The present disclosure relates to surgical devices and, more specifically, to speed control systems for powered surgical devices.
A number of surgical device manufacturers have developed product lines with proprietary drive systems for operating or manipulating the surgical device. In many instances the surgical devices include a handle assembly, which is reusable, and a disposable end effector or the like that is selectively connected to the handle assembly prior to use and then disconnected from the handle assembly following use in order to be disposed of or in some instances sterilized for re-use.
Many of the existing end effectors for use with many of the existing surgical devices or handle assemblies linearly advance a firing assembly to actuate the end effector. For example, end effectors for performing endo-gastrointestinal anastomosis procedures, end-to-end anastomosis procedures, and transverse anastomosis procedures, each typically require a linear advancement of a firing assembly in order to be operated.
Existing handle assemblies advance the firing assemblies at a predetermined speed. In addition, some handle assemblies include feedback systems that reduce the predetermined speed in response to surgical conditions such as tissue thickness. However, a clinician using the surgical device lacks control of the firing speed of the handle assembly.
Accordingly, there is a need to provide a clinician with an ability to vary the speed of advancement a firing assembly based surgical conditions observed by the clinician.
In an aspect of the present disclosure, a surgical device includes a housing, a drive shaft, a motor, a control button, and a motor speed controller. The motor is configured to rotate the drive shaft that is disposed within housing. The control button is disposed on the housing and the motor speed controller is operably associated with the control button. The motor speed controller varies an angular velocity of the motor as a function of a percent of actuation of the control button between an unactuated position and a fully actuated position.
In aspects, the motor speed controller includes a magnet and a Hall Effect sensor. The magnet may be attached to the control button and the Hall Effect sensor may be fixedly mounted within the housing.
In some aspects, the motor speed controller includes a light source, a set of louvers, and a photo sensor. The set of louvers may be disposed between the light source and the photo sensor. The set of louvers can have a closed configuration in which the set of louvers prevent light emitted from the light source from reaching the photo sensor and an open configuration in which at least a portion of light emitted from the light source illuminates the photo sensor. The motor speed controller may include a drive gear operably associated with the set of louvers to transition the set of louvers between the open and closed configurations. The control button may include a rod having a toothed rack that meshingly engages the drive gear to transition the set of louvers between the open and closed configurations in response to actuation of the control button.
The function can be a linear function or a stepped function. When the function is a stepped function, the stepped function can be a two or a three step function. The stepped function can have a dead spot between about zero percent and about five percent actuation of the control button where the motor does not rotate the drive shaft.
In certain aspects, the surgical device includes a biasing member disposed about the control button to urge the control button towards the unactuated position. The biasing member can have a spring constant such that an actuation force required to actuate the control button linearly increases to affect actuation of the control button towards the fully actuated position. Alternatively, the biasing member can have a first spring constant and a second spring constant such that an actuation force required to actuate the control button increases in a stepped manner to affect actuation of the control button towards the fully actuated position.
In another aspect of the present disclosure, a method of controlling an angular velocity of a drive shaft of a motor of a surgical device includes actuating a control button of the surgical device a first distance towards a fully actuated position such that a motor speed controller transmits a control signal to the motor to rotate the drive shaft at a first angular velocity and continuing to actuate the control button of the surgical device a second distance towards the fully actuated position such that the motor speed controller transmits a second control signal to the motor to rotate the drive shaft a second angular velocity greater than the first angular velocity.
In aspects, continuing to actuate the control button of the surgical device a section distance transitions a set of louvers towards an open configuration such that an amount of light emitted from a light source reaching a photo sensor increases. Alternatively, continuing to actuate the control button of the surgical device a second distance can move a magnet closer to a Hall Effect sensor.
Further, to the extent consistent, any of the aspects described herein may be used in conjunction with any or all of the other aspects described herein.
