The invention concerns a variable valve train for load control of a spark-ignited internal combustion engine, said valve train being arranged between cams of a camshaft and inlet valves of cylinders of the internal combustion engine and comprising direct valve actuating elements, transmission elements and adjusting elements for influencing the lifting function of the transmission elements that are drivingly installed between the cams and the valve actuating elements and have first working surfaces loaded by the cams and second working surfaces acting on the valve actuating elements.
The advantages of throttle-free load control through variable or fully variable valve trains are sufficiently well known in the technical field. By dispensing with throttles, it is possible to eliminate the suction losses that otherwise occur over a wide range of load conditions of the internal combustion engine.
A valve train of the pre-cited type is disclosed in DE 195 09 604 A1. However, a person skilled in the art finds no information in this publication as to how two identically operating inlet valves of a single cylinder can be adjusted independently of each other. Thus, drawbacks are to be expected in the mixture preparation because, for example, low loads and low rotational speeds result in a too feeble turbulence of the charge. In the described state of the internal combustion engine, the too feeble turbulence can lead to a precipitation of fuel upon expansion of the cylinder charge when the inlet valve has closed. On the other hand, a large gas exchange cross-section would be desirable at high speeds of rotation and high loads because it creates a tumble stream that favors high performance. Thus, seen as a whole, the generic valve train does not possess sufficient variability.
The object of the invention is therefore to provide a valve train of the pre-cited type that is distinctly more variable and, at the same time, relatively simple to operate.
The invention achieves the above object in that each cylinder possesses at two inlet valves (9), and at least one particular part of the transmission element comprising the second working surface (13) and one particular element (8,8a) are associated to each inlet valve (9), said particular adjusting element (8,8a) being displaceable relative to a further adjusting element (8,8a) of a second inlet valve (9) or to further adjusting elements of further inlet valves of each cylinder.
Accordingly, each cylinder possesses at least two inlet valves, and at least one particular part of the transmission element comprising the second working surface and one particular adjusting element are associated to each inlet valve, said particular adjusting element being displaceable relative to a further adjusting element or to further adjusting elements of further inlet valves of each cylinder.
With these measures, the initially described drawbacks are eliminated. All the inlet valves (advantageously two) of each cylinder can be adjusted independently of one another. Thus, it is possible, for example, that during idle running, one gas exchange valve is completely shut off and the other executes only a low lift. In this way, the turbulence of the charge can be infinitely influenced so that the aforesaid drawbacks are effectively eliminated. The variability of the entire valve train becomes very similar to that of an electromagnetic valve timing control with which each gas exchange valve can be regulated individually.
According to a first embodiment of the invention, the adjusting elements that are configured, for instance, as pivoting fingers or eccentrics extend on telescopically inter-inserted shafts (hollow shaft and further shaft). The hollow shaft is rigidly connected to the adjusting elements of a first row of identical inlet valves of all the cylinders and the further shaft is rigidly connected to the adjusting elements of a further row of adjacent, identical inlet valves of all the cylinders, the shafts, together with the adjusting elements being rotatable relative to each other. In this way, it is no longer necessary to actuate the different adjusting elements of each cylinder separately.
A further conceivable solution that is explicitly included in the scope of the invention concerns an embodiment in which it is not the inlet valves of each cylinder that are controlled independently of one another but the inlet valves of at least two cylinders that can be actuated differently from each other. This means that all the adjusting elements of one particular cylinder are connected to the hollow shaft and all the adjusting elements, for instance, of an adjacent cylinder are connected through entraining elements to the further shaft that extends within the hollow shaft. This configuration thus makes it possible to shut off a cylinder. Thus, one cylinder can be deactivated while a valve lift takes place at another cylinder.
The adjusting elements may also be configured as eccentrics and applied in accordance with the solution of the aforesaid document DE 195 09 604 A1. However, it is also possible to configure the adjusting elements as pivoting fingers as illustrated in the appended drawing.
Segment-shaped slots in the hollow shaft for the entraining elements of the adjusting elements of the further row of identical inlet valves at the same time define a maximum angle of relative rotation of the adjusting elements.
According to a further sub-claim, the adjusting elements of the hollow shaft are fixed thereon in a simple manner by an interference fit. The further adjusting elements are fixed on the further shaft, for instance, by an entraining element configured as a pin. Here, too, it is possible to use an interference fit or a screw connection and the like.
According to a further advantageous feature of the invention, the hollow shaft and the further shaft can be actuated separately. For this purpose, an electric or hydraulic actuator is arranged on a front end of each shaft. However, it is also possible to provide inter-inserted actuators only on one end of the shafts.
