The present disclosure relates to compressors, and more particularly, to a protection system for use with a variable speed compressor.
The statements in this section merely provide background information related to the present disclosure and may not constitute prior art.
Compressors may be used in a wide variety of industrial and residential applications to circulate refrigerant within a refrigeration, heat pump, HVAC, or chiller system (generically “refrigeration systems”) to provide a desired heating or cooling effect. In any of the foregoing applications, the compressor should provide consistent and efficient operation to insure that the particular application (i.e., refrigeration, heat pump, HVAC, or chiller system) functions properly. A variable speed compressor may be used to vary compressor capacity according to refrigeration system load.
Operation of the compressor during a flood back condition is undesirable. A flood back condition occurs when excessive liquid refrigerant flows into the compressor. Severe flood back can dilute the oil and reduce its lubrication property, leading to potential seizure. Although some mixture of liquid refrigerant and oil in the compressor may be expected, excessive mixture may cause damage to the compressor.
Likewise, operation of the compressor at excessive temperature levels may be damaging to the compressor. An overheat condition may damage internal compressor components including, for example, the electric motor.
This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.
A system is provided that includes a compressor connected to a condenser and a discharge line temperature sensor that outputs a discharge line temperature signal corresponding to a discharge line temperature of refrigerant leaving the compressor. The system also includes a control module connected to the discharge line temperature sensor. The control module determines a saturated condenser temperature, calculates a discharge superheat temperature based on the saturated condenser temperature and the discharge line temperature, and monitors a flood back condition of the compressor by comparing the discharge superheat temperature with a predetermined threshold. The control module also increases a speed of the compressor when the discharge superheat temperature is less than or equal to the predetermined threshold.
A method is also provided and includes determining, with a control module, a saturated condenser temperature of a condenser connected to a compressor. The method also includes receiving, with the control module, a discharge line temperature signal that corresponds to a discharge line temperature of refrigerant leaving the compressor. The method also includes calculating, with the control module, a discharge superheat temperature based on the saturated condenser temperature and the discharge line temperature. The method also includes monitoring, with the control module, a flood back condition of the compressor by comparing the discharge superheat temperature with a predetermined threshold. The method also includes increasing a speed of the compressor when the discharge superheat temperature is less than or equal to the predetermined threshold.
Further areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way.
The following description is merely exemplary in nature and is not intended to limit the present disclosure, application, or uses. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features.
As used herein, the terms module, control module, and controller may refer to one or more of the following: An application specific integrated circuit (ASIC), an electronic circuit, a processor (shared, dedicated, or group) and memory that execute one or more software or firmware programs, a combinational logic circuit, or other suitable components that provide the described functionality. As used herein, computer readable medium may refer to any medium capable of storing data for a computer or module, including a processor. Computer-readable medium includes, but is not limited to, memory, RAM, ROM, PROM, EPROM, EEPROM, flash memory, CD-ROM, floppy disk, magnetic tape, other magnetic medium, optical medium, or any other device or medium capable of storing data for a computer.
With reference to
With reference to
Inverter drive 22 includes solid state electronics to modulate the frequency of electrical power. Generally, inverter drive 22 converts the inputted electrical power from AC to DC, and then converts the electrical power from DC back to AC at a desired frequency. For example, inverter drive 22 may directly rectify electrical power with a full-wave rectifier bridge. Inverter driver 22 may then chop the electrical power using insulated gate bipolar transistors (IGBT's) or thyristors to achieve the desired frequency. Other suitable electronic components may be used to modulate the frequency of electrical power from power supply 18.
Electric motor speed of compressor 10 is controlled by the frequency of electrical power received from inverter driver 22. For example, when compressor 10 is driven at sixty hertz electric power, compressor 10 may operate at full capacity operation. When compressor 10 is driven at thirty hertz electric power, compressor 10 may operate at half capacity operation.
Piping from evaporator 16 to compressor 10 may be routed through enclosure 20 to cool the electronic components of inverter drive 22 within enclosure 20. Enclosure 20 may include a cold plate 15. Suction gas refrigerant may cool the cold plate prior to entering compressor 10 and thereby cool the electrical components of inverter drive 22. In this way, cold plate 15 may function as a heat exchanger between suction gas and inverter drive 22 such that heat from inverter drive 22 is transferred to suction gas prior to the suction gas entering compressor 10.
As shown in
A compressor floodback or overheat condition is undesirable and may cause damage to compressor 10 or other refrigeration system components. Suction super heat (SSH) and/or discharge super heat (DSH) may be correlated to a flood back or overheating condition of compressor 10 and may be monitored to detect and/or predict a flood back or overheating condition of compressor 10. DSH is the difference between the temperature of refrigerant vapor leaving the compressor, referred to as discharge line temperature (DLT) and the saturated condenser temperature (Tcond). Suction super heat (SSH) is the difference between the temperature of refrigerant vapor entering the compressor, referred to as suction line temperature (SLT) and saturated evaporator temperature (Tevap).
SSH and DSH may be correlated as shown in
A flood back condition may occur when SSH is approaching zero degrees or when DSH is approaching twenty to forty degrees Fahrenheit. For this reason, DSH may be used to detect the onset of a flood back condition and its severity. When SSH is at zero degrees, SSH may not indicate the severity of the flood back condition. As the floodback condition becomes more severe, SSH remains at around zero degrees. When SSH is at zero degrees, however, DSH may be between twenty and forty degrees Fahrenheit and may more accurately indicate the severity of a flood back condition. When DSH is in the range of thirty degrees Fahrenheit to eighty degrees Fahrenheit, compressor 10 may operate within a normal range. When DSH is below thirty degrees Fahrenheit, the onset of a flood back condition may occur. When DSH is below ten degrees Fahrenheit, a severe flood back condition may occur.
With respect to overheating, when DSH is greater than eighty degrees Fahrenheit, the onset of an overheating condition may occur. When DSH is greater than one-hundred degrees Fahrenheit, a severe overheating condition may be present.
In
To determine DSH, DLT may be subtracted from Tcond. DLT may be sensed by a DLT sensor 28 that senses a temperature of refrigerant exiting compressor 10. As shown in
In the alternative, a combination temperature/pressure sensor may be used. In such case, Tcond may be measured based on the pressure of refrigerant exiting compressor 10 as measured by the combination sensor. Moreover, in such case, DSH may be calculated based on DLT, as measured by the temperature portion of the sensor, and on Tcond, as measured by the pressure portion of the combination sensor.
Tcond may be derived from other system parameters. Specifically, Tcond may be derived from compressor current and voltage (i.e., compressor power), compressor speed, and compressor map data associated with compressor 10. A method for deriving Tcond based on current, voltage and compressor map data for a fixed speed compressor is described in the commonly assigned application for Compressor Diagnostic and Protection System, U.S. application Ser. No. 11/059,646, Publication No. U.S. 2005/0235660. Compressor map data for a fixed speed compressor correlating compressor current and voltage to Tcond may be compressor specific and based on test data for a specific compressor type, model and capacity.
