The present invention relates in general to variable valve systems of an internal combustion engine, and more particularly to the variable valve systems of a type that exhibits a satisfied performance in exhaust emission reduction in a certain time that follows the engine starting.
One of the variable valve systems of the above-mentioned type is shown in Japanese Laid-open Patent Application (Tokkai) 2005-233049. In the variable valve system of this publication, by selectively charging and discharging timing advancing and retarding hydraulic chambers formed in a housing, a vane member connected to a camshaft is turned in one or other direction by a controlled angle, so that an open/close timing (viz., valve timing) of each intake valve is varied or controlled in accordance with an operation condition of the engine. Before stopping the engine, the vane member is controlled to take an intermediate position with a slight advance and locked at the position by a lock pin thereby to suppress a free relative rotation between the housing and the vane member. With this, a suitable valve overlap between the intake and exhaust valves is provided, which exhibits a certain reduction in exhaust emission in a certain time that follows the engine starting, particularly, in the time that follows a cold engine starting.
However, even the above-mentioned variable valve system fails to exhibit a satisfied performance in exhaust emission reduction particularly when the engine is subjected to a hard braking and/or sudden stopping. That is, since the intermediate position taken by the vane member is not mechanically stable, the lock operation for projecting the lock pin into a lock opening is not assuredly carried out under such hard condition. In this case, the vane member can't be locked at a desired advanced angular position, and thus, satisfied reduction in exhaust emission at the cold engine starting is not achieved.
In view of the above, one measure may be thought out wherein upon cold starting of the engine, a certain amount of hydraulic fluid is fed to the timing advancing hydraulic chambers to turn the vane member in a timing advancing direction for providing a certain degree of valve overlap between the intake and exhaust valves. However, in cold starting of the engine, the hydraulic fluid shows a very low temperature and thus shows a high viscosity. Due to the high viscosity of the hydraulic fluid, feeding the hydraulic fluid to the timing advancing hydraulic chambers is not instantly made, and thus, the relative rotation between the housing and the vane member is not smoothly carried out, which brings about a poor performance in reducing exhaust emission in the time that follows the engine starting.
Accordingly, it is an object of the present invention to provide a variable valve system of an internal combustion engine, which is free of the above-mentioned drawbacks.
According to the present invention, there is provided a variable valve system of an internal combustion engine, in which upon stopping of an engine, a mechanically stable valve overlap between intake and exhaust valves is provided by a cooperated work between an intake side phase varying mechanism and an exhaust side phase varying mechanism, so that subsequent starting (or re-starting) of the engine is carried out with the mechanically stable valve overlap, which brings about satisfied reduction in exhaust emission in a certain time that follows the engine starting.
In accordance with a first aspect of the present invention, there is provided a variable valve system of an internal combustion engine which comprises an intake side phase varying mechanism that varies an open/close timing of an intake valve; an exhaust side phase varying mechanism that varies an open/close timing of an exhaust valve, before starting the engine, one of the intake and exhaust side phase varying mechanisms being caused to keep a first position wherein the intake and exhaust valves show the largest valve overlap therebetween and the other of the mechanisms being caused to keep a second position wherein the intake and exhaust valves show the smallest valve overlap therebetween; and a controller that is configured to carry out, after starting the engine, causing the selected one of the intake and exhaust side phase varying mechanisms to be actually controlled to the first position and causing the other to be actually controlled to the second position.
In accordance with a second aspect of the present invention, there is provided a variable valve mechanism of an internal combustion engine, which comprises an intake side phase varying mechanism that varies an open/close timing of an intake valve; and an exhaust side phase varying mechanism that varies an open/close timing of an exhaust valve, before starting the engine, one of the intake and exhaust side phase varying mechanisms being caused to keep a first position wherein the intake and exhaust valves show the largest valve overlap therebetween and the other of the mechanisms being caused to keep a second position wherein the intake and exhaust valves show the smallest valve overlap therebetween.
In accordance with a third aspect of the present invention, there is provided a phase varying mechanism for varying an open/close timing of an exhaust valve of an internal combustion engine, which comprises a device that causes the open/close timing of the exhaust valve to take the most retarded timing before starting the engine.
