Information
-
Patent Grant
-
6827339
-
Patent Number
6,827,339
-
Date Filed
Wednesday, August 20, 200321 years ago
-
Date Issued
Tuesday, December 7, 200420 years ago
-
Inventors
-
-
Examiners
Agents
- Browdy and Neimark, P.L.L.C.
-
CPC
-
US Classifications
Field of Search
US
- 261 445
- 261 52
- 261 65
- 261 691
- 261 DIG 12
- 261 DIG 56
-
International Classifications
-
Abstract
A variable venturi-type carburetor has a base defining a central channel having an upper inlet end and a lower outlet end. A variable venturi assembly is situated in the middle of the central channel. The variable venturi assembly has a support, a conical body, and a resilient member. The support is fixed in the base, the bottom of the conical body is movably connected to the support, the surface of the conical body and the base define a venturi throat and the resilient member is situated between the support and the conical body. A fuel reservoir is provided in the base. A path structure connects the fuel reservoir and the venturi throat. A cam control mechanism is also part of the venturi assembly.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a variable venturi-type carburetor with automatic vacuum regulation and cam control mechanism. More particularly, the present invention relates to a variable venturi-type carburetor capitalizing on changes of engine vacuum suction force and interaction of the cam to control the upward and downward displacement of a conical body in the variable venturi-type carburetor, thereby adjusting the air/fuel ratio in an appropriate range.
2. Description of the Related Art
Most present automobile carburetors are designed with a fixed venturi to create a vacuum pressure in the induction duct in order to pull fuel from a fuel reservoir. The venturi, by its fixed nature, operates at a maximum efficiency over a small range of engine RPM. Furthermore, a different size venturi is generally required for different size engines in performance requirements. To overcome the inefficiency of the prior art fixed venturi carburetor, various variable venturi carburetors have been developed. Compared to the traditional fixed venturi carburetors, variable venturi carburetors can effectively operate throughout the entire engine operation range.
FIG. 1
is a schematic, cross-sectional view illustrating a prior art variable venturi carburetor. As shown in
FIG. 1
, the prior art variable venturi carburetor includes a seat
6
′, a main body
7
′, an upper lid
8
′, a variable venturi assembly
2
′, a fuel reservoir
3
′, and a path structure
4
′. A central channel
10
′ is defined by the seat
6
′, the main body
7
′ and the upper lid
8
′. A throttle valve shaft
511
′ is pivotally installed in the seat
6
′. A switching rod
53
′ is connected to the throttle valve shaft
511
′. The main body
7
′ comprises an upper flange
70
′ approaching the upper lid
8
′. A fixing ring
80
′, which is fastened on the upper lid with screws, is situated at a position approaching the flange
70
′ of the main body
7
′ to define an outlet channel
40
′. The variable venturi assembly
2
′ comprises a support
20
′, a shaft
211
′, a conical body
21
′, and a resilient member
22
′. The support
20
′ is fixed to the main body
7
′. A pivot hole
213
′ is provided in the support
20
′. The lower end of the shaft
211
′ is pivotally connected to the switching rod that is connected to the throttle valve shaft
511
′. The conical body
21
′ is connected and fixed to the upper end of the shaft
211
′. The slightly curved surface of the conical body
21
′ and the flange
70
′ of the main body
7
′ define a venturi throat-narrowing channel
13
′. The resilient member
22
′ is installed between the conical body
21
′ and the support
20
′ to push the conical body
21
′ upwards. The path
4
′ connects the fuel reservoir
3
′ and the outlet channel
40
′ to the venturi throat-narrowing channel
13
′. By rotating the throttle valve shaft
511
′, the shaft
211
′ of the variable venturi assembly
2
′ descends to change the size of the venturi throat narrowing path
13
′, thereby obtaining a proper air/fuel ratio.
