1. Field of the Invention
This invention relates generally to implantable devices for interventional therapeutic treatment or vascular surgery, and more particularly concerns a variable stiffness vasoocclusive coil that exhibits variable stiffness along the length of the coil.
2. Description of Related Art
The art and science of interventional therapy and surgery has continually progressed towards treatment of internal defects and diseases by use of ever smaller incisions or access through the vasculature or body openings in order to reduce the trauma to tissue surrounding the treatment site. One important aspect of such treatments involves the use of catheters to place therapeutic devices at a treatment site by access through the vasculature. Examples of such procedures include transluminal angioplasty, placement of stents to reinforce the walls of a blood vessel or the like and the use of vasoocclusive devices to treat defects in the vasculature. There is a constant drive by those practicing in the art to develop new and more capable systems for such applications. When coupled with developments in biological treatment capabilities, there is an expanding need for technologies that enhance the performance of interventional therapeutic devices and systems.
One specific field of interventional therapy that has been able to advantageously use recent developments in technology is the treatment of neurovascular defects. More specifically, as smaller and more capable structures and materials have been developed, treatment of vascular defects in the human brain which were previously untreatable or represented unacceptable risks via conventional surgery have become amenable to treatment. One type of non-surgical therapy that has become advantageous for the treatment of defects in the neurovasculature has been the placement by way of a catheter of vasoocclusive devices in a damaged portion of a vein or artery.
Vasoocclusion devices are therapeutic devices that are placed within the vasculature of the human body, typically via a catheter, either to block the flow of blood through a vessel making up that portion of the vasculature through the formation of an embolus or to form such an embolus within an aneurysm stemming from the vessel. The vasoocclusive devices can take a variety of configurations, and are generally formed of one or more elements that are larger in the deployed configuration than when they are within the delivery catheter prior to placement. One widely used vasoocclusive device is a helical wire coil having a deployed configuration which may be dimensioned to engage the walls of the vessels. One anatomically shaped vasoocclusive device that forms itself into a shape of an anatomical cavity such as an aneurysm and is made of a pre-formed strand of flexible material that can be a nickel-titanium alloy is known from U.S. Pat. No. 5,645,558, which is specifically incorporated by reference herein. That vasoocclusive device comprises one or more vasoocclusive members wound to form a generally spherical or ovoid shape in a relaxed state. The vasoocclusive members can be a helically wound coil or a co-woven braid formed of a biocompatible material, and the device is sized and shaped to fit within a vascular cavity or vesicle, such as for treatment of an aneurysm or fistula. The vasoocclusive member can be first helically wound or braided in a generally linear fashion, and is then wound around an appropriately shaped mandrel or form, and heat treated to retain the shape after removal from the heating form. Radiopacity can be provided in the vasoocclusive members by weaving in synthetic or natural fibers filled with powdered radiopaque material, such as powdered tantalum, powdered tungsten, powdered bismuth oxide or powdered barium sulfate, which can potentially be released during vascular surgery.
The delivery of such vasoocclusive devices can be accomplished by a variety of means, including via a catheter in which the device is pushed through the catheter by a pusher to deploy the device. The vasoocclusive devices, which can have a primary shape of a coil of wire that is then formed into a more complex secondary shape, can be produced in such a way that they will pass through the lumen of a catheter in a linear shape and take on a complex shape as originally formed after being deployed into the area of interest, such as an aneurysm. A variety of detachment mechanisms to release the device from a pusher have been developed and are known in the art.
For treatment of areas of the small diameter vasculature such as a small artery or vein in the brain, for example, and for treatment of aneurysms and the like, micro-coils formed of very small diameter wire are used in order to restrict, reinforce, or to occlude such small diameter areas of the vasculature. A variety of materials have been suggested for use in such micro-coils, including nickel-titanium alloys, copper, stainless steel, platinum, tungsten, various plastics or the like, each of which offers certain benefits in various applications. Nickel-titanium alloys are particularly advantageous for the fabrication of such micro coils, in that they can have super-elastic or shape memory properties, and thus can be manufactured to easily fit into a linear portion of a catheter, but attain their originally formed, more complex shape when deployed.
One known technique for filling wide neck aneurysms involves breaking a coil or permanently deforming a coil within a vessel utilizing a balloon. However, substantial risks to a patient are involved in such a procedure, and a coil which has soft or deformable segments may offer less risk to a patient. As a coil is inserted into the aneurysm, the coil deforms and sets it shape, but over time a coil will typically assume its original shape, which is unlikely to correspond to the shape of the vessel being filled. Filling of a variety of types of aneurysms of various sizes and shapes may benefit by use of a variable stiffness coil that can deform more readily at certain predetermined sections. As such a variable stiffness coil is inserted into the aneurysm, the coil will deform to conform to the shape and size of the vessel being filled, and will set its shape, but unlike a helical coil which over time takes on its original shape, a variable stiffness, deformable coil will permanently deform in a random configuration, to thereby fill an aneurysm more evenly and completely over long periods of time.