In the case of a variable speed compressor, Tcond may also be a function of compressor speed, in addition to compressor power.
A graphical correlation between compressor power in watts and compressor speed is shown in
In this way, control module 25 may calculate Tcond based on compressor power data and compressor speed data. Control module 25 may calculate, monitor, or detect compressor power data during the calculations performed to convert electrical power from power supply 18 to electrical power at a desired frequency. In this way, compressor power and current data may be readily available to control module 25. In addition, control module 25 may calculate, monitor, or detect compressor speed based on the frequency of electrical power delivered to the electric motor of compressor 10. In this way, compressor speed data may also be readily available to control module 25. Based on compressor power and compressor speed, control module 25 may derive Tcond.
After measuring or calculating Tcond, control module 25 may calculate DSH as the difference between Tcond and DLT, with DLT data being receiving from external DLT sensor 28 or internal DLT sensor 30.
Control module 25 may monitor DSH to detect a flood back or overheat condition, based on the correlation between DSH and flood back and overheat conditions described above. Upon detection of a flood back or overheat condition, control module 25 may adjust compressor speed or adjust expansion valve 14 accordingly. Control module 25 may communicate with or control expansion valve 14. Alternatively, control module 25 may communicate with a system controller for refrigeration system 5 and may notify system controller of the flood back or overheat condition. System controller may then adjust expansion valve or compressor speed accordingly.
DSH may be monitored to detect or predict a sudden flood back or overheat condition. A sudden reduction in DLT or DSH without significant accompanying change in Tcond may be indicative of a sudden flood back or overheat condition. For example, if DLT or DSH decreases by a predetermined temperature amount (e.g., fifty degrees Fahrenheit) within a predetermined time period (e.g., fifty seconds), a sudden flood back condition may exist. Such a condition may be caused by expansion valve 14 being stuck open. Likewise, a sudden increase in DLT or DSH with similar magnitude and without significant accompanying change in Tcond may be indicative of a sudden overheat condition due to expansion valve 14 being stuck closed. For example, if DLT or DSH increases by a predetermined temperature amount (e.g., fifty degrees Fahrenheit) within a predetermined time period (e.g., fifty seconds), a sudden overheat condition may exist.
Control module 25 may monitor DSH and DLT to determine whether compressor 10 is operating within a predetermined operating envelope. As shown in
In the event of a flood back condition, control module 25 may limit a compressor speed range. For example, when DSH is below thirty degrees Fahrenheit, compressor operation may be limited to the compressor's cooling capacity rating speed. For example, the cooling capacity rating speed may be 4500 RPM. When DSH is between thirty degrees Fahrenheit and sixty degrees Fahrenheit, compressor operating speed range may be expanded linearly to the full operating speed range. For example, compressor operating speed range may be between 1800 and 7000 RPM.
The function correlating Tcond with compressor speed and power, may assume a predetermined or constant saturated Tevap. As shown in
For additional accuracy, Tevap may be derived as a function of Tcond and DLT, as described in commonly assigned U.S. application Ser. No. 11/059,646, U.S. Publication No. 2005/0235660. For variable speed compressors, the correlation may also reflect compressor speed. In this way, Tevap may be derived as a function of Tcond, DLT and compressor speed.
As shown in
Tcond and Tevap may be calculated based on a single derivation.
In addition, iterative calculations may be made based on the following equations:
Tcond=f(compressor power, compressor speed, Tevap) Equation 1:
Tevap=f(Tcond, DLT, compressor speed) Equation 2:
Multiple iterations of these equations may be performed to achieve convergence. For example, three iterations may provide optimal convergence. As discussed above, more or less iteration, or no iterations, may be used.
Tevap and Tcond may also be determined by using compressor map data, for different speeds, based on DLT and compressor power, based on the following equations:
Tevap=f(compressor power, compressor speed, DLT) Equation 3:
Tcond=f(compressor power, compressor speed, DLT) Equation 4:
Once Tevap and Tcond are known, additional compressor performance parameters may be derived. For example, compressor capacity and compressor efficiency may be derived based on additional compressor performance map data for a specific compressor model and capacity. Such additional compressor map data may be derived from test data. For example, compressor mass flow or capacity, may be derived according to the following equation:
Tevap=f(compressor speed, Tcond, mass flow) Equation 5:
Mass flow may be derived according to the following equation:
Mass Flow=m0+m1*Tevap+m2*Tcond+m3*RPM+m4*Tevap*Tcond+m5*Tevap*RPM+m6*Tcond*RPM+m7*Tevap^2+m8*Tcond^2+m9*RPM^2+m10*Tevap*Tcond*RPM+m11*Tevap^2*Tcond+m12*Tevap^2*RPM+m13*Tevap^3+m14*Tevap*Tcond^2+m15*Tcond^2*RPM+m16*Tcond^3+m17*Tevap*RPM^2+m18*Tcond*RPM^2+m19*RPM^3 Equation 6:
where m0-m19 are compressor model and size specific, as published by compressor manufacturers.
Compressor map data may be stored within a computer readable medium within control module 25 or accessible to control module 25.
As shown in
By monitoring the above operating parameters, control module 25 may insure that compressor 10 is operating within acceptable operating envelope limits that are preset by a particular compressor designer or manufacturer and may detect and predict certain undesirable operating conditions, such as compressor floodback and overheat conditions. Further, control module 25 may derive other useful data related to compressor efficiency, power consumption, etc.
Where compressor 10 is driven by a suction cooled inverter drive 22, Tevap may be alternatively calculated. Because Tevap may be calculated from mass flow, Tcond, and compressor speed as discussed above, control module 25 may derive mass flow from a difference in temperature between suction gas entering cold plate 15 (Ts) and a temperature of a heat sink (Ti) located on or near inverter drive 22. Control module 25 may calculate delta T according to the following equation:
delta T=Ts−Ti Equation 7:
Ts and Ti may be measured by two temperature sensors 33 and 34 shown in
Control module 25 may determine mass flow based on delta T and by determining the applied heat of inverter drive 22. As shown in
Inverter heat may be derived based on inverter speed (i.e., compressor speed) and inverter efficiency as shown in
With reference again to
As shown by dotted line 141, Tcond and Tevap may be iteratively calculated to more accurately derive Tcond and Tevap. For example, optimal convergence may be achieved with three iterations. More or less iterations may also be used.
As shown in
As shown in
In addition, similar to the calculation of DSH based on DLT described above, control module 25 may also calculate SSH. For example, compressor power, compressor speed, and compressor map data may be used to derive Tcond and Tevap may be derived from Tcond. Once Tevap is derived, SSH may be derived from SLT and Tevap and used as described above for monitoring various compressor operating parameters and protecting against flood back and overheat conditions.
