Variable volume ratio compressor

Information

  • Patent Grant
  • 11022119
  • Patent Number
    11,022,119
  • Date Filed
    Monday, October 1, 2018
    5 years ago
  • Date Issued
    Tuesday, June 1, 2021
    3 years ago
Abstract
A compressor may include a shell assembly, first and second scrolls, and a valve assembly. The shell assembly may define a discharge chamber. The first scroll may be disposed within the discharge chamber and may include a first end plate and a first spiral wrap. The first end plate may include a discharge passage in communication with the discharge chamber. The second scroll may be disposed within the discharge chamber and may include a second end plate and a second spiral wrap. The first and second spiral wraps define fluid pockets therebetween. The second end plate may include a port selectively communicating with one of the fluid pockets. The valve assembly may be mounted to the second scroll and may include a valve member that is movable between open and closed positions to allow and restrict communication between the port and the discharge chamber.
Description
FIELD

The present disclosure relates to a variable volume ratio compressor.


BACKGROUND

This section provides background information related to the present disclosure and is not necessarily prior art.


Compressors are used in a variety of industrial, commercial and residential applications to circulate a working fluid within a climate-control system (e.g., a refrigeration system, an air conditioning system, a heat-pump system, a chiller system, etc.) to provide a desired cooling and/or heating effect. A typical climate-control system may include a fluid circuit having an outdoor heat exchanger, an indoor heat exchanger, an expansion device disposed between the indoor and outdoor heat exchangers, and a compressor circulating a working fluid (e.g., refrigerant or carbon dioxide) between the indoor and outdoor heat exchangers. Efficient and reliable operation of the compressor is desirable to ensure that the climate-control system in which the compressor is installed is capable of effectively and efficiently providing a cooling and/or heating effect on demand.


SUMMARY

This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.


The present disclosure provides a compressor that may include a shell assembly, a non-orbiting scroll, an orbiting scroll, and variable-volume-ratio valve assembly. The shell assembly may define a discharge chamber. The non-orbiting scroll may be disposed within the discharge chamber and may include a first end plate and a first spiral wrap extending from the first end plate. The orbiting scroll may be disposed within the discharge chamber and may include a second end plate and a second spiral wrap extending from the second end plate. The first and second spiral wraps mesh with each other to define a plurality of fluid pockets therebetween. The fluid pockets are movable among a radially outermost position, a radially intermediate position, and a radially innermost position. The second end plate may include a variable-volume-ratio port extending therethrough and selectively communicating with one of the fluid pockets at the radially intermediate position. The variable-volume-ratio valve assembly may be mounted to the orbiting scroll and may include a valve member that is movable relative to the orbiting scroll between an open position allowing communication between the variable-volume-ratio port and the discharge chamber and a closed position restricting communication between the variable-volume-ratio port and the discharge chamber.


In some configurations of the compressor of the above paragraph, when the valve member is in the open position, fluid flows from the variable-volume-ratio port to the discharge chamber without flowing back into any of the fluid pockets.


In some configurations of the compressor of either of the above paragraphs, the first end plate of the non-orbiting scroll includes a discharge passage in communication with the discharge chamber and one of the fluid pockets at the radially innermost position. The variable-volume-ratio port is disposed radially outward relative to the discharge passage.


In some configurations of the compressor of any one or more of the above paragraphs, when the valve member is in the open position, fluid flows from the variable-volume-ratio port to the discharge chamber without flowing through the discharge passage in the non-orbiting scroll.


In some configurations of the compressor of any one or more of the above paragraphs, the second end plate includes an annular hub extending from a side of the second end plate opposite the second spiral wrap. The annular hub may define a cavity in which the variable-volume-ratio valve assembly is at least partially disposed.


In some configurations of the compressor of any one or more of the above paragraphs, the compressor includes a driveshaft engaging the annular hub and driving the orbiting scroll.


In some configurations of the compressor of any one or more of the above paragraphs, the driveshaft includes a crank pin disposed within the cavity.


In some configurations of the compressor of any one or more of the above paragraphs, the compressor includes a bearing disposed within the cavity and receiving the crank pin. The bearing may at least partially define a flow path extending from the variable-volume-ratio port to the discharge chamber.


In some configurations of the compressor of any one or more of the above paragraphs, the compressor includes a bearing disposed within the cavity and receiving the crank pin. The annular hub includes a flow passage extending therethrough. The flow passage may be disposed radially outward relative to the bearing and at least partially defines a flow path extending from the variable-volume-ratio port to the discharge chamber.


In some configurations of the compressor of any one or more of the above paragraphs, the annular hub is a two-piece hub including a first annular member and a second annular member. The second annular member may be at least partially received within the first annular member and may receive the bearing.


In some configurations of the compressor of any one or more of the above paragraphs, the variable-volume-ratio valve assembly includes a retainer disposed within the cavity and fixedly mounted to the second end plate.


In some configurations of the compressor of any one or more of the above paragraphs, the valve member is a reed valve that is sandwiched between the retainer and the second end plate. The reed valve may bend between the open and closed positions.


In some configurations of the compressor of any one or more of the above paragraphs, the second end plate includes another variable-volume-ratio port. The valve member may selectively open and close the variable-volume-ratio ports. The valve member may be fixedly attached to the second end plate at a location radially between the variable-volume-ratio ports.


In some configurations of the compressor of any one or more of the above paragraphs, the second end plate includes a recess disposed between and in communication with the variable-volume-ratio port and the cavity. The valve member may be disposed within the recess and may be movable therein between the open and closed positions.


In some configurations of the compressor of any one or more of the above paragraphs, the variable-volume-ratio valve assembly includes a spring disposed at least partially within the recess and between the valve member and the retainer. The spring may bias the valve member toward the closed position.


In some configurations of the compressor of any one or more of the above paragraphs, the valve member is a disc-shaped member having a flow passage formed in its periphery.


In some configurations of the compressor of any one or more of the above paragraphs, the second end plate includes an additional variable-volume-ratio port. The variable-volume-ratio valve assembly may include another spring and another valve member movably received within another recess that is in communication with the cavity and the additional variable-volume-ratio port.


