal combination of the final functional IC, it is also the objective of the subject invention to provide an infrastructure standard enabling the different functional blocks, each may have a variation of specifications, to be selected by the application engineer in accordance with the product requirements of a project.
Technically it is also possible to provide a combination of selected functional blocks to compose a single IC chip through an ASIC (Application Specific IC) design process if these circuits belong to the same type of IC fabrication technology. Functional blocks of circuits are selected and combined to form a final single chip IC. However, the ASIC chip concept has several drawbacks:
Accordingly it is the objective of the subject invention to provide a family of VSFB (Variable Specification Functional Blocks) IC in according to the following desirable specifications:
The RSCI technology is a proprietary interfacing technique developed for the invented VSFB COB assembly. The principle is to reduce the noise immunity capability of the interfacing circuit by reducing the interfacing signal current or the interfacing signal voltage amplitude of the communication channel connecting between two ICs. This is against the traditional wisdom of designing a communication channel connecting two different components or two different equipments that driving capability of communication ports should be as high as affordable. A lower interfacing current or signal voltage will result in less RF power transmitted. For example, the traditional digital signal amplitude between a serial interface connecting between two ICs operating at 5V is usually around 3.5 to 4.5 volt depends on the loading condition of the communication channel. The RSCI circuit intentionally introducing a voltage drop circuit to reduce the communication circuit voltage to 0.5 or 1 volt, on the other side, the logic transition threshold level is shifted to around the mid level of the reduced amplitude digital pulsing signal. The degree of signal voltage to be reduced is limited by the voltage variation of the application circuit, and also the maximum distance between the two dices on the COB. Although VSFB ICs may locate closer than 0.5 inch from each other, it is desirable to specify the voltage level to work with a separation of 4 inches maximum on COB design. It should be noted that the example illustrates the concept of RSCI in voltage form, the same RSCI principle is applicable on current form as well; that is to provide full voltage swing but much lower current driving capability between the transmission end and the receiving end. This current is unable to provide sufficient noise immunity under normal communication condition such as the communication interface in between computer and the peripherals but be adequate for interfacing COB VSFB designs.
Attention is now directed to the technique of IP (integrated programming) derived through the development of the subject invention. Integrated Programming is the method to provide a compiler suitable for programming the central controller and the different VSFB ICs all in one program. The compiler treats all ICs on the COB as one single entity, or a larger more complex single IC. The compiler is arranged to automatically provide the following hidden function without the attention of the programmer:
Another model to visualize and understand Integrated Programming is for the compiler to treat the whole COB assembly as one single ASIC chip, although actually there are different controllers embedded in the different VSFB chip located on the same COB assembly. In the VSFB model, the ASIC chip is dissected into different VSFB chips mounted on a COB and linked together by standard communication links preferably in serial format. In addition to carrying out the above hidden functions specified, the compiler distributes the VSFB specific instructions to the driving program of individual VSFB controller chips and centrally coordinate the interactive activities of these VSFB chips by the program located at the central controller. The technique is applicable to many programming languages such as Assembly language and the higher level Easy Format™, a table format programming language disclosed by the applicant in U.S. Pat. No. 5,867,818 and pending U.S. patent application Ser. No. 09/419,752.
Attention is now directed to the optimal arrangement in planning for a product line of features enriched micro-controller chips making use of the VSFB concept. Although various functions are recommended to be provided by regional VSFB ICs for greater design flexibility, it is highly desirable to put in some additional basic functions into the central controller chip according to the target field of service. For example, when an IC product line is developed to serve the toy industry, it is preferable to have the voice generation block to be included in the central controller. This is because most electronics toy products produce sounds. However, the memory size of the central controller chip having a voice producing capability can be restricted to three seconds, a reasonable minimal value to get started. Additional voice duration or multiple channel functions, can be added by a line of VSFB chips.
The novel features of the invention are set forth with particularly in the appended claims. The invention will be best understood from the following description when read in conjunction with the accompanying drawings.
