The present invention relates generally to variable valve trains for internal combustion engines, and specifically to valve trains for an internal combustion engine in which the timing of the valve event can be modified during operation of the internal combustion engine.
Cylinder valves for internal combustion engines are generally opened and closed to allow for the intake and exhaust of gases in cylinders of internal combustion engines. Cylinder valves are generally operated by various valve lifter mechanisms including rocker arms and roller finger follower assemblies. The timing of the opening and closing of a cylinder valve (relative to the phase of crankshaft) is important to maximize fuel efficiency, assure complete combustion, and maximize engine output. Adjusting valve timing can lead to improvements in fuel economy, engine emissions, torque and idle quality.
Many different approaches have been proposed for providing adjustable valve timing. Some prior art approaches include independent lifter control for each cylinder by means of electrical solenoids or by changing the pivot point for a rocker arm. Various other approaches have also been proposed. Currently known approaches and assemblies for varying the timing of the valve event are either complex (and thus expensive) and/or are not well-suited for certain engine types, such as small internal combustion engines utilized in lawn mowers and other appliances.
Thus, there is a need for a variable valve timing apparatus, and engine incorporating the same, that provides for variable valve timing that is simple, cost-effective to manufacture and/or compact.
The present invention relates to a variable valve timing apparatus, and internal combustion engine incorporating the same, that allows the timing of the opening and/or closing of intake and/or exhaust cylinder valves to be altered relative to a reference timing. As a result, the timing of the valve event can be adjusted relative to a phase of the crankshaft and/or the cycle of the pistons
In one aspect, a variable valve timing apparatus is proposed for cooperating with a cam shaft to vary timing of an action of a first cylinder valve of a first cylinder of an internal combustion engine, the variable valve timing apparatus comprising: a timing shaft rotatable about a timing shaft axis and comprising a first eccentric; a first timing control member; a first arm rotatably coupled to the first timing control member about a first arm axis, the first arm comprising a first follower portion having a first surface in operable cooperation with a first cam of the cam shaft and a second surface in operable cooperation with the first cylinder valve; and the first timing control member operably coupled to the first eccentric of the timing shaft such that rotation of the timing shaft causes the first arm axis to rotate about the cam shaft axis, thereby angularly moving the first follower portion about the cam shaft axis between a first angular position and a second angular position to alter timing of the action of the first cylinder valve relative to a reference timing.
In another aspect, a variable valve timing apparatus is proposed for cooperating with a cam shaft to vary timing of an action of a first cylinder valve of a first cylinder of an internal combustion engine, the variable valve timing apparatus comprising: a first timing control member; a first arm rotatably coupled to the first timing control member about a first arm axis, the first arm comprising a first follower portion having a first surface in operable cooperation with a first cam of the cam shaft and a second surface in operable cooperation with the first cylinder valve; the first timing control member rotatable or movable to cause the first arm axis to rotate about the cam shaft axis, thereby angularly moving the first follower portion about the cam shaft axis between a first angular position and a second angular position to alter timing of the action of the first cylinder valve relative to a reference timing.
In a further aspect, a variable valve timing apparatus is proposed for cooperating with a cam shaft to vary timing of an action of a first cylinder valve of a first cylinder of an internal combustion engine, the variable valve timing apparatus comprising: a first timing control member rotatably mounted to the camshaft; a first arm rotatably coupled to the first timing control member about a first arm axis, the first arm comprising a first follower portion having a first surface in operable cooperation with a first cam of the cam shaft and a second surface in operable cooperation with the first cylinder valve; and wherein rotation of the first timing plate about the cam shaft axis causes the first arm axis to rotate about the cam shaft axis, thereby angularly moving the first follower portion about the cam shaft axis between a first angular position and a second angular position to alter timing of the action of the first cylinder valve relative to a reference timing.