In some configurations of the compressor of any one or more of the above paragraphs, the second end plate includes an annular hub extending from a side of the second end plate opposite the second spiral wrap. The annular hub may define a cavity that receives a crank pin of a driveshaft. The annular hub may be a two-piece hub including a first annular member and a second annular member. The second annular member may be partially received within the first annular member and may receive the crank pin. The variable-volume-ratio valve assembly may be mounted to the second annular member.


In some configurations of the compressor of any one or more of the above paragraphs, the variable-volume-ratio valve assembly includes a spring disposed between the second annular member and the valve member and biasing the valve member toward the closed position.


In some configurations of the compressor of any one or more of the above paragraphs, the valve member is a disc-shaped member having a flow passage formed in its periphery.


In some configurations of the compressor of any one or more of the above paragraphs, the valve member is disposed radially between the first and second annular members and extends partially around the crank pin of the driveshaft.


In some configurations of the compressor of any one or more of the above paragraphs, the variable-volume-ratio port extends through a portion of the first annular member.


In some configurations of the compressor of any one or more of the above paragraphs, the valve member contacts an inner diametrical surface of the first annular member when the valve member is in the closed position.


In some configurations of the compressor of any one or more of the above paragraphs, a portion of the valve member moves inward away from the inner diametrical surface of the first annular member when the valve member moves from the closed position to the open position.


In some configurations of the compressor of any one or more of the above paragraphs, the orbiting scroll includes a first portion and a second portion attached to the first portion by a plurality of fasteners. The first portion may include the second spiral wrap and a portion of the second end plate. The second portion may include another portion of the second end plate and an annular hub that receives a crank pin of a driveshaft.


In some configurations of the compressor of any one or more of the above paragraphs, the annular hub includes a flow passage in communication with the variable-volume-ratio port and the discharge chamber.


In some configurations of the compressor of any one or more of the above paragraphs, the variable-volume-ratio valve assembly includes a spring disposed between the valve member and the second portion of the orbiting scroll. The spring may bias the valve member toward a valve seat defined by the first portion of the orbiting scroll.


In some configurations of the compressor of any one or more of the above paragraphs, the compressor includes a driveshaft having an eccentric recess.


In some configurations of the compressor of any one or more of the above paragraphs, the second end plate includes an annular hub extending from a side of the second end plate opposite the second spiral wrap.


In some configurations of the compressor of any one or more of the above paragraphs, the annular hub defines a cavity in which the variable-volume-ratio valve assembly is at least partially disposed.


In some configurations of the compressor of any one or more of the above paragraphs, the annular hub is received within the eccentric recess of the driveshaft.


In some configurations of the compressor of any one or more of the above paragraphs, the driveshaft includes a flow passage in fluid communication with the cavity.


In some configurations of the compressor of any one or more of the above paragraphs, when the valve member is in the open position, fluid from the variable-volume-ratio port flows into the cavity.


In some configurations of the compressor of any one or more of the above paragraphs, fluid in the cavity may flow into the discharge chamber via the flow passage in the driveshaft.


In some configurations of the compressor of any one or more of the above paragraphs, the flow passage is disposed in a collar portion of the driveshaft.


In some configurations of the compressor of any one or more of the above paragraphs, the collar portion is disposed at an axial end of the driveshaft and defines the eccentric recess.


The present disclosure also provides a compressor that may include a shell assembly, a first scroll, a second scroll, and variable-volume-ratio valve assembly. The shell assembly may define a discharge chamber. The first scroll may be disposed within the discharge chamber and may include a first end plate and a first spiral wrap extending from the first end plate. The first end plate may include a discharge passage in communication with the discharge chamber. The second scroll may be disposed within the discharge chamber and may include a second end plate and a second spiral wrap extending from the second end plate. The first and second spiral wraps mesh with each other to define a plurality of moving fluid pockets therebetween. The second end plate may include a variable-volume-ratio port disposed radially outward relative to the discharge passage and selectively communicating with one of the fluid pockets. The variable-volume-ratio valve assembly may be mounted to the second scroll and may include a valve member that is movable relative to the second scroll between an open position allowing communication between the variable-volume-ratio port and the discharge chamber and a closed position restricting communication between the variable-volume-ratio port and the discharge chamber.


In some configurations of the compressor of the above paragraph, the first scroll is a non-orbiting scroll, and the second scroll is an orbiting scroll.


In some configurations of the compressor of any one or more of the above paragraphs, the second end plate includes an annular hub extending from a side of the second end plate opposite the second spiral wrap. The annular hub may define a cavity in which the variable-volume-ratio valve assembly is at least partially disposed.


In some configurations of the compressor of any one or more of the above paragraphs, the compressor includes a driveshaft engaging the annular hub and driving the orbiting scroll.


In some configurations of the compressor of any one or more of the above paragraphs, the driveshaft includes a crank pin disposed within the cavity.


In some configurations of the compressor of any one or more of the above paragraphs, the compressor includes a bearing disposed within the cavity and receiving the crank pin. The bearing may at least partially define a flow path extending from the variable-volume-ratio port to the discharge chamber.


In some configurations of the compressor of any one or more of the above paragraphs, the compressor includes a bearing disposed within the cavity and receiving the crank pin. The annular hub includes a flow passage extending therethrough. The flow passage may be disposed radially outward relative to the bearing and at least partially defines a flow path extending from the variable-volume-ratio port to the discharge chamber.


In some configurations of the compressor of any one or more of the above paragraphs, the annular hub is a two-piece hub including a first annular member and a second annular member. The second annular member may be at least partially received within the first annular member and may receive the bearing.


In some configurations of the compressor of any one or more of the above paragraphs, the variable-volume-ratio valve assembly includes a retainer disposed within the cavity and fixedly mounted to the second end plate.


In some configurations of the compressor of any one or more of the above paragraphs, the valve member is a reed valve that is sandwiched between the retainer and the second end plate. The reed valve may bend between the open and closed positions.


In some configurations of the compressor of any one or more of the above paragraphs, the second end plate includes another variable-volume-ratio port. The valve member may selectively open and close the variable-volume-ratio ports. The valve member may be fixedly attached to the second end plate at a location radially between the variable-volume-ratio ports.


