The present invention relates to a variable valve operating device for an internal combustion engine, and more particularly to a variable valve operating device that is capable of mechanically changing the operating characteristic of a valve.
A conventionally known variable valve operating device that is disclosed, for instance, by Japanese Patent Laid-open No. 2003-239712 mechanically changes the valve lift amount and valve timing in accordance with the operating state of an engine. In the variable valve operating device described in Japanese Patent Laid-open No. 2003-239712, a guide arm is fastened to a control shaft, which is positioned in parallel with a camshaft. One end of a follower is installed over the guide arm and allowed to swing freely. A swing cam is installed over the control shaft and allowed to swing freely, and a rocker arm is pressed against a surface of the swing cam. A first roller and a second roller, which can rotate independently of each other, are concentrically installed over the follower. The first roller is in contact with a valve cam of the camshaft, whereas the second roller is in contact with a contact surface that is formed opposite the swing cam surface of the swing cam.
When the control shaft rotates to vary the rotation position of the guide arm in a situation where the above configuration is employed, the follower becomes displaced to change the distance between the control shaft and the contact position between the swing cam and the second roller, thereby changing the lift amount of the valve. Further, when the circumferential position of the valve cam, which comes into contact with the first roller at the same rotation position of the camshaft, varies, the valve timing simultaneously changes. In other words, the variable valve operating device described in Japanese Patent Laid-open No. 2003-239712 is capable of simultaneously changing the valve's lift amount and valve timing by using a motor to control the rotation position of the control shaft.
Including the above-mentioned document, the applicant is aware of the following documents as a related art of the present invention.
[Patent Document 1]
Japanese Patent Laid-open No. 2003-239712
[Patent Document 2]
Japanese Patent Laid-open No. 2002-371819
[Patent Document 3]
Japanese Patent Laid-open No. 2004-108302
[Patent Document 4]
Japanese Patent Laid-open No. Hei7-63023
[Patent Document 3]
Japanese Patent Laid-open No. 2002-371816
When the variable valve operating device described in Japanese Patent Laid-open No. 2003-239712 is used, the valve cam transmits a driving force to the swing cam via the first and second rollers. When, as described above, a roller is used as a member that comes into contact with the valve cam, and another roller is used as a member that comes into contact with the swing cam, it is possible to reduce friction prevailing during driving force transmission and improve the fuel efficiency of an internal combustion engine.
However, when a roller is used as a driving force transmission member, it is necessary to pay attention to contact surface pressure (Hertzian stress) that is exerted between the roller and its mating member. When the valve cam is used for driving purposes in the variable valve operating device described in Japanese Patent Laid-open No. 2003-239712, a high contact surface pressure is exerted on the contact between the valve cam and the first roller and on the contact between the swing cam and the second roller due to reaction force generated by a valve spring and lost motion spring. Therefore, adequate durability might not be obtained depending on the materials and shapes of the members. The simplest method for reducing the contact surface pressure would be to enlarge the diameter of each roller. However, if the diameter of each roller is increased, it is necessary to increase the distance between the valve cam and swing cam accordingly. As a result, an increase in the roller diameter enlarges the size of the variable valve operating device.
The present invention has been made to solve the above problem. It is an object of the present invention to provide a compact, highly durable variable valve operating device that is capable of inhibiting friction that may arise during driving force transmission.
The above object is achieved by a variable valve operating device according to a first aspect of the present invention. The variable valve operating device mechanically changes the operating characteristic of a valve relative to the rotation of a camshaft. The variable valve operating device comprises a drive cam installed over the camshaft; a swing member that swings on a stationary shaft; a swing cam surface that is formed on the swing member, comes into contact with a valve support member, which supports the valve, and presses the valve in a lifting direction; a slide surface that is formed on the swing member so as to face the drive cam; an intermediate member that is positioned between the drive cam and the swing member and comes into contact with both the slide surface and a cam surface of the drive cam; a control shaft that is positioned in parallel with the camshaft and capable of changing the rotation position continuously or stepwise; and an interlock mechanism that changes the position of the intermediate member in interlock with the rotation of the control shaft; wherein the intermediate member includes a first roller, which has a large diameter and comes into contact with a cam surface of the drive cam; a second roller, which is positioned concentrically with the first roller, has a small diameter, and comes into contact with the slide surface; and a coupling shaft, which couples the first roller and the second roller so that the first roller and the second roller can rotate independently; and wherein the slide surface is curved toward the drive cam.