In a yet further aspect, a variable valve timing apparatus is proposed for cooperating with a cam shaft to vary timing of intake and exhaust cylinder valves for a multi-cylinder internal combustion engine, the variable valve timing apparatus comprising: a timing shaft rotatable about a timing shaft axis and comprising first and second eccentrics, the timing shaft axis being substantially parallel to a cam shaft axis of the cam shaft, the timing shaft mounted in a space between a first cylinder block comprising a first cylinder and a second cylinder block comprising a second cylinder, an intake valve timing control assembly operably coupled to the first eccentric of timing shaft and to a cylinder intake valve of each of the first and second cylinders; an exhaust valve timing control assembly operably coupled to the second eccentric of the timing shaft and to a cylinder exhaust valve of each of the first and second cylinders; and wherein rotation of the timing shaft alters valve timing of the cylinder intake valves and the cylinder exhaust valves of the first and second cylinders relative to a reference timing.
In other aspects, internal combustion engines are proposed that incorporate the variable valve timing apparatus described above.
Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
The following description of embodiment(s) of the invention is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses. The description of illustrative embodiments according to principles of the present invention is intended to be read in connection with the accompanying drawings, which are to be considered part of the entire written description. In the description of the exemplary embodiments of the invention disclosed herein, any reference to direction or orientation is merely intended for convenience of description and is not intended in any way to limit the scope of the present invention. Relative terms such as “lower,” “upper,” “horizontal,” “vertical,” “above,” “below,” “up,” “down,” “left,” “right,” “top,” “bottom,” “front” and “rear” as well as derivatives thereof (e.g., “horizontally,” “downwardly,” “upwardly,” etc.) should be construed to refer to the orientation as then described or as shown in the drawing under discussion. These relative terms are for convenience of description only and do not require that the apparatus be constructed or operated in a particular orientation unless explicitly indicated as such. Terms such as “attached,” “affixed,” “connected,” “coupled,” “interconnected,” “secured” and similar refer to a relationship wherein structures are secured or attached to one another either directly or indirectly through intervening structures, as well as both movable or rigid attachments or relationships, unless expressly described otherwise. Moreover, the features and benefits of the invention are described by reference to the exemplary embodiments illustrated herein. Accordingly, the invention expressly should not be limited to such exemplary embodiments, even if indicated as being preferred. The discussion herein describes and illustrates some possible non-limiting combinations of features that may exist alone or in other combinations of features. The scope of the invention is defined by the claims appended hereto.
Referring first to
The internal combustion engine 1000 comprises an engine block 500, first and second pistons (not shown), and a crankshaft (not shown) operably coupled to the first and second pistons. The engine block 500 generally comprises a crankshaft case 501, a first cylinder block 502, a first cylinder head 503, a second cylinder block 504, and a second cylinder head 505. The engine block 500 can also comprise various covers and casings, such as valve covers (not shown), that are coupled to the one or more components mentioned above to form the structural foundation and housing of the internal combustion engine 1000. Thus, as used herein, when an element is said to be mounted (or otherwise coupled) to the engine block, such element may be mounted or coupled to any one, or combination, of the components identified above.
A first cylinder 506 is formed in the first cylinder block 502 and is enclosed at a top end thereof by the first cylinder head 503. A second cylinder 507 is formed in the second cylinder block 504 and is enclosed at a top end thereof by the second cylinder head 505. The first and second cylinders 506, 507 respectively accommodate the first and second pistons (not shown), which are in turn operably coupled to the crankshaft (not shown). The first and second cylinders 506, 507 act as combustion chambers in which an air/fuel mixture is introduced for ignition by one or more spark plugs (not shown).
The air/fuel mixture is introduced into the first and second cylinders 506, 507 via intake passageways (not shown) formed into the first and second cylinder heads 503, 505. The opening and closing of these intake passageways (and thus the intake of the air/fuel mixture into the first and second cylinders 506, 507) is controlled by first and second cylinder intake valves 101, 102 respectively. The first and second cylinder intake valves 101, 102 are opened and closed in coordinated timing with the rotational phase of the crankshaft. Similarly, exhaust gases resulting from the combustion of the air/fuel mixture within the first and second cylinders 506, 517, are exhausted therefrom through exhaust passageways (not shown) that are also formed in the first and second cylinder heads 503, 505. The opening and closing of these exhaust passageways (and thus the exhaust of the combustion gases from the first and second cylinders 506, 507) is controlled by third and fourth cylinder exhaust valves 103, 104. The third and fourth cylinder exhaust valves 103, 104 are opened and closed in coordinated timing with the rotational phase of the crankshaft. As exemplified, each of the first and second cylinder intake valves 101, 102 and the third and fourth cylinder exhaust valves 103, 104 are poppet valves. However, the cylinder valves are not so limited and can take on other structural forms.
