Variable stress wound golf balls and a method for forming such golf balls

Information

  • Patent Grant
  • 6290610
  • Patent Number
    6,290,610
  • Date Filed
    Friday, September 15, 2000
    24 years ago
  • Date Issued
    Tuesday, September 18, 2001
    23 years ago
Abstract
The present invention is directed to an improved golf ball and a method of winding that includes measuring and controlling thread stress directly, rather than maintaining and controlling the level of tension on the threads. The golf ball includes a center, a wound layer that surrounds the center to form a wound core, and a cover that surrounds the wound core. The wound layer is formed of at least one thread, and the wound layer includes a plurality of radially extending sections, each section has a thread stress. The stress within each section is substantially constant, but at least two radially extending sections have different stresses. The method for winding thread onto a golf ball center to form a wound core comprises the steps of measuring a stress within a portion of the thread; winding the thread about the golf ball center while applying a force on the thread to form a plurality of portions with predetermined thicknesses and varying the stress between the portions.
Description




FIELD OF THE INVENTION




This invention relates generally to golf balls, and more particularly to wound golf balls that have radially-extending sections of thread windings with variable stress, and a method for forming such golf balls.




BACKGROUND OF THE INVENTION




Wound golf balls are the preferred ball of more advanced players due to their spin and feel characteristics. Wound balls typically have either a solid rubber or fluid-filled center around which a wound layer is formed, which results in a wound core. The wound layer is formed of thread that is stretched and wrapped about the center. The wound core is then covered with a durable-cover material, such as a SURLYN® or similar material, or a softer “performance” cover, such as Balata or polyurethane.




Wound balls are generally softer and provide more spin than solid balls. This enables a skilled golfer to have more control over the ball's flight and final position. Particularly, with approach shots into the green, the high spin rate of soft-covered-wound balls enables the golfer to stop the ball very near its landing position. In addition, wound balls exhibit lower compression than two-piece balls. Their higher spin rate means wound balls generally display shorter distance than hard-covered-solid balls. The advantages of wound constructions over solid ones, however, relate more to targeting or accuracy than distance.




To meet the needs of golfers with various levels of skill, golf ball manufacturers also vary the compression of the ball, which is a measurement of the deformation of a golf ball under a fixed load. A ball with a higher compression feels harder than a lower-compression. Wound golf balls generally have a lower compression than solid balls, which is preferred by better players. Whether wound or solid, all golf balls become more resilient (i.e., have higher initial velocities) as compression increases. Players generally seek a golf ball that delivers maximum distance, which requires a high initial velocity upon impact; therefore, manufacturers of both wound and solid golf balls balance the requirement of higher initial velocity from higher compression with the desire for a softer feel from lower compression.




To make wound golf balls, manufacturers use automated winding machines to stretch the threads to various degrees of elongation during the winding process without subjecting the threads to unnecessary incidents of breakage. As the elongation and the winding tension increases, the compression and initial velocity of the ball increases. Thus, a more-lively wound ball is produced, which is desirable.




Some methods attempt to employ constant tension during the entire winding process by attempting to apply a constant pull or force on the thread. However, variations in thread cross-sectional area prevent balls formed under constant pull from having constant stress or constant elongation throughout the ball. For example, as the cross-sectional area of the thread decreases, the thread stretches to a greater degree given a constant pull. Conversely, as the cross-sectional area of the thread increases, the thread stretches to a lesser degree under a constant pull. This results in uncontrolled variations in stress and in compression throughout the finished ball, which may negatively affect the ball's performance.




Furthermore, to account for variations in thread cross-sectional area, manufacturers of wound balls do not wind using the maximum tension or stretch the thread to the maximum elongation, because to do so would cause an excessive amount of thread breakage during manufacture or play. This also prevents manufacturers from optimizing ball performance. In addition, the rubber elastic modulus also affects compression which is not considered when manufacturers attempt to control tension alone.




U.S. pat. No. 4,783,078 to Brown et al. discloses one method used in an effort to decrease thread breakage. In this patent, thread is wound first at low tension then at high tension. Controlling tension alone, however, is an approximate means of achieving the desired compression.




U.S. pat. No. 2,425,909 to Wilheim discloses one winding method that considers the cross-sectional area of the thread during winding. In this patent, an apparatus measures the pounds per square inch tension of a portion of thread during winding, applies the level of total tension to the thread during winding, and automatically adjusts the level according to the pounds per square inch tension measurement in order to keep the pounds per square inch tension value constant throughout the winding process.




Golf ball manufacturers are continually searching for new ways in which to provide wound golf balls that deliver improved performance for golfers while decreasing the occurrence of thread breaks both during manufacturing and during play. It would be advantageous to provide a wound golf ball with a higher compression, higher initial velocity, improved durability, and improved manufacturing processibility. The present invention provides such a wound golf ball.




