This disclosure relates generally to a gas turbine engine and, more particularly, to a variable vane array for the gas turbine engine.
A gas turbine engine may include a variable vane array for guiding air flow into a compressor section. This variable vane array may also be used to regulate air flow into the compressor section. Various variable vane array configurations are known in the art. While these known variable vane arrays have various advantages, there is still room in the art for improvement. There is a need in the art, in particular, for a variable vane array which facilitates relatively large variable vane pivot angles.
According to an aspect of the present disclosure, an apparatus is provided for a gas turbine engine. This gas turbine engine apparatus includes a variable vane. The variable vane includes a pivot axis and an airfoil. The variable vane is configured to pivot about the pivot axis between a first position and a second position. The airfoil extends spanwise along a span line between a first end and a second end. The airfoil extends chordwise along a chord line between a leading edge and a trailing edge. The chord line is angularly offset from a reference plane containing the pivot axis by a twist angle. The airfoil extends laterally between a first side and a second side. A first section of the airfoil is disposed at the first end. The twist angle varies as the first section extends spanwise along the span line. A second section of the airfoil is disposed spanwise between the first section and the second end. The twist angle is uniform as the second section extends spanwise along the span line.
According to another aspect of the present disclosure, another apparatus is provided for a gas turbine engine. This gas turbine engine apparatus includes an annular engine flowpath, a protuberance and a variable vane. The annular engine flowpath extends circumferentially around a centerline. The protuberance projects into the engine flowpath. The variable vane extends across the engine flowpath. The variable vane includes a pivot axis and an airfoil. The variable vane is configured to pivot about the pivot axis between a first position and a second position. The airfoil extends spanwise along a span line between a first end and a second end. The airfoil extends chordwise along a chord line between a leading edge and a trailing edge. The airfoil extends laterally between a first side and a second side. A first section of the airfoil is disposed at the first end. The first section at the first end is circumferentially offset from the protuberance when the variable vane is in the first position and in the second position. A second section of the airfoil is disposed spanwise between the first section and the second end. The second section is circumferentially offset from the protuberance when the variable vane is in the first position. The second section circumferentially overlaps the protuberance when the variable vane is in the second position.
According to still another aspect of the present disclosure, another apparatus is provided for a gas turbine engine. This gas turbine engine apparatus includes a compressor section and a variable vane at an inlet to the compressor section. The variable vane includes a pivot axis and an airfoil. The variable vane is configured to pivot about the pivot axis at least forty degrees between a first position and a second position. The airfoil extends spanwise along a span line between a first end and a second end. The airfoil extends chordwise along a chord line between a leading edge and a trailing edge. The airfoil extends laterally between a first side and a second side. A first section of the airfoil is disposed at the first end. A stagger angle and/or a camber of the airfoil changes as the first section extends spanwise along the span line towards the first end.
The gas turbine engine apparatus may also include a second variable vane extending across the engine flowpath. The second variable vane may circumferentially neighbor the variable vane, and the second variable vane may include a button. The button may be configured as or otherwise include the protuberance.
The chord line may be angularly offset from a reference plane containing the pivot axis by a twist angle. The twist angle may change as the first section extends spanwise along the span line.
The twist angle may be uniform as the second section extends spanwise along the span line.
The gas turbine engine apparatus may also include a protuberance. The first section and the second section may be misaligned from the protuberance when the variable vane is in the first position. At least a portion of the first section at the first end may be misaligned with the protuberance. At least a portion of the second section may be aligned with the protuberance when the variable vane is in the second position.
The gas turbine engine apparatus may also include a second variable vane including a button. The button may be configured as or otherwise include the protuberance.
The first section may have a first span length along the span line. The second section may have a second span length along the span line. The second span length may be greater than the first span length.
The first section may form less than twenty-five percent of the airfoil along the span line.
The second section may form at least fifty percent of the airfoil along the span line.
The first section may extend along the span line from the second section to the first end. The second section may extend along the span line from the first section to the second end.
The twist angle may increase as the first section extends spanwise towards the first end.
The twist angle may vary along the first section by varying a stagger angle of the first section.
The twist angle may also vary along the first section by varying a camber of the first section.
The twist angle may vary along the first section by varying a camber of the first section.
The variable vane may be configured to pivot about the pivot axis more than forty degrees.