A variable cross-section conical vasoocclusive coil is known that can achieve variations in stiffness of the coil by variation of the diameter in different regions of the coil or variations in the composition of the coil. Methods are also known for construction of a stent with a varying radial spring force, by heat treatments, by varying the stent frame thickness, selectively machining stent ring frames, using different alloys of the ring frames, and varying the Austenite finish transformation temperature (Af) of a shape memory alloy such as Nitinol. A guide wire is also known that is formed from one or more heat activated memory alloys, with intermediate portions that are selectively annealed to have variously curved shapes while the remainder of the wire remains straight when heated, and a stent is known that has U-shaped loop portions that are provided with greater flexibility by selective annealing to impart selective degrees of hardness to different portions.
It would be desirable to provide an vasoocclusive coil with primary and secondary shapes with variable stiffness along the length of the coil that can permanently deform in a random configuration that will permanently deform in a random configuration in order to fill an aneurysm more evenly and completely over long periods of time. The present invention meets these and other needs.
Briefly, and in general terms, the present invention provides for a variable stiffness vasoocclusive coil that exhibits variable stiffness along the length of the coil. Variable stiffness is accomplished by selectively heat treating certain segments of a primary or secondary coil. The primary coil can be selectively heat treated to form soft or deformable segments along the length of the coil, and can then be shaped into a secondary shape that is set by a heat treatment process. A secondary coil such as a three dimensional coil can be produced with variable stiffness through a selective heating of localized segments of the coil. Distal regions of the coil can also be heat treated to make the distal ends of the coil softer, more deformable, or less traumatic. Upon deployment, the coil will take on its pre-formed three dimensional shape, and will deform in a random three-dimensional shape to conform to the shape of the vessel or malformation into which the coil is introduced. The variable stiffness coil is advantageously formed of a shape memory metal, and variable stiffness can be achieved through aging of desired segments of the shape memory metal coil to raise the parent phase or Austenite phase finish temperature, thus making the treated segments of shape memory metal softer and more flexible.
The invention accordingly provides for an occlusive device for use in interventional therapy and vascular surgery adapted to be inserted into a portion of a vasculature for occluding the portion of the vasculature of a patient. The occlusive device comprises a variable stiffness coil formed from one or more flexible strands of a shape memory metal having a primary coil configuration, the coil having a plurality of segments heat treated to cause the plurality of segments to have reduced stiffness. In one presently preferred embodiment, the variable stiffness coil has an expanded secondary coil configuration with a secondary three dimensional shape, such as a spherical or helical shape. In a preferred aspect, the flexible strand comprises a super-elastic material, which can be a shape memory metal such as a nickel titanium alloy. The shape memory nickel-titanium alloy is preferably heat treated such that the alloy is highly flexible at a temperature appropriate for introduction into the vasculature via a catheter, and after placement, the device will take on a shape designed to optimize the therapeutic purposes desired for the device.
The invention also provides for a method for making a variable stiffness occlusive coil for use in interventional therapy and vascular surgery adapted to be inserted into a portion of a vasculature for occluding the portion of the vasculature of a patient, comprising the steps of providing a coil formed from one or more flexible strands of a shape memory metal, the coil having a primary coil configuration and an initial stiffness; and heat treating a plurality of segments of the coil to cause the plurality of segments to have reduced stiffness. In one presently preferred embodiment, the step of providing a coil comprises heating the coil in a desired three dimensional configuration to set the three dimensional shape. In a preferred aspect of the method of the invention, the shape memory metal has an Austenite phase finish temperature, and the step of heating the coil comprises heating the coil at about 475° C. to 525° C. for about 1 to 20 minutes to set the Austenite phase finish temperature of the coil to about −5° C. to 10° C. The step of heat treating the coil can be accomplished by artificially aging a plurality of segments of the coil to raise the Austenite phase finish temperature to about 35° C. to 50° C., such as by heating a plurality of segments of the coil to a temperature of about 400° C. for a period of about 5 seconds to 30 minutes.
These and other aspects and advantages of the invention will become apparent from the following detailed description and the accompanying drawings, which illustrate by way of example the features of the invention.
Modem techniques for filling wide neck aneurysms typically involve breaking a coil or permanently deforming a coil within a vessel utilizing a balloon, with attendant substantial risks to a patient, and a coil which has soft or deformable segments may offer less risk to a patient. While modern vasoocclusive coils deform and set their shape when they are introduced into a vessel, over time such coils will typically assume their original shape rather than to the shape of the vessel being filled. Filling of a variety of types of aneurysms of various sizes and shapes may benefit by use of a variable stiffness coil that can deform more readily at certain predetermined sections to fill an aneurysm more evenly and completely over long periods of time.
