Variable volume container

Information

  • Patent Grant
  • 6578482
  • Patent Number
    6,578,482
  • Date Filed
    Monday, December 11, 2000
    23 years ago
  • Date Issued
    Tuesday, June 17, 2003
    21 years ago
Abstract
A variable volume container includes a cylindrical main body having an end wall at an end thereof; an outlet projecting from an outer surface of said end wall for allowing a content to be supplied; a piston member fitted into said main body sealingly and slidably in an axial direction of said main body for defining a variable volume storage chamber between itself and said end wall; a plug member detachably mounted to said outlet; and an impact resisting reinforcement disposed at said end wall. The reinforcement may be a part of said end wall having a thickness gradually increased toward said outlet, or may be a rib shaped projection. Such a variable volume container placed upside down in packaging or transport is reinforced at the end wall of the main body where the outlet is disposed. Thus, impact is not concentrated at the root portion of the outlet but distributed, so that the outlet is prevented from being damaged, and the container is placed more stably.
Description




The present invention relates to a variable volume container whose volume changes as a piston member fitted therein moves.




The variable volume container of this type is employed for example as a container for ink used in stencil printing. In stencil printing machines, ink is supplied to the inner side of a cylindrical printing drum, and the ink is transferred onto a printing sheet through a perforated stencil sheet wound around the outer side of the printing drum. The ink container is normally a cartridge type container detachably mounted to the printing drum, and printing ink is fed from the ink container into the printing drum.





FIG. 10

shows how the ink container


1


is mounted into the printing drum


2


. The printing drum


2


is formed to have a cylindrical shape with an ink-permeable circumferential surface which rotates around the central axis of the printing drum. The ink fed into the printing drum


2


from the ink container


1


is pressed toward the outer side of the printing drum


2


by a squeegee roller


3


which rotates as it is in contact with the inner circumferential surface of the printing drum


2


. A doctor roller


4


is provided obliquely over and parallel to the squeegee roller


3


with a small gap therebetween, and thereby an ink hold portion P is formed at the valley portion formed between the squeegee roller


3


and the doctor roller


4


.




An ink pump


5


is provided in the printing drum


2


to supply printing ink from the ink container


1


. The ink pump


5


includes a suction conduit


5




a


detachably coupled to the outlet


1




a


of the ink container


1


, and an outlet conduit


5




b


in communication with an ink distribution tube


6


supported parallel to and above the ink hold portion P. Ink sucked and supplied from the ink container


1


using the ink pump


5


is supplied to the ink hold portion P through the outlet conduit


5




b


and the ink distribution tube


6


.




The ink container


1


is formed into a cylinder/piston type container, and the outlet


1




a


is formed at an end wall


1




c


that blocks a front end of the cylinder


1




b


(the right end in FIG.


10


). The back end of the cylinder


1




b


(the left end in

FIG. 10

) is sealed by a piston member


1




d


slidably fitted into the cylinder


1




b


, and thus an ink storage chamber


1




e


is formed between the end wall


1




c


and the piston member


1




d


. The amount of ink contained in the ink storage chamber


1




e


is reduced as the ink is sucked using the ink pump


5


, and as a result the piston member


1




d


moves toward the front end of the cylinder


1




b


in the sealed state. The ink container


1


having such a structure is distributed in the market as it has its outlet


1




a


sealed with a cap


1




f


as shown in

FIG. 11

, and when the ink container


1


is used, the outlet


1




a


removed of the cap


1




f


is inserted into the suction conduit


5




a


of the ink pump


5


. As shown by the double dotted chain line in

FIG. 11

, the back end of the cylinder


1




b


(the upper end in

FIG. 11

) is provided with a simple cover


7


having an opening, in order to prevent the piston member


1




d


from coming out.




However, if the ink container


1


is transported or stored in a distribution channel with the cap


1




f


facing upward, ink could leak from a gap between the piston member


1




d


and the inner wall of the cylinder


1




b


, or the piston member


1




d


could go down by the weight of ink, causing air to enter the ink storage chamber


1




e


from a gap between the outlet


1




a


and the cap


1




f


and mix into the ink. Therefore, the cap side of the container


1


is preferably faced downward as shown in

FIG. 11

, in other words, the ink container


1


is preferably placed upside down in packing into a box or in display.




