This invention relates generally to pneumatic impact hammers of the type having an impact piston and a fluid delivery tube received within a coaxial bore in the piston for supplying pneumatic pressure fluid to one or both ends of the piston operating chamber for reciprocation of the piston.
U.S. Pat. No. 5,205,363 discloses a pneumatic impact drill having a porting system for automatically supplying pneumatic pressure fluid from a fluid delivery tube received within a coaxial bore in the impact piston to the opposite ends of the piston operating cylinder as the piston reciprocates. The porting system comprises an annular set of equiangularly spaced outlet ports in the fluid delivery tube and two sets of radially extending bores in the piston having first and second, axially spaced, annular sets of equiangularly spaced inlet ports which cooperate with the outlet ports in the delivery tube. The number of inlet ports in the piston and the number of outlet ports in the supply tube are selected to provide substantial fluid communication therebetween at all relative angular positions of the piston and fluid delivery tube.
Such invention provides a new and improved porting system. However, this porting system uses a single fluid delivery tube port to complete alternative flow paths for the two axially spaced piston ports and requires axial piston movement to initiate transfer from the first flow path to the second flow path. Consequently, pressure conditions that impede the movement of the piston can exist while the fluid delivery tube port is positioned intermediate the two piston ports.
U.S. Pat. No. 5,984,021 discloses a pneumatic impact drill having a porting system for automatically supplying pneumatic pressure fluid from a fluid delivery tube received within an axial bore in the impact piston to the opposite ends of the piston operating cylinder as the piston reciprocates. A flange on the delivery tube is slidably mounted in a cavity in a mounting hub assembly. Passageways provide fluid communication between the pressure fluid inlet plenum and the operating chamber side of the cavity and between the back chamber and the inlet plenum side of the cavity. Fluid pressure forces acting on the opposite faces of the flange and on the top end surface of the delivery tube reciprocate the delivery tube between upstroke and downstroke positions. Positioning the delivery tube in the upstroke position increases the axial distance that the piston must travel before the pressure fluid supply is connected to the back end of the operating chamber on the piston upstroke. Positioning the delivery tube in the downstroke position increases the axial distance the piston must travel before the pressure fluid supply is disconnected from the back end of the operating chamber on the piston downstroke. While the porting system of this invention addresses the deficiencies discussed above, pressure applied to the front chamber of the piston during the downstroke reduce the impact energy produced by the piston.
It is an object of the invention to provide in a pneumatic impact hammer of the type described, a new and improved cylinder including a lower end portion having at least one upper fluid passage, at least one lower fluid passage, and a land having a sealing surface disposed therebetween. The lower end portion of a piston disposed in the cylinder has a circumferential groove having an axial length (GL), forming circumferential upper and lower shoulders. A U-shaped sleeve mounted within the piston groove includes a base, upper and lower legs extending radially outward from the base to an outer surface, and a cavity extending axially between the legs. The sleeve has an axial length (SCL) that is less than the axial length of the piston groove such that the sleeve is slidably movable within the piston groove between an upstroke position and a downstroke position. The upper fluid passage and the lower fluid passage cooperate with the sleeve cavity as the piston reciprocates between the impact position and the recovery position such that the impact end of the operating chamber is supplied with pressure fluid from the pressure fluid inlet plenum for a portion of each upstroke and a portion of each downstroke. The portion of each downstroke during which pressure fluid is supplied to the impact end of the operating chamber is less than the portion of each upstroke during which pressure fluid is supplied to the impact end of the operating chamber.
Other objects and advantages of the invention will become apparent from the drawings and specification.
The present invention will be better understood and its numerous objects and advantages will become apparent to practitioners in the art by reference to the accompanying drawings in which:
a and 1b together provide a longitudinal section view, partly broken away and partly in section, of a downhole impact drill incorporating the present invention and showing an impact piston of the drill in a lower or impact position thereof;
a through 2d are enlarged longitudinal section views, of the outer cylinder, impact piston, sleeve, drill bit and exhaust tube of
a through 3d are enlarged longitudinal section views of the distributor, cylinder, impact piston, sleeve, drill bit and exhaust tube of
In the drawings, the same numerals are used to designate the same or like parts. The porting system of the present invention has notable utility in downhole impact drills.
A distributor 24 is coaxially mounted within the upper end of the outer cylinder 16 for supplying pneumatic pressure fluid for reciprocating the piston 14. The lower end portion 26 of the distributor 24 is received within a coaxial through bore 28 in the piston 14. During drilling, pressure fluid is continuously supplied to the annular reservoir 30 in the distributor 24 via an inlet check valve 32, an inlet plenum 34, and ports 36 in the upper end portion 38 of the distributor 24. Preferably, the fluid is composed of air compressed up to 350 psi or more and a selected amount of lubricating oil and water coolant. Pressure fluid is supplied from the reservoir 30 to an axially extending fluid passage 40, formed between the outer cylinder 16 and the inner cylinder 17, via one or more radially extending bores 42 in inner cylinder 17.
The piston 14 has oppositely disposed upper and lower end portions 44, 46. The upper end portion 44 has an outside diameter that is closely matched to the inside diameter of the inner cylinder 17 such that the outer surface 48 of the upper end portion 44 and the inner surface 50 of the inner cylinder 17 form a substantially fluid tight seal. The piston lower end portion 46 is located in a region of the outer cylinder 16 having angularly spaced upper fluid passages 52 and angularly spaced lower fluid passages 54, with land 56 having a sealing surface 58 disposed therebetween. The outside diameter DLEP of the lower end portion 46 and the inside diameter 60 of the outer cylinder 16 (including sealing surface 58) are closely matched by grinding and honing the parts to provide a fluid seal therebetween. A circumferential groove 62 extends axially from the bottom of the upper end portion 44 to the top of the lower end portion 46. The impact end segment 64 of the lower end portion may have an outside diameter DIES, where DIES<DLEP.
