The present invention relates to the field of exhaust air systems for buildings and/or other enclosed areas, and more particularly, to exhaust discharge nozzles configured to be attached to the outlets of exhaust fans, exhaust ducts and/or stacks, and similar exhaust type equipment/devices and are specifically designed to be installed in the outdoor ambient.
Many commercial and industrial processes exist which introduce hazardous and/or noxious chemicals into the building exhaust. These chemicals originate from a host of commercial/industrial processes within critical environments such as research laboratories, chemical storage facilities, generator housing rooms, thermal oxidizers, exhaust chemical scrubbers, etc. It is of paramount importance that the proper precautions are taken to ensure that the effluent is effectively managed 100% of the time. Specifically designed, purpose built exhaust systems are required to mitigate hazardous concentrations of processes chemicals. As governed by the ASHRAE 2011 HVAC Applications Handbook, a comprehensive flow model of the building must be executed to determine critical fluid flow patterns based on the unique geometry and wind flow patterns for the site. Consideration for the location of near-by air building fresh air intakes is a critical factor which must be accounted for so as to avoid possible effluent re-entrainment into the facility in unprocessed concentrations. In order to be effective, the critical exhaust provisions must be properly designed and must achieve continuous rated performance in the real world dynamic environment where the system is to operate. Failure to meet any of the above criteria would jeopardize the safety of those working in and around the proximity of the critical environment and/or residents of surrounding communities.
An effective solution, as standardized by ASHRAE, is to propel exhaust gases upward to a critical height above the building roofline where the atmospheric free stream can provide sufficient plume dilution, thus reducing the concentrations of hazardous chemicals to levels deemed safe. This critical height is termed the “effective stack height.” In its simplest form, the effective stack height is the height at which a theoretical centerline of the building exhaust plume becomes completely horizontal due to the impact of the specified horizontal cross wind velocity. The effective stack height, hse (ft), can be calculated from the American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE) HVAC Applications Handbook as:
hse=hs+hr−hd
Where:
hs is the physical exhaust system height (ft)
hr is the plume rise (ft)
hd is the amount of stack wake downwash in (ft)
The plume rise component, hr, is the distance the exhaust plume will be propelled above the terminal discharge point of the physical equipment. Plume rise for momentum driven flow is calculated based on the recommendations of the ASHRAE. From as early as 1999 through 2010 the ASHRAE HVAC Handbook has stipulated the use of a special case of the Brigg's Equations to determine plume rise hr, which is defined as:
hr=3.0de(Ve/UH)
The initial adaptation and application of the Briggs equation for plume rise did not effectively capture many critical site specific parameters, and the accepted method for calculating plume rise has been redefined in the ASHRAE 2011 HVAC Applications handbook using the Briggs equation for the vertical jet momentum of the exhaust versus downwind distance as:
hr=min{βhx, βhf}
β is the stack capping factor, 1.0 without cap as in the present invention
The plume rise verses downwind distance hx in (ft) is obtained from:
hx=[(3Fmx)/(βj2UH2)]^(⅓)
Fm is the momentum flux (ft4/s2) and is calculated as Fm=Ve2(de2/4)
βj is the jet entrainment coefficient computed as βj=⅓+(UH/Ve)
x is the downwind distance
The final plume rise hf in (ft) is determined from:
hf={0.9[Fm(UH/U*)]^(½)}/(UHβj)
UH/U* is the he logarithmic wind profile computed as UH/U*=2.5 ln(H/z0)
As specified in the ASHRAE 2011 standard, the cross wind velocity at the building roofline UH, as applied to all equations which require this parameter, is the maximum design wind speed at the building roof height at which air intake contamination must be avoided. As stated by ASHRAE, this maximum design speed must be at least as large as the hourly wind speed exceeded 1% of the time. Chapter 14 of the 2009 ASHRAE Fundamentals Handbook lists this value for many cities.
Upon examination of the equation for effective stack height it becomes evident that the most critical parameters affecting a system's ability to achieve this specification are discharge geometry (de), discharge velocity (Ve), and the design wind speed (UH) where the system is to operate. Furthermore, the American National Standards Institute/American Industrial Hygiene Association ANSI/AIHA Z9.5 2012 Laboratory Ventilation standard mandates a minimum discharge velocity of 3000 ft/min be constantly maintained in order to be in compliance. Standard Z9.5 2012 also specifies that the physical exhaust system height, hs, be a minimum of 10 ft. above adjacent roof lines and air intakes and in a vertical up direction.