The gas turbine engine apparatus may also include a compressor section. The variable vane may be configured as an inlet guide vane for the compressor section.
The gas turbine engine apparatus may also include a plurality of vanes arranged circumferentially about a centerline. The vanes may include the variable vane. The pivot axis may be parallel with the centerline.
The gas turbine engine apparatus may also include a plurality of vanes arranged circumferentially about a centerline. The vanes may include the variable vane. The pivot axis may be angularly offset from the centerline.
The present disclosure may include any one or more of the individual features disclosed above and/or below alone or in any combination thereof.
The foregoing features and the operation of the invention will become more apparent in light of the following description and the accompanying drawings.
The first platform 22 extends circumferentially about (e.g., completely around) an axial centerline 30 of the gas turbine engine providing the first platform 22 with, for example, a tubular geometry. The first platform 22 of
Referring to
Referring to
The vane airfoil 46 extends spanwise along a span line 52 of the vane airfoil 46 between and to a first end 54 (e.g., an inner, base end) of the vane airfoil 46 and a second end 56 (e.g., an outer, tip end) of the vane airfoil 46. The vane airfoil 46 extends chordwise along a chord line 58 of the vane airfoil 46 between and to a leading edge 60 of the vane airfoil 46 and a trailing edge 62 of the vane airfoil 46. Referring to
Referring to
The first button 70 extends along a vane pivot axis 74 of the respective variable vane 26 between and to a flowpath side 76 of the first button 70 and a bearing side 78 of the first button 70, which vane pivot axis 74 may be parallel with the airfoil span line 52. The first button flowpath side 76 is adjacent the vane airfoil 46 at its airfoil first end 54. At least a portion of the first button flowpath side 76 is offset from the first platform surface 36 such that the first button 70 projects slightly into the engine flowpath 38 to its first button flowpath side 76, thereby forming a protuberance in the engine flowpath 38. The first button 70 projects radially (relative to the vane pivot axis 74) out to an (e.g., cylindrical) outer periphery 80 of the first attachment 48 and its first button 70. This first button outer periphery 80 may be axially aligned with (or offset from) the airfoil leading edge 60. The first button outer periphery 80 may be recessed (e.g., spaced towards the vane pivot axis 74 from) the airfoil trailing edge 62 such that the vane airfoil 46 projects chordwise out from (e.g., overhangs out from) the first attachment 48 and its first button 70 to the airfoil trailing edge 62.
The first shaft 72 is connected to the first button 70 at the first button bearing side 78. The first shaft 72 projects along the vane pivot axis 74 out from the first button 70 to a distal end 82 of the first shaft 72. The first shaft 72 projects radially (relative to the vane pivot axis 74) out to an (e.g., cylindrical) outer periphery 84 of the first shaft 72. This first shaft outer periphery 84 is recessed inwards from the first button outer periphery 80.
The second attachment 50 is connected to (e.g., formed integral with or otherwise fixedly attached to) the vane airfoil 46 at its airfoil second end 56. This second attachment 50 of
The second button 86 extends along the vane pivot axis 74 of the respective variable vane 26 between and to a flowpath side 90 of the second button 86 and a bearing side 92 of the second button 86. The second button flowpath side 90 is adjacent the vane airfoil 46 at its airfoil second end 56. At least a portion of the second button flowpath side 90 may be offset from the second platform surface 44 such that the second button 86 projects slightly into the engine flowpath 38 to its second button flowpath side 90. The second button 86 projects radially (relative to the vane pivot axis 74) out to an (e.g., cylindrical) outer periphery 94 of the second attachment 50 and its second button 86. This second button outer periphery 94 may be axially aligned with (or offset from) the airfoil leading edge 60. The second button outer periphery 94 may be recessed (e.g., spaced towards the vane pivot axis 74 from) the airfoil trailing edge 62 such that the vane airfoil 46 projects chordwise out from (e.g., overhangs out from) the second attachment 50 and its second button 86 to the airfoil trailing edge 62.
The second shaft 88 is connected to the second button 86 at the second button bearing side 92. The second shaft 88 projects along the vane pivot axis 74 out from the second button 86 to a distal end 96 of the second shaft 88. The second shaft 88 projects radially (relative to the vane pivot axis 74) out to an (e.g., cylindrical) outer periphery 98 of the second shaft 88. This second shaft outer periphery 98 is recessed inwards from the second button outer periphery 94.