In accordance with a fourth aspect of the present invention, there is provided a method of controlling a variable valve system of an internal combustion engine, the variable valve system including an intake side phase varying mechanism that varies an open/close timing of an intake valve and an exhaust side phase varying mechanism that varies an open/close timing of an exhaust valve, the method comprising, before starting the engine, causing one of the intake and exhaust side phase varying mechanisms to keep a first position wherein the intake and exhaust valves show the largest valve overlap therebetween and causing the other to keep a second position wherein the intake and exhaust valves show the smallest valve overlap therebetween; and after starting the engine, causing the selected one of the intake and exhaust side phase varying mechanisms to be actually controlled to the first position and causing the other to be actually controlled to the second position.
Other objects and advantages of the present invention will become apparent from the following description when taken in conjunction with the accompanying drawings, in which:
In the following, two embodiments 100 and 200 of the present invention will be described in detail with reference to the accompanying drawings.
First embodiment 100 is shown in
For ease of understanding, various directional terms, such as, right, left, upper, lower, rightward and the like are used in the following description. However, such terms are to be understood with respect to only a drawing or drawings on which a corresponding portion or part is shown.
As will become clear as the description proceeds, the variable valve system of the present invention is applied to a four-cycle internal combustion engine operated on gasoline.
Referring to
As shown in the drawing, the variable valve system comprises generally intake and exhaust side timing pulleys 04 and 05 to which a torque of a crankshaft 01 is transmitted through a drive pulley 02 and a timing chain 03, intake and exhaust side cam shafts 06 and 07 to which toques of timing pulleys 04 and 05 are respectively transmitted, two intake side cams 08 and 08 that are mounted on intake side cam shaft 06 for opening respective intake valves (not shown) against the force of biasing springs (not shown) and two exhaust side cams 09 and 09 that are mounted on exhaust side cam shaft 07 for opening respective exhaust valves (not shown) against the force of biasing springs (not shown). Although not shown in the drawing, the two intake valves and two exhaust valves are possessed by each cylinder of the engine.
As is seen from
Exhaust and intake side phase varying mechanisms (viz., exhaust-VTC and intake-VTC) 1 and 2 are of a vane type and have generally the same construction.
As is seen from
As is seen from
As is seen from
As is seen from
Furthermore, as is understood from
As is seen from
As is seen from
As is seen from
As is seen from
As shown in
As is seen from
As shown, each vane 3b is placed between adjacent two shoes 5a of cylindrical housing 5, and each vane 3b is formed at an outwardly projected part thereof with an axially extending holding groove (no numeral) in which an elongate seal member 10 is operatively held. Seal member 10 has a generally U-shaped cross section. Although not shown in the drawing, a leaf spring is received in each holding groove for biasing seal member 10 radially outward, that is, toward the cylindrical inner surface of cylindrical housing 5.
Furthermore, as is seen from
Due to provision of the four vanes 3b and the four shoes 5a that are arranged in the above-mentioned manner, four advancing hydraulic chambers 11 and four retarding hydraulic chambers 12 are defined at both sides of the vanes 3b.
As is seen from
As is seen from
Between a cylindrical outer surface of the right end portion of rod member 20 and a cylindrical inner surface of supporting bore end portion 3d, there are operatively arranged three annular seal members 21 that are held by the rod member 20.
First hydraulic passage 13 is connected to a work chamber 13a that is defined by the above-mentioned supporting bore end portion 3d and closed by the right end of rod member 20. Work chamber 13a is connected to four advancing hydraulic chambers 11 through four branch passages 13b that are radially provided in vane rotor part 3a of vane member 3 at evenly spaced intervals.
While, second hydraulic passage 14 has its terminal right end in rod member 20, as shown. Second hydraulic passage 14 is connected to an annular groove 14a formed around the cylindrical right end portion of rod member 20. For this connection, a branch passage 14c is formed in rod member 20. Annular groove 14a is connected to four retarding hydraulic chambers 12 through respective second passages 14b formed in annular vane rotor part 3a of vane member 3. Each second passage 14b is generally L-shaped.