In a preferred embodiment of the invention according to a further sub-claim, the separate adjusting elements are arranged on a ratchet-type valve train whose transmission elements are made up of two parts. The adjusting elements are configured as pivoting fingers comprising a scanning contour that is scanned during cam lift by a part of the transmission element configured as a ratchet.
Finally, it is proposed to use a finger lever as a valve actuating element. However, it is both conceivable and within the scope of the invention to use oscillating levers or rocker arms, and also cup tappets.
It is expressly stated that the scope of the intention does not extend only to a valve train as described in accordance with the appended drawing but also to valve trains comprising an adjusting means as disclosed, for example, in the aforesaid generic document DE 195 09 604 A1.
The invention will now be described more closely with reference to the appended drawing.
The ratchet 5b is fixed on a fulcrum 11 situated on an end 10 opposite from the first working surface 4 of the lever 5a. The ratchet 5b can pivot relative to the fulcrum 11 and comprises a third working surface 12 which is configured as a roller and cooperates with the scanning contour 9a. The ratchet 5b further comprises a second working surface 13 oriented away from the third working surface 12. The second working surface 13 acts on a contact surface 14 (roller) of a direct valve actuating element 15. This direct valve actuating element 15 is configured in the present example of embodiment as a finger lever that is mounted at one end on a support element 16 and acts at the other end in lifting direction on the inlet valve 9.
When a cam lift causes the lever 5a to pivot together with the ratchet 5b, this latter is forced to move in a channel situated between the scanning contour 9a and the contact surface 14. In the angular position of the adjusting element 8 shown in
For obtaining a desired zero lift of the inlet valve 9, for instance, the adjusting element 8 is rotated in anti-clockwise direction by a rotation of the hollow shaft 6 effected by an actuator, not specified, that is arranged on an end of the hollow shaft 6. This anti-clockwise rotation of the adjusting element 8 is continued till the third working surface 12 of the ratchet 5b traverses only a fore-positioned base circle segment of the scanning contour 9a. Thus, the ratchet 5b does not pivot in opening direction of the inlet valve 9 and this remains closed.
However, the valve train is to be designed for at least two inlet valves for each cylinder. Each inlet valve 9 then has its own transmission element 5 at least in the region of the ratchet 5b. Each ratchet 5b is associated to a separate adjusting element 8, 8a so that the two inlet valves 9 of each cylinder can be adjusted independently of each other (see also discussion of advantages in connection with the claims).
For this purpose, as mentioned above, the hollow shaft 6 houses a relatively rotatable further shaft 7 in its bore 17. The hollow shaft 6 and the further shaft 7 can be actuated by actuators operating independently of each other. It is conceivable to arrange one actuator at one end of the shafts 6, 7 and a further actuator at the other end of the shafts 7, 6. It is conceivable, for instance, to use hydraulic, electric or electro-hydraulic and similar measures.
As disclosed in
It goes without saying that it is also conceivable to use the measures proposed by the invention for influencing even three inlet valves per cylinder independently of one another. In this case, the further shaft 7 would have to receive still another shaft in its interior and be provided with additional entraining elements that would project through the further shaft 7 as well as the hollow shaft 6.
Seen as a whole, therefore, a valve train is created that not only includes the advantages of known variable mechanical systems but also possesses an enhanced variability that further approaches the variability of electromagnetic valve trains.
Number | Date | Country | Kind |
---|---|---|---|
100 52 811 | Oct 2000 | DE | national |
This application is a 371 of PCT/EP00/10863 filed Sep. 20, 2001.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCTEP01/10863 | 9/20/2001 | WO | 00 | 5/30/2003 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO0235067 | 5/2/2002 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4084557 | Luria | Apr 1978 | A |
4572118 | Baguena | Feb 1986 | A |
4714057 | Wichart | Dec 1987 | A |
4917058 | Nelson et al. | Apr 1990 | A |
5373818 | Unger | Dec 1994 | A |
5452694 | Hara | Sep 1995 | A |
5680835 | Ruffing et al. | Oct 1997 | A |
5954018 | Joshi | Sep 1999 | A |
Number | Date | Country |
---|---|---|
4226789 | Feb 1994 | DE |
19640520 | Apr 1998 | DE |
0596860 | May 1994 | EP |
0962629 | Dec 1999 | EP |
9936677 | Jul 1999 | WO |
Number | Date | Country | |
---|---|---|---|
20040074457 A1 | Apr 2004 | US |