The internal combustion engine 1000 also comprises a cam shaft 50 that is rotatably mounted to the engine block 500 (more specifically to the crankcase 501) for rotation about a cam shaft axis C-C (shown as a point in
The internal combustion engine 1000 also comprises a variable valve timing apparatus (“VVTA”) 200 that cooperates with the cam shaft 50 to alter the timing of the opening and closing of the cylinder valves 101-104 relative to the reference timing. Thus, the VVTA 200 can be utilized to either advance and/or retard the valve timing events (i.e., opening and closing) of the cylinder valves 101-104 in relation to the reference timing.
By altering the valve timing events using the VVTA 200 (i.e., advancing and/or retarding), certain desirable characteristics can be achieved for the internal combustion engine 1000, such as optimizing engine torque output and/or decreasing exhaust gas emissions. For example, by advancing the valve timing events at low to medium engine speeds, torque can be improved. To the contrary, by retarding the valve timing events at high speeds, torque can be improved. Furthermore, altering the valve timing events using the VVTA 200 can also result in decreased exhaust gas emissions by trapping the exhaust gas in the first and second cylinders 506, 507 (i.e., the combustion chambers) to reduce combustion temperature at part load. Additionally, the closing event of the third and fourth cylinder exhaust valves 103, 104 can be advanced to trap exhaust gases in the first and second cylinders 506, 507 by poor scavenging. On the other hand, the closing event of the third and fourth cylinder exhaust valves 103, 104 can be retarded to allow exhaust gases to flow back into the first and second cylinders 506, 507 during the intake strokes of the pistons. The VVTA 200 can be configured to automatically adjust the valve timing events of the cylinders valves 101-104 to achieve a desired output of the internal combustion engine 1000 using both engine speed and load conditions as inputs.
Turning now to
As exemplified, the timing shaft 203 and cam shaft 50 are rotatably mounted to the engine block 500 within a space formed between the first and second cylinder blocks 502,504. The cam shaft 50 is located below the timing shaft 203. The timing shaft 203 and the cam shaft 50 may, however, be rotatably mounted to the engine block 500 in other locations and in other relative orientations and arrangements.
The timing shaft 203 comprises a first eccentric 212 and a second eccentric 213. The first eccentric 212 is operably coupled to the intake valve timing control assembly 201 so that rotation of the timing shaft 203 actuates the intake valve timing control assembly 201 to either advance or retard the timing of the valve events for the first and second intake valves 101, 102 (discussed in greater detail below). Similarly, the second eccentric 213 is operably coupled to the exhaust valve timing control assembly 202 so that rotation of the timing shaft 203 actuates the exhaust valve timing control assembly 202 to either advance or retard the timing of the valve events for the third and fourth exhaust valves 103, 104 (discussed in greater detail below). As exemplified, each of the first and second eccentrics 212, 213 are in the form of bent portions of the timing shaft 203 that are “off-axis” relative to the timing shaft axis T-T. Alternatively, either or both of the first and second eccentrics 212, 213 can take the form of cams having one or more cam lobes that create the desired eccentricity.
The intake valve timing control assembly 201 generally comprises: (1) a first timing control member 214 operably coupled to the first eccentric 212 of the timing shaft 203; (2) a first arm 215 rotatably mounted to first timing control member 214 for relative rotation about a first arm axis F1-F1; and (3) a second arm 216 rotatably mounted to the first control member 214 for relative rotation about a second arm axis F2-F2. As exemplified, both the first arm axis F1-F1 and the second arm axis F2-F2 are substantially parallel to one another and to each of the cam shaft axis C-C and the timing shaft axis T-T. In alternate arrangements, one or more the axes may not be parallel to one another but may, rather be obliquely or orthogonally arranged.
