The disclosure generally relates to a variable speed drive mechanism for an engine of a vehicle.
Vehicle engines typically include a drive pulley attached to a crankshaft, and at least one accessory having an accessory pulley. The accessory may include, for example, an Air Conditioning compressor, a power steering pump, an alternator, an air pump, or some other device that is driven by a rotational input. An endless rotatable device, e.g., a serpentine belt, connects the drive pulley with accessory pulleys. The drive pulley rotates the endless rotatable device. The endless rotatable device in turn rotates the accessory pulleys to power the accessory devices. Accordingly, the endless rotatable device transmits rotation from the drive pulley to the accessory pulleys to drive the accessories. As the rotational speed of the crankshaft increases, the rotational speed of the drive pulley increases, because the drive pulley is directly connected to the crankshaft. Many of the accessories are designed for optimal operation when the engine is operating at an idling speed. Operating the accessories at higher rotational speeds increases energy losses associated with the accessories.
A variable speed drive mechanism is provided. The variable speed drive mechanism includes a shaft that extends along a central axis. A fixed disk is concentric with and attached to the shaft. The fixed disk is rotatable with the shaft about the central axis. A plurality of pulley segments are supported by the fixed disk, and are moveable relative to the fixed disk in a radial direction relative to the central axis. A moveable disk is concentric with the shaft, and is rotatably moveable about the shaft relative to the fixed disk. The moveable disk defines a spiral groove having a center concentric with the shaft on the central axis. Each of the plurality of pulley segments includes a guided groove portion that is engaged with and moveable along the spiral groove, such that rotation of the moveable disk about the shaft and relative to the fixed disk rotates the spiral groove about the central axis relative to the plurality of pulley segments, thereby moving the guided groove portion of each of the plurality of pulley segments along the spiral groove to move each of the plurality of pulley segments radially relative to the central axis.
An engine for a vehicle is also provided. The engine includes an accessory device having an accessory pulley. The engine further includes a crankshaft, and a variable speed drive mechanism coupled to the crankshaft. An endless rotatable device interconnects the variable speed drive mechanism and the accessory pulley of the accessory device. The endless rotatable device is operable to transmit rotation between the variable speed drive mechanism and the accessory pulley. An adjustable tensioner biases against the endless rotatable device, and is operable to maintain a constant tension in the endless rotatable device. The variable speed drive mechanism includes a shaft that is coupled to the crankshaft for rotation with the crankshaft about a central axis. A fixed disk is concentric with and attached to the shaft. The fixed disk is rotatable with the shaft about the central axis. A plurality of pulley segments are supported by the fixed disk, and are moveable relative to the fixed disk in a radial direction relative to the central axis. A moveable disk is concentric with the shaft, and is rotatably moveable about the shaft relative to the fixed disk. The moveable disk defines a spiral groove having a center concentric with the shaft on the central axis. Each of the plurality of pulley segments includes a guided groove portion engaged with and moveable along the spiral groove. Rotation of the moveable disk about the shaft and relative to the fixed disk rotates the spiral groove about the central axis relative to the plurality of pulley segments, thereby moving the guided groove portion of each of the plurality of pulley segments along the spiral groove to move each of the plurality of pulley segments radially relative to the central axis. A drive actuator is coupled to the moveable disk. The drive actuator is operable to rotate the moveable disk relative to the fixed disk.
A continuously variable transmission is also provided. The continuously variable transmission includes a variable drive mechanism and a variable driven mechanism. An endless rotatable device interconnects the variable drive mechanism and the variable driven mechanism. The endless rotatable device is operable to transmit torque from the variable drive mechanism to the variable driven mechanism. Each of the variable drive mechanism and the variable driven mechanism include a shaft extending along a central axis, and a fixed disk concentric with and attached to the shaft. The fixed disk is rotatable with the shaft about the central axis. A plurality of pulley segments are supported by the fixed disk, and are moveable relative to the fixed disk in a radial direction relative to the central axis. A moveable disk is concentric with the shaft, and is rotatably moveable about the shaft relative to the fixed disk. The moveable disk defines a spiral groove having a center concentric with the shaft on the central axis. A drive actuator is coupled to the moveable disk, and is operable to rotate the moveable disk relative to the fixed disk. Each of the plurality of pulley segments includes a guided groove portion engaged with and moveable along the spiral groove. Rotation of the moveable disk about the shaft and relative to the fixed disk rotates the spiral groove about the central axis relative to the plurality of pulley segments, thereby moving the guided groove portion of each of the plurality of pulley segments along the spiral groove to move each of the plurality of pulley segments radially relative to the central axis.
Accordingly, the variable drive mechanism is simple, compact, and capable of changing a pulley diameter on which the endless rotatable device runs. When the variable drive mechanism is attached to a crankshaft of an engine, the pulley diameter may be controlled to substantially maintain a rotational speed of the endless rotatable device at an optimum speed for operating various different accessory devices. When two of the variable drive mechanisms are paired together, one being a variable drive mechanism and the other being a variable driven mechanism, the combination provides a continuously variable transmission.
