This invention relates to mixing devices commonly referred to as static mixers. Generally such mixers are disc-like in shape and include a plate having a central opening or orifice of various fixed geometric configurations and mounted in a pipe through which fluid passes so as to create a turbulent mixing action to the fluid such that other materials introduced into the stream generally via injection nozzles located downstream and generally adjacent the plate are uniformly mixed with the fluid.
As indicated, standard static mixers have a fixed geometry, which means that the headloss is a direct function of the velocity of the fluid in the pipeline. Generally speaking, a mixer designed for low (1-3 FPS) velocity will generate excessive headloss at high pipeline velocity (8-12 FPS). Conversely, a mixer designed for reasonable mixing and headloss at high velocity generally will not provide good mixing at low velocity.
To date, this problem has been addressed by making separate mixers with mixing characteristics suited for particular pipeline velocities. For instance, the present applicant commercially supplies three separate mixers with different orifice diameters or beta ratios (beta ratio=orifice diameter/pipe inside diameter) of 0.7, 0.8 and 0.9. See
It is therefore an object of the present invention to provide a mixer and mixing system that can be adjusted to achieve good mixing performance at differing pipeline velocities without the need of removing one mixer and substituting another mixer in the pipeline.
These and other objects of the invention are accomplished by the provision of a static mixer of the type having a generally centrally disposed orifice disposed within a generally flat plate adapted for mounting within a pipe such that the plate is adjustably movable to various alternate operable positions between a first essentially non-mixing position wherein the plate edge is disposed in line with the fluid flow within the pipe to a fully mixing position wherein the plate face is disposed normal to the fluid flow within the pipe.
Other objects, features and advantages of the invention shall become apparent as the description thereof proceeds when considered in connection with the accompanying illustrative drawings.
In the drawings which illustrate the best mode presently contemplated for carrying out the present invention:
Turning now to the drawings and particularly
It will also be apparent from this and other drawings that the flaps preferably 18 as well as the flange 14 extend inwardly into the fluid flow and that additionally the flaps extend at an angular relationship to such internal pipe or wall surface of approximately 15 degrees in the downstream direction but could even extend at angles of 25 or to 40 degrees. Preferably, the configuration of the flaps 18 is semi-elliptical or semicircular such that defined open area 22 is entirely made up of rounded boundaries, that is, the areas where the flaps 18 meet the internal periphery 20 of the flange 14 are rounded.
It should be stated that the particular static mixer configuration above described is that of applicant's issued U.S. Pat. No. 5,839,828 that is hereby incorporated into the present Specification by specific reference thereto. It should also be stated that other static mixers of the same general type could also be utilized in the present invention, e.g., those mixers shown in
The present invention utilizes the above-described static mixers by installing a first mixer in a fixed position in an upstream location. Such first mixer is adapted to provide good mixing at high fluid velocities. In addition or in lieu thereof as will be discussed hereinafter, a second but variable position static mixer is installed downstream therefrom. The second mixer is dimensioned to provide efficient mixing for low fluid velocities and when coupled with the first mixer in the subject system can provide efficient mixing over a wide range of fluid velocities unachievable with systems incorporating only one of the static mixers in a fixed position.
Specifically with respect to the particular static mixers that applicant produces, applicant installed a conventional 0.9 beta mixer with standard chemical injection nozzles downstream of one or both trailing tabs. A second movable 0.7 beta ratio mixer is installed two pipe diameters downstream from the first fixed mixer. The second mixer is designed to pivot 90 degrees on its vertical axis (same as a disc in a butterfly valve). The rotary position of this second mixer is controlled either by an externally mounted operating lever or by a standard electric butterfly valve operator (gear motor) hereinafter referred to as means for pivoting mixer plate (see
In operation at high velocities, the first 0.9 beta mixer provides good mixing and low headloss. The second 0.7 beta mixer is rotated so that the disc is parallel to the direction of flow thus providing very little additional headloss and mixing. This fully open (pivoted 90 degrees) position of the second mixer plate is shown in
The variable static mixer system above described provides excellent mixing and minimal headloss for all pipe velocities.
The position of the movable second mixer could be automatically controlled to provide constant headloss over a range of velocities.
The shape of each of the mixer plates may be that of the plates described in U.S. Pat. No. 5,839,828 issued to the present applicant, Robert W. Glanville, Nov. 24, 1998 and which is hereby incorporated into the present application by specific reference thereto. It should be noted that by the phrase “designed to pivot 90 degrees” means that the second mixer plate is adapted to rotate on its vertical axis from a fully mixing position or closed position as shown in
With reference to
Preferably, the movable mixer 102 is of the same general configuration and type as the first mixer 10 but is mounted so as to move, i.e., pivot, from a first non-mixing position as shown in
It is also desirable to be able to fix the flange 117 position to partially open positions between the extremes of fully open or fully closed indicated above and through such intermediate flows between high and low can be efficiently accommodated. It is also desirable to sense the flow rate in the pipe upstream of the system and utilize such results to automatically control the opening and closing and partially open positions of the flange 117. Such sensing and control means are well known for other devices in the art.
With respect to the means 130 for pivoting the flange 117, such may comprise of known components such as butterfly valves and include such simple mechanisms as a hand movable handle or knob 132 connected to a rod 134 passing thru the outer plate 136 and, in turn, attached to the flange for rotational movement thereof.
Also, the vertical axis of rotation of the butterfly-type valve action of the movable flange 90 degrees in either direction as shown in
As above indicated, the preferred form of the invention positions a movable static mixer preferably of a low beta valve downstream from a fixed static mixer usually of a higher beta value; however, it has been found that efficient mixing results can be achieved when a single movable static mixer is placed in the fluid stream, i.e., use of the second movable mixer, without the first fixed static mixer.
It should also be indicated that in those types of static mixers wherein the structure supporting the mixing orifice (or orifices or orifice pattern) is not entirely within the plane defined by the plate surface, e.g., the supporting structure extends outwardly thereof, that the non-mixing position in those situations wherein the plate edge is disposed in line with the fluid flow that portions of the supporting structure may project into the fluid stream and cause some turbulence but with only minimal mixing consequences. Also especially with larger diameter plates, the fixed mixer can be directly mounted such as by welding to the pipeline.
It should be noted that additives can be introduced at other points other than through the pipes or quills and that the material comprising the fluid flow in the pipe could itself compose unmixed feed.
While there is shown and described herein certain specific structure embodying this invention, it will be manifest to those skilled in the art that various modifications and rearrangements of the parts may be made without departing from the spirit and scope of the underlying inventive concept and that the same is not limited to the particular forms herein shown and described except insofar as indicated by the scope of the appended claims.
This application claims the benefit of U.S. Provisional Patent Application No. 60/577,719 filed Jun. 7, 2004.
Number | Date | Country | |
---|---|---|---|
60577719 | Jun 2004 | US |