It should be noted that standard industry testing methods, at the present time do not incorporate cross winds into the testing protocol. The Air Movement and Control Association (AMCA) has developed AMCA Standard 260-07 Laboratory Methods of Testing Induced Flow Fans for Rating and is generally accepted as the industry standard. However, while this test does certify discharge flow volume of an induction exhaust system, it does not include dynamic testing with the influence of a cross wind. Therefore, using outlet flow data to calculate system exit velocities measured according to AMCA standard 260-07 can lead to erroneous discharge velocity ratings. Furthermore, if static system exit velocities (i.e. no cross wind present during measurement) are used in the special case Briggs Equation, which is a function of dynamic variables only, to determine plume rise, the prediction of performance will be physically incorrect. Plume rise (i.e. the quotient) determined in this manner would always be mathematically undefined (i.e. infinite asymptote) due to the 0 ft/min cross wind velocity devisor; which is an impossible physical phenomena to achieve. However, if the AMCA standard 260-07 were modified to incorporate cross wind, then the Briggs equations would be a mathematically valid method of calculating plume rise, provided that the velocity profile at the discharge was uniform. Additionally, an advanced engineering approach is to use computational fluid dynamics (CFD) software to calculate system performance; the AMCA 260 test can be simulated with the cross wind component included to develop real world performance data. The Briggs equation is valid for calculating plume rise using the CFD data; however this only applies to systems with a uniform discharge profile. Additionally, the most current methodology of calculating plume rise as defined by ASHRAE should always be used.
Complying with the necessary laws, codes, standards and recommendations is becoming increasingly challenging, as recent advancements have led to an increasing number of variable volume laboratory designs and installations. One of the most significant benefits of variable volume systems is the ability to turn down the exhaust air volume in response to usage requirements. This reduction is exhaust flow results in a significant energy savings. However, reducing the exhaust flow volume using conventional/existing technology has historically made achieving the required effective stack height and minimum exhaust discharge velocities challenging due to the accompanying reduction in discharge velocity.
The present invention is designed to instantaneously modulate and control discharge geometry and discharge velocity in response to varying primary exhaust air flows, dilution requirements, and roof line wind speeds, so that the mandated effective stack height is continuously achieved. The device is designed with a variable discharge diameter to gradually accelerate the exhaust effluent to a sufficiently high velocity. An adjustable impingement pod, which runs the full length of the nozzle section, provides a mechanism to gradually reduce the nozzle's cross-sectional area, thereby producing a uniform acceleration of the primary exhaust stream. The uniform acceleration has the specific benefit of minimizing high velocity gradients within the nozzle which contribute to exhaust stream energy loss. A unique controls strategy is employed which provides on demand response to varying primary flow conditions, dilution and changing roofline wind speeds. Bypass air dampers, system discharge area and motor speed adjust in a coordinated effort to meet operational exhaust requirements as outlined above. Thus, the present invention is an energy efficient alternative to conventional technology.
The application of discharge nozzles at the exit point of exhaust systems enhances the performance capability with the specific intent of maximizing the exhaust/effluent dispersion into the upper atmosphere of the hazardous contaminated air and/or effluent gases and vapors from buildings, rooms, and other enclosed spaces. Discharge nozzles able to provide a superior alternative to conventional tall exhaust stacks which are costly to construct and are visually unattractive by today's standards. Properly designed nozzles are capable of propelling high velocity plumes of exhaust gases to heights sufficient to prevent stack wake downwash and disperse the effluent over a large upper atmospheric area so as to avoid exhaust contaminant re-entrainment into building ventilation intake zones.
A further development of the variable-volume exhaust nozzle design is the type nozzle that employs the Venturi effect to draw additional ambient air into the primary effluent stream. The venturi type nozzle can further be described as an aspirating, or induction type, as related to conventional technological description for this type nozzle. The additional induced air volume dilutes the primary exhaust gases at/near the nozzle as the combined mixed air volumes are released into the atmosphere. Also, with this exhaust-air mixture volume increase, the discharged gas is expelled at a higher velocity, achieving a greater plume height. The underlying effect of greater volume at greater discharge velocity is an increased effluent momentum, which assists with the effluent disbursement into the atmosphere.