This application is a continuation of U.S. patent application Ser. No. 13/893,493, filed on May 14, 2013 and issued as U.S. Pat. No. 9,494,158, which is a continuation of U.S. patent application Ser. No. 12/246,959, filed on Oct. 7, 2008 and issued as U.S. Pat. No. 8,459,053. This application claims the benefit of U.S. Provisional Application No. 60/978,258, filed on Oct. 8, 2007. The entire disclosures of each of the above applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2883255 | Anderson | Apr 1959 | A |
2981076 | Gaugler | Apr 1961 | A |
3082609 | Ryan et al. | Mar 1963 | A |
3242321 | Chope | Mar 1966 | A |
3265948 | Sones et al. | Aug 1966 | A |
3600657 | Pfaff et al. | Aug 1971 | A |
4130997 | Hara et al. | Dec 1978 | A |
4280910 | Baumann | Jul 1981 | A |
4370564 | Matsushita | Jan 1983 | A |
4448038 | Barbier | May 1984 | A |
4459519 | Erdman | Jul 1984 | A |
4460861 | Rosa | Jul 1984 | A |
4461153 | Lindner et al. | Jul 1984 | A |
4507936 | Yoshino | Apr 1985 | A |
4527399 | Lord | Jul 1985 | A |
4653280 | Hansen et al. | Mar 1987 | A |
4697132 | Ronk et al. | Sep 1987 | A |
4706469 | Oguni et al. | Nov 1987 | A |
4750338 | Hingst | Jun 1988 | A |
4940929 | Williams | Jul 1990 | A |
4974427 | Diab | Dec 1990 | A |
5056712 | Enck | Oct 1991 | A |
5058389 | Yasuda et al. | Oct 1991 | A |
5058390 | Sindermann et al. | Oct 1991 | A |
5182918 | Manz et al. | Feb 1993 | A |
5203178 | Shyu | Apr 1993 | A |
5255529 | Powell et al. | Oct 1993 | A |
5258901 | Fraidlin | Nov 1993 | A |
5269146 | Kerner | Dec 1993 | A |
5291115 | Ehsani | Mar 1994 | A |
5315214 | Lesea | May 1994 | A |
5347467 | Staroselsky et al. | Sep 1994 | A |
5359276 | Mammano | Oct 1994 | A |
5359281 | Barrow et al. | Oct 1994 | A |
5410221 | Mattas et al. | Apr 1995 | A |
5410235 | Ehsani | Apr 1995 | A |
5425246 | Bessler | Jun 1995 | A |
5426952 | Bessler | Jun 1995 | A |
5428965 | Grunwald et al. | Jul 1995 | A |
5440218 | Oldenkamp | Aug 1995 | A |
5502970 | Rajendran | Apr 1996 | A |
5506930 | Umida | Apr 1996 | A |
5519300 | Leon et al. | May 1996 | A |
5524449 | Ueno et al. | Jun 1996 | A |
5603222 | Dube | Feb 1997 | A |
5603227 | Holden et al. | Feb 1997 | A |
5646499 | Doyama et al. | Jul 1997 | A |
5663627 | Ogawa | Sep 1997 | A |
5712551 | Lee | Jan 1998 | A |
5712802 | Kumar et al. | Jan 1998 | A |
5742103 | Ashok | Apr 1998 | A |
5786992 | Vinciarelli et al. | Jul 1998 | A |
5903138 | Hwang et al. | May 1999 | A |
5960207 | Brown | Sep 1999 | A |
5963442 | Yoshida et al. | Oct 1999 | A |
6005365 | Kaneko et al. | Dec 1999 | A |
6028406 | Birk | Feb 2000 | A |
6035653 | Itoh et al. | Mar 2000 | A |
6041609 | Hornsleth et al. | Mar 2000 | A |
6065298 | Fujimoto | May 2000 | A |
6073457 | Kampf et al. | Jun 2000 | A |
6091215 | Lovett et al. | Jul 2000 | A |
6091233 | Hwang et al. | Jul 2000 | A |
6102665 | Centers et al. | Aug 2000 | A |
6116040 | Stark | Sep 2000 | A |
6123146 | Dias | Sep 2000 | A |
6220045 | Kim | Apr 2001 | B1 |
6222746 | Kim | Apr 2001 | B1 |
6226998 | Reason et al. | May 2001 | B1 |
6236183 | Schroeder | May 2001 | B1 |
6236193 | Paul | May 2001 | B1 |
6259614 | Ribarich et al. | Jul 2001 | B1 |
6281656 | Masaki et al. | Aug 2001 | B1 |
6281658 | Han et al. | Aug 2001 | B1 |
6316918 | Underwood et al. | Nov 2001 | B1 |
6318100 | Brendel et al. | Nov 2001 | B1 |
6318101 | Pham et al. | Nov 2001 | B1 |
6321549 | Reason et al. | Nov 2001 | B1 |
6326750 | Marcinkiewicz | Dec 2001 | B1 |
6344725 | Kaitani et al. | Feb 2002 | B2 |
6370888 | Grabon | Apr 2002 | B1 |
6373200 | Nerone et al. | Apr 2002 | B1 |
6396229 | Sakamoto et al. | May 2002 | B1 |
6404154 | Marcinkiewicz et al. | Jun 2002 | B2 |
6406265 | Hahn et al. | Jun 2002 | B1 |
6414462 | Chong | Jul 2002 | B2 |
6434960 | Rousseau | Aug 2002 | B1 |
6438978 | Bessler | Aug 2002 | B1 |
6446618 | Hill | Sep 2002 | B1 |
6462492 | Sakamoto et al. | Oct 2002 | B1 |
6471486 | Centers et al. | Oct 2002 | B1 |
6523361 | Higashiyama | Feb 2003 | B2 |
6532754 | Haley et al. | Mar 2003 | B2 |
6539734 | Weyna | Apr 2003 | B1 |
6578373 | Barbier | Jun 2003 | B1 |
6583593 | Iijima et al. | Jun 2003 | B2 |
6636011 | Sadasivam et al. | Oct 2003 | B2 |
6670784 | Odachi et al. | Dec 2003 | B2 |
6688124 | Stark et al. | Feb 2004 | B1 |
6698217 | Tanimoto et al. | Mar 2004 | B2 |
6708507 | Sem et al. | Mar 2004 | B1 |
6711911 | Grabon et al. | Mar 2004 | B1 |
6714425 | Yamada et al. | Mar 2004 | B2 |
6735284 | Cheong et al. | May 2004 | B2 |
6749404 | Gennami et al. | Jun 2004 | B2 |
6753670 | Kadah | Jun 2004 | B2 |
6756753 | Marcinkiewicz | Jun 2004 | B1 |
6756757 | Marcinkiewicz et al. | Jun 2004 | B2 |
6758050 | Jayanth et al. | Jul 2004 | B2 |
6767851 | Rokman et al. | Jul 2004 | B1 |
6788024 | Kaneko et al. | Sep 2004 | B2 |
6815925 | Chen et al. | Nov 2004 | B2 |
6825637 | Kinpara et al. | Nov 2004 | B2 |
6828751 | Sadasivam et al. | Dec 2004 | B2 |
6831439 | Won et al. | Dec 2004 | B2 |
6857845 | Stabley et al. | Feb 2005 | B2 |
6876171 | Lee | Apr 2005 | B2 |
6915646 | Kadle et al. | Jul 2005 | B2 |
6955039 | Nomura et al. | Oct 2005 | B2 |
6966759 | Hahn et al. | Nov 2005 | B2 |
6967851 | Yang et al. | Nov 2005 | B2 |
6982533 | Seibel et al. | Jan 2006 | B2 |
6984948 | Nakata et al. | Jan 2006 | B2 |
7005829 | Schnetzka | Feb 2006 | B2 |
RE39060 | Okui et al. | Apr 2006 | E |
7049774 | Chin et al. | May 2006 | B2 |
7095208 | Kawaji et al. | Aug 2006 | B2 |
7138777 | Won et al. | Nov 2006 | B2 |
7143594 | Ludwig et al. | Dec 2006 | B2 |
7154237 | Welchko et al. | Dec 2006 | B2 |
7176644 | Ueda et al. | Feb 2007 | B2 |
7180273 | Bocchiola et al. | Feb 2007 | B2 |