In some configurations of the compressor of any one or more of the above paragraphs, the second end plate includes a recess disposed between and in communication with the variable-volume-ratio port and the cavity. The valve member may be disposed within the recess and may be movable therein between the open and closed positions.


In some configurations of the compressor of any one or more of the above paragraphs, the variable-volume-ratio valve assembly includes a spring disposed at least partially within the recess and between the valve member and the retainer. The spring may bias the valve member toward the closed position.


In some configurations of the compressor of any one or more of the above paragraphs, the valve member is a disc-shaped member having a flow passage formed in its periphery.


In some configurations of the compressor of any one or more of the above paragraphs, the second end plate includes an additional variable-volume-ratio port. The variable-volume-ratio valve assembly may include another spring and another valve member movably received within another recess that is in communication with the cavity and the additional variable-volume-ratio port.


In some configurations of the compressor of any one or more of the above paragraphs, the second end plate includes an annular hub extending from a side of the second end plate opposite the second spiral wrap. The annular hub may define a cavity that receives a crank pin of a driveshaft. The annular hub may be a two-piece hub including a first annular member and a second annular member. The second annular member may be partially received within the first annular member and may receive the crank pin. The variable-volume-ratio valve assembly may be mounted to the second annular member.


In some configurations of the compressor of any one or more of the above paragraphs, the variable-volume-ratio valve assembly includes a spring disposed between the second annular member and the valve member and biasing the valve member toward the closed position.


In some configurations of the compressor of any one or more of the above paragraphs, the valve member is a disc-shaped member having a flow passage formed in its periphery.


In some configurations of the compressor of any one or more of the above paragraphs, the valve member is disposed radially between the first and second annular members and extends partially around the crank pin of the driveshaft.


In some configurations of the compressor of any one or more of the above paragraphs, the variable-volume-ratio port extends through a portion of the first annular member.


In some configurations of the compressor of any one or more of the above paragraphs, the valve member contacts an inner diametrical surface of the first annular member when the valve member is in the closed position.


In some configurations of the compressor of any one or more of the above paragraphs, a portion of the valve member moves inward away from the inner diametrical surface of the first annular member when the valve member moves from the closed position to the open position.


In some configurations of the compressor of any one or more of the above paragraphs, the second scroll includes a first portion and a second portion attached to the first portion by a plurality of fasteners. The first portion may include the second spiral wrap and a portion of the second end plate. The second portion may include another portion of the second end plate.


In some configurations of the compressor of any one or more of the above paragraphs, the second portion includes an annular hub that receives a crank pin of a driveshaft.


In some configurations of the compressor of any one or more of the above paragraphs, the annular hub includes a flow passage in communication with the variable-volume-ratio port and the discharge chamber.


In some configurations of the compressor of any one or more of the above paragraphs, the variable-volume-ratio valve assembly includes a spring disposed between the valve member and the second portion of the second scroll. The spring may bias the valve member toward a valve seat defined by the first portion of the second scroll.


Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.





DRAWINGS

The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations, and are not intended to limit the scope of the present disclosure.



FIG. 1 is a cross-sectional view of a compressor having a variable-volume-ratio valve assembly according to the principles of the present disclosure;



FIG. 2 is a cross-sectional view of a compression mechanism and the variable-volume-ratio valve assembly of the compressor of FIG. 1 with a valve member in a closed position;



FIG. 3 is a cross-sectional view of a compression mechanism and the variable-volume-ratio valve assembly of the compressor of FIG. 1 with the valve member in an open position;



FIG. 4 is another cross-sectional view of a scroll of the compression mechanism and the variable-volume-ratio valve assembly;



FIG. 5 is a cross-sectional view of another configuration of a scroll another configuration of a variable-volume-ratio valve assembly according to the principles of the present disclosure;



FIG. 6 is another cross-sectional view of the scroll and variable-volume-ratio valve assembly of FIG. 5;



FIG. 7 is a perspective view of a valve member of the variable-volume-ratio valve assembly of FIG. 5;



FIG. 8 is a cross-sectional view of yet another configuration of a scroll and variable-volume-ratio valve assembly according to the principles of the present disclosure;



FIG. 9 is another cross-sectional view of the scroll and variable-volume-ratio valve assembly of FIG. 8;



FIG. 10 is a cross-sectional view of yet another configuration of a scroll and variable-volume-ratio valve assembly according to the principles of the present disclosure;



FIG. 11 is another cross-sectional view of the scroll and variable-volume-ratio valve assembly of FIG. 10;



FIG. 12 is a cross-sectional view of yet another configuration of a scroll and variable-volume-ratio valve assembly according to the principles of the present disclosure;



FIG. 13 is another cross-sectional view of the scroll and variable-volume-ratio valve assembly of FIG. 12;



FIG. 14 is a cross-sectional view of yet another configuration of a scroll and variable-volume-ratio valve assembly according to the principles of the present disclosure;



FIG. 15 is a cross-sectional perspective view a portion of the scroll and the variable-volume-ratio valve assembly of FIG. 14;



FIG. 16 is an exploded view of the variable-volume-ratio valve assembly of FIG. 14; and



FIG. 17 is a cross-sectional view of another compressor having a variable-volume-ratio valve assembly according to the principles of the present disclosure.





Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.


DETAILED DESCRIPTION

Example embodiments will now be described more fully with reference to the accompanying drawings.


Example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known device structures, and well-known technologies are not described in detail.


The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms “a,” “an,” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises,” “comprising,” “including,” and “having,” are inclusive and therefore specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. The method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. It is also to be understood that additional or alternative steps may be employed.


When an element or layer is referred to as being “on,” “engaged to,” “connected to,” or “coupled to” another element or layer, it may be directly on, engaged, connected or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly engaged to,” “directly connected to,” or “directly coupled to” another element or layer, there may be no intervening elements or layers present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.). As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.


Although the terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another region, layer or section. Terms such as “first,” “second,” and other numerical terms when used herein do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the example embodiments.


Spatially relative terms, such as “inner,” “outer,” “beneath,” “below,” “lower,” “above,” “upper,” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. Spatially relative terms may be intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the example term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.