Each variable vane 26 and its vane airfoil 46 are pivotally connected to the first platform 22 by its first attachment 48. Each first attachment 48, for example, is mated with/received within a respective first receptacle in the first platform 22. Each variable vane 26 and its vane airfoil 46 are pivotally connected to the second platform 24 by its second attachment 50. Each second attachment 50, for example, is mated with/received within a respective second receptacle in the second platform 24. With this arrangement, the attachments 48 and 50 function as bearings between the respective variable vane 26 and the platforms 22 and 24. Referring to
Referring to
Referring to
Referring to
Referring to
The second section 108 is disposed spanwise between the first section 106 and the airfoil second end 56. The second section 108 of
Referring to
With the foregoing arrangement, referring to
In the above example, an entirety of each respective first button 70 forms a protuberance 120 (e.g., see
The vane array 20 is described above with respect to a portion of the engine flowpath 38 that extends substantially (or only) axially along the axial centerline 30. With this arrangement, each vane pivot axis 74 is perpendicular to the axial centerline 30, or angularly offset from the axial centerline 30 by a relatively large acute angle; e.g., an angle equal to greater than forty-five degrees. In other embodiments however, referring to
The airflow inlet 128 is located towards the engine aft end 126, and aft of the engine sections 132-135. The exhaust 130 is located towards the engine forward end 124, and axially between the propulsor section 132 and the engine sections 133-135.
The propulsor section 132 includes a propulsor rotor 138; e.g., a propeller. The compressor section 133 includes a compressor rotor 140. The turbine section 135 includes a high pressure turbine (HPT) rotor 142 and a low pressure turbine (LPT) rotor 144, where the LPT rotor 144 may be referred to as a power turbine rotor and/or a free turbine rotor. Each of these turbine engine rotors 138, 140, 142 and 144 includes a plurality of rotor blades arranged circumferentially about and connected to one or more respective rotor disks or hubs.
The propulsor rotor 138 of
During gas turbine engine operation, air enters the gas turbine engine 122 through the airflow inlet 128. This air is directed into the engine flowpath 38 which extends sequentially from the airflow inlet 128, through the engine sections 133-135 (e.g., an engine core), to the exhaust 130. The air within this engine flowpath 38 may be referred to as “core air”.
The core air is compressed by the compressor rotor 140 and directed into a combustion chamber of a combustor 154 in the combustor section 134. Fuel is injected into the combustion chamber and mixed with the compressed core air to provide a fuel-air mixture. This fuel-air mixture is ignited and combustion products thereof flow through and sequentially cause the HPT rotor 142 and the LPT rotor 144 to rotate. The rotation of the HPT rotor 142 drives rotation of the compressor rotor 140 and, thus, compression of air received from the airflow inlet 128. The rotation of the LPT rotor 144 drives rotation of the propulsor rotor 138, which propels air outside of the turbine engine in an aft direction to provide forward aircraft thrust.
The vane array 20 may be included in various gas turbine engines other than the one described above. The vane array 20, for example, may be included in a geared gas turbine engine where a gear train connects one or more shafts to one or more rotors in a fan section, a compressor section and/or any other engine section. Alternatively, the vane array 20 may be included in a gas turbine engine configured without a gear train. The vane array 20 may be included in a gas turbine engine configured with a single spool, with two spools, or with more than two spools. The gas turbine engine may be configured as a turbofan engine, a turbojet engine, a turboprop engine, a turboshaft engine, a propfan engine, a pusher fan engine or any other type of gas turbine engine. The gas turbine engine may alternatively be configured as an auxiliary power unit (APU) or an industrial gas turbine engine. The present disclosure therefore is not limited to any particular types or configurations of gas turbine engines.
While various embodiments of the present disclosure have been described, it will be apparent to those of ordinary skill in the art that many more embodiments and implementations are possible within the scope of the disclosure. For example, the present disclosure as described herein includes several aspects and embodiments that include particular features. Although these features may be described individually, it is within the scope of the present disclosure that some or all of these features may be combined with any one of the aspects and remain within the scope of the disclosure. Accordingly, the present disclosure is not to be restricted except in light of the attached claims and their equivalents.