As can be seen from

FIG. 11

, however, the outlet


1




a


of the ink container


1


is formed to have a diameter smaller than the diameter of the cylinder


1




b


. As a result, the following disadvantages are encountered if the container


1


is placed with the smaller-sized outlet


1




a


being faced downward.




(1) This smaller-sized outlet


1




a


or the cap


1




f


has to support the entire load of the ink container


1


and the content thereof, and therefore the ink container


1


becomes unstable, and can be easily turned over even by slight vibration.




(2) At the time of packaging, transporting and unloading, if the container


1


is impacted or dropped, impact force could be concentrated at the outlet


1




a


, causing damage to the outlet


1




a


and thereby causing leakage of ink from the cylinder


1




b.






In recent years, in order to increase the storage amount of ink, there is a demand that diameter of the cylinder


1




b


is enlarged as far as the cylinder


1




b


is accommodated in an attachment space of the printing drum


2


. In this case, the outlet


1




a


would be even smaller as compared to the enlarged cylinder


1




b


, which makes the disadvantages even more serious.




It is an object of the present invention to provide a variable volume container which has an improved structure in the vicinity of the outlet and is capable of stably holding the outlet facing downward even if the cylinder of the container is enlarged in diameter.




According to the present invention, the above-described object is achieved by a variable volume container comprising a cylindrical main body having an end wall at an end thereof; an outlet projecting from an outer surface of said end wall for allowing a content to be supplied; a piston member fitted into said main body sealingly and slidably in an axial direction of said main body for defining a variable volume storage chamber between itself and said end wall; a plug member detachably mounted to said outlet; and an impact resisting reinforcement disposed at said end wall.




In this structure, the storage chamber is sealed by the plug member that is attached to the outlet projecting from the end wall. If the container is placed upside down with the outlet facing downward in the sealed state, the entire load of the container including the weight of the content acts upon the outlet. If impact in a vertical direction is applied to the container in this state, impact force concentrates at the outlet, particularly at the root portion of the outlet. However, since the impact resisting reinforcement is provided at the end wall from which the outlet projects, the root portion of the outlet is protected by the impact resisting reinforcement and is prevented from being damaged.




The impact resisting reinforcement may be a part of said end wall having a thickness gradually increased toward said outlet. This thickness increasing part is thickest and strongest at the outlet, and therefore improves the strength of the root portion of the outlet to effectively protect the root portion against impact and prevent the outlet from being damaged.




In addition, the impact resisting reinforcement may be formed as a rib shaped projection disposed on an outside surface, an inside surface, or both outside and inside surfaces of said end wall. The rib shaped projection reinforces the end wall provided with the outlet, and protects the root portion of the outlet, so that the outlet will not be damaged.




The rib shaped projection is preferably disposed in contact with an outer periphery of a projecting part of the outlet. In this case, the outer periphery of the projecting part of the outlet is supported by the rib shaped projection, and thus the outlet will not be deformed by bending or buckling, or damaged even when impact is applied thereto.




The rib shaped projection preferably extends beyond a line connecting a periphery of a head of said plug member mounted to said outlet and a periphery of said end wall. When the height of the rib shaped projection is at least beyond the line connecting the periphery of the head of the plug member and the periphery of the end wall, the impact applied to the outlet can be avoided or alleviated.




Furthermore, it is preferred that the rib shaped projection is gradually broadened toward the end wall, so that a corner portion formed between the rib shaped projection and the end wall is rounded. The corner portion having such a circular arc surface can prevent stress from concentrating at the root portion of the rib shaped projection. Therefore, the effect of the rib shaped projection to reinforce the end wall can further be improved.




Furthermore, preferably, the plug member has a head with an expanded diameter in a direction perpendicular to an axis of said cylindrical main body and a larger area than said outlet, and has a leg portion which projects from said head and is in abutment against said end wall. In this case, the main body is supported by the surface of the expanded head of the plug member and thus is placed stably. Also, any impact applied to the head is allowed to escape to the end wall through the leg portion, and thus the impact directly applied upon the outlet can be alleviated so that the outlet is prevented from being damaged.