With reference to FIGS. 1-4, a compressor 10 is provided. The compressor 10 may be a high-side scroll compressor including a hermetic shell assembly 12, a first and second bearing assemblies 14, 16, a motor assembly 18, a compression mechanism 20, and a variable-volume-ratio (VVR) valve assembly 22. As described in more detail below, the VVR valve assembly 22 is operable to prevent the compression mechanism 20 from over-compressing working fluid.


The shell assembly 12 may define a high-pressure discharge chamber 24 and may include a cylindrical shell 26, an end cap 28 at an upper end thereof, and a base 30 at a lower end thereof. A discharge fitting 32 may be attached to the shell assembly 12 (e.g., at the end cap 28) and extend through a first opening in the shell assembly 12 to allow working fluid in the discharge chamber 24 to exit the compressor 10. An inlet fitting 34 may be attached to the shell assembly 12 (e.g., at the end cap 28) and extend through a second opening in the shell assembly 12. The inlet fitting 34 may extend through a portion of the discharge chamber 24 and is fluidly coupled to a suction inlet of the compression mechanism 20. In this manner, the inlet fitting 34 provides low-pressure (suction-pressure) working fluid to the compression mechanism 20 while fluidly isolating the suction-pressure working fluid therein from the high-pressure (i.e., discharge-pressure) working fluid in the discharge chamber 24.


The first and second bearing assemblies 14, 16 may be disposed entirely within the discharge chamber 24. The first bearing assembly 14 may include a first bearing housing 36 and a first bearing 38. The first bearing housing 36 may be fixed to the shell assembly 12. The first bearing housing 36 houses the first bearing 38 and axially supports the compression mechanism 20. The second bearing assembly 16 may include a second bearing housing 40 and a second bearing 42. The second bearing housing 40 is fixed to the shell assembly 12 and supports the second bearing 42.


The motor assembly 18 may be disposed entirely within the discharge chamber 24 and may include a motor stator 44, a rotor 46, and a driveshaft 48. The stator 44 may be fixedly attached (e.g., by press fit) to the shell 26. The rotor 46 may be press fit on the driveshaft 48 and may transmit rotational power to the driveshaft 48. The driveshaft 48 may include a main body 50 and an eccentric crank pin 52 extending from an end of the main body 50. The main body 50 is received in the first and second bearings 38, 42 and is rotatably supported by the first and second bearing assemblies 14, 16. Therefore, the first and second bearings 38, 42 define a rotational axis of the driveshaft 48. The crank pin 52 may engage the compression mechanism 20.


The compression mechanism 20 may be disposed entirely within the discharge chamber 24 and may include an orbiting scroll 54 and a non-orbiting scroll 56. The orbiting scroll 54 may include an end plate 58 having a spiral wrap 60 extending therefrom. An annular hub 62 may project downwardly from the end plate 58 and may include a cavity 63 in which a drive bearing 64, a drive bushing 66 and the crank pin 52 may be disposed. The drive bushing 66 may be received within the drive bearing 64. The crank pin 52 may be received within the drive bushing 66. An Oldham coupling 68 may be engaged with the end plate 58 and either the non-orbiting scroll 56 or the first bearing housing 36 to prevent relative rotation between the orbiting and non-orbiting scrolls 54, 56. The annular hub 62 may be axially supported by a thrust surface 70 of the first bearing housing 36. The annular hub 62 may movably engage a seal 72 attached to the first bearing housing 36 to define an intermediate-pressure cavity 73 between the first bearing housing 36 and the orbiting scroll 54.


The end plate 58 of the orbiting scroll 54 may include a first VVR port 74 and a second VVR port 76. The first and second VVR ports 74, 76 may extend through the end plate 58 and are in selective fluid communication with the cavity 63 formed by the annular hub 62. In some configurations, the end plate 58 may include a plurality of first VVR ports 74 and a plurality of second VVR ports 76. The VVR valve assembly 22 may be disposed within the cavity 63 and may be mounted to the end plate 58. As will be described in more detail below, the VVR valve assembly 22 is operable to selectively allow and restrict communication between the first and second VVR ports 74, 76 and the cavity 63. The cavity 63 is in communication with the discharge chamber 24 via gaps between the hub 62 and the drive bearing 64, between the drive bearing 64 and drive bushing 66, and/or between the drive bushing 66 and the crank pin 52. In some configurations, cavity 63 is in communication with the discharge chamber 24 via flow passages formed in any one or more of the hub 62, drive bearing 64, or drive bushing 66, for example. Therefore, the VVR valve assembly 22 is operable to selectively allow and restrict communication between the first and second VVR ports 74, 76 and the discharge chamber 24.


The non-orbiting scroll 56 may include an end plate 78 and a spiral wrap 80 projecting downwardly from the end plate 78. The spiral wrap 80 may meshingly engage the spiral wrap 60 of the orbiting scroll 54, thereby creating a series of moving fluid pockets therebetween. The fluid pockets defined by the spiral wraps 60, 80 may decrease in volume as they move from a radially outer position 82 (FIG. 2) to a radially intermediate position 84 (FIG. 2) to a radially inner position 86 (FIG. 2) throughout a compression cycle of the compression mechanism 20. The inlet fitting 34 is fluidly coupled with a suction inlet in the end plate 78 and provides suction-pressure working fluid to the fluid pockets at the radially outer positions 82. The end plate 78 may include a discharge passage 88 in communication with one of the fluid pockets at the radially inner position 86 and allows compressed working fluid (at the high pressure) to flow into the discharge chamber 24. The first and second VVR ports 74, 76 are disposed radially outward relative to the discharge passage 88 and communicate with respective fluid pockets in the radially intermediate positions 84, as shown in FIG. 2.