The features and functions of induction nozzles are described in greater detail in U.S. patent application Ser. No. 13/067,269, the disclosure of which is incorporated herein by reference.
High plume lift is particularly critical with regard to exhaust gases from potentially contaminated sources, such as laboratories and other facilities in which chemical processes produce noxious fumes. To insure that potentially contaminated exhaust reaches a minimum altitude to avoid downwash, many environmental and building code standards specify a minimum discharge velocity from an exhaust nozzle. For example, ANSI Z9.5 2012 currently requires a minimum discharge velocity of 3000 feet per minute (FPM) at the outlet of a lab exhaust nozzle.
Maintaining a minimum exhaust nozzle discharge velocity can be problematic when there is a high turndown ratio in the critical space, meaning the primary exhaust flow rate is highly variable. This is typically the case in laboratories, for example, where some of the fume hoods may be inactive at any given time, so that the primary exhaust rate is often below the design value for the exhaust fan. Since lowering the fan speed can reduce the exhaust outlet velocity below the 3000 FPM minimum, the conventional approach in the past has been to maintain a constant fan speed while opening bypass air dampers to draw in ambient air.
One existing approach to variable primary flows is to select fans to perform at the maximum exhaust flow condition of the critical space. When the flow requirements of the critical space are reduced, a bypass damper is opened to incorporate unconditioned outside air into the fan to make up the difference in flow volume. While this approach is functional, the practice of running exhaust fans continuously at speeds designed to handle the maximum design exhaust flow condition is wasteful in terms of energy consumption. To conserve energy, it's preferable to use variable speed fans in which the fan speed decreases as the primary exhaust flow rate decreases. In order to maintain a minimum discharge velocity through an exhaust nozzle, the cross-sectional outlet area of the nozzle can be varied by mechanical means, such as dampers.
Mechanical variation of the nozzle outlet area has the disadvantage of causing non-uniform exhaust flow gradients at the approach to the constricted nozzle opening. In other words, the exhaust flow velocity does not increase uniformly with respect to distance travelled. This creates the opportunity for turbulent flow pattern to develop and produces non-uniform pressure and velocity profiles at the constricted nozzle outlet. As a result, an uncorrected Briggs equation for calculating plume rise would not apply to such a device, and performance would not be readily predictable.
As discussed in U.S. patent application Ser. No. 13/067,269, the use of a wind band at the nozzle outlet provides the advantages of shielding the exhaust discharge from cross-winds, which reduce plume height, as well as inducing ambient air flow through the windband, thereby increasing discharge flow volume and velocity. But effective induction through the windband requires uniform pressure and velocity profiles at the nozzle outlet, which cannot be achieved if the nozzle outlet is mechanically constricted.
Instead of mechanically constricting the nozzle outlet area in response to reduced fan speed, the present invention uses an axially-extendable, upwardly tapered flow-impinging pod within the nozzle to create a variable annular nozzle outlet opening. As the impinger pod is extended upward through the nozzle opening, the annular space around the pod narrows gradually and uniformly in the direction of the nozzle outlet, thereby enabling a linear velocity gradient and producing a uniform discharge velocity profile conducive to optimal induction through the windband, as well as maximizing the integrity of the exhaust plume
The present invention is an induction nozzle for vertical connection to an exhaust gas outlet of a variable-speed fan for new and retrofit applications. The nozzle comprises a nozzle wall which can be tubular or frusto-conical, but preferably tubular tapering upward to frusto-conical, as shown in
Within the nozzle is a variable annular effluent passage, through which exhaust gas flows from the fan through the exhaust inlet to the discharge outlet. The annular effluent passage surrounds an upwardly tapered impinger pod, which is axially disposed within the effluent passage. The impinger pod has a cylindrically tubular lower section concentrically surrounding a tubular guide sleeve, along which the impinger pod slides up, i.e., in the direction of the discharge outlet, or down, i.e., in the direction of the exhaust inlet, in response to corresponding movements of a linear actuator located within the guide sleeve, as depicted in
The impinger pod has a substantially conical upper section terminating in a rounded pod tip. The linear actuator moves the impinger pod from a fully open position, in which the pod tip is aligned with the discharge outlet, as shown in
The nozzle, fan, and mixing plenum function as a smart fan assembly, which is controlled by a central processing unit (master controller). The system is designed to respond to two variable flow conditions; wind speed and primary exhaust flow. All inputs are received in real time and then processed in accordance with the control logic to maintain optimal system performance. Optimal performance is defined by maintaining the effective stack height and dilution requirements with the lowest energy consumption. The master controller continuously monitors input signals, sensing fans in operation (for multiple fan systems), primary exhaust flow, duct static pressure, bypass damper position, isolation damper position, motor speed, nozzle velocity, pod position, and roof line wind speed. The master controller calculates the optimal fan sequencing for multiple fan systems, position for motor speed, ambient bypass damper position and impinger pod position. This unique ability provides safe ventilation of variable volume exhaust systems for critical environments in a variable wind speed condition. The master controllers function is to provide dynamic intelligent logic for full and part load operation to select the optimum strategy for indexing multiple points of control and to intelligently correct the strategy for optimal system performance versus lowest cost of energy—essentially optimizing plume performance without compromising safety. The controller will include the ability to provide real time analysis and reporting of actual cost to operate versus a non-optimized system; the system will include the option for dashboard information management and display. This system will also include real time web-based interface, connectivity to building control system, and internet connectivity for auto alarming and remote diagnostics.