Since the above-described prior art variable venturi carburetor comprises the variable venturi assembly
2
′ connected to the throttle valve shaft
511
′, when braking, a sudden large vacuum suction force is created. When the vacuum suction force increases, the conical body of the variable venturi assembly is upwardly pushed by the resilient member, thereby narrowing the venturi throat channel. However, the above-described prior art variable venturi carburetor cannot control the precise position of the conical body when the sudden large vacuum suction force occurs to obtain an optimal spacing. This leads to an overly rich fuel-air mixture and thus results in air pollution. Furthermore, when the throttle valve is fully open, the spacing of the venturi throat channel is fixed. However, it is known that the power load on the engine varies with different road conditions (e.g. grade). Fixed spacing for a fully open throttle valve causes a waste of fuel when the vehicle moves on low-grade roads and inadequate power when vehicle moves on high-grade roads. Even for engines installed with a horse power regulation ring of vacuum valve controllable by engine vacuum suction force, the decrease of engine vacuum suction force caused by an over-loaded engine will make the vacuum valve lose its self-compensation ability.
SUMMARY OF THE INVENTION
Accordingly, the primary object of the present invention is to provide a variable venturi-type carburetor with automatic vacuum regulation and cam control mechanism for adjusting the air/fuel ratio over a wide operation range, thereby increasing the performance of engines.
To achieve this and other advantages and in accordance with the purposes of the present invention, as embodied and broadly described herein, the present invention provides a variable venturi-type carburetor with automatic vacuum regulation and cam control mechanism. The carburetor according to the invention comprises a base defining a central channel having an upper inlet end and a lower outlet end. A variable venturi assembly is situated in the middle of the central channel, the variable venturi assembly comprising a support, a conical body, and a resilient member. The support is fixed in the base, the bottom of the conical body is movably connected to the support and the surface of the conical body and the base define a venturi throat. The resilient member is situated between the support and the conical body. A fuel reservoir is provided in the base. A path structure connects the fuel reservoir and the venturi throat. A cam control mechanism comprises a cam set, throttle valve set and a connecting mechanism. The cam set is pivotally installed at the upper inlet end of the base, and a cam surface of the cam set abuts a top surface of the conical body of the variable venturi assembly. The throttle valve set is pivotally installed at the lower outlet end of the base, and the throttle valve set comprises a throttle valve for controlling the open/close of the lower outlet end. The connecting mechanism has one end connected to the cam set and the other connected to the throttle valve set.
BRIEF DESCRIPTION OF THE DRAWINGS
Other objects, advantages and novel features of the invention will become more clearly and readily apparent from the following detailed description when taken in conjunction with the accompanying drawings, in which:
FIG. 1
is a schematic, cross-sectional view illustrating a prior art variable venturi carburetor;
FIG. 2
is a schematic, cross-sectional diagram of the present invention;
FIG. 3
is a schematic, cross-sectional diagram of the present invention (lean air-fuel mixture);
FIG. 4
is a schematic, cross-sectional diagram of the present invention (rich air-fuel mixture);
FIG. 5
is a schematic, cross-sectional top view of the present invention showing the air inlet from the vent holes of the emulsifying tube;
FIG. 6
is a schematic, cross-sectional top view of the present invention showing the fuel inlet from the vent holes of the emulsifying tube;
FIG. 7
is a perspective view of the fine tuning mechanism of the present invention, showing the status before acting; and
FIG. 8
is a perspective view of the fine tuning mechanism of the present invention, showing the status when acting.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Referring to
FIG. 2
to
FIG. 7
, the present invention pertains to a variable venturi-type carburetor with automatic vacuum regulation and cam control mechanism for adjusting the air/fuel ratio over a wide operation range, thereby increasing the performance of engines. The variable venturi-type carburetor of the present invention comprises a base
1
, a variable venturi assembly
2
, a fuel reservoir
3
, a path
4
, and a cam control mechanism
5
.
The base
1
comprises a central channel
10
comprising an open inlet end
11
and an open outlet end
12
. The base
1
comprises a seat
6
, a main body
7
, and an upper lid
8
in sequence. The open inlet end
11
is situated at the upper lid
8
. The open outlet end
12
is situated at the seat
6
. The main body
7
comprises a flange
70
approaching the upper lid
8
. A fixing ring
80
is fixed in the upper lid
8
and the fixing ring
80
approaches the flange
70
of the main body
7
to form an outlet channel
40
.
