This disclosure relates to retransfer printing where an image is first printed onto a transfer layer of a retransfer film and the printed image is then transferred onto a surface of a substrate by adhering the transfer layer of the retransfer film to the surface and then stripping a portion of the retransfer film from the surface leaving behind the printed image on the surface.
Retransfer printing is a well-known technique for printing a high-quality image on a surface of a substrate including plastic card-shaped substrates. Examples of retransfer printing are described in U.S. Pat. Nos. 6,554,044 and 8,654,164.
Retransfer printing methods and systems are described herein. A variable stripping process is utilized while stripping all or a portion of the retransfer film (also known as intermediate transfer media) from the surface of a substrate. The variable stripping process includes stripping the retransfer film from different sections of the substrate surface while applying different tensions to the retransfer film and/or at different transport speeds of the retransfer film and the substrate.
In the retransfer process, optimal transfer of the retransfer material (or optimal prevention of transfer of the retransfer material) to one section of the substrate may best be performed while applying one level of tension to the retransfer film and/or while transporting the retransfer film and the substrate at one speed, while optimal transfer of the retransfer material (or optimal prevention of transfer of the retransfer material) to another section of the substrate may best be performed while applying a second, different level of tension to the retransfer film and/or while transporting the retransfer film and the substrate at a second, different speed. Therefore, by utilizing a variable stripping process where the tension applied to the retransfer film during stripping and/or the transport speed of the retransfer film and the substrate are varied over different regions or sections of the substrate surface, improved retransfer printing can be achieved.
The substrates described herein can be any substrates to which one may wish to transfer a printed image from a retransfer film onto a surface of the substrate. In one embodiment, the substrate can be a plastic card or passport page. Examples of plastic cards can include, but are not limited to, financial (e.g., credit, debit, or the like) cards, driver's licenses, national identification cards, business identification cards, gift cards, and other plastic cards which bear personalized data unique to the cardholder and/or which bear other card information.
In one embodiment, a retransfer printing method for transferring a printed image from a retransfer film to a surface of a card includes adhering the retransfer film containing the printed image to the surface of the card, and thereafter stripping all or a portion of the retransfer film from the surface of the card so that the printed image remains on the surface. Stripping the retransfer film includes stripping all or a portion of the retransfer film from a first portion of the surface of the card while a first tension is applied to the retransfer film and/or while transporting the retransfer film and the card at a first speed, and stripping all or a portion of the retransfer film from a second portion of the surface of the card while a second tension is applied to the retransfer film and/or while transporting the retransfer film and the card at a second speed, wherein the first tension differs from the second tension, and the first speed differs from the second speed.
Retransfer printing methods and systems are described where a variable stripping process is utilized while stripping all or a portion of the retransfer film (or intermediate transfer media) from the surface of a substrate. The variable stripping process includes stripping the retransfer film from different sections of the substrate surface while applying different tensions to the retransfer film and/or at different transport speeds of the retransfer film and the substrate. As used in the description and claims, unless indicated otherwise, stripping the retransfer film includes and encompasses stripping all layers of the retransfer film (i.e. inhibitor material, discussed further below, is present which prevents transfer of any layers of the retransfer film to the substrate) and includes stripping a portion of the retransfer film (i.e. at least one layer of the retransfer film remains on the substrate after stripping, while the remainder of the retransfer film is not transferred to the substrate).
The retransfer printing methods and systems described herein can be applied to retransfer printing on any substrate that may benefit from the variable stripping process described herein. However, for sake of convenience, the substrate will hereinafter be described as being a plastic card including, but not limited to, financial (e.g., credit, debit, or the like) cards, driver's licenses, national identification cards, business identification cards, gift cards, and other plastic cards which bear personalized data unique to the cardholder and/or which bear other card information.
The retransfer printing is performed by a retransfer printing system. In the case of plastic cards as the substrates, the retransfer printing system may also be referred to as a card personalization machine or card personalization system. The card personalization machine can be a desktop card personalization machine that is designed to personalize cards one at a time, for example on the order of tens or hundreds per hour, or a central issuance system that is designed to simultaneously personalize multiple cards, for example on the order of thousands per hour. A card personalization machine is intended to encompass a machine that personalizes cards as well as passports and other identification documents.
