The present invention relates to a variable valve mechanism that drives a valve of an internal combustion engine and that changes the drive state of the valve according to the operational state of the internal combustion engine.
A variable valve mechanism 90 of a conventional example illustrated in
As illustrated in
Patent Document 1: U.S. Pat. No. 6,925,978
In the conventional example, if the pressing surface 91a comes in contact with a lower edge E1 of the pin end surface 93a at a sliding contact start time T1 illustrated in
In addition, in the conventional example, the position of a pressed center P on the pin end surface 93a shifts upward as the switch arm 91 swings in the return direction D2 relative to the main arm 92 during the first-half of sliding contact from T1 to T4 illustrated in
Such a problem may also be caused by a phenomenon that the lower edge E1 of the pin end surface 93a wears due to contact of the pressing surface 91a with the lower edge E1 at the sliding contact start time T1 illustrated in
It is an object of the present invention to make edges of a pin end surface difficult to wear.
To achieve the object described above, a variable valve mechanism of an internal combustion engine according to the present invention includes: a switch arm that is driven by a cam; a main arm that drives a valve of the internal combustion engine when swinging; a switch pin attached to the main arm so as to be displaceable; and a displacing device that displaces the switch pin to a disconnected position to switch the variable valve mechanism to a disconnected state where the switch arm makes a relative reciprocating displacement relative to the main arm in an idle swing direction and in a return direction opposite thereto according to rotation of the cam, and that displaces the switch pin to a connected position to switch the variable valve mechanism to a connected state where the switch arm and the main arm swing together. In the variable valve mechanism, during switching from the disconnected state to the connected state, if the switch pin is displaced to the connected position while the switch arm is displaced in the idle swing direction relative to the main arm and thus the switch arm comes to an idle swing direction side with respect to the switch pin, the switch arm being displaced in the return direction relative to the main arm comes in sliding contact with a pin end surface of the switch pin, and the switch arm presses the pin end surface toward the disconnected position during a period between a sliding contact start time (t1) and a sliding contact end time (t6) so as to push back the switch pin. The variable valve mechanism has at least one of the following features [A] and [B].
Hereinafter, a “pressed center” is defined as the center position of a pressing force received from the switch arm at a sliding contact portion of the pin end surface with the switch arm, and a “pin end surface length (Le)” is defined as the length along the pin end surface from an idle-swing-side edge of the pin end surface, which is an edge of the pin end surface on the idle swing direction side, to a return-side edge of the pin end surface, which is an edge of the pin end surface on a return direction side.
[A] In the variable valve mechanism, at the sliding contact start time (t1) when the switch pin is fully displaced to a connected position side, the switch arm does not sliding contact with an idle-swing-side edge, but sliding contacts a portion of the pin end surface on the return direction side with respect to the idle-swing-side edge.
[B] In the variable valve mechanism, at least during a period from a 10% position time (t5) at which a length (L5) from the pressed center to the return-side edge along the pin end surface is 10% of the pin end surface length (Le) to the sliding contact end time (t6), the position of the pressed center relative to the pin end surface shifts toward the return direction side without stopping as the switch arm is displaced toward the return direction relative to the main arm, so that the sliding contact ends without stopping of the pressed center at the return-side edge.
According to the feature [A] described above, since the switch arm does not sliding contact with the idle-swing-side edge at the sliding contact start time (t1), the idle-swings-side edge does not wear, and the switch pin is difficult to be subjected to an excessive bending load.
According to the feature [B] described above, since the pressed center does not stop at the return-side edge, the return-side edge is difficult to wear.
In the feature [A] described above, although a length (L1) along the pin end surface from the idle-swing-side edge to the pressed center at the sliding contact start time (t1) is not particularly limited, the length (L1) is preferably equal to or greater than 10%, more preferably equal to or greater than 15%, and still more preferably equal to or greater than 20% of the pin end surface length (Le), from the viewpoint that a portion of the pin end surface on the inner side with respect to the idle-swing-side edge is made difficult to wear over a wider range.
Although the upper limit of the length (L1) is not particularly limited, the length (L1) is preferably equal to or smaller than 90%, more preferably equal to or smaller than 85%, and still more preferably equal to or smaller than 80% of the pin end surface length (Le), from the viewpoint that a portion of the pin end surface on the inner side with respect to the return-side edge is made difficult to wear over a wider range.