As is illustrated in the drawings, the invention is embodied in an occlusive device for use in interventional therapy and vascular surgery adapted to be inserted into a portion of a vasculature for occluding a selected portion of the vasculature of a patient. In a presently preferred embodiment of the invention illustrated in
In one presently preferred embodiment shown in
The invention also provides for a method for making the variable stiffness occlusive coil. In a presently preferred embodiment, the variable stiffness occlusive coil can be formed from a coil 12 of one or more flexible strands of a superelastic shape memory metal. The coil preferably has at least a primary coil configuration and an initial stiffness, as is illustrated in
It will be apparent from the foregoing that while particular forms of the invention have been illustrated and described, various modifications can be made without departing from the spirit and scope of the invention. Accordingly, it is not intended that the invention be limited, except as by the appended claims.
This is a continuation of Ser. No. 09/991,021, filed Nov. 15, 2001 now U.S. Pat. No. 6,656,201 which is a divisional of Ser. No. 09/211,783, filed Dec. 15, 1998, now U.S. Pat. No. 6,383,204.
Number | Name | Date | Kind |
---|---|---|---|
1341052 | Gale | May 1920 | A |
1667730 | Green | May 1928 | A |
2078182 | MacFarland | Apr 1937 | A |
2549335 | Rahthus | Apr 1951 | A |
3334629 | Cohn | Aug 1967 | A |
3452742 | Muller | Jul 1969 | A |
3649224 | Anderson et al. | Mar 1972 | A |
3868956 | Alfidi et al. | Mar 1975 | A |
4494531 | Gianturco | Jan 1985 | A |
4503569 | Dotter | Mar 1985 | A |
4512338 | Balko et al. | Apr 1985 | A |
4553545 | Maass et al. | Nov 1985 | A |
4638803 | Rand | Jan 1987 | A |
4655771 | Wallsten | Apr 1987 | A |
4695426 | Nylund | Sep 1987 | A |
4718907 | Karwoski et al. | Jan 1988 | A |
4748986 | Morrison et al. | Jun 1988 | A |
4768507 | Fischell et al. | Sep 1988 | A |
4795458 | Regan | Jan 1989 | A |
4800882 | Gianturco | Jan 1989 | A |
4813925 | Anderson, Jr. et al. | Mar 1989 | A |
4820298 | Leveen et al. | Apr 1989 | A |
4830003 | Wolff et al. | May 1989 | A |
4850960 | Grayzel | Jul 1989 | A |
4856516 | Hillstead | Aug 1989 | A |
4950258 | Kawai et al. | Aug 1990 | A |
4954126 | Wallsten | Sep 1990 | A |
4957479 | Roemer | Sep 1990 | A |
4957501 | Lahille et al. | Sep 1990 | A |
4990155 | Wilkoff | Feb 1991 | A |
4994069 | Ritchart et al. | Feb 1991 | A |
5026377 | Burton et al. | Jun 1991 | A |
5041084 | DeVries et al. | Aug 1991 | A |
5064435 | Porter | Nov 1991 | A |
5071407 | Termin et al. | Dec 1991 | A |
5104404 | Wolff | Apr 1992 | A |
5108407 | Geremia et al. | Apr 1992 | A |
5122136 | Guglielmi et al. | Jun 1992 | A |
5133731 | Butler et al. | Jul 1992 | A |
5133732 | Wiktor | Jul 1992 | A |
5139243 | Balsells | Aug 1992 | A |
5141502 | Macaluso, Jr. | Aug 1992 | A |
5143085 | Wilson | Sep 1992 | A |
5147370 | McNamara et al. | Sep 1992 | A |
5151105 | Kwan-Gett | Sep 1992 | A |
5160341 | Brenneman et al. | Nov 1992 | A |
5176625 | Brisson | Jan 1993 | A |
5176661 | Evard et al. | Jan 1993 | A |
5183085 | Timmermans | Feb 1993 | A |
5186992 | Kite, III | Feb 1993 | A |
5203772 | Hammerslag et al. | Apr 1993 | A |
5211183 | Wilson | May 1993 | A |
5217484 | Marks | Jun 1993 | A |
5222969 | Gillis | Jun 1993 | A |
5226911 | Chee et al. | Jul 1993 | A |
5228453 | Sepetka | Jul 1993 | A |