The illustrated retransfer printing configuration of the print engine 10 includes a print side that includes a print ribbon supply 12 from which a supply of monochrome or multi-color print ribbon 14 is supplied, and a print ribbon take-up 16 that takes-up used print ribbon 14. The print ribbon is directed past a print head 18, which in the illustrated example can be stationary, which transfers dye or pigment ink from the print ribbon 14 onto a retransfer film 20. After printing, the used print ribbon 14 is then wound onto the take-up 16.
The retransfer film 20 is supplied from a film supply 22 on a retransfer side, and after retransfer the remaining film is wound onto a film take-up 24 also on the retransfer side. The retransfer film 20 is directed past a platen roller 26 positioned opposite the print head 18 and which in the illustrated example can be moved toward and away from the print head 18 to press the retransfer film 20 and the print ribbon 14 between the print head 18 and the platen roller 26 during printing onto the retransfer film 20. A section of the retransfer film on which the image is to be printed may make a single pass past the print head 18 or multiple passes past the print head 18 in order to print the entire image in which case the travel of the retransfer film 20 may be reversible.
Once a desired image is printed onto the retransfer film 20, the section of the retransfer film 20 with the printed image thereon is advanced to a transfer station 28 where the printed image on the retransfer film 20 is transferred onto a surface 30 of a card 32. In this example, the transfer station 28 includes a heated transfer mechanism 34, for example a transfer roller, that is movable toward and away from a fixed platen 36 positioned on the opposite side of a card travel or transport path 38. The heated transfer mechanism 34 presses the portion of the retransfer film 20 containing the printed image against the surface 30 of the card 32 which is backed by the platen 36, with the retransfer film 20 and the card 32 then being transported together past the heated transfer mechanism 34 to adhere or laminate the layer of the retransfer film 20 containing the printed image onto the card surface 30. The retransfer film 20 and the card 32 are then transported to a stripping station 40 that includes a stripping pin 42 where a portion of the retransfer film 20 is stripped from the card surface 30 leaving behind the printed image on the card surface 30. The remainder of the retransfer film 20, minus the transferred image, is then wound onto the film take-up 24. The card 32 is transported along the card travel path 38 by a card transport mechanism, such as sets of rollers 42.
In some embodiments, discussed further below, an optional card reorienting mechanism 44 (or card flipper 44) can be located downstream of the stripping station 40 in the card travel path 38. The card reorienting mechanism 44 can receive the card 32 after the printed image has been applied to the surface 30, and flip the card 32 over (i.e. flip the card 180 degrees) so that the opposite surface 46 is now facing upward. The card 32 can then be transported back upstream of the transfer station 28 in order to retransfer print a printed image onto the surface 46. In embodiments where printing on the surface 46 is not required, the card reorienting mechanism 44 is not required and can be removed, or the card 32 can be transported through the card reorienting mechanism 44 without flipping the card 32.
Referring to
The surface 30 further includes a signature panel 60 upon which the end user of the card 32 is intended to sign his name. A longitudinal axis of the signature panel 60 extends substantially parallel to the longitudinal axis L of the card 32. In addition, a portion of the surface 30 can include an area 62 that is disposed directly opposite the backside of an integrated circuit chip (not shown) that is accessible from the surface 46 of the card 32. The area 62 forms a slight depression in the surface 30 located directly opposite the backside of the integrated circuit chip. In this example of the card 32, the surface 30 is typically referred to as the rear surface or the back surface, while the surface 46 is typically referred to as the front surface.
As would be understood by a person of ordinary skill in the art, the surfaces 30, 46 can include additional features such as printed text and graphics that can be applied by retransfer printing or direct-to-card printing (or combinations thereof), embossing, indent printing, a magnetic stripe, one or more holograms and/or other security features, and the like.
Referring to the right side of
Returning to
Accordingly, in the example illustrated in
The first tension differs from the second tension, and the first speed differs from the second. In one embodiment, the first tension is greater than the second tension, and the first speed is greater than the second speed.