7184902 | El-Ibiary | Feb 2007 | B2 |
7208895 | Marcinkiewicz et al. | Apr 2007 | B2 |
7234305 | Nomura et al. | Jun 2007 | B2 |
7272018 | Yamada et al. | Sep 2007 | B2 |
7307401 | Gataric et al. | Dec 2007 | B2 |
7342379 | Marcinkiewicz et al. | Mar 2008 | B2 |
7375485 | Shahi et al. | May 2008 | B2 |
7458223 | Pham | Dec 2008 | B2 |
7495410 | Zargari et al. | Feb 2009 | B2 |
7554271 | Thiery et al. | Jun 2009 | B2 |
7580272 | Taguchi et al. | Aug 2009 | B2 |
7595613 | Thompson et al. | Sep 2009 | B2 |
7605570 | Liu et al. | Oct 2009 | B2 |
7613018 | Lim et al. | Nov 2009 | B2 |
7644591 | Singh et al. | Jan 2010 | B2 |
7660139 | Garabandic | Feb 2010 | B2 |
7667986 | Artusi et al. | Feb 2010 | B2 |
7675759 | Artusi et al. | Mar 2010 | B2 |
7683568 | Pande et al. | Mar 2010 | B2 |
7688608 | Oettinger et al. | Mar 2010 | B2 |
7706143 | Lang et al. | Apr 2010 | B2 |
7723964 | Taguchi | May 2010 | B2 |
7733678 | Notohamiprodjo et al. | Jun 2010 | B1 |
7738228 | Taylor | Jun 2010 | B2 |
7782033 | Turchi et al. | Aug 2010 | B2 |
7821237 | Melanson | Oct 2010 | B2 |
7895003 | Caillat | Feb 2011 | B2 |
7905702 | Stabley et al. | Mar 2011 | B2 |
20010022939 | Morita et al. | Sep 2001 | A1 |
20020047635 | Ribarich et al. | Apr 2002 | A1 |
20020062656 | Suitou et al. | May 2002 | A1 |
20020108384 | Higashiyama | Aug 2002 | A1 |
20020117989 | Kawabata et al. | Aug 2002 | A1 |
20020157408 | Egawa et al. | Oct 2002 | A1 |
20020162339 | Harrison et al. | Nov 2002 | A1 |
20030019221 | Rossi et al. | Jan 2003 | A1 |
20030077179 | Collins et al. | Apr 2003 | A1 |
20030085621 | Potega | May 2003 | A1 |
20030094004 | Pham et al. | May 2003 | A1 |
20030146290 | Wang et al. | Aug 2003 | A1 |
20030182956 | Kurita et al. | Oct 2003 | A1 |
20040011020 | Nomura et al. | Jan 2004 | A1 |
20040061472 | Won et al. | Apr 2004 | A1 |
20040070364 | Cheong et al. | Apr 2004 | A1 |
20040085785 | Taimela | May 2004 | A1 |
20040100221 | Fu | May 2004 | A1 |
20040107716 | Hirota | Jun 2004 | A1 |
20040119434 | Dadd | Jun 2004 | A1 |
20040183491 | Sidey | Sep 2004 | A1 |
20040221594 | Suzuki et al. | Nov 2004 | A1 |
20040261431 | Singh et al. | Dec 2004 | A1 |
20040261448 | Nishijima et al. | Dec 2004 | A1 |
20050047179 | Lesea | Mar 2005 | A1 |
20050204760 | Kurita et al. | Sep 2005 | A1 |
20050235660 | Pham | Oct 2005 | A1 |
20050235661 | Pham | Oct 2005 | A1 |
20050235662 | Pham | Oct 2005 | A1 |
20050235663 | Pham | Oct 2005 | A1 |
20050235664 | Pham | Oct 2005 | A1 |
20050247073 | Hikawa et al. | Nov 2005 | A1 |
20050262849 | Nomura et al. | Dec 2005 | A1 |
20050270814 | Oh | Dec 2005 | A1 |
20060041335 | Rossi et al. | Feb 2006 | A9 |
20060042276 | Doll et al. | Mar 2006 | A1 |
20060048530 | Jun et al. | Mar 2006 | A1 |
20060056210 | Yamada et al. | Mar 2006 | A1 |
20060090490 | Grimm et al. | May 2006 | A1 |
20060117773 | Street et al. | Jun 2006 | A1 |
20060123809 | Ha et al. | Jun 2006 | A1 |
20060130501 | Singh et al. | Jun 2006 | A1 |
20060130504 | Agrawal et al. | Jun 2006 | A1 |
20060150651 | Goto et al. | Jul 2006 | A1 |
20060158912 | Wu et al. | Jul 2006 | A1 |
20060185373 | Butler et al. | Aug 2006 | A1 |
20060187693 | Tang | Aug 2006 | A1 |
20060198172 | Wood | Sep 2006 | A1 |
20060198744 | Lifson et al. | Sep 2006 | A1 |
20060247895 | Jayanth | Nov 2006 | A1 |
20060255772 | Chen | Nov 2006 | A1 |
20060261830 | Taylor | Nov 2006 | A1 |
20060290302 | Marcinkiewicz et al. | Dec 2006 | A1 |
20070012052 | Butler et al. | Jan 2007 | A1 |
20070029987 | Li | Feb 2007 | A1 |
20070040524 | Sarlioglu et al. | Feb 2007 | A1 |
20070040534 | Ghosh et al. | Feb 2007 | A1 |
20070089424 | Venkataramani et al. | Apr 2007 | A1 |
20070118307 | El-Ibiary | May 2007 | A1 |
20070118308 | El-Ibiary | May 2007 | A1 |
20070132437 | Scollo et al. | Jun 2007 | A1 |
20070144354 | Muller et al. | Jun 2007 | A1 |
20070289322 | Mathews | Dec 2007 | A1 |
20080089792 | Bae et al. | Apr 2008 | A1 |
20080110610 | Lifson et al. | May 2008 | A1 |
20080112823 | Yoshida et al. | May 2008 | A1 |
20080143289 | Marcinkiewicz et al. | Jun 2008 | A1 |
20080160840 | Bax et al. | Jul 2008 | A1 |
20080209925 | Pham | Sep 2008 | A1 |
20080216494 | Pham et al. | Sep 2008 | A1 |
20080232065 | Lang et al. | Sep 2008 | A1 |
20080245083 | Tutunoglu et al. | Oct 2008 | A1 |
20080252269 | Feldtkeller et al. | Oct 2008 | A1 |
20080265847 | Woo et al. | Oct 2008 | A1 |
20080272745 | Melanson | Nov 2008 | A1 |
20080272747 | Melanson | Nov 2008 | A1 |
20080273356 | Melanson | Nov 2008 | A1 |
20080284399 | Oettinger et al. | Nov 2008 | A1 |
20080285318 | Tan et al. | Nov 2008 | A1 |
20090015214 | Chen | Jan 2009 | A1 |
20090015225 | Turchi et al. | Jan 2009 | A1 |
20090016087 | Shimizu | Jan 2009 | A1 |
20090033296 | Hammerstrom | Feb 2009 | A1 |
20090039852 | Fishelov et al. | Feb 2009 | A1 |
20090059625 | Viitanen et al. | Mar 2009 | A1 |
20090071175 | Pham | Mar 2009 | A1 |
20090085510 | Pande et al. | Apr 2009 | A1 |
20090090117 | McSweeney | Apr 2009 | A1 |
20090090118 | Pham et al. | Apr 2009 | A1 |
20090091961 | Hsia et al. | Apr 2009 | A1 |
20090092501 | Seibel | Apr 2009 | A1 |
20090092502 | Marcinkiewicz | Apr 2009 | A1 |
20090093911 | Caillat | Apr 2009 | A1 |
20090094997 | McSweeney | Apr 2009 | A1 |
20090094998 | McSweeney et al. | Apr 2009 | A1 |
20090095002 | McSweeney et al. | Apr 2009 | A1 |
20090112368 | Mann, III et al. | Apr 2009 | A1 |
20090140680 | Park | Jun 2009 | A1 |
20090237963 | Prasad et al. | Sep 2009 | A1 |
20090243561 | Tan et al. | Oct 2009 | A1 |
20090255278 | Taras et al. | Oct 2009 | A1 |
20090273330 | Sisson | Nov 2009 | A1 |
20090290395 | Osaka | Nov 2009 | A1 |