The first arm 215 is rotatably mounted on a first axial side of the first timing control member 214 via a first pin 217. The second arm 216 is rotatably mounted on a second axial side (opposite the first axial side) of the first timing control member 214 via a second pin 218. Additionally, the first and second arms 215, 216 are also rotatably mounted to the first timing control member 214 at opposite lateral sides of the first timing control member 214 and, thus, extend radially from the first and second arm axes F1-F1, F2-F2 in opposite circumferential directions relative to the cam shaft axis C-C.
The first and second arms 215, 216 may, in some configurations, be rotatably coupled to the first timing control member 214 so that the first and second arm axes F1-F1, F2-F2 are substantially co-linear. In one such arrangement, the first and second arms 215, 216 can be rotatably mounted to the first timing control member 214 via the same pin element.
As exemplified, the first timing control member 214 is a plate that extends substantially perpendicular to the cam shaft axis C-C and comprises a first major surface and second major surface. The first arm 215 is rotatably mounted adjacent the first major surface of the first timing control member 214 while the second arm 216 is rotatably mounted adjacent the second major surface of the first timing control member 214. The first timing control member 214, however, is not limited to a plate-like structure and can take the form of suitably shaped bars or rods.
The first arm 215 comprises a proximal end that is rotatably mounted to the first timing control member 214 and a distal end that comprises a first follower portion 219. The first follower portion 219 comprises a first surface 220 and a second surface 221. The second surface 221 is opposite the first surface 220. The first surface 220 of the first follower portion 219 is in operable cooperation with the first intake cam 51 of the cam shaft 50 while the second surface 221 of the first follower portion 219 is in operable cooperation with the first cylinder intake valve 101 (indirectly through the first intake valve rod 204). The second surface 221 of the first follower portion 219 may be a convex surface having a substantially constant radius of curvature that is concentric with a base circle surface of the first intake cam 51. This may reduce or eliminate variation of the valve lash for the first cylinder intake valve 101.
Similarly, the second arm 216 comprises a proximal end that is rotatably mounted to the first timing control member 214 and a distal end that comprises a second follower portion 222. The second follower portion 222 comprises a first surface 223 and a second surface 224. The second surface 224 is opposite the first surface 223. The first surface 223 of the second follower portion 222 is in operable cooperation with a second intake cam 52 of the cam shaft 50 while the second surface 224 of the second follower portion 222 is in operable cooperation with the second cylinder intake valve 102 (indirectly through the second intake valve rod 205). The second surface 224 of the second follower portion 222 may be a convex surface having a substantially constant radius of curvature that is concentric with a base circle surface of the second intake cam 52. This may reduce or eliminate variation of the valve lash for the second cylinder intake valve 102.
The first timing control member 214 is rotatably mounted at the bottom end thereof to the cam shaft 50 so as to be capable of rotation/oscillation about the cam shaft axis C-C. More specifically, the first timing control member 214 is rotatably mounted to the cam shaft 50 at an axial position between the first and second intake cams 51, 52 of the cam shaft 50. This arrangement is useful when the first and second arms 215, 216 are located on opposite sides of the first timing control member 214. However, if the first and second arms 215, 216 were located on the same axial side of the first timing control member 214, the first and second intake cams 51, 52 may be located on the same axial side of the of the first timing control member 214. In such an arrangement, the first and second arms 215, 216 may be axially offset from one another using an extension sleeve so as to prevent interference.
A first elongated slot 225 is provided in the top end of the first timing control member 214 (opposite the end that is rotatably coupled to the cam shaft 50). The first elongated slot 225 receives the first eccentric 212 for operable cooperation therewith. As exemplified, the first elongated slot 225 is an open end slot that extends from a top edge of the first timing control member 214. Alternatively, the first elongated slot 225 may be a closed-geometry slot.