Electromagnetic switch valve 17 is of a four port three position type, whose valve element moves to change a fluid connection between each of hydraulic passages 13 and 14 and each of feeding passage 15 and drain passage 16. Such movement of valve element is controlled by the control unit 22. By means of a biasing spring 17a, the valve element is biased to move in a given direction.
Due to the switching operation of switch valve 17, retarding hydraulic chambers 12 are fed with a hydraulic fluid upon engine starting, and thereafter, advancing hydraulic chambers 11 are fed with the hydraulic fluid.
Between vane member 3 and cylindrical housing 5, there is arranged a lock mechanism that is capable of locking vane member 3 relative to cylindrical housing 5.
That is, as is seen from
That is, when vane member 3 is turned to the most retarded timing position (viz., first position), lock pin 27 (more specifically, the tapered head 27a) is brought into tapered bore 28a due to the biasing force of coil spring 30. Upon this, as is seen from
As is seen from
These two coil springs 31 in each retarding hydraulic chamber 12 are independently provided and arranged to extend in parallel with each other. These two coil springs 31 have the same length and are sized to produce a certain biasing force even when vane member 3 assumes the most retarded timing position as shown in
These two coil springs 31 are sufficiently spaced apart from each another, so that even when compressed maximally, these coil springs 31 show no mechanical contact therebetween. Each coil spring 31 has one end fixed to a retainer (not shown) that is tightly put in the above-mentioned circular recess 3c of each vane 3b.
It is to be noted that
In the first embodiment 100 of the present invention, a variable angle “Θe” of vane member 3 in the exhaust side, that is, to a difference between the most retarded timing position of
As is seen from
It is however to be noted that in case of intake side phase varying mechanism 2, a variable angle “Θi” of vane member 3, that is, the difference between the most retarded timing position of vane member 3 shown in
In the following, operation of exhaust side phase varying mechanism (exhaust-VTC) 1 will be described with the aid of the accompanying drawings, particularly
For ease of understanding, the description will be commenced with respect to a condition wherein the vehicle is under idling condition. Under such condition, vane member 3 of the mechanism 1 assumes a position other than the most retarded and advanced timing positions, and electromagnetic switch valve 17 assumes a condition wherein feeding passage 15 is communicated with first hydraulic passage 13 and drain passage 16 is communicated with second hydraulic passage 14.
When now an ignition key is turned off, control current from control unit 22 to electromagnetic switch valve 17 stops and thus with the force of biasing spring 17a, the valve element of the switch valve 17 is moved to the position as shown in
However, as will be understood from
In this stable position, vane member 3 assumes the most retarded timing position (viz., first position) wherein as is shown in
Under this condition, the phase of exhaust side cam shaft 07 relative to exhaust side timing pulley 05 (or crankshaft of the engine) is controlled to the most retarded side.
Upon this, lock pin 27 is thrust into tapered bore 28a of catch member 28 (see
Accordingly, even under cranking of the engine which tends to produce a marked fluctuation of engine rotation, the most retarded timing position (viz., first position) of exhaust side cam shaft 07 is stably kept. Due to the locked engagement between vane member 3 and exhaust side cam shaft 07 by lock pin 27, undesired vibration of vane member 3 and that of exhaust side cam shaft 07 are sufficiently suppressed. Accordingly, the valve timing control is stably carried out. That is, improved starting of the engine and reduction in exhaust emission in a time that follows the cold engine starting are assuredly obtained.
In the following, operation of intake side phase varying mechanism (viz., intake-VTC) 2 will be described with the aid of
Like the above-mentioned exhaust side phase varying mechanism (viz., exhaust-VTC) 1, due to friction of the valve mechanism caused by alternating torque applied to intake side cam shaft 06 (see
In this stable position, vane member 3 of intake side phase varying mechanism (viz., intake-VTC) 2 assumes the most retarded timing position (viz., second position) wherein as is shown in
Under this condition, the phase of intake side cam shaft 06 relative to intake side timing pulley 04 (or crankshaft of the engine) is controlled to the most retarded timing side.
Upon this, for the same reasons as is mentioned hereinabove, lock pin 27 is thrust into tapered bore 28a of catch member 28 due to the force of the coil spring 30. Thus, relative rotation between intake side timing pulley 04 and intake side cam shaft 06 is suppressed thereby assuredly establishing the most retarded timing position of intake side cam shaft 06.
