This application claims the priority of Chinese patent Application No. 200810067764.7, filed with the Chinese Intellectual Property Office on Jun. 16, 2008, entitled “VARIABLE VALVE LIFT MECHANISM OF INTERNAL COMBUSTION ENGINE”, the entirety of which is hereby incorporated herein by reference.
The present invention relates to a control technology for a variable valve lift of an internal combustion engine. In particular, the invention relates to a continuous variable valve lift device of an internal combustion engine.
The valve lift in existing valve actuating mechanism of an internal combustion engine mostly employs a fixed and constant structure or a non continuous variable structure. However, the internal combustion engine has different requirements on the valve actuating system under different working conditions and different speeds. When the internal combustion engine operates at a low speed, the flow inertia of gas is relatively small. At this time, if the valve lift is overlarge, a creation of inlet gas swirl will be hindered and the mixture of fuel and air will be unhomogeneous, thus hampering combustion. In this situation, under the impeding influence of throttle valves, a pump gas loss is caused, and the consumption of internal energy results in a reduction of working efficiency of part loads on the internal combustion engine. When the internal combustion engine operates at a high speed, the flow rate of gas is relatively large and the flow inertia is large too. In this situation, if the valve lift is oversmall, a strong swirl will be created in the inlet gas, which is also adverse to combustion. Therefore, a relatively large valve lift is required at this time so as to reduce swirl rate and bring about more inlet gas simultaneously.
The technical problem to be solved by the invention is to make up for the disadvantages in the prior art and to provide a continuous variable valve lift device from low speed to high speed so that the internal combustion engine can obtain an optimal valve lift in full speed range.
The technical problem of the invention is solved by the following technical solution: a variable valve lift device of an internal combustion engine, comprising a roller rocker arm lift mechanism and a driving mechanism; a cam and a roller of the roller rocker arm lift mechanism cooperates with each other so as to control the valve lift; the driving mechanism can output a straight-line displacement driving force; the roller rocker arm lift mechanism further includes a second rocker arm, wherein one end of the second rocker arm is connected with an output portion of the driving mechanism by a rotation pin so as to create a straight-line displacement by the driving force of the driving mechanism; the second rocker arm is provided with a slide track in the direction of the straight-line displacement; a rocker-arm pin in the center of valve rocker arms of the roller rocker arm lift mechanism is arranged in the slide track of the second rocker arm; and the rocker-arm pin can slide in the slide track of the second rocker arm.
Preferably, the driving mechanism comprises a linear motor and an output shaft; the linear motor drives the output shaft, and the output shaft is connected with the second rocker arm through the rotation pin.
Preferably, the driving mechanism comprises a control motor, an output shaft, a gear and a rack; the control motor drives the output shaft so as to rotate the gear, and the gear engages with the rack which is connected with the second rocker arm through the rotation pin.
Preferably, the driving mechanism comprises a control motor, a worm, a worm wheel, an output shaft, a gear and a rack; the control motor drives the worm and the worm wheel; the output shaft rotates coaxially with the worm wheel and the output shaft drives the gear in rotation; the gear engages with the rack which is connected with the second rocker arm through the rotation pin.
Preferably, the device is used to control the lifts of two valves, the first valve rocker arm and the second valve rocker arm share one rocker arm pin, one roller and one cam; the roller rocker arm lift mechanism further comprises a first rocker arm, wherein one end of the first rocker arm is hinged to the rocker arm pin, a roller pin of the roller is hinged to the other end of the first rocker arm, and the roller pin is arranged in the slide track of the second rocker arm after protruding out of the other end of the first rocker arm; the roller pin can slide in the slide track of the second rocker arm.
Preferably, one end of the first valve rocker arm and one end of the second valve rocker arm are connected with a first valve and a second valve respectively, the other ends of the first valve rocker arm and the second valve rocker arm are propped up by a first tappet and a second tappet respectively; the roller pin and the rocker arm pin slide in the slide track of the second rocker arm.
The advantageous effects of the invention over the prior art lies in that the variable valve lift device of an internal combustion engine of invention adopts the technical solution in which the position of the fulcrum of the second rocker arm relative to the rocker-arm pin is adjustable, and a motor controls the valve lift, which can be flexibly adjusted according to actual working conditions of the internal combustion engine, thus providing a continuous variable valve lift from low speed to high speed so that the internal combustion engine provides an optimal valve lift in the full range of working conditions, and fuel economy and power performance of the internal combustion engine can be improved. The structure and control system of the invention is simple and the response speed is fast.
The present invention is further described in detail with reference to the accompanying drawings and embodiments.
A variable valve lift device of an internal combustion engine according to the present invention includes a driving mechanism and a roller-rocker arm lift mechanism. Three embodiments are described in detail hereinafter. It is noted that the constitution and connection of the roller-rocker arm lift mechanisms of the three embodiments are substantially the same. Therefore, only one view showing the elements of the roller-rocker arm lift mechanism is provided herein.