SUMMARY OF THE INVENTION




The present invention is directed to an improved golf ball and a method of winding a golf ball that includes measuring and controlling thread stress directly, rather than maintaining and controlling the level of tension on the threads.




The golf ball includes a center, a wound layer that surrounds the center to form a wound core, and a cover that surrounds the wound core. The wound layer is formed of at least one thread, and the wound layer includes a plurality of radially-extending sections. Each section has a thread stress. The stress within each section is substantially constant, but at least two radially-extending sections have different stresses. The thickness of a radially extending section can be as small as about 0.007 inches. According to one aspect of the present invention, substantially constant means the percentage stress variation within a section is less than the percentage thread cross-sectional area variation within the same section.




In one embodiment, the stresses are different by at least 10%. In another embodiment, the stress increases from one radially extending section to another in a radially-outward direction. In another embodiment, the stress decreases from one radially-extending section to another in a radially-outward direction. The stress can also alternate between sections.




In one embodiment, the golf ball further includes first and second stresses. The first stress is less than about 40% of the breaking stress of the thread and the second second stress is greater than about 40% of the breaking stress.




In yet another embodiment, the golf ball can include first-and second-wound layers, and a molded-intermediate layer. The first-wound layer surrounds the center. The molded-intermediate layer surrounds the first-wound layer, and the second-wound layer surrounds the first-wound layer. The first-and second-wound layers include a plurality of radially-extending sections, each section has a stress, wherein at least two sections within each layer have different stresses and the stress within each first section is substantially constant.




According to one aspect of the present invention, the stress varies constantly or in intervals.




The method for winding thread onto a golf ball center to form a wound core comprises the steps of measuring stress within a portion of the thread; winding the thread about the golf ball center while applying a force thereon to form a first portion with a predetermined thickness and the first portion having thread with stress equal to a first value; and winding the thread about the golf ball center under the force to form a second portion with a predetermined thickness and the second portion having thread with stress that is different from the first value.




In one embodiment, winding the thread about the golf ball center to form the second portion further includes forming a plurality of subsections within the second portion of predetermined thickness. The stress in the subsections varies from the first value and varies from the stress value in adjacent subsections.




In another embodiment, the stress varies during winding constantly or in intervals.




According to one aspect of the present invention, the step of measuring the stress is continuous during winding and further includes passing the thread over at least two-spaced rollers; vibrating the portion of the thread between the rollers; measuring the vibration of the portion of the thread; and calculating stress from the vibration measurement. The step of vibrating the portion of the thread between the rollers further includes directing air upon the portion of the thread.




According to yet another aspect of the present invention, the step of applying the force further includes passing the thread over a tension wheel that rotates about a shaft, and applying a braking force on the shaft. For example, a magnetic brake or a friction brake applies the braking force.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a schematic, side view of a golf ball winding apparatus of the present invention, wherein portions are removed for clarity.





FIG. 2

is an enlarged, side view of a thread vibration region of the apparatus of FIG.


1


.





FIG. 3

is an enlarged, front view of a thread and a pair of air jets disposed there 25 about.





FIG. 4

is a schematic representation of the relationship between electronic control circuitry and the apparatus of FIG.


1


.





FIGS. 5-8

are cross-sectional views of various golf balls of the present invention.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




The present invention is directed to an improved golf ball, and an apparatus and a method for winding such a golf ball. The ball generally comprises a core and a thread wound layer. Preferably, the ball also includes a cover. The apparatus generally includes a winding station, a thread supply and at least one braking region for applying a force on the thread during winding. The method generally includes winding thread on a center with controlled but variable stress. The present invention can be utilized with various configurations of cores, covers, and winding apparatuses, and thus the present invention is not limited to any particular types of ball and winding apparatus shown and discussed below.





FIG. 1

shows a golf ball winding apparatus


10


according to the present invention. The apparatus


10


includes a motor


12


that drives a first wheel


14


via a belt


16


. A rubber belt


18


for supporting a golf ball core


22


surrounds the first wheel


14


and a second wheel


20


. A third wheel


24


rests upon the golf ball core


22


and measures the diameter of the core and secures the core against the belt


18


. The belt


18


rotates, and rotates the golf ball core


22


, which draws thread


26


attached to a center


27


through the apparatus from a supply box


28


to form the core


22


.




From the supply box


28


, the thread


26


first passes over a first idler roller


30


and then to a first braking region


32


. The first braking region


32


includes a tension wheel


34


rotatably supported on a shaft


36


. A first brake


38


is operatively associated with or directly attached to the shaft


36


to apply a braking force thereto.