As described above, the VVR valve assembly 22 may be disposed within the cavity 63 and may be mounted to the end plate 58 of the orbiting scroll 54. The VVR valve assembly 22 may include a valve member 90 and a retainer (backer plate) 92. The valve member 90 may be a thin and resiliently flexible elongated reed valve having a first end portion 94, and a second end portion 96, and a central portion 98 disposed between the first and second end portions 94, 96. An aperture 100 extends through the central portion 98. The retainer 92 may be a rigid elongated member having a first end portion 102, a second end portion 104, and a central portion 106 disposed between the first and second end portions 102, 104. An aperture 108 extends through the central portion 106. A fastener 110 (e.g., a bolt, rivet, etc.) may extend through the apertures 100, 108 of the valve member 90 and retainer 92 and may engage the end plate 58 of the orbiting scroll 54 to fixedly secure the retainer 92 and the central portion 98 of the valve member 90 to the end plate 58 (i.e., such that the valve member 90 is sandwiched between the retainer 92 and the end plate 58). One or more pins 112 (FIG. 4) (or one or more additional fasteners) may also extend through corresponding apertures in the retainer 92 and valve member 90 and into corresponding apertures in the end plate 58 to rotationally fix the retainer 92 and valve member 90 relative to the end plate 58.


The first and second end portions 102, 104 of the retainer may be tapered or angled to form gaps between distal ends of the first and second end portions 102, 104 and the end plate 58. The gaps provide clearance to allow the first and second end portions 94, 96 of the valve member 90 to bend (relative to the central portion 98) away from the end plate 58.


The VVR ports 74, 76 and the VVR valve assembly 22 are operable to prevent the compression mechanism 20 from over-compressing working fluid. Over-compression is a compressor operating condition where the internal compressor-pressure ratio of the compressor (i.e., a ratio of a pressure of a fluid pocket in the compression mechanism at a radially innermost position to a pressure of a fluid pocket in the compression mechanism at a radially outermost position) is higher than a pressure ratio of a climate-control system in which the compressor is installed (i.e., a ratio of a pressure at a high side of the climate-control system to a pressure of a low side of the climate-control system). In an over-compression condition, the compression mechanism is compressing fluid to a pressure higher than the pressure of fluid downstream of a discharge fitting of the compressor. Accordingly, in an over-compression condition, the compressor is performing unnecessary work, which reduces the efficiency of the compressor. The VVR valve assembly 22 of the present disclosure may reduce or prevent over-compression by selectively venting the fluid pockets at the radially intermediate positions 84 to the discharge chamber 24 (via the VVR ports 74, 76 and the cavity 63) when the pressure within such fluid pockets has exceeded (or sufficiently exceeded) the pressure in the discharge chamber 24.


When fluid pressure within fluid pockets at the radially intermediate positions 84 are sufficiently higher (i.e., higher by a predetermined value determined based on the spring rate of the valve member 90) than the fluid pressure within the discharge chamber 24, the fluid pressure within the fluid pockets at the radially intermediate positions 84 can bend the end portions 94, 96 of the valve member 90 away from the end plate 58 to an open position (shown in FIG. 3) to open the VVR ports 74, 76 and allow communication between the VVR ports 74, 76 and the cavity 63. That is, while the VVR ports 74, 76 are open (i.e., while the end portions 94, 96 are the open position), working fluid in the fluid pockets at the radially intermediate positions 84 can flow into the discharge chamber 24 (via the VVR ports 74, 76 and the cavity 63). When the fluid pressures within fluid pockets at the radially intermediate positions 84 are less than, equal to, or not sufficiently higher than the fluid pressure within the discharge chamber 24, the end portions 94, 96 of the valve member 90 will return to a closed position (shown in FIG. 2) (i.e., end portions 94, 96 return to their normal shapes) and seal against the end plate 58 to restrict or prevent communication between the cavity 63 and the VVR ports 74, 76.


It will be appreciated that the end portions 94, 96 can move between the open and closed positions together or independently of each other based on the fluid pressures within the respective fluid pockets to which the respective VVR ports 74, 76 are exposed. In other words, one of the end portions 94, 96 could be in the open position while the other of the end portions 94, 96 could be in the closed position.


Referring now to FIGS. 5-7, another VVR valve assembly 122 and another orbiting scroll 154 are provided. The VVR valve assembly 122 and orbiting scroll 154 could be incorporated into the compressor 10 instead of the VVR valve assembly 22 and orbiting scroll 54. The structure and function of VVR valve assembly 122 and orbiting scroll 154 can be similar or identical to that of the VVR valve assembly 22 and orbiting scroll 54 described above, apart from any exceptions described below. Therefore, some similar features and functions will not be described again in detail.


Like the orbiting scroll 54, the orbiting scroll 154 may include an end plate 158 having a spiral wrap 160 extending therefrom. An annular hub 162 may project downwardly from the end plate 158 and may include a cavity 163 in which a drive bearing 164, the drive bushing 66 (not shown in FIGS. 5-7) and the crank pin 52 (not shown in FIGS. 5-7) may be disposed. The cavity 163 is in communication with the discharge chamber 24 of the compressor 10. The end plate 158 of the orbiting scroll 154 may include one or more first VVR ports 174 and one or more second VVR ports 176. The first and second VVR ports 174, 176 may extend through the end plate 158 and are in selective fluid communication with the cavity 163 formed by the annular hub 162.


The VVR valve assembly 122 may be disposed within the cavity 163 and may be mounted to the end plate 158 of the orbiting scroll 154. The VVR valve assembly 122 may include a first valve member 190, a second valve member 191, a retainer 192, a first spring 194, and a second spring 196.


The first and second valve members 190, 191 may be disc-shaped members and may include one or more flow passages (cutouts) 198 formed in their peripheries, as shown in FIG. 7. The first valve member 190 may be movably received within a first recess 200 formed in the end plate 158. The first recess 200 may be generally aligned with and in communication with the first VVR port(s) 174. The second valve member 191 may be movably received within a second recess 201 formed in the end plate 158. The second recess 201 may be generally aligned with and in communication with the second VVR port(s) 176. Valve seats 203, 205 are formed at the end of respective recesses 200, 201 and surround respective VVR ports 174, 176.


The retainer 192 may be a rigid elongated member having a first end portion 202, a second end portion 204, and a central portion 206 disposed between the first and second end portions 202, 204. One or more fasteners 209 (e.g., bolts, rivets, etc.) may extend through one or more apertures 208 in the central portion 206 and may engage the end plate 158 to fixedly secure the retainer 192 to the end plate 158. The end portions 202, 204 of the retainer 192 may be angled relative to the central portion 206.