20090295347 | Popescu et al. | Dec 2009 | A1 |
20090303765 | Shimizu et al. | Dec 2009 | A1 |
20090316454 | Colbeck et al. | Dec 2009 | A1 |
20100007317 | Yang | Jan 2010 | A1 |
20100014326 | Gu et al. | Jan 2010 | A1 |
20100014329 | Zhang et al. | Jan 2010 | A1 |
20100052601 | Pummer | Mar 2010 | A1 |
20100052641 | Popescu et al. | Mar 2010 | A1 |
20100057263 | Tutunoglu | Mar 2010 | A1 |
20100079125 | Melanson et al. | Apr 2010 | A1 |
20100080026 | Zhang | Apr 2010 | A1 |
20100109615 | Hwang et al. | May 2010 | A1 |
20100109626 | Chen | May 2010 | A1 |
20100118571 | Saint-Pierre | May 2010 | A1 |
20100118576 | Osaka | May 2010 | A1 |
20100128503 | Liu et al. | May 2010 | A1 |
20100156377 | Siegler | Jun 2010 | A1 |
20100165683 | Sugawara | Jul 2010 | A1 |
20100179703 | Singh et al. | Jul 2010 | A1 |
20100181930 | Hopwood et al. | Jul 2010 | A1 |
20100187914 | Rada et al. | Jul 2010 | A1 |
20100202169 | Gaboury et al. | Aug 2010 | A1 |
20100226149 | Masumoto | Sep 2010 | A1 |
20100246220 | Irving et al. | Sep 2010 | A1 |
20100246226 | Ku et al. | Sep 2010 | A1 |
20100253307 | Chen et al. | Oct 2010 | A1 |
20100259230 | Boothroyd | Oct 2010 | A1 |
20100270984 | Park et al. | Oct 2010 | A1 |
20110138826 | Lifson et al. | Jun 2011 | A1 |
20120279251 | Kido et al. | Nov 2012 | A1 |
20140033746 | McSweeney | Feb 2014 | A1 |
20150051742 | Caillat | Feb 2015 | A1 |
Number | Date | Country |
---|---|---|
1051080 | May 1991 | CN |
1382912 | Dec 2002 | CN |
1532474 | Sep 2004 | CN |
1654893 | Aug 2005 | CN |
1671964 | Sep 2005 | CN |
1697954 | Nov 2005 | CN |
1804489 | Jul 2006 | CN |
1806478 | Jul 2006 | CN |
1830131 | Sep 2006 | CN |
1987258 | Jun 2007 | CN |
100339664 | Sep 2007 | CN |
19859340 | Jul 2000 | DE |
10036378 | May 2001 | DE |
10328213 | Jan 2005 | DE |
102006036282 | Feb 2007 | DE |
0697086 | Feb 1996 | EP |
0697087 | Feb 1996 | EP |
1146299 | Oct 2001 | EP |
1209362 | May 2002 | EP |
1541869 | Jun 2005 | EP |
1580498 | Sep 2005 | EP |
55155134 | Dec 1980 | JP |
61272483 | Dec 1986 | JP |
S6277539 | Apr 1987 | JP |
01167556 | Jul 1989 | JP |
H01167556 | Jul 1989 | JP |
2004163 | Jan 1990 | JP |
03129255 | Jun 1991 | JP |
04344073 | Nov 1992 | JP |
H05322224 | Dec 1993 | JP |
06159738 | Jun 1994 | JP |
H06159738 | Jun 1994 | JP |
07035393 | Feb 1995 | JP |
H0926246 | Jan 1997 | JP |
09196524 | Jul 1997 | JP |
10009683 | Jan 1998 | JP |
1998097331 | Apr 1998 | JP |
10153353 | Jun 1998 | JP |
10160271 | Jun 1998 | JP |
H10160271 | Jun 1998 | JP |
H1123075 | Jan 1999 | JP |
11159895 | Jun 1999 | JP |
11287497 | Oct 1999 | JP |
2000002496 | Jan 2000 | JP |
2000205630 | Jul 2000 | JP |
2000297970 | Oct 2000 | JP |
2001026214 | Jan 2001 | JP |
2001317470 | Nov 2001 | JP |
2002013858 | Jan 2002 | JP |
2002243246 | Aug 2002 | JP |
2003074945 | Mar 2003 | JP |
2003156244 | May 2003 | JP |
2004069295 | Mar 2004 | JP |
2004135491 | Apr 2004 | JP |
2005-003710 | Jan 2005 | JP |
2005132167 | May 2005 | JP |
2005282972 | Oct 2005 | JP |
3799732 | Jul 2006 | JP |
2006177214 | Jul 2006 | JP |
2006188954 | Jul 2006 | JP |
2006188954 | Jul 2006 | JP |
2006233820 | Sep 2006 | JP |
2006233820 | Sep 2006 | JP |
2007198230 | Aug 2007 | JP |
2007198705 | Aug 2007 | JP |
4150870 | Sep 2008 | JP |
2009264699 | Nov 2009 | JP |
2010266132 | Nov 2010 | JP |
2011033340 | Feb 2011 | JP |
10-1996-0024115 | Jul 1996 | KR |
2001-0044273 | Jun 2001 | KR |
2003-0011415 | Feb 2003 | KR |
2005-0059842 | Jun 2005 | KR |
20050085544 | Aug 2005 | KR |
20070071407 | Jul 2007 | KR |
WO-9523943 | Sep 1995 | WO |
WO-9523944 | Sep 1995 | WO |
WO-9702729 | Jan 1997 | WO |
WO-9911987 | Mar 1999 | WO |
WO-9913225 | Mar 1999 | WO |
WO-02090840 | Nov 2002 | WO |
WO-02090913 | Nov 2002 | WO |
WO-02090842 | Nov 2002 | WO |
WO-03038987 | May 2003 | WO |
WO-2004059822 | Jul 2004 | WO |
WO-2004083744 | Sep 2004 | WO |
WO-2005101939 | Oct 2005 | WO |
WO-2006023075 | Mar 2006 | WO |
WO-2009045495 | Apr 2009 | WO |
WO-2009048575 | Apr 2009 | WO |
WO-2009048576 | Apr 2009 | WO |
WO-2009048577 | Apr 2009 | WO |
WO-2009048578 | Apr 2009 | WO |
WO-2009048579 | Apr 2009 | WO |
WO-20090048466 | Apr 2009 | WO |
WO-2009048566 | May 2009 | WO |
WO-2009151841 | Dec 2009 | WO |
WO-2011083756 | Jul 2011 | WO |
Entry |
---|
“Electrical Power vs Mechanical Power,” by Suvo, http://www.brighthubengineering.com/machine-design/62310-electrical-power-vs-mechanical-power/; dated Jan. 25, 2010; 2 pages. |
“Solving System of Equations by Substitution,” by http://cstl.syr.edu/fipse/algebra/unit5/subst.htm, dated Aug. 30, 2012; 4 pages. |
Advisory Action regarding U.S. Appl. No. 14/739,207, dated Aug. 2, 2016. |
Appeal Brief regarding U.S. Appl. No. 12/247,001, dated Feb. 1, 2012. |
Applicant-Initiated Interview Summary regarding U.S. Appl. No. 12/246,927, dated Sep. 5, 2012. |
Applicant-Initiated Interview Summary regarding U.S. Appl. No. 12/247,020, dated Sep. 6, 2012. |
Decision of Rejection from the State Intellectual Property Office for People's Republic of China regarding Chinese Patent Application No. 200880110616.7, dated Nov. 27, 2013. |
European Search Report regarding Application No. 08836902.0-1602 / 2198159 PCT/US2008011464, dated Apr. 4, 2014. |
European Search Report regarding Application No. 08837748.6-1608, dated Aug. 7, 2015. |
European Search Report regarding Application No. 13161753.2-1602, dated Jul. 12, 2013. |
Examiner's Answer to Appellant's Appeal Brief regarding U.S. Appl. No. 12/247,001, dated Mar. 26, 2012. |
Extended European Search Report regarding Application No. 08836944.2-1605 / 2198165 PCT/US2008011596, dated Dec. 4, 2014. |