As a result of the interaction between the first eccentric 212 and the walls of the first elongated slot 225, rotation/oscillation of the timing shaft 203 causes the first timing control member 214 to rotate/oscillate about the cam shaft axis C-C, thereby causing the first arm axis F1-F1 and the second arm axis F2-F2 to also rotate about the cam shaft axis C-C. More specifically, each of the first arm axis F1-F1 and the second arm axis F2-F2 travel along paths that are concentric with the cam shaft axis C-C. As discussed in greater detail below, this results in: (1) the first follower portion 219 of the first arm 215 angularly moving about the cam shaft axis C-C between a first angular position (
Turning now to the exhaust control of the VVTA 200, the exhaust valve timing control assembly 202 generally comprises: (1) a second timing control member 234 operably coupled to the second eccentric 213 of the timing shaft 203; (2) a third arm 235 rotatably mounted to the second timing control member 234 for relative rotation about a third arm axis F3-F3; and (3) a fourth arm 236 rotatably mounted to the first control member 234 for relative rotation about a fourth arm axis F4-F4. As exemplified, both the third arm axis F3-F3 and the fourth arm axis F4-F4 are substantially parallel to one another and to each of the cam shaft axis C-C and the timing shaft axis T-T. In alternate arrangements, however, one or more the axes may not be parallel to one another but may rather be obliquely or orthogonally oriented.
The third arm 235 is rotatably mounted on a first axial side of the second timing control member 234 via a third pin 237. The fourth arm 236 is rotatably mounted on a second axial side (opposite the first axial side) of the second timing control member 234 via a fourth pin 238. As exemplified, the third and fourth arms 235, 236 are also rotatably mounted to the second timing control member 234 at opposite lateral sides of the second timing control member 234. Thus, third and fourth arms 235, 236 respectively extend radially from the third and fourth arm axes F3-F3, F4-F4 in opposite circumferential directions relative to the cam shaft axis C-C.
Alternatively, the third and fourth arms 235, 236 can be rotatably coupled to the second timing control member 234 so that the third and fourth arm axes F3-F3, F4-F4 are substantially co-linear. In one such an embodiment, the third and fourth arms 235, 236 can be rotatably mounted to the second timing control member 234 via the same pin element.
As exemplified, the second timing control member 234 is a plate that extends substantially perpendicular to the cam shaft axis C-C and comprises a first major surface and second major surface. The third arm 235 is rotatably mounted to the second timing control member 234 adjacent the first major surface of the second timing control member 234. The fourth arm 236 is rotatably mounted to the second timing control member 234 adjacent the second major surface of the second timing control member 234. The second timing control member 234, however, is not limited to a plate-like structure and can take the form of suitably shaped bars or rods.
The third arm 235 comprises a proximal end that is rotatably mounted to the second timing control member 234 and a distal end that comprises a third follower portion 239. The third follower portion 239 comprises a first surface 240 and a second surface 241. The second surface 241 is opposite the first surface 240. The first surface 240 of the third follower portion 239 is in operable cooperation with a third exhaust cam 53 of the cam shaft 50 while the second surface 241 is in operable cooperation with the third cylinder intake valve 103 (indirectly through the third intake valve rod 206). The second surface 241 of the third follower portion 239 may be a convex surface having a substantially constant radius of curvature that is concentric with a base circle surface of the third exhaust cam 53. This may reduce or eliminate variation of the valve lash for the third cylinder exhaust valve 103.
Similarly, the fourth arm 236 comprises a proximal end that is rotatably mounted to the second timing control member 234 and a distal end that comprises a fourth follower portion 242. While not visible, the fourth follower portion 242 comprises a first surface and a second surface (identical to the second follower portion 222). The first surface of the fourth follower portion 242 is in operable cooperation with a fourth exhaust cam 54 of the cam shaft 50 while the second surface of the fourth follower member 242 is in operable cooperation with the fourth cylinder exhaust valve 104 (indirectly through the fourth exhaust valve rod 206). The second surface of the fourth follower portion 242 may be a convex surface having a substantially constant radius of curvature that is concentric with a base circle surface of the fourth exhaust cam 54. This may reduce or eliminate variation of the valve lash for the fourth cylinder intake valve 104.
The second timing control member 234 is rotatably mounted at a bottom end thereof to the cam shaft 50 so as to be capable of rotation/oscillation about the cam shaft axis C-C. More specifically, the second timing control member 234 is rotatably mounted to the cam shaft 50 axially between the third and fourth exhaust cams 53, 54 of the cam shaft 50. This arrangement can be used when the third and fourth arms 235, 236 are located on opposite axial sides of the second timing control member 234. When the third and fourth arms 235, 236 are located on the same axial side of the second timing control member 234, however, the third and fourth exhaust cams 53, 54 may also be located on the same axial side of the of the second timing control member 234. In such an arrangement, the third and fourth arms 235, 236 may be axially offset from one another using an extension sleeve so as to prevent interference.
