The present invention pertains to a control system for continuously varying the speed of a fan drive motor for a forced air indoor space heating/cooling system during startup and after shutdown of a heating/cooling cycle.
Conventional controls for forced air heating and cooling systems often provide for delayed startup of the fan drive motor at a single operating speed and delayed shutdown of the drive motor from a single operating speed after shutdown of the heat exchangers of the heating/cooling system. Conventional controls are designed to minimize unpleasant cold or hot drafts of air and to capture residual heat/cooling effect. However, changing motor speed abruptly from a deenergized or shutoff state to full speed usually generates unpleasant noise, does not preclude stratification of air in the system ductwork or in the space being heated or cooled, nor does such operation maximize the capture of residual heat/cooling effect of the system heat exchange equipment.
Control systems have been developed for forced air heating/cooling systems wherein the indoor space air circulating fan drive motor is driven at reduced speed for a period of time during startup and at a reduced speed for a period of time during the run-on or shutdown phase of the heating/cooling system operating cycle. Again, this type of control system does not minimize the stratification of warm or cold air in the ductwork or the space being heated or cooled nor does such a system maximize the capture of residual heating/cooling effect.
Prior patent applications Ser. Nos. 09/570,880 and 08/801,560 (now U.S. Pat. No. 6,070,660) assigned to the assignee of the present invention and referenced hereinabove are directed to an improved fan or blower drive motor control system and method for forced air heating/cooling systems wherein the fan drive motor speed is continuously varied during a starting phase and a shutdown phase of operation of the heating/cooling system. In one embodiment of the control system disclosed in the aforementioned patent application and patent, the system senses temperature in the airflow circuit of the heating/cooling system and prevents premature or unwanted operation of the fan drive motor. The present invention is directed to improvements in control systems of that general type. The subject matter of U.S. Pat. No. 6,070,660 issued Jun. 6, 2000 to Howard P. Byrnes, et al. is incorporated herein by reference, in its entirety.
The present invention provides an improved fan or blower drive motor control system for a forced air heating/cooling system wherein a control circuit is provided which substantially continuously varies the speed of the fan drive motor during a starting phase and a shutdown phase of operation. The control system may be easily adapted to conventional heating/cooling system controls to vary the forced air fan or blower drive motor speed in response to temperatures sensed in the heating/cooling system airflow circuit. The control system is particularly adapted for but not limited to use with permanent split capacitor or shaded pole blower or fan drive motors.
The control circuit includes an onboard power supply, an ac voltage wave crossover detector circuit and a control circuit for firing a triac to control the drive motor speed. The control system also includes a minimum speed detector circuit and a circuit which provides for continued operation of the fan drive motor at the minimum speed, if desired, or motor shutoff after reaching the minimum speed.
The control system of the present invention includes one embodiment which comprises a temperature sensor disposed in an airflow ductwork on the so-called return air side of the heating and/or cooling equipment and a temperature sensor on the downstream or so-called supply air side of the heating and/or cooling equipment.
In another embodiment, three sensors are disposed in the ductwork including the return air sensor which is disposed upstream with regard to the direction of airflow from an air heater heat exchanger, a heat sensing sensor which is disposed downstream of the air heater heat exchanger and a third sensor which is disposed downstream of an air cooling heat exchanger, such as an evaporator coil, for example. In this way a more versatile control system is provided and more accurate sensing of temperature is obtained, depending on the operating condition of the system, heating versus cooling.
The control systems of the present invention advantageously reduce energy consumption of conventional forced air heating and cooling systems, improve recovery of residual heating/cooling effect in conventional forced air heating/cooling systems, minimize stratification of air in the airflow circuit and the space being heated or cooled and reduce cold or hot air drafts during operation of the heating/cooling system. Moreover, by substantially continuously varying the fan or blower drive motor speed during startup and shutdown, noise associated with fan or blower operation is reduced and the circulation of air at a temperature other than normally sensed or preferred by occupants of an indoor space being heated or cooled is also reduced.
Those skilled in the art will further appreciate the important features and advantages of the invention, together with other superior aspects thereof upon reading the detailed description which follows in conjunction with the drawing.
In the description which follows like elements are marked throughout the specification and drawing with the same reference numerals, respectively. Conventional elements are shown in somewhat generalized or schematic form in the interest of clarity and conciseness.
Referring to
Motor speed is proportional to airflow increase, and generally follows curve 10 in
Accordingly, motor operation and the airflow characteristic, as a function of the sensed, temperature, provides for delivery of residual heat from the heater heat exchanger to the space being heated with increased efficiency, airflow increases and decreases gradually on start and stop of the heater or burner for quiet operation of the system and stratified air layers at various temperatures are substantially eliminated in the heating/cooling system ductwork and in the space being heated or cooled. More efficient operation of the heating/cooling system is obtained and a greater comfort level is provided for persons occupying the space controlled by a system in accordance with the invention.