In the feature [B] described above, if the relative reciprocating displacement is a relative swing, although an angle (θ) by which the switch arm swings relative to the main arm in the return direction from the 10% position time (t5) to the sliding contact end time (t6) is not particularly limited, the angle (θ) is preferably equal to or smaller than 8 degrees, more preferably equal to or smaller than 6 degrees, and still more preferably equal to or smaller than 4 degrees, from the viewpoint that the pressed center quickly passes through the return-side edge and the vicinity thereof.
Although the lower limit value of the angle (θ) is not particularly limited, the angle (θ) is preferably equal to or greater than 0.3 degrees, more preferably equal to or greater than 0.6 degrees, and still more preferably equal to or greater than 1.0 degree, from the viewpoint of ease of implementation.
In the feature [B] described above, the variable valve mechanism is preferably configured such that, although a time before the 10% position time (t5) is not particularly limited, the position of the pressed center relative to the pin end surface shifts toward the return direction side without stopping as the switch arm is displaced in the return direction relative to the main arm from a return side shift start time (t3) to the sliding contact end time (t6), from the viewpoint that the portion of the pin end surface on the inner side with respect to the return-side edge is made difficult to wear over a wider range. The return side shift start time (t3) is a time when a length (L3) along the pin end surface from the pressed center to the return-side edge is equal to or greater than 20% (more preferably equal to or greater than 30%, and still more preferably equal to or greater than 40%) of the pin end surface length (Le).
Although the upper limit of the length (L3) along the pin end surface from the pressed center to the return-side edge at the return-side shift start time (t3) is not particularly limited, the length (L3) is preferably equal to or smaller than 95%, more preferably equal to or smaller than 90%, and still more preferably equal to or smaller than 85% of the pin end surface length (Le), from the viewpoint that the portion of the pin end surface on the inner side with respect to the idle-swing-side edge is made difficult to wear over a wider range.
Although the return-side shift start time (t3) may be the same as the sliding contact start time (t1), the return side shift start time (t3) is preferably later than the sliding contact start time (t1), from the viewpoint that an increase in speed of the shift in the return direction during the second half of sliding contact causes the pressed center to more quickly pass through the return-side edge and the vicinity thereof. Furthermore, the variable valve mechanism is preferably configured such that a predetermined portion of the switch arm comes in sliding contact with the pin end surface at the sliding contact start time (t1), a portion of the switch arm on the idle swing direction side with respect to the predetermined portion comes in sliding contact with the pin end surface at the return side shift start time (t3), so that the position of the pressed center relative to the pin end surface shifts toward the idle swing direction side during a period from the sliding contact start time (t1) to the return side shift start time (t3).
In the case where the variable valve mechanism has the feature [A] or [B] described above, although the aspect of the switch arm is not particularly limited, the following aspects thereof are exemplified. The aspect [1] is preferable from the viewpoint of ease of implementation.
[1] The switch arm is pivotally attached in a relatively swingable manner to the main arm, and the relative reciprocating displacement is a relative swing.
[2] The switch arm is attached to the main arm so as to be relatively displaceable in a linear direction, and the relative reciprocating displacement is a relative reciprocating linear movement.
Although the switch pin may be displaced in the width direction of the main arm, the main arm preferably includes two main arm sidewall portions provided on both sides of the switch arm in the width direction and a connecting portion for connecting the two main arm sidewall portions to each other, and the switch pin is preferably attached to the connecting portion so as to be displaceable in the longitudinal direction of the main arm, from the viewpoint that the switch arm can easily push back the switch pin.
The displacing device may hydraulically displace the switch pin to the connected position. However, from the viewpoint that switch arm can easily push back the switch pin, the displacing device preferably includes: a spring for urging the switch pin toward the connected position; and a hydraulic device that hydraulically presses the switch pin toward the disconnected position, and the hydraulic device is preferably configured to hydraulically displace the switch pin to the disconnected position by relatively increasing the hydraulic pressure and displace the switch pin to the connected position with an urging force of the spring by relatively reducing the hydraulic pressure.
Although the disconnected state and the connected state are not particularly limited, the following aspects thereof are exemplified.
[1] The disconnected state is a stop state where driving of the valve is stopped. The connected state is a drive state where the valve is driven.
[2] The disconnected state is a low lift state where the main arm is driven by a second cam to drive the valve at a relatively small lift amount. The connected state is a high lift state where the valve is driven at a relatively large lift amount.
The following describes an embodiment of the present invention. The present invention is not limited to the embodiment, and can be carried out by modifying configurations and/or shapes of various parts in any manner without departing from the scope of the present invention.