Various aspects of the present disclosure are described hereinbelow with reference to the drawings, which are incorporated in and constitute a part of this specification, wherein:
This disclosure relates generally to variable speed controls for powered surgical devices. The powered surgical devices include motor speed controls for varying the speed of motors of the powered surgical device. As detailed below, the motor speed controls may include a magnet disposed on a control button and a Hall Effect sensor positioned on a control board adjacent the control button. As the control button is actuated, the Hall Effect sensor detects the magnetic field generated by the magnet to determine the actuation of the motor speed control. Alternatively, the motor speed control may include a control button, a light source, a set of louvers, and a photo sensor. The control button is operably coupled to the set of louvers which are disposed between the light source and the photo sensor and function to vary an amount of light, emitted from the light source, that is received by the photo sensor in response to actuation of the control button.
Embodiments of the present disclosure are now described in detail with reference to the drawings in which like reference numerals designate identical or corresponding elements in each of the several views. As used herein, the term “clinician” refers to a doctor, a nurse, or any other care provider and may include support personnel. Throughout this description, the term “proximal” refers to the portion of the device or component thereof that is closest to the clinician and the term “distal” refers to the portion of the device or component thereof that is farthest from the clinician.
A surgical device, in accordance with an embodiment of the present disclosure, is generally designated as 100, and is in the form of a powered hand held electromechanical device configured for selective attachment thereto of a plurality of different end effectors that are each configured for actuation and manipulation by the powered hand held electromechanical surgical device.
As illustrated in
As illustrated in
Upper housing portion 108 of handle housing 102 provides a housing in which drive mechanism 160 is situated. The drive mechanism 160 is configured to drive shafts and/or gear components in order to perform the various operations of the surgical device 100. In particular, drive mechanism 160 is configured to drive shafts and/or gear components in order to selectively move tool assembly 304 of end effector 300 (
The drive assembly 160 includes a first motor 80 that rotates a first drive shaft 82 and a second motor 90 that rotates a second drive shaft 92. The first drive shaft 82 is operatively associated with the end effector 300 such that rotation of the first drive shaft 82 fires stapling and cutting cartridge within the cartridge assembly 308. The second drive shaft 92 is operatively associated with the end effector 200 such that rotation of the second drive shaft rotates the end effector 200 about the longitudinal axis “X” as detailed below. It is contemplated that the first and second drive shafts 82, 92 may be operatively associated with different functions of the end effector 200. Such functions can include articulation of the end effector, clamping tissue, firing staples and/or cutting tissue, etc.
Exemplary examples of electromechanical, hand-held, powered surgical devices and adapters are disclosed in commonly owned U.S. Pat. Nos. 8,968,276 and 9,055,943, commonly owned U.S. Patent Publication No. 2015/0157321, and commonly owned U.S. Provisional Patent Application Ser. No. 62/291,775, filed Feb. 5, 2016, entitled “HANDHELD ELECTROMECHANICAL SURGICAL SYSTEM,” now U.S. patent application Ser. No. 15/096,399, filed on Apr. 12, 2016 (U.S. Patent Publication No. 2016/0310134) or U.S. patent application Ser. No. 15/228,219, filed on Aug. 4, 2016 (U.S. Patent Publication No. 2018/0036004), the entire contents of each of these disclosures are hereby incorporated by reference.
As illustrated in
The trigger housing 107 includes biasing members 134, 136 operably associated with the control buttons 124, 126, respectively. Each of the biasing members 134, 136 is disposed about a respective control button 124, 126 to bias the respective control button 124, 126 towards the unactuated position. The biasing members 134, 136 resist actuation of the control buttons 124, 126, respectively, such that an actuation force is required to move each of the control buttons 124, 126 towards the fully actuated position. The biasing members 134, 136 can have a linear spring constant such that the actuation force linearly increases as the respective control button 124, 126 is actuated. Alternatively, the biasing member 134 can include a first spring 134a and a second spring 134b such that the actuation force increases in a stepped manner as the control button 124 is actuated. Specifically, in a first step of actuation of the control button 124, the first spring 134a is compressed and in a second step of actuation of the control button 124, the first and second springs 134a, 134b are compressed. It is contemplated that the second biasing member 136 can also require a stepped actuation force to actuate the control button 126. It is envisioned that the first and/or second biasing members 134, 136 can be constructed of a single spring having a spring rate that varies as the spring is compressed such that the actuation force increases in a stepped manner or in an exponential manner as the control button 124, 126 is actuated.
