The present invention will become more fully understood from the detailed description given hereinbelow and the accompanying drawings which are given by way of illustration only, and thus are not limitative of the present invention, and wherein:
The Figures are diagrammatic and not drawn to scale. In the Figures, elements that correspond to elements already described have the same reference numerals.
The device has a printing system 26 which may include an electro-photographic processing section known per se, in which a photoconductive medium is charged, exposed via an LED array in accordance with digital image data, and is developed with toner powder. Thereafter, the toner image is transferred and fixed on an image support, usually a sheet of paper, while the sheet is being conveyed from the input unit to the output unit at a processing speed.
The device has a document conveying system 27 for conveying the sheets from an input trajectory 21 at the input unit to an output trajectory 24 at the output unit 23, along printing system 26. The sheet conveying system includes a turning section 25 for turning sheets, and a duplex return trajectory 28, for duplex treatment and/or finisher operations. As such, the printing system 26 and the conveying system 27 having various motors, rollers, guidance elements, belts, etc. are well known in the art of printing devices.
The device also includes a control section, shown diagrammatically by reference 170, and explained in more detail later. A cable 172 may connect the control section 170 via a network interface to a local network. The network may be wired, but may also be partly or completely wireless. The control section 170 includes a control unit 12 arranged for controlling the sheet conveying system 27 and printing system 26. According to the invention, the control unit is arranged for controlling the speed of conveying and processing at a variable rate as discussed below in detail.
The device has a user interface 160, for example including an operator control panel provided on the apparatus for operation thereof. The user interface may be provided with a display and keys.
The digital image reproduction device may be a printer only, but preferably is a multi-functional device further including scanning, copying or faxing functions, e.g. a versatile copier. A document feeder 110 is provided with an input tray 111 for the introduction of a stack of documents, a transport mechanism (not shown) for transporting the documents one by one along a scanner unit 29 to a tray 112, in which the documents are placed after scanning. The scanner unit 29 includes a flat bed scanner provided with a glass platen on which an original document can be placed, a CCD array and an imaging unit having a movable mirror and lens system for imaging the document on the CCD array. In these conditions, the CCD array generates electrical signals that are converted into digital image data in a manner known per se.
The control unit 12 may be arranged for detecting a scan job in the processing job and executing the scan job by scanning a physical document entered in the input tray 111, and for storing the image file generated in the scanning under the name of the user who activated the processing job. It is noted that the control unit may detect the presence of documents to be scanned and subsequently automatically start a scan job.
The device is arranged for processing the sheets at a nominal processing speed, i.e. the control unit and mechanical elements have been designed for operating at the nominal processing speed continuously (e.g., for large processing jobs). During the continuous operation, the sheets are conveyed along the various processing units at a nominal sheet distance, i.e. the sheets are entering, and are subsequently transported along, the paper path at regular distances. It is noted that some known devices achieve a reduced throughput speed by omitting sheets at certain predefined instants, usually called skipping mode. However, in such mode the engine speed, i.e. the transport speed through the conveying system, remains unchanged. Finally, it is noted that, in the nominal speed mode, the sheets are also processed at a nominal document quality, e.g. a selected printing quality. It is noted that some known devices achieve a reduced quality at a higher speed. The present invention relates to delivering sheets processed at a predefined, nominal quality level, in spite of varying the document processing speed as discussed below.
For varying the document processing speed, the control unit 12 controls the conveying system and the processing elements to transport and process the sheets at a second processing speed. The second processing speed is different from the nominal processing speed while the sheets are processed at the nominal sheet distance and the nominal document quality. Moreover, the second speed may be reached in a gradual way. The processing speed may be increased temporarily, e.g. for processing a relatively small job, and may be gradually reduced to the nominal speed during a larger job. In particular, the image reproduction device is arranged for operating at a variable processing speed in a range of processing speeds. Hence, the second speed may take any of a large number of different values. At each speed in the range, the documents are processed at the nominal sheet distance and the nominal document quality. Although the present invention is in the first place intended for printing (black only, or color), various other types of processing may be applied to the sheets, such as other surface treatments like applying a cover layer. The processing may also include scanning original sheets, two sided (duplex) treatments, and finishing steps like sorting or stapling.
The elements for document processing are adapted to be operated at the varying speed. Such elements include a digital imaging unit, which is arranged for applying the image pattern based on digital document data at the variable processing speed. Furthermore, the control unit 12 is arranged for selecting the variable processing speed in the range of processing speeds in dependence on operational conditions, and operating the image reproduction device at the variable processing speed as selected. Examples of such operational conditions are discussed below.
In
Now, thin paper has a low heat coefficient and therefore, relatively little heat energy is removed from the fusing system, while thick paper takes more energy for fusing toner on it. Accordingly, given a maximum heat production in the fuser, thin paper may be processed at a higher speed than thick paper.