In addition, in each of the variable volume containers described above, the storage chamber can store a high viscosity material, such as printing ink for use in stencil printing. In this case, the variable volume containers can be used as an ink container received in a stencil printing machine. When the ink containers are placed upside down with the outlet at the lower side in packaging/transport, the outlet can be prevented from being damaged during the transport, so that ink will not leak.











Embodiments of the present invention will be now described in detail in conjunction with the accompanying drawings, in which





FIG. 1

is a vertical sectional view of a variable volume container according to one embodiment of the present invention;





FIG. 2

is a perspective view of a variable volume container according to another embodiment of the present invention;





FIG. 3

is a front view of the variable volume container as shown in

FIG. 2

;





FIG. 4

is a vertical sectional view of the variable volume container as shown in

FIG. 2

;





FIG. 5

is a front view of a variable volume container according to still another embodiment of the present invention;





FIG. 6

is a front view of a variable volume container according to yet still another embodiment of the present invention;





FIG. 7

is a front view of a variable volume container according to yet still another embodiment of the present invention;





FIG. 8

is an expanded, perspective view of an essential part of a rib shaped projection provided in a variable volume container according to the present invention, showing a section thereof;





FIG. 9

is a vertical sectional view of an essential part of a variable volume container according to another embodiment of the present invention;





FIG. 10

is a cross sectional view of an essential part of a stencil printing machine in which a conventional variable volume container is set; and





FIG. 11

is a vertical sectional view of a conventional variable volume container.












FIG. 1

is a vertical sectional view of a variable volume container


10


according to one embodiment of the present invention in which the container


10


is placed upside down. The container


10


is formed as a piston/cylinder type container, and basically includes an approximately cylindrical main body


11


, and a piston member


12


fitted in the main body


11


and provided slidably in the axial direction of the main body. The main body


11


has one end thereof (the lower end in

FIG. 1

) closed with an end wall


11




a


, and the other end thereof (the upper end in

FIG. 1

) opened. A tail cap


13


having an opening is detachably fitted to the open end. The end wall


11




a


includes an outlet


14


projecting outward at the central part thereof, and a cap


15


as a plug member is detachably screwed to a screw portion


14




a


formed on the outer periphery of the outlet


14


. The cap


15


has a head


15




a


with a flat surface perpendicular to the axis of the main body


11


.




Meanwhile, the piston member


12


is basically formed to have an approximately cylindrical shape having a slightly smaller outer diameter than the inner diameter of the main body


11


. One end of the piston member


12


(the lower end in

FIG. 1

) is provided with an end wall


12




a


, and the other end is opened (the upper end in FIG.


1


). The end wall


12




a


has a reinforced structure with its central part recessed toward the other end, and is provided at its outer periphery with an annular scraping portion


12




b


which slightly expands and projects like a funnel. The scraping portion


12




b


has a top end portion press-contacted to the inner circumferential surface of the main body


11


so as to maintain a sealed state between the main body


11


and the piston member


12


. Thus, a variable volume storage chamber


16


in which a content is stored is defined between the end wall


11




a


and the piston member


12


in the main body


11


.




Herein, the end wall


11




a


is formed to have a thickness t gradually increasing from the periphery of the end wall


11




a


toward the outlet


14


, and the part


17


in which the thickness is varied is formed to function as an impact resisting reinforcement.




The main body


11


and the piston member


12


may be formed from any material, but the material must be selected in consideration of solvent resistance (e.g., resistance to swelling) depending upon kinds of the content in order to prevent dimensional changes, in consideration of barrier characteristic or drop strength in order to secure storability for the content, or in consideration of slipping characteristic of the piston member


12


and the main body


11


and flexibility of the scraping portion


12




b


. In general, they may be readily manufactured at a high precision by a molding method such as injection molding using a plastic material. The plastic material may be polypropylene (PP), high density polyethylene (HDPE), low density polyethylene (LDPE), polystyrene (PS), nylon (Ny), polyvinyl chloride (PVC), polyethylene terephthalate (PET), polycarbonate (PC), polyoxymethylene (POM), polysulfon (PSF), polyethersulfon (PES), polyacrylate (PAR), or polyamid (PA). Among these substances, a general-purpose plastic material such as PP, HDPE and LDPE is inexpensive and particularly preferable. PP and HDPE are preferably used for the scraping portion


12




b


which should be flexible. In this case, it is preferred that the outer diameter of the scraping portion


12




b


is set slightly larger than the inner diameter of the main body


11


, so that when the piston member


12


is fitted to the main body


11


, the scraping portion


12




b


is press-contacted to the inner wall of the main body


11


by virtue of its elasticity. Furthermore, these materials may be similarly employed for the following embodiments of the present invention.