When exhausting critical environments it is good engineering practice, and many times mandated, to incorporate redundancy into the design. This redundancy typically includes multiple fans installed on a common plenum with a portion operating and at least one fan on standby for emergency situations. Fan sequencing is controlled by the central processing unit and ensures equal use of all fans. Additionally, fan sequencing provides an opportunity to manage reduced exhaust flow conditions and ensure minimal energy consumption while meeting exhaust requirements. An added benefit of the control logic is to provide wear cycling, whereby redundant fans are cycled into operation, thereby ensuring that all fans have equal run time.
The bypass damper position is controlled to also ensure that dilution requirements, if any, are being satisfied and that required system performance is being achieved.
Wind speed at the building roofline is monitored by a velocity sensor (e.g. anemometer). Under the ASHRAE 2011 standard, any system is designed to operate at the wind speeds realized 1% of the time for the specific site where the system is installed. .The present invention can therefore reduce energy consumption 99% of the time by modulating adjustment points such as bypass damper position, impingement pod position, and motor speed in response to varying system conditions such as wind speed and primary exhaust flow, while maintaining required performance.
Motor speed is typically controlled by a variable frequency drive. A variable frequency drive provides a mechanism for the central processing unit to sense motor speed and determine if increasing or decreasing motor speed will maintain performance while reducing energy consumption. The speed of the motor and brake horsepower consumption are related according to the following expression:
BHP2=[(RPM2/RPM1)3]BHP1
Accordingly, there is a significant energy savings benefit to reducing the speed of the fan if conditions permit. The central processing unit functions to determine how to optimally reduce motor speed.
A velocity sensor-processor located within the nozzle near the discharge outlet measures discharge velocity of the exhaust stream; this information will control the impinger pod to most optimal position.
Duct static pressure is measured to control the fan assembly to maintain exhaust stability in a variable flow system.
The logic to control the fan assembly is designed to be application specific; each system will have variable design parameters, such as, number of fans, wind speed, exhaust flow turndown, effective stack height and dilution dispersion. A schematic diagram of an exemplary fan assembly control system is illustrated in
The induction nozzle of the present invention also comprises a frusto-conical windband, which is attached in converging annular spaced relation to the exterior of the nozzle wall by multiple mounting brackets and concentrically surrounds the discharge outlet of the nozzle as depicted in
The high velocity discharge of exhaust gas from the nozzle discharge outlet induces an ambient air inflow through the annular induction flow passage and upward through the exhaust passage of the windband. Based on uniform exhaust pressure and velocity profiles at the nozzle discharge outlet, the induced ambient air inflow merges non-turbulently with the exhaust gas from the nozzle discharge outlet to produce a combined exhaust plume with increased volume, momentum and lift.
As the discharging primary air volume is accelerated in the nozzle/windband section, a vena contracta can be observed; the vena contracta is the point in the discharging air stream where the hydraulic diameter is the least and the velocity is at its maximum. This effect is observed slightly downstream of the nozzle discharge and can be characterized by a contraction coefficient, which is defined as the ratio of the area of the exhaust stream (i.e. jet) and the area of the nozzle discharge (i.e. orifice). The position of the tip of the impingement pod has an intrinsic influence on the vena contracta characteristics. The exhausting air volume will tend to separate from the tip of the impingement pod and converge at a downstream distance which is dependent on pod position. When the flow converges, the velocity is at a maximum and the vena contracta is evident. The maximized velocity at this point serves to enhance the venturi effect and further improve the induction capacity of the system. This effect is unique to the present invention and serves to optimize plume characteristics and system performance in all pod positions.