The variable venturi assembly
2
is situated in the middle of the central channel
10
. The variable venturi assembly
2
comprises a support
20
, a conical body
21
, and a resilient member
22
. The support
20
has a lower end fixed on the main body
7
of the base
1
. The support
20
comprises a center shaft sleeve
201
. The conical body
21
has a lower shaft portion
211
that is movably inserted into the center shaft sleeve
201
of the support
20
. An inner recess
212
is provided at the bottom of the conical body
21
. The slightly curved surface of the conical body
21
and the flange
70
of the main body
7
define a venturi throat-narrowing channel
13
. The resilient member
22
is installed between the conical body
21
and the support
20
to push the conical body
21
upward. One end of the resilient member
22
is restrained by the inner recess
212
. An upper portion of the shaft sleeve
201
inserts into the resilient member
22
. According to the preferred embodiment of the present invention, the resilient member
22
is a spring.
The fuel reservoir
3
is situated inside the main body
7
of the base
1
. The fuel reservoir
3
is annular in shape. The fuel reservoir
3
has a joint hole
71
allowing the fuel reservoir
3
to connect with the fuel supply chamber
9
.
The path
4
connects the fuel reservoir
3
and the outlet channel
40
to the venturi throat-narrowing channel
13
.
The cam control mechanism
5
comprises cam set
50
, throttle valve set
51
, and connection mechanism
52
. The cam set
50
comprises a camshaft
501
pivotally installed across the open inlet end of the upper lid
8
of the base
1
, and a cam
502
. The surface of the cam
502
abuts upon the top surface of the conical body
21
of the variable venturi assembly
2
. The throttle valve set
51
comprises a throttle shaft
511
pivotally installed across the open outlet end
12
of the seat
6
of the base
1
, and a throttle valve
512
controlling the air passage. The connection mechanism
52
comprises an upper arm
521
, connecting rod
522
, and lower arm
523
. One end of the upper arm
521
is pivotally connected to the camshaft
501
of the cam set
50
, and the other end of the upper arm
521
is pivotally connected to one end of the connecting rod
522
. The other end of the connecting rod
522
is pivotally connected to the throttle vale shaft
511
of the throttle valve set
51
.
The main body
7
comprises a retaining seat
72
, sleeve
73
, emulsifying tube
74
, and horsepower regulation ring
75
. The retaining seat
72
is annular in shape. The retaining seat
72
comprises an upper channel
721
, chamber
722
, and lower channel
723
. The chamber
722
connects with the upper chamber
721
and the lower channel
723
. The upper channel
721
connects with the outlet channel
40
. The lower channel
723
connects with the sleeve
73
. The lower end of the sleeve
73
is connected to the fuel reservoir
3
. The top of the emulsifying tube
74
is fastened in the upper channel
721
. The emulsifying tube passes through the chamber
722
, the lower channel
723
, and the sleeve
73
. Both the inner diameter of the lower channel
723
and the inner diameter of the sleeve
73
are slightly larger than the outer diameter of the emulsifying tube
74
. The lower distal end of the emulsifying tube
74
extends into the fuel reservoir
3
. The number of the emulsifying tubes
74
depends upon the size of the engine. In average, there are 4 to 8 emulsifying tubes provided in the retaining seat
72
. The path
4
includes the upper channel
721
, the chamber
722
, the lower channel
723
, the sleeve
73
, and the emulsifying tube
74
. Vent holes
741
are provided on the emulsifying tube
74
in the chamber
722
. On the horsepower regulation ring
75
, vent holes
751
are provided. The horsepower regulation ring
75
moves between the main body
7
and the retaining seat
72
. Vent holes
76
and
81
are respectively provided on the main body
7
and the upper lid
8
for communicating with an outer air cleaner (not shown). The horsepower regulation ring
75
rotates in an angle displacement manner to control the vent holes
751
of the horsepower regulation ring
75
to align with the vent holes
741
of the emulsifying tube
74
and the vent holes
76
of the main body
7
. The horsepower regulation ring
75
also connects with the impeller mechanism
77
.