From the first braking region


32


, the thread


26


travels around a second idler roller


40


to a second braking region


42


that includes tension wheel


44


that is rotatably supported on a shaft


46


. The second braking region


42


further includes a second brake


47


operatively associated with or directly attached to the shaft


46


.




After passing through the second braking region


42


, the thread passes to a third braking region


48


that includes tension wheel


50


, which is rotatably supported on a shaft


52


.




A third brake


54


is operatively associated with or directly attached to the shaft


52


.




The brakes


38


,


47


, and


54


are preferably magnetic brakes. One recommended magnetic brake is commercially available from Magtrol, Inc. of Buffalo, N.Y. under the name hysterisis brake. This magnetic brake creates a braking torque that is constant and will respond to increases or decreases in coil current or voltage with corresponding increases or decreases in torque (i.e., an electromagnetic brake). Alternatively, friction brakes, permanent magnet brakes such as magnetic particle brakes, or any other suitable torsional drag producing devices for applying drag forces to a rotating shaft can be used. It is understood that the present invention may work by having and/or using any one or all of the aforementioned brakes


38


,


47


, and


54


. In addition, it may suffice to control only the last of the three braking regions


48


. Controlling all three braking regions


32


,


42


and


48


makes the system more versatile.




Downstream from the third braking region


48


is a thread vibration region


56


comprising two rotatably mounted, low-drag rollers


58


and


60


. The rollers


58


and


60


are spaced apart at a fixed distance L. It is preferred that the distance L is between about one inch and about two feet, and more preferably between about five inches and about twelve inches. The rollers


58


and


60


are located just before the thread reaches the belt


18


that supports the wound core


22


.




Referring to

FIGS. 1-3

, preferably two air jets


62


and


64


are located within the thread vibration region


56


. The air jets


62


and


64


are recommended to be located at the midpoint of length L. The first air jet


62


is below the thread


26


, and the second air jet


64


is transverse of the thread


26


so that the angle α between the jets is about 90°. The air jets


62


and


64


are also perpendicular to the thread


26


. The air jets


62


and


64


direct air, which is labeled A


1


and A


2


, respectively, upon the portion of the thread


26


between the rollers


58


and


60


. The air A


1


and A


2


vibrates the thread


26


portion between the rollers


58


and


60


. In another embodiment, the apparatus uses only one air jet.




Referring to

FIG. 1

, after passing through the thread vibration region


56


, the thread


26


continues to the golf ball core


22


. Golf ball center


27


is shown with some thread windings thereabout. As the size of the golf ball core


22


increases after adding more thread, wheel


24


rises and rod


57


attached thereto also rises. Rod


57


can suitably be the core of a transducer that serves as an indicator I of the then diameter of the golf ball core


22


.




Alternatively or additionally to the indicator I, a timer T can be used. The timer T is connected to the motor


12


, and when the motor starts the timer starts monitoring so that the time after the thread begins winding about the golf ball core


22


is known.




Referring again to

FIGS. 1 and 2

, the apparatus


10


further includes a frequency measuring device


66


attached to a frame (not shown) that also supports rollers


58


and


60


. The device


66


, alternatively, attaches to the roller


60


. There is a space between the device


66


and the thread


26


. One recommended frequency measuring device


66


is a laser sensor, which is commercially available under the name PicoDot™ Laser Convergent Sensor and made by Banner Engineering Corp. of Minneapolis, Minn. Other recommended frequency measuring devices include photoelectric sensors, acoustic transducers, or vibration sensors.




Referring to

FIG. 4

, electronic control circuitry (“ECC”)


68


, the frequency measuring device


66


, and the brakes


38


,


47


, and


54


are electrically connected. The electronic control circuitry


68


preferably comprises various sensors and actuators associated with a programmable logic controller that is used with software to achieve the functions discussed below. The ECC measures the frequency transducer output


70


from the frequency measuring device


66


, converts this frequency to the stress of the portion of the thread, and produces voltage or current signals


72


,


74


and/or


76


related to the desired frequency output. If the measured frequency value or stress does not match the desired frequency or stress, then the control circuitry


68


changes the current to one or all of the brakes


38


,


47


, and/or


54


within the braking regions


32


,


42


, and/or


48


(as shown in

FIG. 1

) to increase or decrease the drag on the thread, as required, so that the desired frequency is met.