In one embodiment, the first speed can range from about 12 mm/s to about 35 mm/s, and the second speed can range from about 6 mm/s to about 14 mm/s. In another embodiment, the first speed can be about 15 mm/s and the second speed can be about 12 mm/s. One of ordinary skill in the art will recognize that additional speed ranges could be employed depending on the desired overall machine/printer card throughput.
In one embodiment, the first tension can range from about 10 ounces to about 25 ounces, and the second tension can range from about 0 ounces to about 2.5 ounces. In some embodiments, the second tension can be less than 1 ounce, while in other embodiments the second tension can be less than 0.5 ounces or less than 0.1 ounces.
In one embodiment, the second speed can be from about 70% to about 90% of the first speed. In other embodiments, the second tension can be from about less than 1% to about 20% of the first tension. In further embodiments, the second speed can be about 80% of the first speed, while the second tension can be less than 10% of the first tension.
In an optional embodiment, the tension on the film 20 and/or the speed of transport of the card 32 and the film 20 can also be controlled prior to the leading edge 50 of the card 32 reaching the stripping station 40 (i.e. prior to beginning stripping of the portion of the film 20 from the card surface). This is illustrated in
Referring now to
In
In
The surface 30 may be the only surface of the card 32 that is printed on. Likewise, the surface 46 may be the only surface of the card 32 that is printed on. In embodiments where both of the surfaces 30, 46 are printed on, the surface 30 (i.e. the rear surface containing the signature panel 60) may be printed on first followed by printing on the surface 46 (i.e. the front surface). In conventional retransfer printing, the surface 46 (i.e. the front surface) is printed first followed by printing on the surface 30 (i.e. the rear surface).
In an embodiment, active cooling of the card 32 or card surface 30, 46 prior to transferring the printed image can be utilized. Cooling of the card 32 helps to improve the quality of the retransfer printing process. In some embodiments, the card can be cooled so that the temperature of the first side of the card is approximately the same as the temperature of the second side during the stripping process. Any form of active cooling that results in a reduction of the temperature of the card surface prior to transferring the image can be utilized. For example, a fan can be provided to blow a stream of air onto the card surface. An example of active card cooling that can be utilized is described in copending application Ser. No. 62/415,458 titled Card Cooling in a Card Processing Machine, the entire contents of which are incorporated herein by reference.
Referring back to
The examples disclosed in this application are to be considered in all respects as illustrative and not limitative. The scope of the invention is indicated by the appended claims rather than by the foregoing description; and all changes which come within the meaning and range of equivalency of the claims are intended to be embraced therein.
Number | Name | Date | Kind |
---|---|---|---|
6030474 | Isono | Feb 2000 | A |
6261012 | Haas | Jul 2001 | B1 |
6478488 | Engel | Nov 2002 | B1 |
6554044 | Paulson et al. | Apr 2003 | B2 |
6762780 | Tsuruta et al. | Jul 2004 | B2 |
8654164 | Mochizuki et al. | Feb 2014 | B2 |
9427993 | Rieck | Aug 2016 | B2 |
10486455 | Schinabeck | Nov 2019 | B2 |
20030026635 | Tsuruta | Feb 2003 | A1 |
20050064127 | Turner | Mar 2005 | A1 |
20060196606 | Sumida et al. | Sep 2006 | A1 |
20150266288 | Bieber | Sep 2015 | A1 |
20160185125 | Aihara | Jun 2016 | A1 |
20160236481 | Ihara | Aug 2016 | A1 |
20160300128 | Alvig et al. | Oct 2016 | A1 |
20180117905 | Zaborowski et al. | May 2018 | A1 |
Number | Date | Country |
---|---|---|
2016157369 | Sep 2016 | JP |
2016164699 | Oct 2016 | WO |
Entry |
---|
International Search Report and Written Opinion issued in PCT/US2017/059694 dated May 18, 2018, 9 pages. |
Number | Date | Country | |
---|---|---|---|
20180117904 A1 | May 2018 | US |
Number | Date | Country | |
---|---|---|---|
62416453 | Nov 2016 | US |