In connection with

FIG. 1

, the function of the variable volume container


10


will be now described by referring to use of the container as a stencil printing ink container. In this case, the storage chamber


16


in the container


10


is filled with a high viscosity ink as the content. As the ink fills the storage chamber


16


, as shown in

FIG. 1

, the piston member


12


is positioned at the open end portion of the main body


11


and the outlet


14


is sealed by the cap


15


. The container is distributed in the market in this state as an ink cartridge. In use, the cap


15


is removed from the container


10


. Then, the container


10


is set in the printing drum


2


, and the outlet


14


is inserted in the suction conduit


5




a


, as shown in

FIG. 10

similarly to the conventional case.




The container


10


is packaged or stored upside down in the distribution process with the outlet


14


facing the lower side as shown in FIG.


1


. In this case, as the head


15




a


of the cap


15


serves as a supporting surface, the container


10


stands upright. In this moment, since the part


17


in which its thickness t gradually increases toward the outlet


14


is provided in the end wall


11




a


from which the outlet


14


projects, the thickness increasing part


17


provides impact resistance in the vertical direction. More specifically, the thickness increasing part


17


has a maximum strength at the outlet


14


where the former has the largest thickness, and thus the root portion of the outlet


14


is increased in strength by the thick part so that the root portion can be effectively protected against impact.




Therefore, even when the container


10


thus packaged is transported, unloaded or dropped by mistake, and subjected to resulting impact force, the outlet


14


can be prevented from being damaged. As a result, ink leakage from the main body


11


can be prevented, which improves its commercial value as an ink container in the market. Here, the thickness increasing part


17


according to the embodiment shown in

FIG. 1

is formed by increasing the thickness of the end wall


11




a


on the outside surface of the container, but it should be understood that the thickness may be increased on the inside surface of the container or on both the inside and outside surfaces of the container.




Meanwhile, the materials of the main body


11


and the piston member


12


are selected in consideration of solvent resistance, barrier characteristic or drop strength, or slipping characteristic or flexibility and moldability, etc., as described above. Regarding the physical properties of the plastic material, the Izod impact value (JIS K7110: 23° C., notched test piece) should be appropriately 5 kJ/m


2


or more, preferably in the range from 7.5 to 15 (kJ/m


2


). Emulsion ink which is a mixture of water and oil is often used as the stencil printing ink. Therefore, a plastic whose water absorption is 1% or less and whose physical properties exhibit high oil resistance against organic solvent or petroleum solvent is preferably used for the container for such ink. These physical property values are the same for water based ink or oil based ink. As a physical property value of PP suitable for injection molding, the melt flow rate (MFR) in accordance with JIS K7210 (230° C., test load: 21.2N) is preferably in a range from 5 to 50 g/10 min. These physical property values are similarly applied to the following embodiments of the invention.





FIGS. 2

to


4


show another embodiment, in which the same elements as those of the above described embodiment are denoted with the same reference characters and not detailed again. The variable volume container


10


according to the embodiment basically has the same structure as that of the variable volume container


10


according to the above described embodiment, but the end wall


11




a


according to this embodiment has a constant thickness unlike the above described embodiment.




In this embodiment, as shown in the perspective view of

FIG. 2

, a pair of rib shaped projections


20


are formed integrally to the outer surface of the end wall


11




a


, and they form an impact resisting reinforcement. As shown in the front view of

FIG. 3

, the pair of rib shaped projections


20


are provided symmetrically to one another around the outlet


14


, and formed to be as long as possible on the end wall


11




a


. As shown in the vertical sectional view of

FIG. 4

, the projecting amount (height) h of each rib shaped projection


20


is beyond the line L connecting the periphery of the head of the cap


15


and the periphery of the end wall


11




a


. More specifically in the embodiment, the rib shaped projection


20


is formed to extend slightly beyond the surface of the head


15




a


of the cap


15


.