The requisite uniform exhaust discharge pressure and velocity profiles are generated by the variable annular nozzle outlet opening defined by the adjustable position of the impinger pod. As shown in
The foregoing summarizes the general design features of the present invention. In the following sections, specific embodiments of the present invention will be described in some detail. These specific embodiments are intended to demonstrate the feasibility of implementing the present invention in accordance with the general design features discussed above. Therefore, the detailed descriptions of these embodiments are offered for illustrative and exemplary purposes only, and they are not intended to limit the scope either of the foregoing summary description or of the claims which follow.
Referring to
Referring to
In the fully open position, as shown in
Referring to
Near the nozzle's discharge outlet 28, a velocity sensor-processor 27 is located, which takes periodic measurements of the discharge velocity of the exhaust gas, compares it with a velocity set point, and signals the linear actuator 10 to either lower the impinger pod to a more open position, if the measured discharge velocity is above the set point, or raise the pod to a more closed position, if the measured discharge velocity is below the set point.
As illustrated in
The primary exhaust gas 30, augmented as needed by the bypass air 37, enters the fan plenum 43 through the fan's isolation damper 33, controlled by a spring-return actuator 34. From the fan 44, the augmented exhaust gas 3037 flows through the nozzle 45, where its flow rate is accelerated to a degree determined by the position of the impinger pod, as controlled by the linear actuator 10.
The CPU 42 monitors flow velocity and/or velocity pressure 38 near the nozzle outlet 25 and uses such data to adjust fan speed through a variable frequency drive 39 (connected to an electric power source 40), as well as pod position through the linear actuator 10, to achieve a required plume rise based on a design discharge velocity 46. The CPU 42 calculates the design discharge velocity 46 using the Briggs Equation and the prevailing cross-wind velocity, as measured by an anemometer 41 at the building roofline.
Although the preferred embodiment of the present invention has been disclosed for illustrative purposes, those skilled in the art will appreciate that many additions, modifications and substitutions are possible, without departing from the scope and spirit of the present invention.
This application claims the benefit of the filing date of U.S. provisional Patent Application 61/803,520, filed Mar. 20, 2013, and it also relates to U.S. non-provisional patent application Ser. No. 13/067,269, filed May 20, 2011, the disclosures of both of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2188564 | Berg | Jan 1940 | A |
2483922 | Messer | Oct 1949 | A |
2626557 | Hersch | Jan 1953 | A |
3010692 | Jentoft | Nov 1961 | A |
3525474 | Mills | Aug 1970 | A |
3528614 | Honmann | Sep 1970 | A |
3719032 | Cash | Mar 1973 | A |
4344370 | Smith | Aug 1982 | A |
4422524 | Osborn | Dec 1983 | A |
4806076 | Andrews | Feb 1989 | A |
5439349 | Kupferberg | Aug 1995 | A |
5938527 | Oshima | Aug 1999 | A |
6112850 | Secrest | Sep 2000 | A |
6431974 | Tetley | Aug 2002 | B1 |
6509081 | Diamond | Jan 2003 | B1 |
6676503 | Hill | Jan 2004 | B2 |
6890252 | Liu | May 2005 | B2 |
7241214 | Sixsmith | Jul 2007 | B2 |
7547249 | Seliger | Jun 2009 | B2 |
8974272 | Mornan | Mar 2015 | B2 |
9233386 | Mornan | Jan 2016 | B2 |
9371836 | Mornan | Jun 2016 | B2 |
20050170767 | Enzenroth | Aug 2005 | A1 |
20060179815 | Means | Aug 2006 | A1 |
20070298700 | Datta | Dec 2007 | A1 |
20110053488 | Gans | Mar 2011 | A1 |
20120322358 | Wendorski et al. | Dec 2012 | A1 |
Number | Date | Country |
---|---|---|
WO2009091477 | Jul 2009 | WO |
Number | Date | Country | |
---|---|---|---|
20140286767 A1 | Sep 2014 | US |
Number | Date | Country | |
---|---|---|---|
61803520 | Mar 2013 | US |