One of the steps in calculating stress from the frequency is for one of the ECC sensors to convert the oscillation of the thread into a pulse train that may be counted by the ECC. The control method to precisely control the stress of the thread material being wound onto the center accumulates the frequency count and then applies a Proportional, Integral, and Derivative (PID) control function or algorithm. The PID algorithm is known in the art. The operator selects constants P, I, and D in the algorithm to adjust the stress to the desired stress rapidly and to correct errors. The operator selects the values for P, I, and D to provide the desired response depending on the systems mechanical configuration and control response capabilities. This control exhibited by output responses or signals


72


,


74


and/or


76


generated by the ECC are communicated to the brakes as follows:




command output=((error_now*P_gain)+((error_now_last_error)*D_gain)+(cumulative_error*I_gain)




where




error_now is the difference between the actual vibration frequency (or stress) of the thread and the desired vibration frequency of the thread;




cumulative_error is the accumulated amount of uncorrected error over time or (cumulative_error+error_now);




last_error is the error taken for use in the next sample or error_now; and




P_gain, D_gain and I_gain are known by those of ordinary skill in the art. In addition, other methods can be used instead of a PID algorithm as also known by those of ordinary skill in the art.




The error term is based on the desired stress defined by a pre-loaded (or on-the-fly) adjustment from the control system or external source (i.e., a predetermined or desired stress). The PIBD loop is a closed loop controller that acts to compensate for the error between the desired stress and the actual stress or frequency. The update time required is empirically determined and may correspond to frequencies between 200 and 500 Hz. In general, the update time is the period corresponding to the frequency.




Now, the relationship between natural frequency and stress will be discussed. The vibrating thread allows measurement of the stress in the thread by sensing the natural frequency of vibration of the thread as indicated by the following formula:







f
n

=


1

2

L


*


[

T
ρ

]


1
/
2













where




ƒ


n


=natural frequency of thread vibration;




L=distance between the rollers;




T=thread tension, which is variable; and




ρ=density per unit length, which is variable.




Since most quality wound balls use rubber thread of fairly uniform density, and the length (L) is held constant by fixing the distance between the two rollers, the above equation reduces to the following relationship:








f
n









is directly proportional to





[

T
A

]


1
/
2



=

σ

1
/
2












where




σ=thread stress in psi or equivalent units; and




A=cross-sectional area, which is variable.




Thus, a measure of the natural frequency of the vibrating thread gives a good approximation of stress on the thread. An accurate measure of the natural frequency of thread vibration can be accomplished as discussed below.




With reference to

FIGS. 1-4

, the operation of the apparatus


10


will now be discussed. The method for winding thread


26


onto the golf ball center


27


to form wound core


22


comprises the steps of measuring a stress within a predetermined portion of the thread


26


located in the thread vibration region


56


. This measuring is accomplished by passing the thread


26


over at least two, spaced rollers


58


and


60


, then vibrating the portion of the thread between the rollers


58


and


60


by directing air A


1


and A


2


from air jets


62


and


64


upon the thread


26


.




Then, the frequency measurement device


66


measures the vibration frequency of the thread portion and sends an output signal


70


to the ECC


68


. The ECC converts the vibration measurement or frequency into the stress, as discussed above. Winding the thread about the golf ball center


22


occurs while applying a force to the thread using the brakes


38


,


47


, and/or


54


so that the stress in the portion of the thread is at a first, predetermined value. After a predetermined time according to timer T and/or a predetermined diameter value according to the indicator I, winding the thread about the golf ball center under an applied force occurs so that the stress in the portion of the thread is different from the first value. The stress changes so that it equals a desired stress value according to a stress pattern, as discussed below. The ECC outputs a signal


70


to one or more of the brakes


38


,


47


and/or


54


to apply a braking force to the associated shaft


36


,


46


, and/or


52


to change the force on the thread and thus the stress on the thread. A plurality of predetermined, desired stress values can be used and the winding can be controlled to meet these desired stress values at certain times or diameter values.




EXAMPLES




These and other aspects of the present invention may be more fully understood with reference to the following non-limiting examples, which are merely illustrative of preferred embodiments of the present invention golf ball core, and are not to be construed as limiting the invention, the scope of which is defined by the appended claims.




Table I sets forth the stress winding pattern used for three examples of inventive balls. In the examples, the stress value is represented by a letter from A to D and the stress value increases with each letter.












TABLE I











EXAMPLES OF INVENTIVE BALLS














Percentage of Total









Wound Layer




Example 1




Example 2




Example 3






Thickness (%)




Stress Pattern




Stress Pattern




Stress Pattern

















25




A




D




D






50




A




C




B






75




B




B




B






100




B




A




D














A golf ball


90


of Example


1


is shown in FIG.