When, in the first aspect of the present invention, the camshaft rotates, its rotary motion is transmitted from the drive cam to the first roller and conveyed to the slide surface of the swing member via the second roller, which is coaxial with the first roller. In this instance, contact surface pressure is exerted between the first roller and the cam surface of the drive cam and between the second roller and the slide surface. However, the contact surface pressure between the first roller and the cam surface of the drive cam is reduced because the first roller has a larger diameter than the second roller. The contact surface pressure between the second roller and the slide surface is reduced because the slide surface is curved toward the drive cam surface. Further, since the second roller, which comes into contact with the slide surface, has a smaller diameter than the first roller, an increase in the distance between the slide surface and the cam surface of the drive cam is inhibited. Therefore, the first aspect of the present invention not only provides increased durability due to a decrease in the contact surface pressure, but also makes the whole variable valve operating device compact.
According to a second aspect of the present invention, there is provided the variable valve operating device as described in the first aspect, wherein the second roller is positioned on both sides of the first roller; and wherein the two second rollers come into contact with the slide surface to input a driving force to the slide surface.
According to the second aspect of the present invention, the driving force, which is input from the drive cam to the first roller, and the reaction force, which is input from the slide surface of the swing member to the second rollers on both sides, balance at the center of the coupling shaft. Therefore, it is possible to inhibit the coupling shaft from bending.
According to a third aspect of the present invention, there is provided the variable valve operating device as described in the second aspect, wherein the swing member is provided for each of the two second rollers; and wherein the valve is provided for each of the two swing members.
According to the third aspect of the present invention, a driving force can be uniformly transmitted to the two valves.
According to a fourth aspect of the present invention, there is provided the variable valve operating device as described in the first aspect, wherein the second roller is positioned between two units of the first roller; and wherein each of the two first rollers comes into contact with a cam surface of the drive cam to receive a driving force input from the drive cam.
According to the fourth aspect of the present invention, the driving force, which is input from the cam surface of the drive cam to the first rollers on both sides, and the reaction force, which is input from the slide surface to the second roller at the center, balance at the center of the coupling shaft. Therefore, it is possible to inhibit the coupling shaft from bending.
An embodiment of the present invention will now be described with reference to
[Configuration of Variable Valve Operating Device According to Present Embodiment]
In the variable valve operating device 100, the drive cam 122 does not directly drive the rocker arm 110. An adjustment mechanism 130 is positioned between the drive cam 122 and rocker arm 110 to coordinate the swing motion of the rocker arm 110 with the rotary motion of the drive cam 122. The variable valve operating device 100 can exercise variable control over the adjustment mechanism 130 to continuously change the coordination between the rotary motion of the drive cam 122 and the swing motion of the rocker arm 110. This makes it possible to vary the swing amount and swing timing of the rocker arm 110, thereby continuously changing the lift amount and valve timing of the valve 104.
As described below, the adjustment mechanism 130 mainly comprises a control shaft 132, a swing cam arm (swing member) 150, a control arm (control member) 160, a control link (link member) 164, a first roller 170, a second roller 172, and a coupling shaft 174, which couples the first roller 170 to the second roller 172. The control shaft 132 is parallel to the camshaft 120. The position of the control shaft 132 relative to the camshaft 120 is fixed so that the control shaft 132 is positioned downstream of the rocker arm 110 in the rotation direction of the camshaft 120. A first gear 134, which is concentric with the control shaft 132, is installed over an outer circumferential surface of the control shaft 132 and fastened to the control shaft 132. An actuator (not shown) such as a motor is connected to the control shaft 132. An ECU for an internal combustion engine can adjust the rotation position of the control shaft 132 as desired by controlling the actuator.
The swing cam arm 150 is supported by the control shaft 132 and allowed to swing. The leading end of the swing cam arm 150 is positioned upstream in the rotation direction of the drive cam 122. A slide surface 156 that comes into contact with the second roller 172 is formed on the side on which the swing cam arm 150 faces the drive cam 122. The slide surface 156 is gradually curved toward a surface of the drive cam 122, and formed so that the distance from a cam base circle (nonoperating surface 124a) of the drive cam 122 increases with an increase in the distance from the center of the control shaft 132, which is a swing center.
A swing cam surface 152 is formed on the side opposite the slide surface 156 of the swing cam arm 150. The swing cam surface 152 is a cam surface whose cam center coincides with the swing center of the swing cam arm 150, and comprises a nonoperating surface 152a and an operating surface 152b, which have different profiles. The nonoperating surface 152a is a circumferential surface of the cam base circle and formed at a fixed distance from the center of the control shaft 132. The other surface, which is the operating surface 152b, is positioned toward the leading end of the swing cam arm 150 as viewed from the nonoperating surface 152a, connected smoothly and contiguously to the nonoperating surface 152a, and formed so that the distance from the center of the control shaft 132 (that is, the cam height) gradually increases with a decrease in the distance to the leading end of the swing cam arm 150. In this document, the term “swing cam surface 152”, is used when the nonoperating surface 152a and operating surface 152b are not distinguished from each other.