Referring to

FIGS. 2

to


4


, the function of the variable volume container


10


will be now described. The container


10


has the rib shaped projections


20


provided at the end wall


11




a


, and thus the strength of the end wall


11




a


is increased in thickness-wise direction. As a result, the root portion of the outlet


14


projecting from the end wall


11




a


is reinforced. If impact is applied to the vicinity of the end wall


11




a


or outlet


14


of the container


10


, the impact is distributed and the entire impact is not applied directly to the outlet


14


, so that the outlet


14


is not damaged.




In this embodiment, the rib shaped projections


20


extend beyond the surface of the head


15




a


of the cap


15


, and therefore the container


10


placed upside down is supported by the rib shaped projections


20


, so that the outlet


14


can be prevented from being loaded by the container


10


. A pair of such rib shaped projections


20


are provided symmetrically around the outlet


14


, and thus the container


10


is supported stably on a region broader than the surface of the head


15




a


of the cap


15


.




Note that in the embodiment shown in

FIGS. 2

to


4


, the rib shaped projection


20


extends beyond the surface of the head


15




a


of the cap


15


, but the rib shaped projection


20


only has to project at least beyond the line L (refer to

FIG. 4

) connecting the periphery of the head


15




a


of the cap


15


and the outer periphery of the end wall


11




a


for the purpose of alleviating impact input to the outlet


14


. In the embodiment shown in

FIGS. 2

to


4


, the rib shaped projection


20


is formed on the outer surface of the end wall


11




a


. However, for the purpose of reinforcing the end wall


11




a


, the rib shaped projections


20


may be formed only on the inside surface of the end wall


11




a


, or may be formed on both inside and outside surfaces of the end wall


11




a.







FIGS. 5

to


7


show various modifications of the rib shaped projection, in which the same elements as those of the above described embodiments are denoted with the same reference characters and not detailed again. More specifically, the embodiment shown in

FIG. 5

has four rib shaped projections


20


which are provided at the apexes of a foursquare around the outlet


14


. In this embodiment, similarly to the embodiment shown in

FIG. 4

, if the height h of the rib shaped projection


20


extends outward beyond the surface of the head


15




a


of the cap


15


, the container


10


placed upside down is stably supported by the four projections


20


.




The embodiment shown in

FIG. 6

has a rib shaped projection


20


which is annular and formed concentrically around the outlet


14


at an appropriate distance. In this embodiment, the end wall


11




a


is reinforced uniformly in the circumferential direction. Similarly to the embodiment shown in

FIG. 4

, if the height h of the rib shaped projection


20


extends outward beyond the surface of the head


15




a


of the cap


15


, the container


10


placed upside down is extremely stably supported by the annular projection


20


.




Furthermore, the embodiment of

FIG. 7

has rib shaped projections


20


which are four members placed like a crisscross with the outlet


14


in the center, and the surface of each projection


20


on the central side is in abutment against the outer periphery of the projecting part of the outlet


14


. In this embodiment, the rib shaped projections


20


support the outer periphery of the projecting part of the outlet


14


, and therefore the outlet


14


is prevented from deformation such as bending and buckling, and is also prevented from being damaged if impact is applied thereto. Note that in this embodiment, since the rib shaped projections


20


are in contact with the outer periphery of the projecting part of the outlet


14


, the height of the rib shaped projections


20


should be just about the size not to interfere with the screw portion of the outlet


14


. Alternatively, if the height is set higher than the outlet


14


, a press-fit type plug such as a cork plug to be sealingly press-fitted into the outlet


14


is preferably be used rather than the screw type cap


15


shown in FIG.


1


.




It should be understood in the present invention that the shape or number of rib shaped projections


20


is not limited to that shown in

FIGS. 5

to


7


, and may be arbitrarily selected. Note however that as shown, the rib shaped projections


20


are preferably provided in a symmetrical manner around the outlet


14


. It should be noted that those rib shaped projections


20


as shown in

FIGS. 5

to


7


can alleviate impact input to the outlet


14


if they extend at least beyond the line L connecting the periphery of the head


15




a


of the cap


15


and the outer periphery of the end wall


11




a


. Otherwise, in order to simply reinforce the end wall


11




a


, the rib shaped projections may be provided on the outside surface, the inside surface, or both outside and inside surfaces of the end wall


11




a.