5


. The golf ball


90


includes a solid center


92


surrounded by a wound layer


94


to form a wound core. A cover


96


surrounds the wound core adjacent the wound layer


94


. The wound layer


94


includes a plurality of radially extending sections


98


and


100


. The first section


98


extends from the center


92


to about 50% of the total wound layer thickness W


T


as measured by the indicator I (shown in

FIG. 1

) so that the thickness of the first section is T


1


. The thread forming the first section


98


has a stress A. The second section


100


extends from the first section


98


and about 50% to 100% of the total wound layer thickness W


T


so that the thickness of the second section is T


2


. The thread forming the second section


98


has a stress B, which is greater than stress A. Thus, the ball


90


is formed by varying the stress during winding from low stress A to high stress B in a radially outward direction.




In one recommended embodiment, using polyisoprene thread and a distance L of about 11inches, the stress A can have a value corresponding to a frequency of between about 190 Hz and about 390 Hz, more preferably of about 290 Hz. The stress B can have a value corresponding to a frequency of between about 510 Hz and about 710 Hz, and more preferably of about 610 Hz. As the difference between the stress in the center most section and the adjacent section increases, the compression and initial velocity increase. In addition, the spin off various clubs, such as a driver, ½ wedge and 8 iron for a ball with sections of varying stress will increase from the driver to the 8-iron.




In another embodiment, the center


92


can be fluid-filled and/or the stress pattern can decrease in a radially-outward direction. A ball wound from low stress to high stress in a radially outward direction tends to have lower spin than a ball wound from high stress to low stress in a radially outward direction.




A golf ball


190


of Example 2 is shown in FIG.


6


. The golf ball


190


includes a fluid-filled center


192


that includes an envelope


194


filled with a fluid


196


. The center


192


is surrounded by a wound layer


198


to form a wound core. A cover


200


surrounds the wound core adjacent the wound layer


198


. The wound layer


198


includes four radially extending sections


202


,


204


,


206


, and


208


.




The first section


202


extends from the center


192


to about 25% of the wound layer thickness W


T


so that the thickness of the first section is T


1


. The thread forming the first section


202


has a stress D. The second section


204


extends from about 25% to about 50% of the total wound layer thickness W


T


so that the thickness of the second section is T


2


. The thread forming the second section


204


has a stress C, which is less than stress D. The third section


206


extends from about 50% to about 75% of the wound layer thickness W


T


so that the thickness of the third section is T


3


. The thread forming the third section


208


has a stress B, which is less than stress C. The fourth section


208


extends from about 75% to about 100% of the total wound layer thickness W


T


so that the thickness of the fourth section is T


4.






The thread forming the fourth section


208


has a stress A, which is less than stress B. Thus, the ball


190


is formed by varying the stress during winding from high stress D to low stress A in a radially-outward direction.




In one recommended embodiment, using polyisoprene thread and a distance L of bout 11 inches, the stress D can have a value corresponding to a frequency of between bout 735 Hz and about 935 Hz, and more preferably of about 835 Hz. The stress C can have a value corresponding to a frequency of between about 620 Hz and about 820 Hz, and more preferably of about 720 Hz. The stress B can have a value corresponding to a frequency of between about 510 Hz and about 710 Hz, and more preferably of about 610 Hz. The stress A can have a value corresponding to a frequency of between about 190 Hz and about 390 Hz, and more preferably of about 290 Hz. In another embodiment, the center an be solid and/or the stress pattern can increase in a radially outward direction.




A golf ball


290


of Example 3 is shown in FIG.


7


. The golf ball


290


includes a fluid-filled center


292


that includes an envelope


294


filled with a fluid


296


. The center


292


is surrounded by a wound layer


298


to form a wound core. A cover


300


surrounds the wound core adjacent the wound layer


298


. The wound layer


298


includes four radially extending sections


302


,


304


,


306


, and


308


.




The first section


302


extends from the center


392


to about 25% of the wound layer thickness W


T


so that the thickness of the first section is T


2


. The thread forming the first section


302


has a stress D. The second section


304


extends from about 25% to about 50% of the wound layer thickness W


T


so that the thickness of the second section is T


2


. The thread forming the second section


304


has a stress B, which is less than stress D. The third section


306


extends from about 50% to about 75% of the wound layer thickness W


T


so that the thickness of the third section is T


3


. The thread forming the third section has stress B. The fourth section


308


extends from about 75% to about 100% of the wound layer thickness W


T


so that the thickness of the fourth section is T


4


. The thread forming the fourth section


308


has stress D. The ball


290


is formed by varying the stress between at least two adjacent sections during winding. In another embodiment, the center can be solid.




In the above examples, winding the thread about the golf ball center occurs while applying force to form a plurality of radially extending sections or portions wound to a predetermined thickness. Each section may have a different stress as discussed above. The above frequency values are for a natural rubber thread with an unstretched cross-section of 0.063 inch by 0.020 inch and the length L (as shown in

FIG. 1

) between rollers is about 11 inches.