As illustrated in
The cam 9 is mounted on a camshaft 8 so as to protrude therefrom. The camshaft 8 turns once (a 360-degree turn) every two turns of the internal combustion engine (a 720-degree turn). The cam 9 has a base circle 9a having a circular sectional shape and a nose 9b projecting from the base circle 9a.
The switch arm 10 includes two switch arm sidewall portions 11, a switch arm rear portion 12, a bridge portion 16, a roller shaft 15 and a roller 14. The two switch arm sidewall portions 11 are arranged side by side across a space in the width direction. A front end portion of each of the switch arm sidewall portions 11 is pivotally attached in a swingable manner to a front portion of a main arm sidewall portion 21 by a shaft member 17.
The switch arm rear portion 12 connects rear end portions of the two switch arm sidewall portions 11 to each other. A pressing surface 13 that presses a pin end surface 36 of the switch pin 30 is formed on a rear surface of the switch arm rear portion 12. The pressing surface 13 has a shape (tapered shape) such that the pressing surface 13 extends away from the shaft member 17 (center of swinging in the disconnected state) as it extends toward an idle swing direction D1 side, and the pressing surface 13 extends toward the shaft member 17 as it extends toward a return direction D2 side. The bridge portion 16 connects front portions of the switch arm sidewall portions 11 to each other.
The roller 14 is rotatably attached between the two switch arm sidewall portions 11 and between the switch arm rear portion 12 and the bridge portion 16 via the roller shaft 15. The roller shaft 15 penetrates the two switch arm sidewall portions 11 in the width direction. A bearing 15a is interposed between the roller 14 and the roller shaft 15. The cam 9 presses the roller 14 to drive the switch arm 10.
The main arm 20 includes two main arm sidewall portions 21, a main arm rear portion 22, and a main arm front portion 26. The two main arm sidewall portions 21 are provided on both sides of the switch arm 10 in the width direction. The main arm front portion 26 connects front ends of the two main arm sidewall portions 21 to each other. The main arm front portion 26 is in contact with a stem end of the valve 77. The main arm rear portion 22 connects rear end portions of the two main arm sidewall portions 21 to each other.
Projections 28 projecting outward in the width direction are provided on both side surfaces of the main arm rear portion 22, and a coil portion 29b of a lost motion spring 29 is externally fitted to each of the projections 28. Each lost motion spring 29 includes the coil portion 29b and a first side portion 29a and a second side portion 29c extending from the coil portion 29b. The first side portion 29a abuts on the rear end portion of a corresponding one of the main arm sidewall portions 21, and the second side portion 29c abuts on a projection 19 provided at an upper portion of a corresponding one of the switch arm sidewall portions 11. The lost motion spring 29 is a spring that causes the switch arm 10 to follow the cam 9 in the disconnected state.
As illustrated in
The switch pin 30 is inserted in a pin hole 23 that is provided in the main arm rear portion 22 so as to extend in the longitudinal direction of the main arm 20, and thus the switch pin 30 is attached to the main arm rear portion 22 so as to be displaceable in the longitudinal direction of the main arm 20. The switch pin 30 includes a pin large-diameter portion 31 on the rear side thereof and a pin small-diameter portion 35 on the front side thereof . The pin small-diameter portion 35 has a diameter smaller than that of the pin large-diameter portion 31. The pin hole 23 has a pin hole large-diameter portion 23a on the rear side thereof and a pin hole small-diameter portion 23b on the front side thereof. The diameter of the pin hole large-diameter portion 23a is substantially equal to the outside diameter of the pin large-diameter portion 31. The diameter of the pin hole small-diameter portion 23b is substantially equal to the outside diameter of the pin small-diameter portion 35.
The switch pin 30 is displaced rearward along the pin hole 23, so that the switch pin 30 is displaceable to a disconnected position C−. The disconnected position C− is a position in which the pin small-diameter portion 35 no longer extends across the main arm rear portion 22 and the switch arm rear portion 12 as the front portion of the pin small-diameter portion 35 recedes into the pin hole 23.