First and second pins 210, 211 may extend from respective end portions 202, 204 and may extend into the respective recesses 200, 201 and partially through respective springs 194, 196. The first spring 194 is disposed between and in contact with the first end portion 202 and the first valve member 190. The second spring 196 is disposed between and in contact with the second end portion 204 and the second valve member 191.


The valve members 190, 191 are movable within the recesses 200, 201 between an open position in which the valve members 190, 191 are spaced apart from the valve seats 203, 205 and closed positions in which the valve members 190, 191 are in contact with the valve seats 203, 205. The first and second springs 194, 196 bias the first and second valve members 190, 191 toward the closed position. In the closed position, the valve members 190, 191 restrict or prevent fluid flow from the VVR ports 174, 176 to the cavity 163. In the open position, the valve members 190, 191 allow working fluid to flow from the VVR ports 174, 176 into the recesses 200, 201, through the flow passages 198 in the valve members 190, 191 and into the cavity 163 and into the discharge chamber 24.


It will be appreciated that the valve members 190, 191 can move between the open and closed positions together or independently of each other based on the fluid pressures within the respective fluid pockets to which the respective VVR ports 174, 176 are exposed. In other words, as shown in FIG. 5, one of the valve members 190, 191 could be in the open position while the other of the valve members 190, 191 could be in the closed position.


Referring now to FIGS. 8 and 9, another VVR valve assembly 222 and another orbiting scroll 254 are provided. The VVR valve assembly 222 and orbiting scroll 254 could be incorporated into the compressor 10 instead of the VVR valve assembly 22 and orbiting scroll 54. The structure and function of VVR valve assembly 222 and orbiting scroll 254 can be similar or identical to that of the VVR valve assembly 22 and orbiting scroll 54 described above, apart from any exceptions described below. Therefore, some similar features and functions will not be described again in detail.


Like the orbiting scroll 54, the orbiting scroll 254 may include an end plate 258 having a spiral wrap 260 extending therefrom. An annular hub 262 may project downwardly from the end plate 258 and may include a cavity 263 in which a drive bearing 264, the drive bushing 66 (not shown in FIGS. 8 and 9) and the crank pin 52 (not shown in FIGS. 8 and 9) may be disposed. Like the orbiting scroll 54, the end plate 258 of the orbiting scroll 254 may include one or more first VVR ports 274 and one or more second VVR ports 276. The VVR valve assembly 222 may operate in the same manner as the VVR valve assembly 22 to control fluid flow through VVR ports 274, 276.


The hub 262 may be a two-piece hub including a first annular member 280 and a second annular member 282. The first annular member 280 may be integrally formed with the end plate 258. The second annular member 282 may be partially received within the first annular member 280 and may receive the drive bearing 264. In some configurations, the second annular member 282 may include one or more flow passages 284 that extend through the second annular member 282, as shown in FIG. 8.


Referring now to FIGS. 10 and 11, another VVR valve assembly 322 and another orbiting scroll 354 are provided. The VVR valve assembly 322 and orbiting scroll 354 could be incorporated into the compressor 10 instead of the VVR valve assembly 22 and orbiting scroll 54. The structure and function of the orbiting scroll 354 can be similar or identical to that of the orbiting scroll 254 described above, apart from any exceptions described below. The structure and function of the VVR valve assembly 322 can be similar or identical to that of the VVR valve assembly 122 described above, apart from any exceptions described below. Therefore, some similar features and functions will not be described again in detail.


Like the orbiting scroll 254, the orbiting scroll 354 may include an end plate 358 having a spiral wrap 360 extending therefrom. An annular hub 362 may project downwardly from the end plate 358 and may include a cavity 363 in which a drive bearing 364, the drive bushing 66 (not shown in FIGS. 10 and 11) and the crank pin 52 (not shown in FIGS. 10 and 11) may be disposed. Like the orbiting scroll 254, the end plate 358 of the orbiting scroll 354 may include one or more first VVR ports 374, one or more second VVR ports 376, a first recess 375, and a second recess 377. The first recess 375 may be in communication with and generally aligned with the first VVR port(s) 374. The second recess 377 may be in communication with and generally aligned with the second VVR port(s) 376. The VVR valve assembly 322 may operate in the same or similar manner as the VVR valve assembly 122 to control fluid flow through VVR ports 374, 376.


The hub 362 may be a two-piece hub including a first annular member 380 and a second annular member 382. The first annular member 380 may be integrally formed with the end plate 358. The second annular member 382 may be partially received within the first annular member 380 and may receive the drive bearing 364. In some configurations, the second annular member 382 may include one or more flow passages 384 that extend through the second annular member 382, as shown in FIG. 11. In some configurations, an upper axial end of the second annular member 382 (i.e., the end adjacent the end plate 358) may include tabs 386 that extend radially inwardly therefrom, as shown in FIG. 10.


Like the VVR valve assembly 122, the VVR valve assembly 322 may include first and second valve members 390, 391, first and second springs 394, 396, and first and second pins 310, 311. The valve members 390, 391 may be similar or identical to the valve members 190, 191. The tabs 386 of the second annular member 382 of the hub 362 may be fixed relative to the end plate 358 and may take the place of (and have the same or similar function as the retainer 192). The pins 310, 311 may be mounted to respective tabs 386, may extend into respective recesses 375, 377, may extend partially through respective springs 394, 396, and may be in contact with respective valve members 390, 391. Like the valve members 190, 191, the valve members 390, 391 are movable within the recesses 375, 377 between open and closed positions to control fluid flow through the VVR ports 374, 376.


Referring now to FIGS. 12 and 13, another VVR valve assembly 422 and another orbiting scroll 454 are provided. The VVR valve assembly 422 and orbiting scroll 454 could be incorporated into the compressor 10 instead of the VVR valve assembly 22 and orbiting scroll 54. The structure and function of the orbiting scroll 454 can be similar or identical to that of the orbiting scroll 54 described above, apart from any exceptions described below. The structure and function of the VVR valve assembly 422 can be similar or identical to that of the VVR valve assembly 322 described above, apart from any exceptions described below. Therefore, some similar features and functions will not be described again in detail.