In the embodiments above, the stress can be varied constantly during winding so that the stress within each radial section is changing with diameter or the stress can be varied in a step-wise fashion or in intervals so that the stress within each radial section is substantially constant. In the above embodiments, instead of using diameter and the indicator I (as shown in

FIG. 1

) to control the intervals when the stress changes, time and the timer T can be used.




The stress within each section is substantially constant, but at least two radially extending sections have different stresses. Substantially constant stress within a section means that the percentage stress variation within the section is less than the percentage thread cross-sectional area variation within the same section. For example, if the cross-sectional area variations of the thread within a section are about 14%, the ball should be wound with the stress within the section substantially constant or varying by about 5%. Since the 5% variation in stress in the section is less than the 14% variation in thread cross-sectional area in the section, the stress within the section is substantially constant, and therefore according to the aspects of the present invention.




The thickness of a radially extending section can be as small as about 0.007 inches or about 0.008 inches. This is the thickness of a strand of about 0.020 inch and about 0.024 inch thread after elongation. The stress between sections should have a difference of at least about 10%, and more preferably of at least about 25%.




In the above examples, winding may occur at a force or tension of about 1.63 lbs for a winding time of 40 seconds. The thread length before winding is approximately 90 feet.




The thread length after winding is approximately 810 feet. The thread is wound at a rate of about 20 feet per second.




The preferred stresses within each section can be expressed as a percentage of the breaking stress. In an inventive golf ball with two adjacent varying stress sections, preferably the first stress in the first section is below about 40% of the breaking stress and the second stress within the second section is over about 40% of the breaking stress. The following non-limiting examples in Tables II and III show inventive balls according to this aspect of the invention.












TABLE II











EXAMPLE OF AN INVENTIVE BALL






WITH STRESS ACCORDING TO BREAKING TENSION













Percentage of Total




Stress or % of




Frequency






Wound Layer Thickness (%)




Breaking Stress




(Hz)









12




30.8




281.6






88




62.5




570.8














In the inventive golf ball of Table I with two adjacent varying stress sections, preferably the first stress in the first section is between about 20% and about 40% of the breaking stress. The second stress in the second section is between about 50% and 75% of the breaking stress. In the example of Table II, the first stress is about 30.8% of the breaking stress and the first section has a thickness of about 12% of the total wound layer thickness. The second stress is about 62.5% of the breaking stress and the second section has a thickness of about 88% of the total wound layer thickness. The frequency for each associated stress is also shown in Table II.












TABLE III











EXAMPLE OF AN INVENTIVE BALL






WITH STRESS ACCORDING TO BREAKING TENSION













Percentage of Total




Stress or % of




Frequency






Wound Layer Thickness (%)




Breaking Stress




(Hz)









10




31.7




289.2






90




91.7




837.2














In the inventive golf ball of Table II with two adjacent varying stress sections, preferably the first stress is below 40% of the breaking stress. The second stress in the second section is above 40% of the breaking stress. In the example of Table m, the first stress is about 31.7% of the breaking stress and the first section has a thickness of about 10% of the total wound layer thickness. The second stress is about 91.7% of the breaking stress and the second section has a thickness of about 90% of the total wound layer thickness. The frequency for each associated stress is also shown in Table III.




In another embodiment, wherein the inventive golf ball has four different adjacent stress sections, the first stress is between about 10% and about 30% of the breaking stress, the second stress in the second section is between about 25% and 50% of the breaking stress, the third stress in the third section is between about 45% and about 70% of the breaking stress, and the fourth stress in the fourth section is between about 65% and about 95% of the breaking stress.




A golf ball


390


is shown in FIG.


8


. The golf ball


390


includes a fluid-filled center


392


that includes an envelope


394


filled with a fluid


396


. The center


392


is surrounded by a first wound layer


398


to form a wound core. A molded, intermediate layer


400


is disposed over the wound layer


398


. A second wound layer


402


surrounds the intermediate layer


400


. A cover


404


surrounds the second wound layer


402


. The wound layer


398


includes two radially extending sections


398




a


and


398




b


with stresses A and B, respectively. The wound layer


402


includes two radially extending sections


402




a


and


402




b


, with stresses A and B, respectively. Alternatively, the golf ball


390


can be formed with a solid center. The intermediate layer


400


can be formed of either solid core material, cover material, or a different material, as discussed below.