Extended European Search Report regarding Application No. 08837249.5-1605 / 2195540 PCT/US2008011589, dated Dec. 4, 2014. |
Extended European Search Report regarding Application No. 08837504.3-1605 / 2198218 PCT/US2008011597, dated Dec. 3, 2014. |
Extended European Search Report regarding Application No. 08837777.5-1605 / 2198160 PCT/US2008011590, dated Dec. 3, 2014. |
Extended European Search Report regarding Application No. 08838154.6-1605 / 2195588 PCT/US2008011593, dated Dec. 4, 2014. |
Final Office Action regarding U.S. Appl. No. 12/244,387, dated Aug. 17, 2011. |
Final Office Action regarding U.S. Appl. No. 12/246,825, dated Jun. 14, 2011. |
Final Office Action regarding U.S. Appl. No. 12/244,387, dated Aug. 13, 2012. |
Final Office Action regarding U.S. Appl. No. 12/244,416, dated Nov. 15, 2011. |
Final Office Action regarding U.S. Appl. No. 12/246,959, dated Oct. 12, 2011. |
Final Office Action regarding U.S. Appl. No. 12/246,959, dated Dec. 4, 2012. |
Final Office Action regarding U.S. Appl. No. 12/247,001, dated Sep. 1, 2011. |
Final Office Action regarding U.S. Appl. No. 12/247,020, dated Jun. 6, 2012. |
Final Office Action regarding U.S. Appl. No. 12/247,033, dated Jul. 5, 2012. |
Final Office Action regarding U.S. Appl. No. 12/247,033, dated Jul. 12, 2011. |
Final Office Action regarding U.S. Appl. No. 14/031,905, dated Jul. 23, 2014. |
First Office Action regarding Chinese Patent Application No. 201310484685.7, dated May 20, 2015. Translation provided by Unitalen Attorneys at Law. |
Fourth Office Action from the State Intellectual Property Office of People's Republic of China regarding Chinese Patent Application No. 200880110785.0, dated Oct. 21, 2013. Translation provided by Unitalen Attorneys at Law. |
International Preliminary Report on Patentability for International Application No. PCT/US2008/011441, dated Apr. 7, 2010. |
International Preliminary Report on Patentability for International Application No. PCT/US2008/011442, dated Apr. 7, 2010. |
International Preliminary Report on Patentability for International Application No. PCT/US2008/011464, dated Apr. 7, 2010. |
International Preliminary Report on Patentability for International Application No. PCT/US2008/011570, dated Apr. 13, 2010. |
International Preliminary Report on Patentability for International Application No. PCT/US2008/011576, dated Apr. 13, 2010. |
International Preliminary Report on Patentability for International Application No. PCT/US2008/011589, dated Apr. 13, 2010. |
International Preliminary Report on Patentability for International Application No. PCT/US2008/011590, dated Apr. 13, 2010. |
International Preliminary Report on Patentability for International Application No. PCT/US2008/011593, dated Apr. 13, 2010. |
International Preliminary Report on Patentability for International Application No. PCT/US2008/011596, dated Apr. 13, 2010. |
International Preliminary Report on Patentability for International Application No. PCT/US2008/011597, dated Apr. 13, 2010. |
International Search Report for International Application No. PCT/US2008/011441, dated Jan. 30, 2009. |
International Search Report for International Application No. PCT/US2008/011442 dated Feb. 3, 2009. |
International Search Report for International Application No. PCT/US2008/011570, dated May 26, 2009. |
International Search Report for International Application No. PCT/US2008/011589, dated Feb. 27, 2009. |
International Search Report for International Application No. PCT/US2008/011590, dated Feb. 27, 2009. |
International Search Report for International Application No. PCT/US2008/011593, dated Jun. 17, 2009. |
International Search Report for International Application No. PCT/US2008/011597, dated Jun. 19, 2009. |
International Search Report for International Application No. PCT/US2008/011596, dated Feb. 25, 2009. |
International Search Report regarding International Application No. PCT/US2008/011464 dated Mar. 13, 2009. |
International Search Report regarding International Application No. PCT/US2008/011576 dated Mar. 23, 2009. |
Interview Summary regarding U.S. Appl. No. 12/246,893, dated Mar. 15, 2017. |
Interview Summary regarding U.S. Appl. No. 13/845,784, dated Jul. 6, 2015. |
Interview Summary regarding U.S. Appl. No. 12/247,001, dated Mar. 25, 2011. |
Interview Summary regarding U.S. Appl. No. 12/247,033, dated Mar. 25, 2011. |
Non-Final Office Action regarding U.S. Appl. No. 12/244,387, dated Mar. 3, 2011. |
Non-Final Office Action regarding U.S. Appl. No. 12/246,825, dated Jan. 4, 2011. |
Non-Final Office Action regarding U.S. Appl. No. 12/246,893, dated Apr. 1, 2011. |
Non-Final Office Action regarding U.S. Appl. No. 12/246,927, dated Jun. 6, 2012. |
Non-Final Office Action regarding U.S. Appl. No. 12/246,959, dated Jun. 13, 2012. |
Non-Final Office Action regarding U.S. Appl. No. 12/247,001, dated Feb. 25, 2011. |
Non-Final Office Action regarding U.S. Appl. No. 12/247,033, dated Jan. 19, 2012. |
Non-Final Office Action regarding U.S. Appl. No. 12/247,033, dated Jan. 21, 2011. |
Non-Final Office Action regarding U.S. Appl. No. 12/247,033, dated Jan. 29, 2013. |
Notice of Allowance and Fee(s) Due and Notice of Allowability regarding U.S. Appl. No. 12/244,528, dated Sep. 7, 2010. |
Notice of Allowance and Fee(s) Due regarding U.S. Appl. No. 12/246,959, dated Feb. 14, 2013. |
Notice of Allowance and Fees Due regarding U.S. Appl. No. 12/246,927, dated Dec. 21, 2012. |
Notice of Allowance and Fees Due regarding U.S. Appl. No. 12/247,020, dated Jan. 4, 2013. |
Notice of Allowance and Fees Due regarding U.S. Appl. No. 12/983,615 dated Feb. 28, 2014. |
Notice of Allowance and Fees Due regarding U.S. Appl. No. 12/983,615, dated May 23, 2014. |