Like the orbiting scroll 54, the orbiting scroll 454 may include an end plate 458 having a spiral wrap 460 extending therefrom. An annular hub 462 may project downwardly from the end plate 458 and may include a cavity 463 in which a drive bearing 464, the drive bushing 66 (not shown in FIGS. 12 and 13) and the crank pin 52 (not shown in FIGS. 12 and 13) may be disposed.


The orbiting scroll 454 may include a first portion 455 and a second portion 456 attached to the first portion 455 by a plurality of fasteners 457. The first portion 455 may include the spiral wrap 460 and a portion of the end plate 458 having a plurality of VVR ports 474 and a plurality of recesses 475. Like recesses 200, 201, the recesses 475 define valve seats. Each recess 475 is in communication with and generally aligned with a respective VVR port 474. The second portion 456 may include another portion of the end plate 458 and the annular hub 462. The portion of the end plate 458 defined by the second portion 456 may include a radially extending flow passage 476 in communication with the recesses 475 and one or more axially extending flow passages 477 in communication with the radially extending flow passage 476. In the configuration shown FIG. 12, one of the axially extending flow passages 477 opens into the cavity 463 and the other axially extending flow passages 477 extending axially through the hub 462 and are disposed radially outward relative to the cavity 463. The axially extending flow passages 477 are directly or indirectly in communication with the discharge chamber 24.


The VVR valve assembly 422 may include a plurality of valve members 490 (which may be similar or identical to the valve members 190, 191), a plurality of springs 494 (which may be similar or identical to the springs 194, 196), and a plurality of pins 496 (which may be similar or identical to the pins 210, 211). The pins 496 are mounted to the second portion 456 of the orbiting scroll 454 and may extend partially into respective recesses 475. The valve members 490 are movable within recesses 475 between open and closed positions to control fluid flow between the VVR ports 474 and the flow passages 476, 477 in the same or similar manner in which valve members 190, 191 control fluid flow between VVR ports 174, 176 and the cavity 163.


Referring now to FIGS. 14-16, another VVR valve assembly 522 and another orbiting scroll 554 are provided. The VVR valve assembly 522 and orbiting scroll 554 could be incorporated into the compressor 10 instead of the VVR valve assembly 22 and orbiting scroll 54. The structure and function of the orbiting scroll 554 can be similar or identical to that of the orbiting scroll 54 or 254 described above, apart from any exceptions described below. Therefore, some similar features and functions will not be described again in detail.


Like the orbiting scroll 254, the orbiting scroll 554 may include an end plate 558 having a spiral wrap 560 extending therefrom. An annular hub 562 may project downwardly from the end plate 558 and may include a cavity 563 in which a drive bearing 564, the drive bushing 66 (not shown in FIGS. 14-16) and the crank pin 52 (not shown in FIGS. 14-16) may be disposed. Like the orbiting scroll 254, the end plate 558 of the orbiting scroll 554 may include one or more first VVR ports 574, and one or more second VVR ports 576. Each of the first and second VVR ports 574, 576 may include an axially extending portion 577 and a radially extending portion 579 that extends radially inward from the axially extending portion 577 to the cavity 563. The VVR valve assembly 522 controls fluid flow through VVR ports 574, 576.


The hub 562 may be a two-piece hub including a first annular member 580 and a second annular member 582. The first annular member 580 may be integrally formed with the end plate 558. A portion of the axially extending portions 577 of the VVR ports 574, 576 may extend through the first annular member 580, and the radially extending portions 579 of the VVR ports 574, 576 extend through a portion of the first annular member 580. The second annular member 582 may be partially received within the first annular member 580 and may receive the drive bearing 564. The second annular member 582 may include one or more flow passages 584 that extend through the second annular member 582, as shown in FIG. 14. As shown in FIG. 16, a contoured recess 586 is formed in an outer diametrical surface 587 of the second annular member 582. The recess 586 is open to the flow passages 584. The recess 586 partially encircles the drive bearing 564 (i.e., the recess 586 extends partially around the circumference of the crank pin 52).


The VVR valve assembly 522 may include a valve member 590 that is received within the recess 586 of the second annular member 582. The valve member 590 may be a generally C-shaped, thin and resiliently flexible reed valve having a first end portion 592, and a second end portion 594, and a central portion 596 disposed between the first and second end portions 592, 594. The contoured recess 586 of the second annular member 582 may be shaped to fixedly receive the central portion 596 and movably receive the first and second end portions 592, 594 such that the first and second end portions 592, 594 are able to flex between outward and inward between closed positions (in which the end portions 592, 594 are in contact with an inner diametrical surface 598 of the first annular member 580) and open positions (in which the end portions 592, 594 are spaced apart from the inner diametrical surface 598 of the first annular member 580).


In FIGS. 14 and 15, the first end portion 592 is shown in the open position in which the first end portion 592 has moved (e.g., flexed) inward away from the inner diametrical surface 598 to allow communication between the first VVR port 574 and one of the flow passages 584 (the flow passages 584 are in communication with the cavity 563 and the discharge chamber 24). In FIGS. 14 and 15, the second end portion 594 is shown in the closed position in which the second end portion 594 has moved (e.g., unflexed) outward into contact with the inner diametrical surface 598 to close off the second VVR port 576 to restrict or prevent communication between the second VVR port 576 and the flow passages 584 (thus restricting or preventing communication between the second VVR port 576 and the discharge chamber 24). It will be appreciated that the end portions 592, 594 of the valve member 590 can move between the open and closed positions together or independently of each other based on the fluid pressures within the respective fluid pockets to which the respective VVR ports 574, 576 are exposed.


Referring now to FIG. 17, another compressor 610 is provided. The structure and function of the compressor 610 may be similar or identical to that of the compressor 10 described above, apart from differences noted below and/or shown in the figures. Therefore, similar features will not be described again in detail.


Like the compressor 10, the compressor 610 may be a high-side scroll compressor including a hermetic shell assembly 612, a first and second bearing assemblies 614, 616, a motor assembly 618, a compression mechanism 620, and a variable-volume-ratio (VVR) valve assembly 622. The first bearing assembly 614 may be generally similar to the first bearing assembly 14 (i.e., the first bearing assembly 614 is fixed to the shell assembly 612, rotationally supports a driveshaft 648, and axially supports an orbiting scroll 654).