Suitable solid core materials include thermosets, such as rubber, polybutadicne, polyisoprene; thermoplastics such as ionomer resins, polyamides or polyesters; or a thermoplastic elastomer. Suitable thermoplastic elastomers include Pebax®, Hytrel®, thermoplastic urethane, and Kraton®, which are commercially available from Elf-Atochem, DuPont, various manufacturers, and Shell, respectively. Other suitable core materials can be castable materials, such as urethane, polyurea, epoxy, and silicone. Conventional methods are used to form such cores.




With respect to fluid-filled centers, the envelope for the fluid-filled center is conventional and formed of conventional materials. The envelopes can be filled with a wide variety of materials conventional fluids including gas, water solutions, gels, foams, hot-melts, other fluid materials and combinations thereof. The fluid or liquid in the center can be varied to modify the performance parameters of the ball, such as the moment of inertia, weight, initial spin, and spin decay.




Suitable gases include air, nitrogen and argon. Preferably, the gas is inert. Examples of suitable liquids include either solutions such as salt in water, corn syrup, salt in water and corn syrup, glycol and water or oils. The liquid can further include water soluble or dispersable organic compounds, pastes, colloidal suspensions, such as clay, barytes, carbon black in water or other liquid, or salt in water/glycol mixtures. Examples of suitable gels include water gelatin gels, hydrogels, water/methyl cellulose gels and gels comprised of copolymer rubber based materials such a styrene-butadiene-styrene rubber and paraffinic and/or naphthionic oil. Examples of suitable melts include waxes and hot melts. Hot-melts are materials which at or about normal room temperatures are solid but at elevated temperatures become liquid.




The fluid can also be a reactive liquid system which combines to form a solid or create internal pressure within the envelope. Examples of suitable reactive liquids that form solids are silicate gels, agar gels, peroxide cured polyester resins, two part epoxy resin systems and peroxide cured liquid polybutadiene rubber compositions. Of particular interest are liquids that react to form expanding foams. It is understood by one skilled in the art that other reactive liquid systems can likewise be utilized depending on the physical properties of the envelope and the physical properties desired in the resulting finished golf balls.




Referring to

FIGS. 5-8

, the covers


100


,


200


,


300


and


404


can be formed of material, such as ionomer resins, blends of ionomer resins, thermoplastic or thermoset urethane, Balata, metallocene, polyurethane or a combination of the foregoing. The covers can also have two layers where the first layer surrounds the wound core and the second layer surrounds the first cover layer.




The wound layers can be formed of threads of various compositions such as threads formed from thermoset materials, poly(p-phenylene terephthalamide) such as KEVLAR, rubber, cis-1,4 polyisoprene rubbers or natural rubbers, or blends thereof as known by those of ordinary skill in the art, natural fibers, metal wire, graphite fibers, or the like. Glass fiber and, for example, S-GLASS from Coming Corporation can also be used. Additionally, mineral fibers such as silicates and vegetable fibers such as cellulosic and animal fibers can be used.




The wound layers can also be formed of thermoplastic thread, such as those formed of a polymeric material. Suitable polymers include polyether urea, such as LYCRA, polyester urea, polyester block copolymers such as HYTREL, isotactic-poly(propylene), polyethylene, polyamide, polyoxymethylene, polyketone, poly(ethylene terephthalate) such as DACRON, poly(acrylonitrile) such as ORLON, trans, trans-diaminodicyclohexylmethane and dodecanedicarboxylic acid such as QUINA. LYCRA, HYTREL, DACRON, KEVLAR, ORLON, and QUINA are available from E.I. DuPont de Nemours & Co. U.S. patent application Ser. No. 09/266,847 filed on Mar. 12, 1999, entitled “Golf Ball With Spun Elastic Threads” is incorporated by reference herein in its entirety and discloses a method of forming suitable threads. When a thermoplastic thread is used, the ball may or may not include a cover. When the thread is fused to form a continuous outer surface of the ball, a cover is not necessary but preferable.




The thread used can also have various cross-sectional shapes, such as rectangular, square or circular, and be formed as a single ply, multiple ply or filament bundled thread.




The various dimensions of golf balls according to the present invention may vary. For example, the golf ball can have a diameter of about 1.68 inches to about 1.72 inches. However, the present invention is not limited to these values.




Core sizes can range from about ¾ inch to 1⅜ inches. However, core sizes are preferably from 1 inch to 1{fraction (3/16)} inches. Similarly, the thickness of the envelope for fluid-filled centers can range widely, e.g. from about 0.02 inch to about 0.25 inch. The envelope thickness is preferred to be 0.075 to 0.15 inch. The thickness of the cover is also widely variable. Covers can be as thin as about 0.02 inch or as much as about 0.25 inch. Covers of about 0.03 inch to about 0.075 inch are preferred.