A second elongated slot 245 is provided in the top end of the second timing control member 234 (opposite the end that is rotatably coupled to the cam shaft 50). The second elongated slot 245 operably receives the second eccentric 213. As exemplified, the second elongated slot 245 is an open end slot that extends from a top edge of the second timing control member 234. Alternatively, the second elongated slot 245 may be a closed-geometry slot.
As a result of the interaction between the second eccentric 213 and the walls of the second elongated slot 245, rotation/oscillation of the timing shaft 203 causes the second timing control member 234 to rotate/oscillate about the cam shaft axis C-C, thereby causing the third arm axis F3-F3 and the fourth arm axis F4-F4 to also rotate about the cam shaft axis C-C. More specifically, each of the third arm axis F3-F3 and the fourth arm axis F4-F4 travel along paths that are concentric with the cam shaft axis C-C. As discussed in greater detail below, this results in: (1) the third follower portion 239 of the third arm 235 angularly moving about the cam shaft axis C-C between a fifth angular position (
As exemplified, the first and second eccentrics 212, 213 are configured on the timing shaft 203 so that rotation/oscillation of the timing shaft 203 causes the first and second timing control members 214, 234 to rotate about the cam shaft axis C-C in opposite angular directions with the same magnitude of angular displacement. However, the timing shaft 203 (and/or the first and second eccentrics 212, 213) can be configured so that rotation/oscillation of the timing shaft 203 causes the first and second timing control members 214, 234 to rotate about the cam shaft axis C-C in the same angular direction and/or with the different magnitudes of angular displacement. Additionally, while a single timing shaft is illustrated, more than one timing shaft may be used to separately control the first and second timing control members 214, 234.
As shown above, the first timing control member 214 controls the timing of the intake cylinder valves 101, 102 while the second timing control member 234 controls the timing of the exhaust cylinder valves 103, 104. Alternatively, the VVTA 200 may be modified so that a separate timing control member is included for each of the cylinder valves 101-104, thereby affording individualized adjustment of the timing for each individual cylinder valve 101-104. In still further aspects, the VVTA 200 may be modified such that the first timing control member 214 controls at least one of the cylinder exhaust valves 103, 104 and one of cylinder intake valves 101, 102. Similarly, the VVTA 200 may also be modified such that the second timing control member 234 controls at least one of the cylinder intake valves 101, 102 and one of cylinder exhaust valves 103, 104. Thus, the same timing control member may be used to control both intake and exhaust valves if desired.
Referring now to
The first cylinder intake valve 101 is operably coupled to a first end of the first intake rocker member 208. A first end of the first intake valve rod 204 is operably coupled to the second end of the first intake rocker member 208. The first intake rocker member 208 is rotatably mounted to the engine block 500 by the first intake rocker pivot 205 so that the first intake rocker member 208 can pivot/rock about a rocker arm axis. More specifically, the first intake rocker member 208 is rotatably mounted to the first cylinder head 503. A first biasing element, in the form of a first valve spring 160, is provided that biases the first cylinder intake valve 101 into a closed state.
In addition to biasing the first cylinder intake valve 101 into the closed state, the first valve spring 160 forces the first cylinder intake valve 101 to transmit a torque to the first intake rocker member 208 that, in turn, biases the second end of the first intake valve rod 204 into surface contact with the second surface 221 of the first follower portion 219. The biasing force exerted by the first intake valve rod 204 on the second surface 221 of the first follower portion 219, in turn, biases and maintains the first surface 220 of the first follower portion 219 in surface contact with the first intake cam 51.