The above features and advantages and other features and advantages of the present teachings are readily apparent from the following detailed description of the best modes for carrying out the teachings when taken in connection with the accompanying drawings.
Those having ordinary skill in the art will recognize that terms such as “above,” “below,” “upward,” “downward,” “top,” “bottom,” etc., are used descriptively for the figures, and do not represent limitations on the scope of the disclosure, as defined by the appended claims. Furthermore, the teachings may be described herein in terms of functional and/or logical block components and/or various processing steps. It should be realized that such block components may be comprised of any number of hardware, software, and/or firmware components configured to perform the specified functions.
Referring to the Figures, wherein like numerals indicate like parts throughout the several views, a variable speed drive mechanism is generally shown at 20. The variable speed drive mechanism 20 provides a changeable pulley diameter 22 that may be varied to change a velocity or speed of an endless rotatable device 24 driven by the variable speed drive mechanism 20.
Referring to
As best shown in
A plurality of pulley segments 34 is supported by the fixed disk 30. The pulley segments 34 are moveable relative to the fixed disk 30 in a radial direction relative to the central axis 28. Each of the slots 32 supports and radially guides one of the pulley segments 34. Each of the pulley segments 34 includes a guided slot portion 36 that is engaged with and moveable within a respective one of the slots 32 in the fixed disk 30. As shown, the slots 32 in the fixed disk 30 extend completely through a thickness 38 of the fixed disk 30, and the guided slot portions 36 extend completely through the fixed disk 30. However, it should be appreciated that the slots 32 and the guided slot portion 36 of the pulley segments 34 need not extend completely through the thickness 38 of the fixed disk 30. The slots 32 in the fixed disk 30 guide the guided slot portions 36 of the pulley segments 34 to direct them in radial movement relative to the central axis 28, and prevent the pulley segments 34 from rotating relative to the fixed disk 30.
A moveable disk 40 is disposed concentric with the shaft 26, and is rotatably moveable about the shaft 26 relative to the fixed disk 30 and the shaft 26. The pulley segments 34 are moved within and along the slots 32 in the fixed disk 30 in response to rotation of the moveable disk 40 relative to the fixed disk 30. As best shown in
Referring to
Referring to
The outer circumferential surface 50 of each of the pulley segments 34 is radially spaced from the guided groove portion 48 a respective radial distance 52. As noted above, the guided groove portion 48 rides and moves along the spiral groove 46. Additionally, it should be appreciated that the distance from the spiral groove 46 to the central axis 28 is not constant, and is continuously changing with movement along the spiral groove 46. Furthermore, because the outer circumferential surfaces 50 of the pulley segments 34 cooperate to define the circular circumferential surface having a center located on the central axis 28, the distance from the circular circumferential surface to the spiral groove 46 varies. Accordingly, the respective radial distance 52 of each of the pulley segments 34 is different from the respective radial distance 52 of all of the other pulley segments 34. The respective radial distance 52 of each of the pulley segments 34 is sized so that the outer circumferential surface 50 of the pulley segments 34 substantially defines the circular, i.e., annular, surface that is concentric with the shaft 26.
Referring to
The ball-screw mechanism 58 is operable to convert linear movement directed along the central axis 28, into rotational movement of the moveable disk 40 about the central axis 28 and relative to the fixed disk 30. The ball-screw mechanism 58 includes a drive portion 60 that is disposed concentric with and attached to the shaft 26. The drive portion 60 is rotatable with the shaft 26 about the central axis 28, and is slideably moveable over the shaft 26 along the central axis 28 and relative to the moveable disk 40. The drive portion 60 may be attached to the shaft 26 in any suitable manner. For example, the drive portion 60 may be attached to the shaft 26 via a splined connection that prevents rotation of the drive portion 60 relative to the shaft 26, but allows linear movement of the drive portion 60 relative to the shaft 26, along the central axis 28.
As described above, the moveable disk 40 includes or is attached to the ballnut 42, which extends along the central axis 28, is concentric with the shaft 26, and is radially spaced from the shaft 26. As shown, the ballnut 42 is disposed radially outward of and about an outer radial surface 62 of the drive portion 60. As best shown in
Referring to
Referring to
As described above, the biasing device 56 is coupled to the drive portion 60 and is operable to bias the drive portion 60 into the default position. Accordingly, the force provider 72 must only be capable of moving the drive portion 60 in one direction, because the biasing device 56 may be configured to move the drive portion 60 in the opposite direction. As shown in
Referring to
Referring to
The engine 78 includes at least one, and typically a plurality of accessory devices 82. The accessory devices 82 may include, for example, an air conditioning compressor, a power steering pump, an air pump, an alternator, a super charger, an electric motor, or some other device that is driven by a rotational input. Each of the accessory devices 82 includes an accessory pulley 84. The endless rotatable device 24 interconnects the variable speed drive mechanism 20 and the accessory pulley 84 of the accessory device 82. The endless rotatable device 24 is operable to transmit rotation and/or torque from the variable speed drive mechanism 20 to the accessory pulleys 84. As noted above, the endless rotatable device 24 may include, but is not limited to, a belt, e.g., a serpentine belt such as shown, a chain, or some other similar device.