Referring to
FIGS. 3-8
, the impeller mechanism
77
comprises the horsepower regulation ring
75
with screw hole
752
. A through hole
78
is provided on the main body
7
. A fixing rod
771
passes through the through hole
78
of the main body
7
and is screwed into the screw hole
752
. The fixing rod
771
is connected to a vacuum valve
773
, which is connected to an engine (not shown). The fixing rod
771
impels the horsepower regulation ring
75
by the engine vacuum suction force. The impeller mechanism
77
further comprises a fine tuning mechanism
79
comprising a cam
791
, rotating member
792
, and adjusting nut
793
. The cam
791
is situated on the throttle valve shaft
511
. The rotating member
792
is pivotally installed on the main body
7
. The adjusting nut
793
is situated at one end of the rotating member
792
. A stopping spring
794
is installed between the rotating member
792
and the adjusting nut
793
. The lower distal end of the adjusting nut
793
abuts upon the surface of the cam
791
. The other end of the rotating member
792
movably sleeves the fixing rod
771
such that the fixing rod
771
is able to slide in the through hole
781
of the main body
7
.
Referring to
FIGS. 3 and 4
, in response to the depression of the throttle pedal, the throttle valve shaft
511
rotates so that the throttle valve
512
can control the open degree of the lower outlet end
12
of the base
1
, thereby generating variation of engine vacuum suction force and therefore changing engine RPM. Changes of the engine vacuum suction force results in upward and downward movement of the conical body
21
of the variable venturi assembly
2
. When the engine vacuum suction force increases, the conical body
21
descends along the axis because of the suction force. When the engine vacuum suction force decreases, the conical body
21
is pushed upwardly by the resilient member
22
. Meanwhile, the throttle valve shaft
511
propels the connecting mechanism
52
to rotate the camshaft
501
of the cam control mechanism
5
and also rotate the cam
502
of the cam set
50
. The different positions of the cam
502
contact the top surface of the conical body
21
to restrict the ascending levels of the conical body
21
. The contact positions between the top surface of the conical body
21
and the cam
502
are optimized in advance according to a number of tests, so that the emission of HC, CO, and NO
x
, are the lowest at different engine speed. The reading of the engine vacuum is highest and stable. An optimized spacing between the conical surface of the conical body
21
and the flange
70
of the main body
7
at the venturi throat-narrowing channel
13
can be acquired to result in optimal air-fuel mixture. According to the open degree of the throttle valve
512
and the positions of the cam
502
of the cam control mechanism
5
, the best position of the conical body
21
of the variable venturi assembly
2
can be acquired to achieve the goals of, for example, fuel conservation, avoiding pollution, and producing maximum horsepower.
Due to a capital phenomenon, an amount of fuel exists in the gap between the sleeve
73
of the main body
7
and the emulsifying tube
74
. The variation of the engine vacuum suction force gives rise to changes of the vacuum valve
773
and forces the fixing nut
771
of the impeller mechanism
77
to control the rotation of the horsepower regulation ring
75
. At low speeds, fuel is sucked up into the emulsifying tube
74
only through the end of the emulsifying tube
74
in the fuel reservoir
3
to provide fewer fuel sent along the path
4
to the venturi throat
13
and mixed there with the passing air from the upper inlet end
11
to produce lean fuel-air mixture at the lower outlet end
12
. Under normal driving conditions, the vent holes
751
of the horsepower regulation ring
75
align with the chamber
722
of the path structure
4
, as shown in FIG.
4
. Alignment of the vent holes
751
and
741
results in wide-open air channel and the air enters the vent holes
751
of the horsepower regulation ring
75
from the vent holes
76
of the main body
7
, then enters the vent holes
741
of the emulsifying tube
74
, to obtain lean air-fuel mixture. When the engine is under a heavy loading condition, such as driving on a road with high grade, a large horsepower output is needed. The engine vacuum suction force decreases under such condition, the vacuum valve
773
actuates the fixing nut
771
such that the vent holes
751
of the horsepower regulation ring
75
misalign with the chamber
722
of the path structure
4
, as shown in FIG.