During rotation of the cam shaft 50, when the first surface 220 of the first follower portion 219 is in contact with the first base circle surface 151, the first intake valve 101 remains in the closed-state. However, as the first intake cam 51 continues to rotate such that the first cam lobe surface 152 comes into contact with and slides over the first surface 220 of the first follower portion 219, the resulting interaction overcomes the bias force of the first valve spring 160 and causes the first arm 215 to pivot about the first arm axis F1-F1 in a first angular direction (which is counterclockwise in
Referring now to
As shown in
In this example, the cam shaft 50 is assumed to be rotating in the clockwise angular direction, as indicated by arrow 170. Thus, in order to advance the timing of the valve event/action of the first cylinder intake valve 101 using the VVTA 200, the timing shaft 203 is rotated counterclockwise, indicated by arrow 180. As a result of said counterclockwise rotation of the timing shaft 203, the first eccentric 212 causes the first timing control member 214 to rotate counterclockwise about the cam shaft axis C-C. As such, the first arm axis F1-F1 also rotates about the cam shaft axis C-C along a path that is concentric with the cam shaft axis C-C. This, in turn, causes the first follower portion 219 to angularly move from the reference angular position (
To the contrary, in order to retard the timing of the valve event/action of the first cylinder intake valve 101, the timing shaft 203 is rotated clockwise, indicated by arrow 190. As a result of said clockwise rotation of the timing shaft 203, the first eccentric 212 causes the first timing control member 214 to pivot clockwise about the cam shaft axis C-C. As such, the first arm axis F1-F1 also rotates about the cam shaft axis C-C along a path that is concentric with the cam shaft axis C-C. This, in turn, causes the first follower portion 219 to angularly move from the first angular position (
As discussed above, it is the rotation (and rotational position) of the timing shaft 203 that controls the timing of the valve event. Thus, the internal combustion engine 1000 further comprises a control unit 700 (schematically illustrated in
Finally, while the first surfaces of the follower portions 219, 222, 239, 242 of the arms 215, 216, 235, 236 are exemplified above as being in slidable surface contact with their respective cam 51-54, it is to be understood that the follower portions 219, 222, 239, 242 could comprise rollers. In such configurations, the rollers may comprise the first surfaces of the follower portion 219, 222, 239, 242.
Referring now to
Unlike the VVTA 200, the first and second timing control members 214A, 234A of the VVTA 200A are not rotatably mounted to the cam shaft 50A. Rather, the first and second timing control member 214A, 234A are movably mounted to the engine block 500A (specifically to the crankshaft case 501A). More specifically, the first and second timing control members 214A, 234A are movably mounted to the engine block 500A so that they can be moved (such as by sliding) along a path that is concentric with the cam shaft axis C-C. As exemplified, the inner surface of the crank shaft case 501A to which the first and second timing control members 214A, 234A are movably mounted has a curvature that is concentric with the cam shaft axis C-C. Thus, the VVTA 200A can achieve the same valve timing adjustment function as discussed above for the VVTA 200 but is not restricted by being coupled to the cam shaft 50A.
As with the VVTA 200, moving/sliding the first control member 214A along the path that is concentric with the cam shaft axis C-C also results in the first and second arm axes F1-F1, F2-F2 to rotate about the cam shaft axis C-C along paths that are also concentric with the cam shaft axis C-C. It is in this manner that the VVTA 200A can be actuated to adjust the timing of the valve events. In such constructions, the first and second timing control members 214A, 234A can be slidably mounted in tracks formed into or coupled to the engine block. While the first and second timing control members 214A, 234A of the VVTA 200A are not rotatably coupled to the cam shaft 50A, the first and second timing control members 214A, 234A can still be considered to rotate about the can shaft axis C-C during said sliding/moving.
Similar to the VVTA 200, the first and second timing control members 214A, 234A of the VVTA 200A are moved along the paths that are concentric with the cam shaft axis C-C by rotation/oscillation of a timing shaft 203A. However, the first eccentric 212A is in the form of a cam rather than a bent portion of the timing shaft itself.
A further difference between VVTA 200A and VVTS 200 is that the VVTA 200A comprises rollers 290A, 290B that are provided on the first and second follower portions 219A, 222A respectively. Thus, in the VVTA 200A, the first roller 290A comprises the first surface 220A of the first follower portion 219A while the second roller 291A comprises the first surface 223A of the second follower portion 222A.