With this, the open timing (viz., IVO) of the intake valves under intake stroke of the piston is controlled to the most retarded timing that is in the vicinity of the top dead center (viz., TDC).
As is seen from
Accordingly, as is seen from
When, with the above-mentioned suitable valve overlap kept between the intake and exhaust valves, the engine is subjected to a cold starting, the following advantageous actions are expected.
That is, residual gases are led back to the intake system of the engine to re-burn the unburned HC gases, and the heated residual gases warm the intake system to promote atomization of fuel thereby sufficiently suppressing generation of HC gases.
If the valve overlap takes an excessive degree, the amount of inert gases (viz., residual gases) in the combustion chamber is increased remarkably. In this case, a desired torque is not produced by the engine, which induces instability of engine operation. However, the suitable overlap degree, viz., 30 degrees of valve overlap, not only avoids the instability of engine operation but also induces reduction in exhaust emission in a certain time that follows the cold engine starting.
As is understood from
That is, upon starting the engine with the above-mentioned suitable valve overlap, the pressurized hydraulic fluid from oil pump 19 (see
However, as the pressure in the respective retarding hydraulic chambers 12 and 12 increases, the hydraulic pressure in tapered bore (or work chamber) 28a of each mechanism (exhaust-VTC or intake-VTC) 1 or 2 increases because of the fluid communication therebetween. Accordingly, when the hydraulic pressure in tapered bore 28a is increased to a certain level, lock pin 27 is disengaged from tapered bore 28a against the force of coil spring 30. Upon this, vane member 3 in each mechanism 1 or 2 is permitted to make a rotational movement relative to exhaust or intake side cam shaft 07 or 06.
Then, the following operation is carried out in both mechanisms (viz., exhaust-VTC and intake-VTC) 1 and 2.
That is, in intake side phase varying mechanism (viz., intake-VTC) 2, the same control current from control unit 22 is continuously fed to electromagnetic switch valve 17 thereby to continuously feed the four retarding hydraulic chambers 12 of the mechanism 2 with the hydraulic fluid. Accordingly, due to the force coil springs 31 and the pressure possessed by the hydraulic fluid in the work chambers 12, vane member 3 of the mechanism 2 keeps the most retarded timing position. Accordingly, the open/close timing of the intake valves is kept unchanged and as is seen from
While, in exhaust side phase varying mechanism (viz., exhaust-VTC) 1, a different control current is fed from control unit 22 to the electromagnetic switch valve 17 to feed the four retarding hydraulic chambers 12 of the mechanism 1 with the hydraulic fluid from oil pump 19. Thus, the vane member 3 is turned to the most retarded timing position. Accordingly, as is seen from
When warming-up of the engine advances, low load operation of the engine shows such a control of intake and exhaust valves as shown by
When then the engine is shifted to an intermediate load range or low speed high load range, control unit 22 feeds respective switch valves 17 and 17 of exhaust and intake side phase varying mechanisms (viz., exhaust-VTC and intake-VTC) 1 and 2 with given switching signals. Upon this, electromagnetic switch valve 17 of exhaust side phase varying mechanism (viz., exhaust-VTC) 1 is de-energized, so that feeding passage 15 and second hydraulic passage 14 become communicated and at the same time first hydraulic passage 13 and drain passage 16 become communicated. At the same time, electromagnetic switch valve 17 of intake side phase varying mechanism (viz., intake-VTC) 2 is energized, so that feeding passage 15 and first hydraulic passage 13 become communicated and second hydraulic passage 14 and drain passage 16 become communicated.
Accordingly, in exhaust side phase varying mechanism (viz., exhaust-VTC) 1, the four retarding hydraulic chambers 12 are fed with the pressurized hydraulic fluid, and thus, vane member 3 of the mechanism 1 is turned toward the most retarded timing position. While, in intake side phase varying mechanism (viz., intake-VTC) 2, the four advancing hydraulic chambers 11 are fed with the pressurized hydraulic fluid, and thus, the vane member 3 is turned toward the most advanced timing position.