The variable valve operating device 100 employs a one-cam, two-valve drive structure in which one drive cam 122 drives two valves 104. Therefore, the swing cam arm 150 is positioned on both sides of the drive cam 122 as shown in the front view (schematic diagram) in
The swing cam arm 150 is provided with a spring seat 158 for engagement with a lost motion spring (not shown). The spring seat 158 relates to the nonoperating surface 152a and is formed on the side opposite the operating surface 156b. The lost motion spring is a compression spring. Its remaining end is secured by a stationary member (not shown). The spring force that the lost motion spring applies to the spring seat 158 presses the swing cam arm 150 to rotate it toward the slide surface 156.
The control arm 160 is supported by the camshaft 120 and allowed to rotate. The control arm 160 is provided with a second gear 162, which is fan-shaped and formed around the rotation center of the control arm 160, that is, along an arc concentric with the camshaft 120. The position of the control arm 160 on the camshaft 120 is adjusted so that the second gear 162 is in the same plane as the first gear 134. Further, the rotation phase of the control arm 160 is adjusted so that the second gear 162 faces the first gear 134. The second gear 162 meshes with the first gear 134, and the rotation of the control shaft 132 is input to the control arm 160 via the first gear 134 and the second gear 162. In other words, the first gear 134 and the second gear 162 constitute a rotation interlock mechanism that interlocks the rotation of the control arm 160 with that of the control shaft 132. Further, the second gear 162 has a larger diameter than the first gear 134. Therefore, the first gear 134 and the second gear 162 also constitute a speed reducing mechanism that decelerates the rotation of the control shaft 132 and transmits the decelerated rotation to the control arm 160.
The control arm 160 is provided with the control link 164. The control link 164 is positioned eccentrically to the center of the camshaft 120, which is the turning center of the control arm 160, and allowed to rotate freely. The control link 164 has connection pins 166 (only one of them is shown in
The control link 164 has a pair of arms 168 (right- and left-hand arms) as shown in the exploded view in
The leading end of the control link 164 is oriented toward the control shaft 132 so that the control link 164 faces in the drawing direction of the swing cam arm 150. The rollers 170, 172 are positioned between the drive cam surface 124 and slide surface 156. As shown in the front view (schematic diagram) in
[Operations Performed by Variable Valve Operating Device According to Present Embodiment]
Operations performed by the variable valve operating device 100 will now be described with reference to
(1) Lift Operation of Variable Valve Operating Device
A lift operation performed by the variable valve operating device 100 will now be described with reference to
In the variable valve operating device 100, the rotary motion of the drive cam 122 is first input to the first roller 170, which comes into contact with the drive cam surface 124. The first roller 170 and the second rollers 172, which are coaxial and integral with each other, turn on the pin 166. The turning motion is input to the slide surface 156 of the swing cam arm 150, which supports the second rollers 172. Since the force of the lost motion spring (not shown) constantly presses the slide surface 156 against the second rollers 172, the swing cam arm 150 swings on the control shaft 132 in accordance with the rotation of the drive cam 122.