As shown in
The roller-rocker arm lift mechanism includes a cam 7, a roller 8, a first rocker arm 9, a second rocker arm 10 having a slide track, a roller pin 11, a first valve 12, a second valve 12′, a first tappet 13, a second tappet 13′, a rocker-arm pin 14, a first valve rocker arm 15 and a second valve rocker arm 15′. The cam 7 drives the roller 8 arranged in the first rocker arm 9. The first rocker arm 9 has one end connected with the rocker-arm pin 14 and the other end connected with the second rocker arm 10 via the roller pin 11. The second rocker arm 10, the first valve rocker arm 15 and the second valve rocker arm 15′ are connected through the rocker-arm pin 14. The first valve rocker arm 15 has one end connected with the first valve 12 and the other end propped up by the first tappet 13. The second valve rocker arm 15′ has one end connected with the second valve 12′ and the other end propped up by the second tappet 13′. Both the roller pin 11 and the rocker-arm pin 14 slide in the slide track of the second rocker arm 10. The rocker-arm pin 14 penetrates the first valve rocker arm 15 and the second valve rocker arm 15′ on both sides thereof, and the rocker-arm pin 14 therefore moves with the movement of the first valve rocker arm 15 and the second valve rocker arm 15′, all of which swing up and down around the vertexes of the first tappet 13 and the second tappet 13′. The rocker-arm pin 14 and the roller pin 11 are connected by the first rocker arm 9 and both slide synchronously in the slide track of the second rocker arm 10. Therefore, the axis of the roller pin 11 remains its position relative to the rocker arm 14 unchanged while moving around the rotation pin 16.
The first valve 12 and the second valve 12′ are arranged on a cylinder and controlled by the first valve rocker arm 15 and the second valve rocker arm 15′ respectively so as to open and close the intake valve and exhaust valve at an appropriate time and to enable the internal combustion engine to reach an appropriate lift. The first rocker arm 9, which takes the axis of the rotation pin 16 as its rotation axis, slides synchronously in the slide track of the second rocker arm 10 with the rocker-arm pin 14 so as to ensure that the roller 8 remains a fixed position relative to the cam 7 and there is always a good contact between the roller 8 and the cam 7. The second rocker arm 10 rotates with the axis of the rotation pin 16 as its rotation axis and moves left and right with the movement of a rack 6, which serves to provide a variable rocker arm with a variable range as shown in
The operational principle of the present invention is explained as follows: when the valve lift reaches to a certain degree, the cam 7 drives the roller 8 in rotation to swing around the rotation pin 16, the roller 8 drives the second rocker arm 10 by means of the roller pin 11 to swing around the rotation pin 16 which servers as the rotation center, the second rocker arm 10 drives the rocker-arm pin 14 to bring the first valve rocker arm 15 and the second valve rocker arm 15′ in rotation together around the vertexes of the first tappet 13 and the second tappet 13′, thereby driving the first valve 12 and the second valve 12′ to open and close periodically at an appropriate lift. If the working condition point of the internal combustion engine varies, the ECU sends an instruction to start the linear motor 17. The linear motor 17 drives the output shaft 4 in motion, and the output shaft 4 in turn transfers the motion to the rotation pin 16 so that the rotation pin 16 moves synchronously. The adjustable range is shown at “b” in
As shown in
As shown in
The above content is a further detailed description of the present invention made in combination with particular preferred embodiments, and it should not be considered that the specific implement of the present invention is limited to the description. Those with ordinary skills in the art can also, under the premise of not departing the concept of the present invention, make several simple deductions or substitutions, which should all be considered as falling within the scope of protection of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2008 1 0067764 | Jun 2008 | CN | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CN2009/072252 | 6/12/2009 | WO | 00 | 12/14/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/152746 | 12/23/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5365895 | Riley | Nov 1994 | A |
5572962 | Riley | Nov 1996 | A |
6491008 | Zubeck | Dec 2002 | B1 |
6550435 | Zubeck | Apr 2003 | B1 |
6550436 | Nohara et al. | Apr 2003 | B2 |
6615777 | Grau | Sep 2003 | B2 |
6722326 | Shui et al. | Apr 2004 | B1 |
6739296 | Machida | May 2004 | B2 |
7243625 | Shindou | Jul 2007 | B2 |
7293537 | Arai et al. | Nov 2007 | B2 |
7305946 | Nakamura et al. | Dec 2007 | B2 |
7401581 | Yamada | Jul 2008 | B2 |
7430997 | Muraji et al. | Oct 2008 | B2 |
7484485 | Nakamura et al. | Feb 2009 | B2 |
7886703 | Nakamura | Feb 2011 | B2 |
7898121 | Ramsay et al. | Mar 2011 | B2 |
8191522 | Riley | Jun 2012 | B2 |
8316807 | Methley et al. | Nov 2012 | B2 |
20030172888 | Miura | Sep 2003 | A1 |
20040069259 | Shui et al. | Apr 2004 | A1 |
20060011159 | Bloms et al. | Jan 2006 | A1 |
20060037578 | Nakamura | Feb 2006 | A1 |
20070084426 | Seitz | Apr 2007 | A1 |
20100122678 | Kim | May 2010 | A1 |
Number | Date | Country |
---|---|---|
1173214 | Feb 1998 | CN |
1251637 | Apr 2006 | CN |
101086212 | Dec 2007 | CN |
101403326 | Apr 2009 | CN |
19960742 | Jun 2001 | DE |
10138741 | Feb 2003 | DE |
2123215 | May 1990 | JP |
Entry |
---|
International Search Report; PCT/CN2009/072252; Sep. 17, 2009. |
European Application No. 09765385.1, European Search Report, dated Dec. 29, 2011, 5 pages. |
Number | Date | Country | |
---|---|---|---|
20110100311 A1 | May 2011 | US |