Accordingly, the exhaust and intake valves are forded to show such an open/close timing as shown by
Thus, the degree of valve overlap between the intake and exhaust valves becomes about 80 degrees (viz., 30 degrees+50 degrees), and thus, pumping loss is reduced improving the fuel consumption. That is, since, in the intermediate load range, the torque produced by fuel combustion is increased, instability of engine operation that tends to be induced under low load operation range is eliminated or at least minimized, and thus the degree of valve overlap between the intake and exhaust valves can be increased, which improves the fuel consumption of the engine.
It is to be noted that, in the intermediate load range of the engine, to cause exhaust side phase varying mechanism (exhaust-VTC) 1 to take the most retarded timing position and to cause intake side shape varying mechanism (intake-VTC) 2 to take the most advanced timing position are not always necessary.
In the following, programmed operation steps executed by control unit 22 at the time of cold engine starting will be described with reference to the flowchart of
At step S-1, judgment is carried out as to whether an ignition key has been turned ON or not, that is, whether the engine has been started or not. If NO, the operation flow goes back to RETURN. If YES, that is, if it is judged that the ignition key has been turned ON, the operation flow goes to step S-2. At this step S-2, cranking of the engine is recognized. Before the cranking, by the function lock pin 27, vane member 3 of each phase varying mechanism 1 or 2 is fixed to exhaust (or intake) side cam shaft 07 or 06.
At step S-3, control signals are fed from control unit 22 to electromagnetic switch valves 17 and 17 of exhaust and intake side phase varying mechanisms (exhaust-VTC and intake-VTC) 1 and 2 to cause these two mechanisms 1 and 2 to show such an open/close timing as that shown by
At step S-4, a fuel injection valve and an ignition plug are controlled by control signals fed from control unit 22, so that a combustion chamber has a desired air/fuel mixture combustion therein. During this, the open/close timing of the exhaust and intake valves is controlled in the manner as shown by
At step S-5, by processing an information signal from a crank angle sensor, an operation condition of the engine is detected.
Then, at step S-6, judgment is carried out as to whether the operation condition of the engine is stable or not. If YES, that is, if it is judged that the engine operation condition is stable, the operation flow goes to step S-7. While, if NO, that is, if it is judged that the operation condition is not stable, the operation flow goes to step S-8.
At step S-8, the four advancing hydraulic chambers 11 of exhaust side phase varying mechanism (viz., exhaust-VTC) 1 are fed with the pressurized hydraulic fluid, so that the close timing (EVC) of the exhaust valves is advanced thereby to reduce the degree of valve overlap with the intake valves. With this, combustion in each combustion chamber becomes stable. As is known, instability of engine operation is caused by increase of a valve overlap period due to reduction in valve clearance and/or increase of residual gases to the same overlap degree due to increase of gas flow resistance of the exhaust system. However, this instability of engine operation is solved by the above-mentioned valve overlap reduction method. That is, by such method, undesired increase of residual gases is suppressed.
At step S-7, judgment is carried out as to whether or not a predetermined time has passed from the time of engine cranking or not. If NO, that is, if it is judged that the predetermined time has not passed, the operation flow goes back to step S-5. While, if YES, that is, if it is judged that the predetermined time has passed, the operation flow goes to step S-9 judging that the cold engine starting control has been finished. It is to be noted that the predetermined time can be varied in accordance with the temperature and humidity of the day on which the engine operates and the temperature of the engine.
At step S-9, exhaust and intake side phase varying mechanisms 1 and 2 are controlled with reference to a given control map. That is, warming-up operation of the engine and normal operation after the warming-up operation of the engine are carried out based on instructions given by the control map. That is, in the normal operation, the control is so made as to reduce undesired pumping loss by providing the intake and exhaust valves with a larger valve overlap such as one as shown by
In case of the valve overlap shown by
In a certain time that follows the engine starting, a mechanically stable valve timing is provided as has been mentioned hereinabove. In addition to this, due to function of each lock pin 27, each vane member 3 is assuredly locked to exhaust or intake side cam shaft 07 or 06. Accordingly, even if the cranking of the engine causes a fluctuation of engine rotation, the valve overlap between exhaust and intake valves is assuredly kept, and thus, reduction of exhaust emission in the time that follows the engine starting is assuredly carried out.