For example, for curve 33, a relatively thin type of paper sheet (80 g/m2) has been used. The paper type to be processed may be detected by a sensor, or may be known, e.g. from selection of a specific paper input unit. The sheet type may also be detected indirectly, e.g. by detecting a temperature in a temperature controlled processing step like a pre-heater element or fusing element along the paper path. In response to this situation, the control unit decides that a higher processing speed is possible and therefore gradually increases the processing speed until a new equilibrium speed has been reached as is shown in the upper curve 33 of
A middle curve 32 indicates gradually decreasing the processing speed. A thicker type of paper sheet (120 g/m2) has been used. A lower curve 31 indicates gradually decreasing the processing speed to a substantially lower continuous rate, due to a heavy type of paper sheet (200 g/m2). It is noted that the processing speed is gradually adjusted from the nominal processing speed, at the starting point 30, to the variable processing speed. In different situations, the speed is adjusted from the variable processing speed to the nominal, or any other, processing speed, as discussed below.
In
In another embodiment of the present invention, the processing speed may be temporarily increased at the start of a print job, as long as the further processing elements are able to comply with the increased speed due to operating tolerances. For instance, the printing system 26 may be able to operate at a range of processing speeds and may further be adapted to accommodate speed variations without losing image quality. In fact, many printing systems are relatively tolerant or can be adapted so. Thus, at least the first few sheets of a job may be processed at an increased speed by adapting the system to allow such speed. Obviously, short jobs will benefit most clearly from a temporary speed increase, since they may be finished before the processing speed is brought back to the nominal value.
In a first application, use is made of the stored heat in the fuser, to attain faster processing of small jobs. The increased speed is maintained as long as the temperature decrease of the fuser due to the increased speed remains within the operating tolerances. During the period 48, wherein the processing speed is higher than the nominal speed, the fuser cools down, since more heat is required than the internal heater of the fuser can generate. However, period 48 is chosen so as to end before the fuser reaches its lowest acceptable temperature, and printing is not disturbed by a malfunction call. A small job may be entirely processed in the period 48 or even in period 45, and thus will benefit greatly from the increased speed.
In a second application, the temporary speed increase at the start of a job is purposely used to increase productivity of a printer device up to its nominal value. In this connection, productivity is defined as the number of prints of a job, divided by the time necessary for printing those prints, with the number of prints (ob size) being a parameter.
When a processing job starts, even if the engine is fully operable (e.g., the fuser is at working temperature), the time that the first sheets need to travel through the device, is “dead” time, as no prints appear at the output unit yet. After the first sheet has reached the output unit, sheets keep coming out at the rated productivity as specified in prints per minute (ppm). Accordingly, the time needed for completing a processing job is always longer than the number of prints divided by the ppm specification. Especially, small jobs suffer from a lower than specified productivity, since the “dead” time is a substantial part of total processing time. By increasing the processing speed during the first few prints and then gradually decreasing the processing speed to the nominal one, the loss of productivity may at least be partially compensated. As explained above, the number of prints produced at increased speed is limited to the temperature latency of the fuser, but if the fuser can handle it, the increased speed period may be so calculated as to reach the nominal productivity. Thereafter, the speed is brought back to the nominal value, thereby assuring the rated productivity.
As an example,
As mentioned above, the control unit 12 is arranged for selecting an increased processing speed in dependence on operational conditions.
The lower curve 52 shows a situation for a print engine that cannot change processing speed gradually, but instead must first empty its sheet conveying system, then change over to the nominal speed, and then restart processing. The downward part 53 of curve 52 corresponds to the speed change period. It is clear that for such engines, starting at a higher speed and then falling back to the nominal processing speed is no option, since even though productivity may be higher for very small jobs, it falls back to lower than that of a single-speed engine (curve 50) if the job proves to be larger.
In a further embodiment of the apparatus, the job size is first detected. Subsequently, for jobs exceeding a predetermined size, a variable period and amount of increase of the processing speed is set in dependence on the detected job size. For example, for a longer job there may be a slightly higher speed, but for a longer period, while short jobs are initially processed at a substantially higher speed for a short period. As a result, jobs of various sizes are performed at a required, fixed productivity level.
In yet another application of the fast start, the device may be adapted to be used in combination with a finisher that has an allowable input frequency (pages per minute) that is lower than the processing speed of the engine. In that case, the engine may be initially operated at a high speed exceeding the maximum finisher speed until the first sheet reaches the finisher, the subsequent sheet being delivered at the finisher with a reduced speed that can be handled by the finisher.
It is noted that the gradual and/or temporary adjusting of the variable processing speed accommodates a number of operational conditions, such as a graceful degradation in dependence on adverse operational conditions, like a limitation of the power supply that is available. Such power level may be detected by a sensor, or a power need may be estimated by calculation in the control unit. An operator may select a lower power mode for the apparatus, and by varying the operational speed the device can smoothly match the requirements. Also, a level of noise produced by the apparatus may be controlled. A noise production level may be selected (or detected by a sensor). The noise level may be controlled by reducing the speed, e.g. during working hours, and possibly increasing the speed in other periods. Furthermore, a range of different types of sheets may be applied, and a selected or detected operational mode may benefit from the variable processing speed. Also, a selected or detected performance parameter or test condition may be used to variably adjust the processing speed.