The displacing device 40 includes a spring 41 and hydraulic device 45. The spring 41 is interposed between a retainer 42 attached to the pin hole large-diameter portion 23a and the switch pin 30, and urges the switch pin 30 toward a connected position C+ (forward). The hydraulic device 45 includes an oil passage 46 and a hydraulic chamber 47. The oil passage 46 is a passage through which hydraulic pressure is supplied to the hydraulic chamber 47. The oil passage 46 extends to the hydraulic chamber 47 through the inside of a cylinder head, the inside of the pivot 50, and the inside of the main arm rear portion 22. The hydraulic chamber 47 is formed by filling a space in the pin hole large-diameter portion 23a formed on the front side of the pin large-diameter portion 31 with oil. The hydraulic pressure in the hydraulic chamber 47 presses the pin large-diameter portion 31 toward the disconnected position C− (rearward). The hydraulic device 45 relatively increases the hydraulic pressure (turns on the hydraulic pressure) in the hydraulic chamber 47 so as to displace the switch pin 30 to the disconnected position C− against the urging force of the spring 41. The variable valve mechanism 1 is thus switched to the disconnected state.
As illustrated in
As illustrated in
The hydraulic device 45 relatively reduces the hydraulic pressure (turns off the hydraulic pressure) in the hydraulic chamber 47 so as to displace the switch pin 30 to the connected position C+ with the urging force of the spring 41. Accordingly, the variable valve mechanism 1 is switched to the connected state.
As illustrated in
As illustrated in
Hereinafter, an edge of the pin end surface 36 on the idle swing direction D1 side is referred to as an “idle-swing-side edge E1”; an edge of the pin end surface 36 on the return direction D2 side is referred to as a “return-side edge E2”; the center position of a pressing force applied to the pin end surface 36 in a sliding contact portion of the pressing surface 13 with the pin end surface 36 is referred to as a “pressing center p”; and the center position of the pressing force received from the pressing surface 13 in a sliding contact portion of the pin end surface 36 with the pressing surface 13 is referred to as a “pressed center p”. The same symbol “p” is assigned in this manner because the pressing center p of the pressing surface 13 and the pressed center p of the pin end surface 36 abut on and coincide with each other.
At the sliding contact start time t1 illustrated in
During a period from the sliding contact start time t1 through a first-half intermediate time t2 illustrated in
At the return side shift start time t3, a portion of the pressing surface 13 on the idle swing direction D1 side is in sliding contact with the pin end surface 36. During a period from the return side shift start time t3 through a second-half intermediate time t4 illustrated in
A length L1 from the idle-swing-side edge E1 to the pressed center p at the sliding contact start time t1 along the pin end surface 36 is substantially 45% to 55% of the pin end surface length Le. A length L3 from the pressed center p at the return side shift start time t3 to the return-side edge E2 along the pin end surface 36 is substantially 70% to 80% of the pin end surface length Le.
The 10% position time t5 is a time when a length L5 from the pressed center p to the return-side edge E2 along the pin end surface 36 is 10% of the pin end surface length Le. The angle θ by which the switch arm 10 swings in the return direction D2 during a period from the 10% position time t5 to the sliding contact end time t6 is substantially 1.5 degrees to 2.5 degrees. The angle θ is much smaller than a corresponding angle Θ of a conventional example illustrated in
According to the present embodiment, the following effects can be obtained.
[A] Since the pressing surface 13 does not contact the idle-swing-side edge E1 at the sliding contact start time t1, the switch pin 30 is difficult to be subjected to an excessive bending load.
[B] Since the pressing surface 13 does not sliding contact with the idle-swing-side edge E1 at the sliding contact start time t1, the idle-swing-side edge E1 does not wear. Since the pressed center p merely passes through the return-side edge E2 immediately before the sliding contact end time t6 and does not stop at the return-side edge E2, the return-side edge E2 is difficult to wear. This allows minimizing adverse effects on switching response that result from wear of edges of the pin end surface 36.
1 variable valve mechanism
9 cam
10 switch arm
20 main arm
21 main arm sidewall portion
22 main arm rear portion (connecting portion)
30 switch pin
36 pin end surface
40 displacing device
41 spring
45 hydraulic device
77 valve
D1 idle swing direction
D2 return direction
E1 idle-swing-side edge
E2 return-side edge
C− disconnected position
C+ connected position
p pressed center
t1 sliding contact start time
t3 return side shift start time
t5 10% position time
t6 sliding contact end time
Number | Date | Country | Kind |
---|---|---|---|
2017-001739 | Jan 2017 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6925978 | Gerzseny et al. | Aug 2005 | B1 |
7798113 | Fischer | Sep 2010 | B2 |
Number | Date | Country |
---|---|---|
102006057895 | Jun 2008 | DE |
WO 2008138776 | Nov 2008 | WO |
Entry |
---|
European Search Report, dated Jun. 11, 2018, in European Patent Application No. 17205841.4. |
Number | Date | Country | |
---|---|---|---|
20180195421 A1 | Jul 2018 | US |