Referring now to
Referring further to
As further shown in
Sensors R9 and R11 are preferably thermistors which are substantially similar and interposed in a HEAT/COOL RAMP GEN circuit to generate signals as the temperature differences change between each sensor location. If both sensors are at the same temperature the output of the sensors will be one-half of the 12 volt DC supply voltage. If the downstream or so called supply air sensor R9 senses a temperature greater than the return air sensor R11, the output voltage at conductor 34 increases. If the temperature sensed by sensor R9 is less than that sensed by sensor R11, voltage at conductor 34 will decrease. The output signal from the sensors R9 and R11 is input to the ramp circuits indicated in
The COOL RAMP circuit is also connected to conductor 34 to receive the resultant output signal from sensors R9 and R11 and if the signal magnitude is decreasing, a voltage output at conductor 36, 37 is increasing. The ramp output voltage generated by the COOL RAMP circuit is provided by circuit components including resistors R1, R2, R3, R4, R5, R6, R7, R8, capacitor C14, diode D1 and amplifiers U1:B and U1:D. Capacitors C13 and C14 slow the change in the output signal of amplifier U1:B or U1:C which will minimize the chance of lockup of motor 32. Capacitors C13 and C14 also minimize unwanted electrical noise from entering the ramp circuits previously described.
The control system 20 further includes a pulse generator or PULSE GEN circuit including resistors R35, R36, R37, capacitors C5, C6 and C9, opto-isolator U3 and diode D10. Ramp output voltage is input through resistors R19 and R28 to the PULSE GEN circuit and operational amplifier U2:B which has a reference voltage set at its negative input. When the ramp voltage exceeds this reference voltage, the output of amplifier U2:B goes “high”. Capacitor C6 connects to the ramp voltage signal on conductor 36 also. Accordingly, a sawtooth waveform is input at the positive (+) terminal of amplifier U2:B. Therefore, the output of the PULSE GEN circuit is a square wave whose width varies as the ramp voltage signal varies. Since the RESET circuit discharges capacitor C6 every half cycle, the output pulse of the PULSE GEN circuit always starts at the correct time on each half cycle.
A POWER OUTPUT circuit is shown in
Referring still further to
The CUTOFF circuit, including amplifier U2:C, is operably connected to a jumper JP1 in a MIN SPEED circuit as shown in
The aforementioned HEAT/COOL SELECT circuit includes a cooling condition input circuit including resistors R31 and R45, diodes D7 and D14 and capacitor C11. A 24 volt AC signal on the aforedescribed circuit will deactivate motor 32 by deactivation of triac Q1. This signal overrides any signals produced by the sensors R9 and R11. Consequently, when the control system 20 is connected to the medium speed winding of a motor, such as the motor 32, and the conventional control system for the motor applies power to the high speed winding and the 24 VAC COOL signal is provided at terminals P4 and P6 only the desired motor winding will be energized. However, when the thermostat is satisfied in the space being cooled and a signal is removed from terminals P4 and P6 the control system 20 will be operable to energize the motor 32 at the medium speed winding and gradually reduce the motor speed as the temperature difference between the sensors R9 and R11 decreases.
Conversely, when a 24V AC HEAT input signal is provided at the HEAT/COOL SELECT circuit, the COOL RAMP circuit is disabled and only the temperature of sensor R9 rising above the temperature of sensor R11 will affect motor speed. The sensor R9 temperature, when below the sensor R11 temperature, will maintain the HEAT/COOL RAMP GEN circuit at its minimum voltage. Motor 32 will either then be at zero speed or a minimum speed depending on the selection of the connection of jumper JP1 for cutoff or minimum speed. The heat input side of the HEAT/COOL SELECT circuit includes capacitor C12, diodes D12, D13 and resistors R41 and R42.
Lastly, the control system 20 includes a SENSOR PROTECTION circuit including resistors R47, R48, R49, R50, R51, capacitors C1, diode D15 and amplifier U4:A. A positive input signal to amplifier U4:A of the SENSOR PROTECTION circuit is provided by the ramp output voltage signal and the protection circuit negative input to amplifier U4:A is connected to a reference voltage available from resistors R49 and R50. When the ramp output voltage exceeds the reference voltage, the output signal of amplifier U4:A goes high and this DC voltage signal is connected to the opto-isolator U3 through diode D15. This action causes the triac Q1 to be on full at all times and avoid the possibility of motor lockup.