With reference to
Referring also to
With additional reference to
Alternatively, as shown in
With reference to
With reference to
Table 1 below shows the output speed percent of the motor 80 as a percent of actuation of the control button 124 for each of the functions detailed above.
With reference to
The set of louvers 26 includes a first louver 26a, a second louver 26b, and a third louver 26c that are operably coupled to a drive belt 29 extending from the drive gear 28. The control button 126 includes a rod 126a extending towards the circuit board 150. The rod 126a includes a toothed rack 126b that is meshingly engaged with teeth 28a of the drive gear 28. As the control button 126 is actuated from an unactuated position (
In response to receiving light emitted from the light source 22, the photo sensor 24 sends a control signal to the motor 90 to affect rotation of the second drive shaft 92. The control signal controls an output speed (i.e., angular velocity of rotation) of the motor 90 as a function of the amount of light received by the photo sensor 24 and thus, actuation of the control button 126. The actuation of the control button 126 is measured from an unactuated or nondepressed position as 0% actuation and a fully depressed position as 100% actuation. With particular reference to
While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Any combination of the above embodiments is also envisioned and is within the scope of the appended claims. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope of the claims appended hereto.
This application is a Continuation Application claiming the benefit of and priority to U.S. patent application Ser. No. 15/228,219, filed on Aug. 4, 2016, the entire disclosure of which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3588512 | Hollien | Jun 1971 | A |
3949219 | Crouse | Apr 1976 | A |
4164711 | Steckler et al. | Aug 1979 | A |
4600867 | Hayashi et al. | Jul 1986 | A |
4705038 | Sjostrom et al. | Nov 1987 | A |
5712543 | Sjostrom | Jan 1998 | A |
5804936 | Brodsky et al. | Sep 1998 | A |
6037724 | Buss et al. | Mar 2000 | A |
7422139 | Shelton, IV et al. | Sep 2008 | B2 |
7479608 | Smith | Jan 2009 | B2 |
7481347 | Roy | Jan 2009 | B2 |
7959050 | Smith et al. | Jun 2011 | B2 |
8573465 | Shelton, IV | Nov 2013 | B2 |
8968276 | Zemlok et al. | Mar 2015 | B2 |
9053877 | Young | Jun 2015 | B2 |
9055943 | Zemlok et al. | Jun 2015 | B2 |
10383631 | Collings et al. | Aug 2019 | B2 |
20060047271 | McPherson et al. | Mar 2006 | A1 |
20070027469 | Smith et al. | Feb 2007 | A1 |
20070147806 | Schneider | Jun 2007 | A1 |
20070270884 | Smith et al. | Nov 2007 | A1 |
20080029376 | Ngoagouni | Feb 2008 | A1 |
20090209990 | Yates et al. | Aug 2009 | A1 |
20090240272 | Shadeck et al. | Sep 2009 | A1 |
20110204119 | McCuen | Aug 2011 | A1 |
20110210156 | Smith et al. | Sep 2011 | A1 |
20120089131 | Zemlok | Apr 2012 | A1 |
20120199633 | Shelton, IV et al. | Aug 2012 | A1 |
20130126581 | Yates et al. | May 2013 | A1 |
20150157321 | Zergiebel et al. | Jun 2015 | A1 |
20150235789 | Calderoni | Aug 2015 | A1 |
20160030040 | Calderoni et al. | Feb 2016 | A1 |
Number | Date | Country |
---|---|---|
0394216 | Oct 1990 | EP |
2923647 | Sep 2015 | EP |
3047806 | Jul 2016 | EP |
Entry |
---|
European Search Report dated Dec. 18, 2017, issued in EP 17184656. |
Chinese First Office Action dated Jan. 28, 2021 corresponding to counterpart Patent Application CN 201710652560.9. |
Number | Date | Country | |
---|---|---|---|
20190357904 A1 | Nov 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15228219 | Aug 2016 | US |
Child | 16538034 | US |