6
. Misalignment of the corresponding vent holes
751
and
741
results in a closed status. Fuel between the sleeve
73
and the emulsifying tube
74
enters the chamber
722
and then passes through the vent holes
741
of the emulsifying tube
74
and then enters the emulsifying tube
74
to provide a rich air-fuel mixture. Referring to FIG.
7
and
FIG. 8
, the fixing nut
771
actuates the rotating member
792
of the fine tuning mechanism
79
to change the position of the adjusting rod
793
. The cam
791
of the fine tuning mechanism
79
rotates according to the throttle valve shaft
511
to fine tune the position of the adjusting rod
793
, therefore placing the horsepower regulation ring
75
in the best position. The contact positions between the surface of the cam
791
of the fine tuning mechanism
79
and the adjusting rod
793
are adjusted according to a number of tests to ensure that the vent holes
751
of the horsepower regulation ring
75
are in the best positions, thereby providing proper fuel supply in low, middle, and high speed ranges.
To sum up, the present invention variable venturi-type carburetor with automatic vacuum regulation and cam control mechanism has the following advantages:
(1) When the throttle valve is open, the conical body of the variable venturi assembly descends because of the engine vacuum suction force. The lean air-fuel mixture results in reduced engine vacuum suction force and the resilient member pushes the conical body. The cam of the cam set of the cam control mechanism abuts upon the top surface of the conical body to restrict the ascending level of the conical body. The cam set is connected to the throttle valve set by means of the connecting mechanism, such that the spacing at the venturi throat is optimized and a proper air-fuel mixture ratio is obtained. The cam control mechanism and the engine vacuum suction force can be automatically regulated to achieve the goals of saving fuel, preventing pollution, and producing maximum horsepower output.
(2) The conical body of the variable venturi assembly is axially movable. When braking, or releasing the throttle pedal to decelerate, sudden increase of the engine vacuum suction force forces the conical body to descend, therefore increasing the spacing at the venturi throat and decreasing the air-fuel ratio (lean air-fuel mixture). Consequently, when decelerating, extra fuel consumption and air pollution can be avoided. This is more effective when a vehicle drives on city roads.
(3) Fuel supply from the fuel reservoir is more precise. This is because the vent holes of the horsepower regulation ring within the main body can tie in with vent holes of the emulsifying tube of the path structure, and also because of the fine tuning of the contact positions between the cam of the fine tuning mechanism of the impeller mechanism and the adjusting rod.
It is to be understood, however, that even though numerous characteristics and advantages of the present invention have been set forth in the foregoing description, together with details of the structure and function of the invention, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size, and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
Claims
- 1. A variable venturi-type carburetor with automatic vacuum regulation and cam control mechanism, comprising:a base defining a central channel having an upper inlet end and a lower outlet end; a variable venturi assembly situated in a middle of the central channel, the variable venturi assembly comprising a support, a conical body, and a resilient member, wherein the support is fixed in the base, a bottom of the conical body is movably connected to the support, a surface of the conical body and the base define a venturi throat, and wherein the resilient member is situated between the support and the conical body; a fuel reservoir provided in the base; a path structure communicating the fuel reservoir and the venturi throat; and a cam control mechanism comprising a cam set, a throttle valve set, and a connecting mechanism, wherein the cam set is pivotally installed at the upper inlet end of the base, and a cam surface of the cam set abuts upon a top surface of the conical body of the variable venturi assembly, wherein the throttle valve set is pivotally installed at the lower outlet end of the base, and the throttle valve set comprises a throttle valve for controlling the open/close of the lower outlet end, and wherein the connecting mechanism has one end connected to the cam set and another end connected to the throttle valve set.
- 2. The variable venturi-type carburetor with automatic vacuum regulation and cam control mechanism according to claim 1, wherein the base comprises a seat, a main body, and an upper lid in sequence, the open inlet end is situated at the upper lid and the open outlet end is situated at the seat, the throttle valve set comprises a throttle valve shaft pivotally installed at the base, the cam set comprises a camshaft pivotally installed at the upper lid, the connecting mechanism comprises an upper arm, connecting rod, and lower arm, one end of the upper arm is pivotally connected to the camshaft of the cam set, another end of the upper arm is pivotally connected to one end of the connecting rod, and another end of the connecting rod is pivotally connected to the throttle valve shaft of the throttle valve set.