Due to function of coil springs 31 and 31, the respective vane members 3 and 3 of exhaust and intake side phase varying mechanisms (viz., exhaust-VTC, intake-VTC) 1 and 2 are biased toward the most retarded timing side. Accordingly, in case of engine starting, a suitable valve overlap is assuredly provided. That is, reduction in exhaust emission in a certain time that follows the cold engine starting is assuredly carried out.
In the following, the second embodiment 200 of the present invention will be described with reference to
As is seen from
As is seen from
Also in this second embodiment 200, there are employed both exhaust side phase varying mechanism (exhaust-VTC) 1 and intake side phase varying mechanism (intake-VTC) 2. By these two mechanisms 1 and 2, the open/close timing of the exhaust and intake valves of the engine is controlled to stably take an advanced side upon engine stopping.
In the following, operation of the second embodiment 200 will be described with the aid of the accompanying drawings, particularly
For ease of understanding, the description will be commenced with respect to a condition wherein the vehicle is under idling condition. Under such condition, vane members 3 of the two mechanisms 1 and 2 assume each a position other than the most retarded and advanced timing positions, and electromagnetic switch valve 17 assumes a condition wherein feeding passage 15 is communicated with second hydraulic passage 14 and drain passage 16 is communicated with first hydraulic passage 13.
When now an ignition key is turned off, control current from control unit 22 to switch valve 17 stops. Upon this, with the force of biasing spring 17a, the valve element of the switch valve 17 is moved to the position as shown in
However, as will be understood from
More specifically, as is seen from
These coil springs 31 have each a spring load that is higher than that of coil springs 31 employed in the above-mentioned first embodiment 100. This is because the coil springs 31 of the second embodiment 200 have to bias the vane member 3 in the advancing direction against the above-mentioned friction of valve mechanism.
As is seen from
Accordingly, under this engine operation, the amount of residual gas in each combustion chamber is increased. However, if the engine is of a fuel direct injection type wherein fuel is directly fed into a combustion chamber, a high compression ratio induced by a cooling effect by the direct fuel injection brings about a stable combustion of fuel at a cold starting of the engine. Due to the same reason, the upper limit of effective valve overlap can increase. That is, reduction in exhaust emission at the cold engine starting is effectively carried out. Actually, in the fuel direct injection type engine, fuel supply to the combustion chamber is possible even when the intake valves are closed, which means increased flexibility of fuel injection pattern and thus increases possibility of improving fuel combustion.
When the engine is shifted to a normal idling state after completion of the warming-up operation, switching of switch valve 17 of intake side phase varying mechanism (intake-VTC) 2 is so made that first hydraulic passage 13 is connected with drain passage 16 and at the same time feeding passage 15 is connected with second hydraulic passage 14. Thus, retarding hydraulic chambers 12 of the mechanism (intake-VTC) 2 are fed with a pressurized hydraulic fluid, so that as will be easily imaged from
Accordingly, as is seen from
When the engine operation is shifted to an intermediate load range or low speed high load range, exhaust side phase varying mechanism (exhaust-VTC) 1 operates to control the open/close timing of the exhaust valves to the most retarded timing side as is understood from
In the following, programmed operation steps executed by control unit 22 in case of the second embodiment 200 will be described with reference to the flowchart of
Since the operation steps of the second embodiment 200 are similar to those of the above-mentioned first embodiment 100, only steps that are different from those of the first embodiment 100 will be described.
That is, in the second embodiment 200, at step S-13 which corresponds to step S-3, by exhaust and intake side phase varying mechanisms (exhaust-VTC and intake-VTC) 1 and 2, the open/close timing of both the exhaust and intake valves is controlled to the most advanced timing side, and when it is judged that the combustion is unstable at step S-15 which corresponds to S-5, the open timing (IVO) of the intake valves is controlled to the retarded timing side at step S-18 which corresponds to S-8, which reduces the degree of the valve overlap between the intake and exhaust valves.