The shape and number of rib shaped projections


20


may be different depending upon kinds of the content such as color of ink, while a detector which detects the shape and number of the rib shaped projections


20


may be provided in a device to which the container


10


is mounted such as the printing drum


2


(refer to FIG.


10


). In this way, the kind of the content can be automatically determined at the moment when the container


10


is mounted.




The rib shaped projection


20


is provided integrally to the end wall


11




a


as shown in

FIG. 8

, and at the time, the root portion of the rib shaped projection


20


is preferably broadened toward the end wall


11




a


. Particularly, the corner portions formed between the rib shaped projection


20


and the end wall


11




a


are preferably formed with circular arc surfaces


20




a


. By shaping the corner portions of the rib shaped projection


20


into rounded circular arc surfaces


20




a


, stress can be prevented from concentrating at the root portion of the rib shaped projection


20


. Therefore, the effect of the rib shaped projection


20


to reinforce the end wall


11




a


can be further improved.





FIG. 9

shows still another embodiment of the present invention, in which the same elements are denoted by the same reference characters and not detailed again.

FIG. 9

is a vertical sectional view of an essential part of the variable volume container


10


placed upside down. In this embodiment, the surface of the head


15




a


of the screwed cap


15


(or press-fit plug) mounted to the outlet


14


of the container


10


according to the foregoing embodiments is expanded to have the same diameter as that of the main body


11


. In addition, a leg portion


30


extends from the circumferential part of the expanded head


15




a


and is in abutment against the end wall


11




a


. The leg portion


30


is formed to have a continuous annular shape, and abuts against the end wall


11




a


in its entire circumference.




Referring to

FIG. 9

, the function of the variable volume container


10


will be now described. The container


10


placed upside down is supported by the surface of the expanded head


15




a


of the cap


15


, and therefore the container


10


is stably held. Any impact applied to the surface of the head


15




a


is allowed to escape through the leg portion


30


to the end wall


11




a


, and therefore impact applied to the outlet


14


can be alleviated to prevent damages at the outlet


14


.




Herein, according to the embodiment, the surface of the head


15




a


is formed to have the same diameter as that of the main body


11


, however the invention is by no means limited to this. The size of the head


15




a


can be selected as desired. It should be understood that a greater diameter of the head


15




a


allows the container


10


to be supported more stably. Another leg portion


30




a


may be provided on the surface of the head


15




a


as shown by the double dotted chain line in

FIG. 9

in addition to the leg portion


30


. This can further reduce impact applied to the outlet


14


because the impact input to the head


15




a


is more widely distributed. At this time, the leg portions


30


,


30




a


do not have to have a continues annular shape, but may be disconnected approximately at equal intervals in the circumferential direction. From the above, it is understood that the leg portions


30


,


30




a


function as impact resisting reinforcements which are disposed at the end wall


11




a


according to the present invention.




As in the foregoing, in the variable volume container according to the present invention, an impact resisting reinforcement is additionally disposed at the end wall where the outlet is formed. Therefore, even if impact is applied to the vicinity of the outlet as the container is placed with the outlet facing the lower side, the outlet can be prevented from being damaged because of the impact resisting reinforcement provided in the vicinity of the root of the outlet.