More specifically, when the camshaft 120 rotates in the state shown in
When the swing cam arm 150 turns around the control shaft 132 as described above, the contact position P3 at which the rocker roller 112 contacts the swing cam surface 152 changes. In
When the rocker roller 112 is in contact with the nonoperating surface 152a as indicated in
When the contact position P3 at which the rocker roller 112 contacts the swing cam surface 152 changes from the nonoperating surface 152a to the operating surface 152b as indicated in
(2) Lift Amount Change Operation of Variable Valve Operating Device
A lift amount change operation performed by the variable valve operating device 100 will now be described with reference to
When the lift amount is to be changed from the lift amount shown in
When the second rollers 172 move away from the control shaft 132, the distance between the swing center C0 of the swing cam arm 150 and the contact position P2 at which the second rollers 172 contact the slide surface 156 increases, thereby decreasing the swing angle of the swing cam arm 150. The reason is that the swing angle of the swing cam arm 150 is in inverse proportion to the distance between the swing center C0 and the contact position P2, which is an oscillation input point. As indicated in
In the variable valve operating device 100 according to the present embodiment, the slide surface 156 is formed so that the distance to the cam base circle (nonoperating surface 124a) of the drive cam 122 increases with an increase in the distance to the swing center. Therefore, when the aforementioned contact position P2 moves away from the swing center C0 of the swing cam arm 150, the swing cam arm 150 inclines in such a direction that the slide surface 156 approaches the drive cam surface 124. The swing cam arm 150 turns counterclockwise around the control shaft 132 as viewed in the figures. This causes the initial contact position P3i of the rocker roller 112 on the swing cam surface 152 to move away from the operating surface 152b as indicated in
When the control shaft 132 rotates in the same direction as that of the camshaft 120, the swing angle of the swing cam arm 150 decreases and the initial contact position P3i moves away from the operating surface 152b. Consequently, the final contact position P3f that the rocker roller 112 can reach moves toward the nonoperating surface 152a as indicated in
[Advantages of Variable Valve Operating Device According to Present Embodiment]
When driving force is transmitted from the drive cam 122 to the swing cam arm 150, contact surface pressure (Hertzian stress) is exerted between the drive cam surface 124 and the first roller 170 and between the slide surface 156 and the second rollers 172. In the variable valve operating device 100 according to the present embodiment, the first roller 170 has a larger diameter than the second rollers 172. Therefore, the contact surface pressure (Hertzian stress) between the drive cam surface 124 and the first roller 170 is reduced. Further, since the second rollers 172 do not come into contact with the drive cam surface 124, the drive cam surface 124 can be brought into contact with the overall width of the first roller 170. The resulting increase in the contact length also reduces the contact surface pressure. Meanwhile, the contact surface pressure between the second rollers 172 and the slide surface 156 is reduced because the slide surface 156 is formed as a concave surface that is curved toward the drive cam surface 124. Consequently, the variable valve operating device 100 according to the present embodiment provides increased durability.
Further, since the second rollers 172 have a smaller diameter than the first roller 170, the distance between the drive cam surface 124 and slide surface 156 is suppressed. Furthermore, since the second rollers 172 do not come into contact with the drive cam surface 124, the axial length of the variable valve operating device 100 can be suppressed by positioning the second rollers 172 near the first roller 170. Consequently, the variable valve operating device 100 according to the present embodiment makes it possible to not only provide increased durability by decreasing the contact surface pressure as described above, but also make the whole variable valve operating device compact.
Moreover, since the second rollers 172 are positioned on both sides of the first roller 170, the driving force, which is input from the drive cam surface 124 to the first roller 170, and the reaction force, which is input from the slide surface 156 to the second rollers 172 on both sides, balance at the center of the coupling shaft 174. Therefore, it is possible to provide increased rigidity by inhibiting the coupling shaft 174 from bending, and transmit a driving force uniformly to the two valves 104.
[Other]
While the present invention has been described in terms of a preferred embodiment, it should be understood that the invention is not limited to the preferred embodiment, and that variations may be made without departure from the scope and spirit of the invention. For example, the following modifications may be made to the preferred embodiment of the present invention.
The embodiment described above assumes that the present invention is applied to a variable valve operating device having a one-cam, two-valve drive structure. However, the present invention can also be applied to a variable valve operating device having a one-cam, one-valve drive structure.
In the embodiment described above, the present invention is applied to a rocker arm type valve operating device. However, the present invention can also be applied to a direct acting or other valve operating device.
Further, the adjustment mechanism for the variable valve operating device according to the present invention is not limited to the adjustment mechanism 130 that is configured in accordance with the embodiment described above. The present invention can be applied to a wide variety of variable valve operating devices as far as they include an adjustment mechanism that transmits the rotary motion of the drive cam to the swing member via an intermediate member.
Number | Date | Country | Kind |
---|---|---|---|
2004-252511 | Aug 2004 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2005/016184 | 8/30/2005 | WO | 00 | 1/25/2007 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2006/025564 | 3/9/2006 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6357405 | Tsuji et al. | Mar 2002 | B1 |
Number | Date | Country |
---|---|---|
A 06-093816 | Apr 1994 | JP |
A 06-307219 | Nov 1994 | JP |
A 07-063023 | Mar 1995 | JP |
A 2001-164911 | Jun 2001 | JP |
A 2002-371816 | Dec 2002 | JP |
A 2002-371819 | Dec 2002 | JP |
A 2003-239712 | Aug 2003 | JP |
A 2004-108302 | Apr 2004 | JP |
Number | Date | Country | |
---|---|---|---|
20090038567 A1 | Feb 2009 | US |