The piston lower end portion 46 has a circumferential, axially extending, undercut or groove 66 forming circumferential upper and lower shoulders 68, 70. Each of the shoulders 68, 70 has an outer surface 72 and an outside diameter DLEP. A U-shaped sleeve 74 is mounted within the groove 66, with the legs 76, 78 of the sleeve 74 extending radially outward from the base 80 of the sleeve 74 and defining an axially extending cavity 82 therebetween. Preferably, the sleeve 74 is composed of a high impact strength composite polymer material. The sleeve 74 is manufactured as a “split ring”, assembled around the piston within groove 66, and the two ring-halves are mounted together by an adhesive or mechanical bonding. The outside diameter of the legs 76, 78 is substantially equal to the outside diameter DLEP of the piston lower end portion 46. The inside diameter of the sleeve base 80 and the outside diameter of the floor of the groove 66 are closely matched by grinding and honing the parts, providing slidable movement therebetween while maintaining a fluid seal.
The exhaust connection to the front chamber 84 is provided by an exhaust tube 86 having a lower end portion mounted within an axial bore 88 in the upper end of the drill bit 22. The exhaust tube 86 and axial bore 88 form part of an exhaust passageway 90 leading to the lower end of the bit 22. The upper end portion of the exhaust tube 86 is slidably received within the lowest section of the piston bore 28. For example, with the impact piston 14 in engagement with the drill bit 22 as shown in
For reciprocating the piston 14, the opposite ends of the piston operating chamber 18 are sequentially connected to exhaust and to receive pressure fluid from the reservoir 30. As the piston 14 reciprocates, the upper non-impact end of the operating chamber, or back chamber 92, is timely connected to exhaust and pressure fluid is timely supplied to the lower impact end of the operating chamber, or front chamber 84, to raise or withdraw the piston 14 for a succeeding downward impact stroke. Pressure fluid is timely supplied to the back chamber 92, first to decelerate the upward movement of the piston 14 and then to actuate the piston 14 downwardly to impact the drill bit 22. Similarly, as the piston 14 reciprocates, the front chamber 84 is timely connected to exhaust to provide for actuating the piston 14 downwardly with the fluid pressure in the back chamber 92.
With the impact piston 14 in engagement with the drill bit 22 and the sleeve 74, pressure fluid is supplied from the reservoir 30 to the front chamber 84 through bore 42, the fluid passages 40, the piston grooves 62, the upper fluid passage 52, the sleeve cavity 82, and the lower fluid passage 54, and the back chamber 92 is connected to exhaust via the bore 28 to provide for raising or withdrawing the piston 14 from the bit 22 (
After the upward movement of the piston 14 is halted (
In conventional downhole impact drills, the geometry of the fluid passages between the pressure fluid supply and the front chamber dictates that pressure fluid is supplied to the front chamber for the same distance of travel on the piston downstroke as on the piston upstroke. The pressure fluid admitted to the front chamber on the piston downstroke exerts a pressure force on the piston lower face that retards the downward movement of the piston. Since the impact energy produced by the piston is a function of the square of the velocity on impact, this retarding force significantly reduces the impact energy produced by the piston.
The subject downhole impact drill utilizes sleeve 74 and groove 66 to produce a variable length port 96 that effectively reduces the length of travel on the piston downstroke during which pressure fluid is supplied to the front chamber 84 without producing an equivalent reduction in the length of travel on the piston upstroke during which pressure fluid is supplied to the front chamber 84. Specifically, the axial movement of sleeve 74 within groove 66 produces a port 96 that has an effective axial length that is shorter on the piston downstroke than on the piston upstroke.
As shown in
On the piston downstroke, pressure fluid cannot be supplied to the front chamber 84 until both the upper edge 98 of the lower shoulder 70 and the upper edge 100 of the lower leg 78 have traveled past the lower edge 102 of flange 56. As shown in
As shown in
As shown by comparing
It should be appreciated that for a port 96 having an axial length PLUS for producing a piston upstroke equivalent to a conventional downhole impact drill, the axial length PLDS of the port 96 during the downstroke of the subject drill 10 is shorter than that of the conventional drill by a value equal to WSLL plus the axial distance DSL between the upper side of the lower shoulder 70 and the lower surface of the sleeve lower leg 78. The shorter axial length PLDS of the port 96 during the downstroke reduces the time period during the downstroke during which pressure fluid may be supplied to the front chamber 84, thereby reducing the impeding force of the piston 14 during the downstroke. Accordingly, the efficiency of the drill 10 and the rate of drilling shall be greater than a conventional downhole impact drill.
While preferred embodiments have been shown and described, various modifications and substitutions may be made thereto without departing from the spirit and scope of the invention. Accordingly, it is to be understood that the present invention has been described by way of illustration and not limitation.
Number | Name | Date | Kind |
---|---|---|---|
2924690 | Strom et al. | Feb 1960 | A |
4133393 | Richards | Jan 1979 | A |
4333537 | Harris et al. | Jun 1982 | A |
4530408 | Toutant | Jul 1985 | A |
4932483 | Rear | Jun 1990 | A |
5205363 | Pascale | Apr 1993 | A |
5419403 | Klemm | May 1995 | A |
5564510 | Walter | Oct 1996 | A |
5715897 | Gustafsson | Feb 1998 | A |
5915483 | Gien | Jun 1999 | A |
5984021 | Pascale | Nov 1999 | A |
6499544 | Shofner | Dec 2002 | B1 |