Still further, there are three ways for the ramp output voltage signal to exceed the reference voltage signal at amplifier U4:A, which reference is established by resistors R49 and R50 namely (1) if either of the sensors R9 or R11 are open, (2) if both of sensors R9 and R11 are open or are shorted, or (3) if the design parameter for the temperature difference between sensors R9 and R11 has been exceeded. If any of the above noted conditions occurs the motor 32 will be fully on until the condition goes back to the system normal mode of operation or power is removed from the control system 20.
An alternate embodiment of a control system in accordance with the invention will now be described in conjunction with
By way of example, and referring to
A control system 200 is illustrated in
Referring now to
Control system 200 also includes a PULSE GEN circuit, as shown in
A POWER OUTPUT circuit of the control system 200 includes resistors R490, R570, amplifier or opto-isolator U60 and power triac Q1 as well as capacitor C120. The aforementioned squarewave output signal from the amplifier U2:B1 is connected to capacitor C110. A voltage pulse is formed by capacitor C110 and diode D150 to the input diode of opto-isolator U60. When the aforementioned input diode of opto-isolator U60 conducts, an output triac of the opto-isolator U60 turns “on” which causes current to flow into the gate of power triac Q1. Motor 32 is connected to the power triac Q1 at terminal P4 and when current flows through the triac, the motor is energized to drive fan or blower 33. A snubber resistor-capacitor combination comprising resistor R570 and capacitor C120 are connected to the power triac Q1 to protect the triac from unexpected line voltage surges.
Referring now to
The above description with respect to the CUTOFF circuit assumes that the jumper JP3,
However, when jumper JP3 is open, switch U5:A1 is connected across the JP3 contacts. Switch U5:A1 is energized through resistor R450 which connects to a 24 volt AC HEAT signal of the HEAT/COOL SELECT circuit,
Adjustment of the minimum speed MIN ADJUST resistor R540 enables the motor speed to be set from approximately 180 rpm to 620 rpm. The minimum speed of the motor 32 will hold at its designated RPM even though there may be no difference between supply air and return air temperatures.
Referring further to
Referring further to
Referring now to
Referring further to
Referring further to
Referring further to
Referring still further to
The operation of the control systems 20 and 200 to vary the speed of a fan motor for a forced air air conditioning system for the advantageous purposes set forth herein is believed to be understandable to those of ordinary skill in the art based on the foregoing description. A correlation table of the components of the systems 20 and 200 is set forth hereinbelow. Certain ones of the circuit components shown in the drawing and included in the correlation table are not discussed in detail but are believed to be understandable to those of ordinary skill in the art. Preferred values and commercial part numbers for certain components are identified also.
Although preferred embodiments of the invention have been described in detail herein, those skilled in the art will also recognize that various substitutions and modifications may be made without departing from the scope and spirit of the appended claims.
This application is a continuation of U.S. patent application Ser. No. 09/629,328, filed Aug. 1, 2000, now U.S. Pat. No. 6,695,046, issued Feb. 24, 2004, which is a continuation-in-part of U.S. patent application Ser. No. 09/570,880, filed May 15, 2000, now U.S. Pat. No. 6,684,944, issued Feb. 3, 2004 which is a continuation of U.S. patent application Ser. No. 08/801,560, filed Feb. 18, 1997, now U.S. Pat. No. 6,070,660, issued on Jun. 6, 2000.
Number | Name | Date | Kind |
---|---|---|---|
3454078 | Elwart | Jul 1969 | A |
3489345 | Moreland | Jan 1970 | A |
3674203 | McGarth | Jul 1972 | A |
3912162 | Bauer et al. | Oct 1975 | A |
4090663 | Bonne et al. | May 1978 | A |
4369916 | Abbey | Jan 1983 | A |
4421268 | Basswett et al. | Dec 1983 | A |
4684060 | Adams et al. | Aug 1987 | A |
4842190 | Orchard | Jun 1989 | A |
5024379 | Dempsey | Jun 1991 | A |
5248083 | Adams et al. | Sep 1993 | A |
5364026 | Kundert | Nov 1994 | A |
5492273 | Shah | Feb 1996 | A |
5582233 | Noto | Dec 1996 | A |
5865611 | Maiello | Feb 1999 | A |
6062482 | Gauthier et al. | May 2000 | A |
6070660 | Byrnes et al. | Jun 2000 | A |
6155341 | Thompson et al. | Dec 2000 | A |
6684944 | Byrnes et al. | Feb 2004 | B1 |
6695046 | Byrnes et al. | Feb 2004 | B1 |
Number | Date | Country |
---|---|---|
0419214 | Mar 1991 | EP |
1597220 | Sep 1991 | GB |
Number | Date | Country | |
---|---|---|---|
20040173346 A1 | Sep 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09629328 | Aug 2000 | US |
Child | 10778470 | US | |
Parent | 08801560 | Feb 1997 | US |
Child | 09570880 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09570880 | May 2000 | US |
Child | 09629328 | US |