In an embodiment, selecting the increased processing speed may be applied as follows. A high priority job may be detected, and an increased speed may be temporarily set for that job only. Also, an interrupt job that has to be processed while an earlier job is still being processed, may be detected and processed at higher speed.
The interrupting processing job may be executed at an increased processing speed, and subsequently the further processing job is to be resumed at the normal speed. The interrupt processing may also be performed at higher speed in an interleaved mode with the further processing job, e.g. alternatingly printing pages (or small groups of pages) and guiding the pages to respective delivery units.
The apparatus may be provided with a status indicator on the user interface panel 160 for indicating a processing speed status.
In an embodiment, the varying processing speed is controlled in dependence on a specific processing mode of the apparatus, for example a high quality mode, or a duplex printing mode. The processing speed is adjusted in dependence on the processing mode. For duplex printing (in a single-sided printing unit), an output unit such as a finisher receives the sheets after they have been processed twice. Hence, the processing speed of the respective elements of the apparatus may be increased without exceeding the maximum speed of the finisher, provided that the timing of the delivery of duplex sheets is at regular intervals. In this way, a relatively slow finisher may still be employed in combination with a much faster printer engine. Ultimately, the increased processing speed may be set to double the maximum sheet receiving speed of the output unit.
In an embodiment, the control unit 12 is arranged for selecting a reduced processing speed in the range of processing speeds in dependence on operational conditions of the digital image reproduction device. Examples thereof include selecting the reduced processing speed in dependence on detecting a temperature in one or more of the processing steps, detecting a temperature in the environment inside or outside the housing of the device, detecting a power consumption of the image reproduction device, detecting a start up condition of the image reproduction device, or detecting a maintenance condition or performance parameter. For example, a lower speed may be set when a maintenance action is overdue. A performance parameter, e.g. when it is detected that a toner level is low, may be used to adapt the speed to maintain a required quality.
In an embodiment, where the device has an output unit 150 for delivering processed documents, the control unit 12 is arranged for detecting a finishing parameter of the output unit, such as a finishing speed or mode. By detecting the predefined or actual values of such finishing parameters, the operation of the document processing may be adapted to the options of the finisher unit. Hence, the processing speed is adjusted in dependence on the finishing parameter. In particular, as already described above, the apparatus may be initially operated at a high speed exceeding the maximum finisher speed until the first sheet reaches the finisher. The subsequent sheet is delivered at the finisher with a reduced speed that can be handled by the finisher.
In an embodiment, where the device has a scanner unit 29, the control unit 12 is arranged for executing a scan job at a scan speed in dependence on the variable processing speed. In general, the scanning speed may be independent of the processing speed. However, the scanning speed may be adjusted to match the processing speed, e.g. for reducing the noise level produced or adapting the power consumption.
In
The position control units 64 each control one or more elements 65 in the processing device, such as transport motors, imaging units, heaters, etc. Each position control unit 64 has local control over a part of the total processing path, e.g. part of the conveying system constituting a part of the paper path. A number of measurements is received at setting unit 61, which may further include a calculation unit for performing algorithms to derive required information about operations conditions and parameters of the sheet processing. According to the operations parameters, a speed request is transferred to the engine controller 62, which communicates velocity profiles and schedules to the position control units 64 and to a speed control unit 63, which sets a speed for each element 65, e.g. a ratio with respect to a reference speed of the respective element, as will be explained below.
An example of a variable speed control according to the present invention will now be described.
The velocity at which sheets pass the marking area for generating the image is continuously variable. The speed set point and changes are planned in setting unit 61 based on algorithms, which may be driven by measurements like energy consumption, job status, print quality, multi-user behavior, etc. Evaluation of these measurements results in speed variation, which is then planned and executed via engine controller 62 and speed control unit 63. The engine controller 62 is responsible for planning the transport of each sheet and image through the copier/printer. The planning process results in ‘feed forward’ time targets (as disclosed in detail in U.S. Pat. No. 6,633,990) which are executed in real-time by distributed position control units 64, called position control. Since sheet position is measured, the position control software is independent of the base speed. The distributed position control units 64 control the transport motors assuming a reference speed. The speed modulation is planned by the engine controller 62 and executed by the speed control unit 63, which executes the velocity profiles by invoking a speed ratio (with respect to the reference speed) directly in real-time to the transport motors in the system.
It is noted that the engine controller 62 may be implemented as a distributed system to support modularity, or may include the speed control unit 63 and/or the setting unit 61. Furthermore, the speed control unit 63 also controls the speed of writing of image lines by a digital imaging unit, in addition to controlling the transport motors. Real-time low level manipulation of motor speed differs in implementation for different motor types, e.g. ‘stepper motors’ require step manipulation, while other motors require set point manipulation.
The vertical axis in
In
Although the invention has been mainly explained by large printing devices for a company environment, it is to be noted that the variable speed control is also suitable for document processing on a different scale, such as a small scale printer, multifunction devices or special printing devices like industrial wide format printers.
The invention being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
06112924 | Apr 2006 | NL | national |