Accordingly, also in this second embodiment 200, at a cold engine starting, a suitable valve overlap is kept provided between the intake and exhaust valves and thus reduction in exhaust emission in a certain period that follows the engine starting is assuredly made.
In the following, modifications of the invention will be briefly described.
In case of the first embodiment 100, coil springs 31 may be removed. That is, even when such springs 31 are not provided in the variable valve system, each vane member 3 is forced to turn toward the most retarded timing side due to the friction of valve mechanism in case when the engine stops. However, in case of the second embodiment 200, such coil springs 31 are essential because the turning of each vane member 3 toward the most advanced timing side has to be made against the friction of the valve mechanism.
The first and second embodiments 100 and 200 of the present invention are applicable to an internal combustion engine of a fuel direct injection type in which fuel is directly fed into a combustion chamber.
The internal combustion engine to which the first and second embodiments 100 and 200 of the invention are applicable may be of a type wherein two intake valves have different lifts.
The internal combustion engine to which the first and second embodiments 100 and 200 of the invention are applicable may be of a diesel type wherein ignition of combustible mixture is effected by heat of compression.
The entire contents of Japanese Patent Application 2007-243243 filed Sep. 20, 2007 are incorporated herein by reference.
Although the invention has been described above with reference to the embodiments of the invention, the invention is not limited to such embodiments as described above. Various modifications and variations of such embodiments may be carried out by those skilled in the art, in light of the above description.
Number | Date | Country | Kind |
---|---|---|---|
2007-243243 | Sep 2007 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6330869 | Yoshiki et al. | Dec 2001 | B1 |
6502537 | Todo et al. | Jan 2003 | B2 |
6550437 | Nakamura et al. | Apr 2003 | B2 |
6705257 | Shimizu | Mar 2004 | B2 |
6840235 | Koseki et al. | Jan 2005 | B2 |
7159545 | Miyakoshi et al. | Jan 2007 | B2 |
7159548 | Shindou | Jan 2007 | B2 |
7168402 | Takemura et al. | Jan 2007 | B2 |
7198012 | Suga et al. | Apr 2007 | B2 |
7213554 | Kanada et al. | May 2007 | B2 |
7246581 | Suga et al. | Jul 2007 | B2 |
7246594 | Hartmann | Jul 2007 | B2 |
7322324 | Hara et al. | Jan 2008 | B2 |
7357119 | Yoshida et al. | Apr 2008 | B2 |
7406935 | Suga et al. | Aug 2008 | B2 |
7594487 | Okamoto | Sep 2009 | B2 |
7793625 | Nakamura et al. | Sep 2010 | B2 |
7827949 | Suga et al. | Nov 2010 | B2 |
20040154568 | Yamauchi et al. | Aug 2004 | A1 |
20050211204 | Todo et al. | Sep 2005 | A1 |
20070163524 | Muraji et al. | Jul 2007 | A1 |
20080257289 | Nakamura | Oct 2008 | A1 |
20090007866 | Nakamura | Jan 2009 | A1 |
20090078223 | Nakamura | Mar 2009 | A1 |
Number | Date | Country |
---|---|---|
1651724 | Aug 2005 | CN |
1 559 875 | Aug 2005 | EP |
6-235307 | Aug 1994 | JP |
10-008935 | Jan 1998 | JP |
10-082334 | Mar 1998 | JP |
11-93714 | Apr 1999 | JP |
2002-227615 | Aug 2002 | JP |
2002-256832 | Sep 2002 | JP |
2003-35167 | Feb 2003 | JP |
2003-172112 | Jun 2003 | JP |
2004-076618 | Mar 2004 | JP |
2004-156508 | Jun 2004 | JP |
2004-257373 | Sep 2004 | JP |
2004-346887 | Dec 2004 | JP |
2005-105874 | Apr 2005 | JP |
2005-226511 | Aug 2005 | JP |
2005-233049 | Sep 2005 | JP |
2005-264804 | Sep 2005 | JP |
2006-70726 | Mar 2006 | JP |
2006-138292 | Jun 2006 | JP |
2006-200391 | Aug 2006 | JP |
Number | Date | Country | |
---|---|---|---|
20090078223 A1 | Mar 2009 | US |