Natural rubber thread sizes are measured in the non-tensioned state and threads will generally have a width of about 0.02 inch to about 0.2 inch and a thickness of about 0.01 inch to about 0.1 inch. It is preferred that the thread have a width of about 0.05 inch to about 0.15 inch and a thickness of about 0.01 inch to about 0.05 inch. The amount of thread is, of course, a function of the size of the center, the size of the ball and the thickness of the cover. The thread occupies the volume between the outside of the center and the inside of the cover. The thickness of the wound layer can be between about 0.09 inches and about 0.3 inches.




Thermoplastic threads, in the non-tensioned state, preferably have an area less than about 0.003 square inches. In the tensioned state, they preferably have an area of about 0.0013 square inches.




While it is apparent that the illustrative embodiments of the invention herein disclosed fulfill the objectives stated above, it will be appreciated that numerous modifications and other embodiments may be devised by those skilled in the art. The embodiments above can also be modified so that some features of one embodiment are used with the features of another embodiment. For example, in other embodiments, the stress can be varied more than one hundred times in the wound layer. The balls can also be formed of more than one type of thread and different winding patterns such as great circle and criss-cross can be used at various times during winding and used alone or in combination with one anther. Therefore, it will be understood that the appended claims are intended to cover all such modifications and embodiments which come within the spirit and scope of the present invention.



Claims
  • 1. A golf ball comprising:a center; and a wound layer surrounding the center to form a wound core, the wound layer being formed of at least one thread, wherein the wound layer including a plurality of radially extending sections, each section having a stress, and at least two radially extending sections have different stresses and the stress within each section is substantially constant.
  • 2. The golf ball of claim 1, wherein the thread has a cross-sectional area, and a first percentage variation in the stress within each section is less than a second percentage variation in the cross-sectional area of the thread within each section.
  • 3. The golf ball of claim 1, further including a cover surrounding the wound core.
  • 4. The golf ball of claim 1, wherein the stresses of at least two radially extending sections arc different by at least 10%.
  • 5. The golf ball of claim 1, wherein in a radially outward direction the stress increases from one radially extending section to another radially extending section.
  • 6. The golf ball of claim 5, wherein the thread has a breaking stress and a first stress in the first section is less than 40% of the breaking stress and a second stress is greater than 40% of the breaking stress.
  • 7. The golf ball of claim 6, wherein the first stress is between about 20% and about 40% of the breaking stress, and the second stress between about 50% and about 75% of the breaking stress.
  • 8. The golf ball of claim 1, wherein in a radially outward direction the stress decreases from one radially extending section to another radially extending section.
  • 9. The golf ball of claim 1, further including at least two radially extending sections and each section has a thickness equal to at least 25% of a total wound layer thickness, wherein the stress of each radially extending section is different from the stress in the adjacent radially extending section.
  • 10. The golf ball of claim 9, further including at least three different stresses.
  • 11. The golf ball of claim 1, wherein the thread has a breaking stress and a first stress in a first section is between about 10% and about 30% of the breaking stress, a second stress in a second section is between about 25% and 50% of the breaking stress, a third stress in a third section is between about 45% and about 70% of the breaking stress, and a fourth stress in a fourth section is between about 65% and about 95% of the breaking stress.
  • 12. The golf ball of claim 1, including more than one hundred radially extending sections, wherein the stress of each radially extending section is different from the stress in the adjacent radially extending sections.
  • 13. The golf ball of claim 1, wherein the thickness of each radially extending section is equal to the thickness of about one thread wound upon the center.
  • 14. The golf ball of claim 1, wherein the thickness of each radially extending section is from about 0.007 inches to about 0.008 inches.
  • 15. The golf ball of claim 1, further including a first wound layer surrounding the center, a molded intermediate layer surrounding the first wound layer, and a second wound layer surrounding the first wound molded intermediate layer, the first wound layer including a plurality of radially extending first sections, each first section having a stress, wherein at least two first sections have different stresses and the stress within each first section being substantially constant; and the second wound layer including a plurality of radially extending second sections, each second section having a stress, wherein at least two second sections have different stresses and the stress within each second section being substantially constant.
US Referenced Citations (10)
Number Name Date Kind
2425909 Wilhelm Aug 1947
4783078 Brown et al. Nov 1988
5314555 Fukazawa May 1994
5685785 Kakiuchi et al. Nov 1997
5697574 Miyakoshi et al. Dec 1997
5728011 Sugimoto et al. Mar 1998
5752888 Maruko et al. May 1998
5766096 Maruko et al. Jun 1998
6030296 Morgan et al. Feb 2000
6113505 Boehm Sep 2000
Foreign Referenced Citations (2)
Number Date Country
2301779-A Dec 1996 GB
2301831-A Dec 1996 GB