5234437 | Sepetka | Aug 1993 | A |
5234456 | Silvestrini | Aug 1993 | A |
5250071 | Palermo | Oct 1993 | A |
5256146 | Ensminger et al. | Oct 1993 | A |
5261916 | Engelson | Nov 1993 | A |
5269752 | Bennett | Dec 1993 | A |
5304194 | Chee et al. | Apr 1994 | A |
5304195 | Twyford, Jr. et al. | Apr 1994 | A |
5312356 | Engelson et al. | May 1994 | A |
5312415 | Palermo | May 1994 | A |
5334210 | Gianturco | Aug 1994 | A |
5336205 | Zenzen et al. | Aug 1994 | A |
5342387 | Summers | Aug 1994 | A |
5350397 | Palermo et al. | Sep 1994 | A |
5354295 | Guglielmi et al. | Oct 1994 | A |
5380304 | Parker | Jan 1995 | A |
5382259 | Phelps et al. | Jan 1995 | A |
5417708 | Hall et al. | May 1995 | A |
5421338 | Crowley et al. | Jun 1995 | A |
5437282 | Koger et al. | Aug 1995 | A |
5441516 | Wang et al. | Aug 1995 | A |
5443478 | Purdy | Aug 1995 | A |
5514176 | Bosley, Jr. | May 1996 | A |
5522822 | Phelps et al. | Jun 1996 | A |
5522836 | Palermo | Jun 1996 | A |
5527338 | Purdy | Jun 1996 | A |
5536274 | Neuss | Jul 1996 | A |
5540680 | Guglielmi et al. | Jul 1996 | A |
5549624 | Mirigian et al. | Aug 1996 | A |
5562641 | Flomenblit et al. | Oct 1996 | A |
5562698 | Parker | Oct 1996 | A |
5569245 | Guglielmi et al. | Oct 1996 | A |
5582619 | Ken | Dec 1996 | A |
5601600 | Ton | Feb 1997 | A |
5607445 | Summers | Mar 1997 | A |
5624449 | Pham et al. | Apr 1997 | A |
5624461 | Mariant | Apr 1997 | A |
5637113 | Tartaglia et al. | Jun 1997 | A |
5639277 | Mariant et al. | Jun 1997 | A |
5643254 | Scheldrup et al. | Jul 1997 | A |
5645082 | Sung et al. | Jul 1997 | A |
5645558 | Horton | Jul 1997 | A |
5649949 | Wallace et al. | Jul 1997 | A |
5667522 | Flomenblit et al. | Sep 1997 | A |
5669905 | Scheldrup et al. | Sep 1997 | A |
5669931 | Kuplecki et al. | Sep 1997 | A |
5676697 | McDonald | Oct 1997 | A |
5690643 | Wijay | Nov 1997 | A |
5690666 | Berenstein et al. | Nov 1997 | A |
5690667 | Gia | Nov 1997 | A |
5690671 | McGurk et al. | Nov 1997 | A |
5693067 | Purdy | Dec 1997 | A |
5697948 | Marin et al. | Dec 1997 | A |
5700258 | Mirigian et al. | Dec 1997 | A |
5718711 | Berenstein et al. | Feb 1998 | A |
5725546 | Samson | Mar 1998 | A |
5733329 | Wallace et al. | Mar 1998 | A |
5743905 | Eder et al. | Apr 1998 | A |
5746769 | Ton et al. | May 1998 | A |
5749891 | Ken et al. | May 1998 | A |
5749894 | Engelson | May 1998 | A |
5766160 | Samson et al. | Jun 1998 | A |
5800453 | Gia | Sep 1998 | A |
5800455 | Palermo et al. | Sep 1998 | A |
5800520 | Fogarty et al. | Sep 1998 | A |
5807404 | Richter | Sep 1998 | A |
5824037 | Fogarty et al. | Oct 1998 | A |
5830230 | Berryman et al. | Nov 1998 | A |
5843118 | Sepetka et al. | Dec 1998 | A |
5944733 | Engelson | Aug 1999 | A |
6013084 | Ken et al. | Jan 2000 | A |
Number | Date | Country |
---|---|---|
32 03 410 | Nov 1982 | DE |
197 04 269 | Nov 1997 | DE |
0 183372 | Jun 1986 | EP |
0 382014 | Aug 1990 | EP |
0 747 012 | Nov 1996 | EP |
0 747 014 | Nov 1996 | EP |
0 820 726 | Jan 1998 | EP |
2 066 839 | Jul 1981 | GB |
WO 9410936 | May 1994 | WO |
WO 9416629 | Aug 1994 | WO |
WO 9518585 | Jul 1995 | WO |
WO 9748351 | Dec 1997 | WO |
WO 9907294 | Feb 1999 | WO |
WO 9929260 | Jun 1999 | WO |
Number | Date | Country | |
---|---|---|---|
20040106946 A1 | Jun 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09211783 | Dec 1998 | US |
Child | 09991021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09991021 | Nov 2001 | US |
Child | 10705517 | US |