Notice of Allowance and Fees Due regarding U.S. Appl. No. 14/031,905, dated Apr. 27, 2015. |
Notice of Allowance and Fees Due regarding U.S. Appl. No. 14/031,905, dated Mar. 23, 2015. |
Notice of Appeal from the Examiner to the Board of Patent Appeals and Interferences and Pre-Appeal Brief Request for Review regarding U.S. Appl. No. 12/247,001, dated Dec. 1, 2011. |
Notice of Final Rejection from the Korean Intellectual Property Office regarding Korean Application No. 10-2010-7009374, dated Nov. 18, 2011. Translation provided by Y.S. Chang & Associates. |
Notice of Grounds for Rejection from the Korean Intellectual Property Office regarding Korean Patent Application No. 10-2010-7009374, dated May 31, 2011. Translation provided by Y.S. Change & Associates. |
Notice of Panel Decision from Pre-Appeal Brief Review regarding U.S. Appl. No. 12/247,001, dated Dec. 27, 2011. |
Notification of Final Rejection from Korean Intellectual Property Office regarding Korean Patent Application No. 10-2010-7006707, dated Apr. 2, 2013. Translation provided by Y.S. Chang & Associates. |
Notification of Final Rejection regarding Korean Patent Application No. 10-2010-7007375, dated Apr. 3, 2012. Translation provided by Y.S. Chang & Associates. |
Notification of First Office action from the State Intellectual Property Office of People's Republic of China regarding Chinese Patent Application No. 200880110484.8, dated Dec. 23, 2011. Translation provided by Unitalen Attorneys at Law. |
Notification of First Office Action from the State Intellectual Property Office of People's Republic of China regarding Chinese Patent Application No. 200880110590.6, dated Feb. 29, 2012. Translation provided by Unitalen Attorneys at Law. |
Notification of First Office Action from the State Intellectual Property Office of People's Republic of China regarding Chinese Patent Application No. 200880110616.7, dated Jul. 4, 2012. Translation provided by Unitalen Attorneys at Law. |
Notification of First Office Action from the State Intellectual Property Office of People's Republic of China regarding Chinese Patent Application No. 200880110665.0, dated Apr. 8, 2011. Translation provided by Unitalen Attorneys at Law. |
Notification of Grounds for Refusal regarding Korean Patent Application No. 10-2010-7006707, dated Oct. 23, 2012. Translation provided by Y.S. Chang & Associates. |
Notification of Grounds for Refusal regarding Korean Patent Application No. 10-2010-7006707, dated May 22, 2012. Translation provided by Y.S. Chang & Associates. |
Notification of Grounds for Refusal regarding Korean Patent Application No. 10-2010-7007375, dated Dec. 7, 2011. Translation provided by Y.S. Chang & Associates. |
Notification of Grounds for Refusal regarding Korean Patent Application No. 10-2010-7007581, dated Nov. 14, 2011. Translation provided by Y.S. Chang & Associates. |
Notification of Grounds for Refusal regarding Korean Patent Application No. 10-2010-7007583 from the Korean Intellectual Property Office, dated Dec. 28, 2011. Translation provided by Y.S. Chang & Associates. |
Notification of Grounds for Refusal regarding Korean Patent Application No. 10-2010-7009659, dated Feb. 8, 2012. |
Notification of the First Office Action from the State Intellectual Property Office of People's Republic of China regarding Chinese Application No. 2008801110726, dated Jun. 5, 2012. Translation provided by Unitalen Attorneys at Law. |
Notification of the First Office Action from the State Intellectual Property Office of People's Republic of China regarding Chinese Patent Application No. 200880110785.0, dated May 14, 2012. Translation provided by Unitalen Attorneys at Law. |
Notification of the First Office Action from the State Intellectual Property Office of People's Republic of China regarding Chinese Patent Application No. 200880111091.9 dated Nov. 23, 2011. Translation provided by Unitalen Attorneys at Law. |
Notification of the First Office Action from the State Intelletual Property Office of People's Republic of China regarding Chinese Application No. 200880110551.6, dated Feb. 11, 2011. Translation provided by Unitalen Attorneys at Law. |
Notification of the Second Office Action from the State Intellectual Property Office of People's Republic of China regarding Chinese Patent Application No. 200880110665.0, dated Apr. 5, 2012. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding Chinese Patent Application No. 201410312784.1, dated Aug. 3, 2016. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding Chinese Patent Application No. 201410312784.1, dated Nov. 30, 2015. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding Chinese Patent Application No. 201510382548.1, dated Dec. 9, 2016. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding European Patent Application No. 08835849.4, dated Aug. 5, 2016. |
Office Action regarding European Patent Application No. 08836902.0, dated Dec. 2, 2016. |
Office Action regarding European Patent Application No. 08836944.2, dated Jul. 5, 2017. |
Office Action regarding European Patent Application No. 08837095.2, dated Jul. 5, 2017. |
Office Action regarding European Patent Application No. 08837504.3, dated Jul. 5, 2017. |
Office Action regarding European Patent Application No. 08837777.5, dated Jun. 14, 2017. |
Office Action regarding India Patent Application No. 536/MUMNP/2010, dated Dec. 31, 2015. |
Office Action regarding U.S. Appl. No. 12/246,825, dated Oct. 12, 2011. |
Office Action regarding U.S. Appl. No. 12/246,959, dated Jun. 21, 2011. |
Office Action regarding U.S. Appl. No. 12/246,893, dated Apr. 14, 2017. |