Turning now to
The primary difference between the VVTA 200B and the VVTA 200 is that rotation/oscillation of the first and second timing control members 214B, 234B is not controlled by a timing shaft. Rather, as will be discussed below, the desired rotation of the first and second timing control members 214B, 234B is accomplished by taking advantage of reactionary forces that are generated during operation of the internal combustion engine 1000, in combination with timed locking/unlocking of the first and second timing control members 214B, 234B. Thus, for the VVTA 200B, the timing shaft can be omitted.
The VVTA 200B comprises a mounting member 300B to which an actuatable locking member 301B is operably mounted. As exemplified, the locking member 301B is in the form of a pneumatic locking pin. The locking member 301B can be actuated between an extended state (
In one configuration, the locking member 301B is biased into the extended state. In another configuration, the locking member 301B is biased into the retracted state. Actuation of the locking member 301B (i.e., moving between the retracted and extended states) can be accomplished, for example, by hydraulic pressure, an electromagnet, an electric motor, a linear actuator, or the like. The timing of said actuation of the locking member 301 can be controlled by a mechanical or electrical control unit, such as that which is described above for the control unit 700. As will be discussed below, actuation of the locking member 301 between the extended and retracted states is controlled so that the first timing control member 214B can be selectively allowed to move between an advanced angular position in which timing of the valve events is advanced and a retarded angular position in which timing of the valve events is retarded.
The mounting member 300B is supported adjacent the top edge of the first timing control member 214B so that the locking member 301B can interact with the first timing control member 214B as discussed below. While not illustrated, a second mounting member and second locking member can be provided to control the second timing control member 234B.
Beginning with
As described above for the VVTA 200, the first follower portion 219B of the first arm 2158B is biased into contact with the first intake cam 51B by the first valve spring 160B. As the cam shaft 50B rotates clockwise, the first cam lobe 153B approaches the first follower portion 219B until the first cam lobe surface 152B comes into contact with the first surface 220B of the first follower portion 219B. Due to the contours/shapes of the first cam lobe surface 152B and the first surface 220B, the contact between the first cam lobe surface 152B and the first surface 220B generates a reactionary force that exerts a clockwise torque on the first timing control member 214B. At this stage, the locking member 301B is in the retracted state. Thus, the clockwise torque exerted on the first timing control member 214B causes the first timing control member 214B to rotate clockwise about the cam shaft 50B.
This clockwise angular movement continues until the first timing control member 214B reaches a retarded angular position (
When it is desired to no longer have the valve event timing retarded, the locking member 301B is actuated into the retracted state. As discussed above, due to the spring force of the locking spring 160B, a tappet of the first intake valve rod 204B is biased against the second surface 221B of the first follower portion 219B. Due to the contours/shapes of the second surface 221B and/or the orientation of the tappet, the bias force of the valve spring 160 generates a reactionary force that exerts a counterclockwise torque on the first timing control member 214B. Because the locking member 301B is in the retracted state, this counterclockwise torque causes the first timing control member 214B to rotate counterclockwise about the cam shaft SOB.
This counterclockwise rotation continues until the first timing control member 2148 reaches an advanced angular position (
Thus, through properly timing the actuation and state of the locking member 301B, the VVTA 200B can adjust the timing of the valve events in response to an operating condition of the internal combustion engine to achieve a desired effect.
In certain configurations, the first timing control member 214B may be spring loaded to assist with rotation in one of the angular directions discussed above. Furthermore, additional locking features could be included on the first timing control member 214B so that the first timing control member 214B can be maintained in additional angular positions.
While the foregoing description and drawings represent the exemplary embodiments of the present invention, it will be understood that various additions, modifications and substitutions may be made therein without departing from the spirit and scope of the present invention as defined in the accompanying claims. In particular, it will be clear to those skilled in the art that the present invention may be embodied in other specific forms, structures, arrangements, proportions, sizes, and with other elements, materials, and components, without departing from the spirit or essential characteristics thereof. One skilled in the art will appreciate that the invention may be used with many modifications of structure, arrangement, proportions, sizes, materials, and components and otherwise, used in the practice of the invention, which are particularly adapted to specific environments and operative requirements without departing from the principles of the present invention. The presently disclosed embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being defined by the appended claims, and not limited to the foregoing description or embodiments.