- 3. The variable venturi-type carburetor with automatic vacuum regulation and cam control mechanism according to claim 1, wherein the base comprises a seat, a main body, and an upper lid in sequence, the open inlet end is situated at the upper lid, the open outlet end is situated at the seat, a bottom of the support of the variable venturi assembly is fixed in the base, the support comprises a center shaft sleeve, the conical body has a lower shaft portion movably inserted into the center shaft sleeve of the support, an inner recess is provided at the bottom of the conical body, a slightly curved surface of the conical body and a flange of the main body define a venturi throat narrowing channel, the resilient member is installed between the conical body and the support to push the conical body upward, one end of the resilient member is restrained by the inner recess, an upper portion of the shaft sleeve inserts into the resilient member, and the path connects the fuel reservoir and the outlet channel to the venturi throat narrowing channel.
- 4. The variable venturi-type carburetor with automatic vacuum regulation and cam control mechanism according to claim 3, wherein the fuel reservoir is situated inside the main body of the base, the fuel reservoir is annular in shape, the fuel reservoir has a joint hole allowing the fuel reservoir to connect with the fuel supply chamber, the main body comprises a retaining seat, sleeve, emulsifying tube, and horsepower regulation ring, the retaining seat is annular in shape, the retaining seat comprises an upper channel, chamber, and lower channel, the chamber connects with the upper chamber and the lower channel, the upper channel connects with the outlet channel, the lower channel connects with the sleeve, the lower end of the sleeve is connected to the fuel reservoir, the top of the emulsifying tube is fastened in the upper channel, the emulsifying tube passes through the chamber, the lower channel, and the sleeve, both the inner diameter of the lower channel and the inner diameter of the sleeve are slightly larger than the outer diameter of the emulsifying tube, the lower distal end of the emulsifying tube extends into the fuel reservoir, the number of the emulsifying tubes depends upon the size of the engine, the path includes the upper channel, the chamber, the lower channel, the sleeve, and the emulsifying tube, vent holes are provided in the emulsifying tube in the chamber, vent holes are provided in the horsepower regulation ring, the horsepower regulation ring moves between the main body and the retaining seat, vent holes are respectively provided in the main body and the upper lid for communicating with an outer air cleaner, the horsepower regulation ring rotates in angle displacement manner to control the vent holes of the horsepower regulation ring to align with the vent holes of the emulsifying tube and the vent holes of the main body, and the horsepower regulation ring also connects with an impeller mechanism.
- 5. The variable venturi-type carburetor with automatic vacuum regulation and cam control mechanism according to claim 4, wherein the impeller mechanism comprises the horsepower regulation ring with screw hole, a through hole is provided in the main body, a fixing rod passes through the through hole of the main body and is screwed into the screw hole, the fixing rod is connected to a vacuum valve, the vacuum valve is connected to an engine and the fixing rod impels the horsepower regulation ring by the engine vacuum suction force.
- 6. The variable venturi-type carburetor with automatic vacuum regulation and cam control mechanism according to claim 5, wherein the impeller mechanism further comprises a fine tuning mechanism comprising a cam, rotating member, and adjusting nut, the cam is situated on the throttle valve shaft, the rotating member is pivotally installed on the main body, the adjusting nut is situated at one end of the rotating member, a stopping spring is installed between the rotating member and the adjusting nut, the lower distal end of the adjusting nut abuts upon the surface of the cam, and another end of the rotating member movably sleeves the fixing rod such that the fixing rod is able to slide in the through hole of the main body.
- 7. The variable venturi-type carburetor with automatic vacuum regulation and cam control mechanism according to claim 6, wherein a stopping spring is installed between the rotating member and the adjusting nut.
US Referenced Citations (12)
Foreign Referenced Citations (2)
Number |
Date |
Country |
61-19958 |
Jan 1986 |
JP |
61-19959 |
Jan 1986 |
JP |