Attention is now drawn to
Technically it is extremely demanding to differentiate the current pump into a broad range of two close values resistors, such as 100 ohm and 110 ohm; all the way up to the pair of 910 k ohm and 1M ohm resistors; especially under a big variation of working voltages and possibly an electrically noisy working environment. One of the difficulties is the cut in current required by a threshold detection circuit especially for it to work with the high resistance range. If the technology of choice is CMOS, the research of this invention directs the desire to put in an external bipolar transistor to buffer the threshold sensor, or to amplify the sensing current.
In the whole process there are many possibility of error that make the system fail to recognize the tight resolution required. For example, the temperature change may affect the temperature coefficient of the interfacing transistors. The beta gain of the transistors may be of too big a range. The switching resistance of the IC may vary according to the fabrication process. Battery voltage variation may impose errors especially under extreme sensing current and marginal working conditions. In order to compensate the variation of all the errors, a calibration process is included for the chip to self calibrate the system before it starts the identification recognizing process. Resistor 615 is specified to have a preset value. It is then connected to the switching gate array 710 to 713 through the lines 614 or 617. Since the resistance 615 is predefined, the switching gate can be set to provide the current predefined for the value of resistor 615. The gates 710 to 713 start to fine tune the detection circuit by the microcontroller program until the proper triggering level is obtained; and therefore a compensated condition is achieved. The final correction condition can be reconnected to the input pint of the transistor 612 via the line 617. In another embodiment, a reference calibration resistor 615 is connected to switching gates 703 to 706 and also the switch 714 of
In considering the standby current, the logic of the chip is designed in a way such that any valid trigger should wake up the chip from a low standby current stage for it to start working. Accordingly, a very high biasing resistance is provided to line 617 for
Since all existing voice generating controller chips do not have any resistance detection capability, it is one of the objectives of this invention to provide a special single chip to provide a digital identity number that represents the unique resistors identified. In order to send out the ID of 97 different resistor values, a 7 bits signal data is required.
Since the dies 1002, 1011 to 1014 are closely located together as shown in
The further success of the VSFB technology requires a business model that bring different competing IC designers and suppliers to agree on a common serial interface specification; so that the different VSFB chips provided by different vendors can be shared on a COB design to benefit the users.
With the above examples, it is observed that a specially designed resistor identity IC is provided for products that require article identification on contact. The invention is further developed to provide a family of Variable Specification Functional Block ICs that can be selected to form a COB assembly. This assembly represents a complete ASIC chip, while enabling the users to select ICs representing different functional blocks without going through the long lead-time ASIC development process. An Integrated Programming technology is developed to program all the different controllers on the COB with one single program. A Reduced Signal Communication Interface technology is also introduced to minimize EMI interference of the COB assembly.
Although resistor detection is described in this application, the concept is applicable to precision single chip identity detection circuit making use of other passive components such as capacitors.
This is a continuation in part application of U.S. patent application Ser. No. 10/227,708 filed on Aug. 26, 2002 which will be issued on Feb. 13, 2007 as U.S. Pat. No. 7,177,707. The parent application Ser. No. 10/227,708 was a formal application of provisional patent application 60/316,643 filed Aug. 31, 2001 and a continuation in part of U.S. patent application Ser. No. 09/896,434 filed Jun. 29, 2001 now issued as U.S. Pat. No. 6,586,942. This is also a continuation in part application of pending U.S. patent application Ser. No. 10/638,706 filed Aug. 11, 2003. This parent application claimed priority of U.S. patent application Ser. No. 10/208,346 filed Jul. 30, 2002 now abandoned; pending U.S. patent application Ser. No. 10/241,340 filed Sep. 10, 2002 and pending U.S. patent application Ser. No. 10/242,847 filed Sep. 13, 2002.
Number | Date | Country | |
---|---|---|---|
60316643 | Aug 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10227708 | Aug 2002 | US |
Child | 11704548 | Feb 2007 | US |
Parent | 09896434 | Jun 2001 | US |
Child | 11704548 | Feb 2007 | US |
Parent | 10638706 | Aug 2003 | US |
Child | 11704548 | Feb 2007 | US |