Office Action regarding U.S. Appl. No. 12/246,893, dated Aug. 23, 2017. |
Office Action regarding U.S. Appl. No. 12/246,893, dated Dec. 28, 2016. |
Office Action regarding U.S. Appl. No. 13/893,493, dated Jul. 14, 2016. |
Office Action regarding U.S. Appl. No. 14/739,207, dated Dec. 31, 2015. |
Office Action regarding U.S. Appl. No. 14/739,207, dated May 20, 2016. |
Office Action regarding U.S. Appl. No. 12/244,387, dated Mar. 1, 2012. |
Office Action regarding U.S. Appl. No. 12/244,416, dated Aug. 8, 2011. |
Office Action regarding U.S. Appl. No. 12/246,893, dated Dec. 7, 2011. |
Office Action regarding U.S. Appl. No. 12/246,893, dated Aug. 1, 2011. |
Office Action regarding U.S. Appl. No. 12/246,927, dated Sep. 6, 2011. |
Office Action regarding U.S. Appl. No. 12/247,020, dated Sep. 1, 2011. |
Office Action regarding U.S. Appl. No. 14/031,905, dated Dec. 13, 2013. |
Response to Rule 312 Communication regarding U.S. Appl. No. 12/244,528, dated Dec. 7, 2010. |
Restriction Requirement regarding U.S. Appl. No. 13/893,493, dated Mar. 29, 2016. |
Restriction Requirement regarding U.S. Appl. No. 13/893,493, dated Oct. 29, 2015. |
Search Report regarding European Patent Application No. 08835849.4-1608 / 2198157 PCT/US2008011441, dated Jun. 9, 2015. |
Search Report regarding European Patent Application No. 08836567.1-1608 / 2198158 PCT/US2008011442, dated Jun. 9, 2015. |
Search Report regarding European Patent Application No. 08837748.6-1608 / 2201437 PCT/US2008011570, dated Aug. 7, 2015. |
Second Office Action from the State Initellectual Property Office of People's Republic of China regarding Chinese Patent Application No. 200880110484.8, dated Aug. 17, 2012. Translation provided by Unitalen Attorneys at Law. |
Second Office Action from the State Intellectual Property Office of People's Republic of China regarding Chinese Patent Application No. 200880110616.7, dated Apr. 1, 2013. Translation provided by Unitalen Attorneys at Law. |
Second Office Action from the State Intellectual Property Office of People's Republic of China regarding Chinese Patent Application No. 200880110785.0, dated Dec. 28, 2012. Translation provided by Unitalen Attorneys at Law. |
Second Office Action from the State Intellectual Property Office of People's Republic of China regarding Chinese Patent Application No. 2008801110726, dated Mar. 15, 2013. Translation provided by Unitalen Attorneys at Law. |
Second Office Action from the State Intellectual Property Office of People's Republic of China regarding Chinese Patent Application No. 201110371859.X, dated Jun. 23, 2014. Translation provided by Unitalen Attorneys at Law. |
Supplemental Notice of Allowability regarding U.S. Appl. No. 12/244,528, dated Dec. 17, 2010. |
Supplemental Notice of Allowability regarding U.S. Appl. No. 12/244,528, dated Jan. 12, 2011. |
Supplementary European Search Report regarding Application No. 08837095.2-1605 / 2195539 PCT/US2008011576, dated Nov. 25, 2014. |
Third Chinese Office Action from the State Intellectual Property Office of People's Republic of China regarding Chinese Patent Application No. 200880111091.9, dated Feb. 18, 2013. Translation provided by Unitalen Attorneys at Law. |
Third Office Action from the State Intellectual Property Office of People's Republic of China regarding Chinese Patent Application No. 200880110616.7, dated Jul. 22, 2013. Translation provided by Unitalen Attorneys at Law. |
Third Office Action from the State Intellectual Property Office of People's Republic of China regarding Chinese Patent Application No. 2008801110726, dated Sep. 12, 2013. Translation provided by Unitalen Attorneys at Law. |
U.S. Office Action regarding U.S. Appl. No. 13/845,784, dated May 11, 2015. |
Written Opinion of the International Searching Authority for International Application No. PCT/US2008/011441, dated Jan. 30, 2009. |
Written Opinion of the International Searching Authority for International Application No. PCT/US2008/011442, dated Feb. 3, 2009. |
Written Opinion of the International Searching Authority for International Application No. PCT/US2008/011570, dated May 26, 2009. |
Written Opinion of the International Searching Authority for International Application No. PCT/US2008/011589, dated Feb. 27, 2009. |
Written Opinion of the International Searching Authority for International Application No. PCT/US2008/011590, dated Feb. 27, 2009. |
Written Opinion of the International Searching Authority for International Application No. PCT/US2008/011593, dated Jun. 17, 2009. |
Written Opinion of the International Searching Authority for International Application No. PCT/US2008/011596, dated Feb. 25, 2009. |
Written Opinion of the International Searching Authority for International Application No. PCT/US2008/011597, dated Jun. 19, 2009. |
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2008/011464 dated Mar. 13, 2009. |
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2008/011576 dated Mar. 20, 2009. |
U.S. Appl. No. 12/246,893, filed Oct. 7, 2008, Joseph G. Marcinkiewicz et al. |
Office Action regarding European Patent Application No. 08836944.2, dated Jan. 26, 2018. |
Office Action regarding European Patent Application No. 08837095.2-1605, dated Dec. 13, 2017. |
Office Action regarding European Patent Application No. 08837504.3-1009, dated Jan. 19, 2018. |
Number | Date | Country | |
---|---|---|---|
20170051740 A1 | Feb 2017 | US |
Number | Date | Country | |
---|---|---|---|
60978258 | Oct 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13893493 | May 2013 | US |
Child | 15346220 | US | |
Parent | 12246959 | Oct 2008 | US |
Child | 13893493 | US |