An adjustable tensioner 86 biases against the endless rotatable device 24. The adjustable tensioner 86 is operable to maintain a constant tension in the endless rotatable device 24. Accordingly, as the variable speed drive mechanism 20 is adjusted to change the pulley diameter 22 defined by the plurality of pulley segments 34 of the variable speed drive mechanism 20, the adjustable tensioner 86 automatically takes up the slack in the endless rotatable device 24 to maintain the proper tension. As shown in
Because the shaft 26 of the variable speed drive mechanism 20 is directly coupled to the crankshaft 80 of the engine 78, the shaft 26 rotates once for every rotation of the crankshaft 80, regardless of the speed at which the crankshaft 80 is rotating. Accordingly, as the rotational speed of the crankshaft 80 increases, the rotational speed of the shaft 26 increases in the same amount. The accessory devices 82 are typically designed for optimum and/or full operation when the engine 78 is operating at an idle speed. Operating the accessory devices 82 at increased speeds does not improve the operation of the accessory devices 82, and increases energy losses and/or inefficiencies associated with the accessory devices 82. As such, the variable speed drive mechanism 20 may be adjusted to define different pulley diameters 22, e.g., the larger pulley diameter 90 or the smaller pulley diameter 92, to change the speed of the endless rotatable device 24 and keep the rotational speed of the accessory devices 82 at or near an optimum level, thereby reducing the energy losses associated with operating the accessory devices 82 at higher rotational speeds.
Referring to
The continuously variable transmission 100 changes seamlessly through an infinite number of effective gear ratios, between maximum and minimum values. The gear ratio is changed by increasing the pulley diameter 22 of one of the variable drive mechanism 102 and the variable driven mechanism 104, while simultaneously decreasing the pulley diameter 22 of the other of the variable drive mechanism 102 or the variable driven mechanism 104. The distance between the variable drive mechanism 102 and the variable driven mechanism 104 does not change, and neither does the length of the endless rotatable device 24, so changing the gear ratio means both the variable drive mechanism 102 and the variable driven mechanism 104 must be adjusted (one bigger, the other smaller) simultaneously in order to maintain the proper amount of tension on the belt.
The detailed description and the drawings or figures are supportive and descriptive of the disclosure, but the scope of the disclosure is defined solely by the claims. While some of the best modes and other embodiments for carrying out the claimed teachings have been described in detail, various alternative designs and embodiments exist for practicing the disclosure defined in the appended claims.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 62/132,070, filed on Mar. 12, 2015, the disclosure of which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
78763 | Savery | Jun 1868 | A |
RE4685 | Savery | Dec 1871 | E |
370087 | Riley | Sep 1887 | A |
414324 | Patric | Nov 1889 | A |
414508 | Finlay | Nov 1889 | A |
593895 | Jasper | Nov 1897 | A |
598654 | Cleland | Feb 1898 | A |
652092 | Desprez et al. | Jun 1900 | A |
672962 | Seymour | Apr 1901 | A |
712985 | Wansbrough | Nov 1902 | A |
724449 | Dumaresq | Apr 1903 | A |
724450 | Dumaresq | Apr 1903 | A |
740829 | Dumaresq | Oct 1903 | A |
758474 | Reed | Apr 1904 | A |
809169 | Brennan | Jan 1906 | A |
809845 | Rosewarne | Jan 1906 | A |
849750 | Rosewarne | Apr 1907 | A |
858754 | Reed | Jul 1907 | A |
914860 | Morrow | Mar 1909 | A |
977403 | Rosewarne | Nov 1910 | A |
1132125 | Savery | Mar 1915 | A |
1545658 | Howe | Jul 1925 | A |
3661024 | Cooke | May 1972 | A |
3850044 | Hagen | Nov 1974 | A |
3850045 | Hagen | Nov 1974 | A |
3867851 | Gregory | Feb 1975 | A |
3956944 | Tompkins | May 1976 | A |
3995508 | Newell | Dec 1976 | A |
4147068 | Woollard | Apr 1979 | A |
4295836 | Kumm | Oct 1981 | A |
4569670 | McIntosh | Feb 1986 | A |
4608034 | Reswick | Aug 1986 | A |
4645475 | Husted | Feb 1987 | A |
4714452 | Kumm | Dec 1987 | A |
4717369 | Husted | Jan 1988 | A |
4781663 | Reswick | Nov 1988 | A |
4787879 | Pritchard | Nov 1988 | A |
4810234 | Kumm | Mar 1989 | A |
4824419 | Kumm | Apr 1989 | A |
4854921 | Kumm | Aug 1989 | A |
4875894 | Clark | Oct 1989 | A |
4938732 | Krude | Jul 1990 | A |
4969857 | Kumm | Nov 1990 | A |
20070163818 | Usoro | Jul 2007 | A1 |
20140235404 | Raasch | Aug 2014 | A1 |
Number | Date | Country | |
---|---|---|---|
20160265634 A1 | Sep 2016 | US |
Number | Date | Country | |
---|---|---|---|
62132070 | Mar 2015 | US |