Claims
  • 1. A variable volume container comprising:a cylindrical main body having an end wall at an end thereof; an outlet projecting from an outer surface of said end wall for allowing a content to be supplied, said outlet being configured to be received in a printing apparatus whereby the content of the variable volume container can be sucked therefrom by the printing apparatus; a piston member fitted into said main body sealingly and slidably in an axial direction of said main body for defining a variable volume storage chamber between itself and said end wall; a cap member detachably mounted to said outlet; and an impact resisting reinforcement disposed at said end wall, wherein said impact resisting reinforcement is a part of said end wall having a thickness gradually increased toward said outlet.
  • 2. A variable volume container comprising:a cylindrical main body having an end wall at an end thereof; an outlet projecting from an outer surface of said end wall for allowing a content to be supplied, said outlet being configured to be received in a printing apparatus whereby the content of the variable volume container can be sucked therefrom by the printing apparatus; a piston member fitted into said main body sealingly and slidably in an axial direction of said main body for defining a variable volume storage chamber between itself and said end wall; a cap member detachably mounted to said outlet, and an impact resisting reinforcement disposed at said end wall, wherein said impact resisting reinforcement is a rib shaped projection disposed on an outside surface or both outside and inside surfaces of said end wall, and wherein said rib shaped projection extends beyond a line connecting a periphery of the head of said cap member mounted to said outlet and a periphery of said end wall.
  • 3. A variable volume container comprising:a cylindrical main body having an end wall at an end thereof; an outlet projecting from an outer surface of said end wall for allowing a content to be supplied, said outlet being configured to be received in a printing apparatus whereby the content of the variable volume container can be sucked therefrom by the printing apparatus; a piston member fitted into said main body sealingly and slidably in an axial direction of said main body for defining a variable volume storage chamber between itself and said end wall; a cap member detachably mounted to said outlet; and an impact resisting reinforcement disposed at said end wall, wherein said impact resisting reinforcement is a rib shaped projection disposed on an outside surface, an inside surface, or both outside and inside surfaces of said end wall, and wherein a corner portion formed between said rib shaped projection and said end wall is formed with a circular arc surface.
  • 4. The variable volume container according to claim 3, wherein said rib shaped projection is disposed in contact with an outer periphery of a projecting part of said outlet.
  • 5. A variable volume container comprising:a cylindrical main body having an end wall at an end thereof; an outlet projecting from an outer surface of said end wall for allowing a content to be supplied, said outlet being configured to be received in a printing apparatus whereby the content of the variable volume container can be sucked therefrom through the outlet by the printing apparatus; a piston member fitted into said main body sealingly and slidably in an axial direction of said main body for defining a variable volume storage chamber between itself and said end wall; a cap member detachably mounted to said outlet; and an impact resisting reinforcement disposed at said end wall, wherein said impact resisting reinforcement is a rib shaped projection disposed on an outside surface or both outside and inside surfaces of said end wall, and wherein said rib shaped projection is formed such that the kind of content to be supplied can be determined based on the projection.
  • 6. The variable volume container according to claim 5, wherein said rib shaped projection is disposed in contact with an outer periphery of a projecting part of said outlet.
  • 7. A variable volume container comprising:a cylindrical main body having an end wall at an end thereof; an outlet projecting from an outer surface of said end wall for allowing a content to be supplied, said outlet being configured to be received in a printing apparatus whereby the content of the variable volume container can be sucked therefrom through the outlet by the printing apparatus; a piston member fitted into said main body sealingly and slidably in an axial direction of said main body for defining a variable volume storage chamber between itself and said end wall; a cap member detachably mounted to said outlet; and an impact resisting reinforcement disposed at said end wall, wherein said cap member has a head with an expanded diameter in a direction perpendicular to an axis of said cylindrical main body and a larger area than said outlet, and has a leg portion which projects from said head and is in abutment against said end wall.
  • 8. The variable volume container according to any one of claims 1 to 7, wherein said storage chamber contains a high viscosity printing ink for use in stencil printing.
  • 9. The variable volume container according to any one of claims 1 to 7, wherein said end wall from which said outlet is projected is formed integrally with said main body.
Priority Claims (1)
Number Date Country Kind
11-355786 Dec 1999 JP
US Referenced Citations (9)
Number Name Date Kind
4169547 Newell Oct 1979 A
4785931 Weir et al. Nov 1988 A
5126177 Stenger Jun 1992 A
5301839 Eierle et al. Apr 1994 A
5680967 Dang et al. Oct 1997 A
5881928 Register et al. Mar 1999 A
6192797 Rea et al. Feb 2001 B1
6223941 Nealey May 2001 B1
6302574 Chan Oct 2001 B1
Foreign Referenced Citations (5)
Number Date Country
44 31 181 Dec 1995 DE
0 228 556 Jul 1987 EP
592741 Apr 1994 EP
2 243 598 Sep 1973 FR
2 010 978 Jul 1979 GB
Non-Patent Literature Citations (1)
Entry
Kalpakjian, “Manufacturing Engineering and Technology,” 1992, Addison-Wesley Pub. Co., 2nd Edition, pp. 346-348.