The driveshaft 648 may include an end portion (e.g., a collar portion) 649 having an eccentric recess 650 that receives a drive bearing 664 and a hub 662 of the orbiting scroll 654. The end portion 649 may include a flow passage 652 that provides communication between a discharge chamber 624 of the compressor 610 and a cavity 663 in the hub 662 (i.e., to provide communication between VVR ports 674, 676 and the discharge chamber 624).


The VVR valve assembly 622 can be similar or identical to any of the VVR valve assemblies 22, 122, 322, 422, 522 described above. The orbiting scroll 654 can be similar to any of the orbiting scrolls 54, 154, 254, 354, 454, 554 described above.


The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure.

Claims
  • 1. A compressor comprising: a shell assembly defining a discharge chamber;a non-orbiting scroll disposed within the discharge chamber and including a first end plate and a first spiral wrap extending from the first end plate;an orbiting scroll disposed within the discharge chamber and including a second end plate and a second spiral wrap extending from the second end plate, the first and second spiral wraps meshing with each other to define a plurality of fluid pockets therebetween, the fluid pockets movable among a radially outermost position, a radially intermediate position, and a radially innermost position, the second end plate including a variable-volume-ratio port extending therethrough and selectively communicating with one of the fluid pockets at the radially intermediate position; anda variable-volume-ratio valve assembly mounted to the orbiting scroll and including a valve member that is movable relative to the orbiting scroll between an open position allowing communication between the variable-volume-ratio port and the discharge chamber and a closed position restricting communication between the variable-volume-ratio port and the discharge chamber,wherein the first end plate of the non-orbiting scroll includes a discharge passage in communication with the discharge chamber and one of the fluid pockets at the radially innermost position, wherein the variable-volume-ratio port is disposed radially outward relative to the discharge passage, andwherein when the valve member is in the open position, fluid flows from the variable-volume-ratio port to the discharge chamber without flowing through the discharge passage in the non-orbiting scroll and without flowing back into any of the fluid pockets.
  • 2. The compressor of claim 1, wherein the second end plate includes an annular hub extending from a side of the second end plate opposite the second spiral wrap, wherein the annular hub defines a cavity in which the variable-volume-ratio valve assembly is at least partially disposed.
  • 3. The compressor of claim 2, further comprising a driveshaft engaging the annular hub and driving the orbiting scroll.
  • 4. The compressor of claim 3, wherein the driveshaft includes a crank pin disposed within the cavity.
  • 5. The compressor of claim 4, further comprising a bearing disposed within the cavity and receiving the crank pin.
  • 6. The compressor of claim 4, further comprising a bearing disposed within the cavity and receiving the crank pin, wherein the annular hub includes a flow passage extending therethrough, and wherein the flow passage is disposed radially outward relative to the bearing and at least partially defines a flow path extending from the variable-volume-ratio port to the discharge chamber.
  • 7. The compressor of claim 6, wherein the annular hub is a two-piece hub including a first annular member and a second annular member, wherein the second annular member is at least partially received within the first annular member and receives the bearing.
  • 8. The compressor of claim 3, wherein the variable-volume-ratio valve assembly includes a retainer disposed within the cavity and fixedly mounted to the second end plate.
  • 9. The compressor of claim 8, wherein the valve member is a reed valve that is sandwiched between the retainer and the second end plate, and wherein the reed valve bends between the open and closed positions.
  • 10. The compressor of claim 9, wherein the second end plate includes another variable-volume-ratio port, wherein the valve member selectively opens and closes the variable-volume-ratio ports, and wherein the valve member is fixedly attached to the second end plate at a location radially between the variable-volume-ratio ports.
  • 11. The compressor of claim 8, wherein the second end plate includes a recess disposed between and in communication with the variable-volume-ratio port and the cavity, and wherein the valve member is disposed within the recess and movable therein between the open and closed positions.
  • 12. The compressor of claim 11, wherein the variable-volume-ratio valve assembly includes a spring disposed at least partially within the recess and between the valve member and the retainer, wherein the spring biases the valve member toward the closed position.
  • 13. The compressor of claim 12, wherein the valve member is a disc-shaped member having a flow passage formed in its periphery.
  • 14. The compressor of claim 12, wherein the second end plate includes another variable-volume-ratio port, and wherein the variable-volume-ratio valve assembly includes another spring and another valve member movably received within another recess that is in communication with the cavity and the another variable-volume-ratio port.
  • 15. The compressor of claim 1, wherein the second end plate includes an annular hub extending from a side of the second end plate opposite the second spiral wrap, wherein the annular hub defines a cavity that receives a crank pin of a driveshaft, wherein the annular hub is a two-piece hub including a first annular member and a second annular member, wherein the second annular member is partially received within the first annular member and receives the crank pin, wherein the variable-volume-ratio valve assembly is mounted to the second annular member.
  • 16. The compressor of claim 15, wherein the variable-volume-ratio valve assembly includes a spring disposed between the second annular member and the valve member and biasing the valve member toward the closed position.
  • 17. The compressor of claim 16, wherein the valve member is a disc-shaped member having a flow passage formed in its periphery.
  • 18. The compressor of claim 15, wherein the valve member is disposed radially between the first and second annular members and extends partially around the crank pin of the driveshaft.
  • 19. The compressor of claim 18, wherein the variable-volume-ratio port extends through a portion of the first annular member.
  • 20. The compressor of claim 19, wherein the valve member contacts an inner diametrical surface of the first annular member when the valve member is in the closed position.
  • 21. The compressor of claim 20, wherein a portion of the valve member moves inward away from the inner diametrical surface of the first annular member when the valve member moves from the closed position to the open position.
  • 22. The compressor of claim 1, wherein the orbiting scroll includes a first portion and a second portion attached to the first portion by a plurality of fasteners, wherein the first portion includes the second spiral wrap and a portion of the second end plate, wherein the second portion includes another portion of the second end plate and an annular hub that engages a driveshaft.
  • 23. The compressor of claim 22, wherein the annular hub includes a flow passage in communication with the variable-volume-ratio port and the discharge chamber.
  • 24. The compressor of claim 23, wherein the variable-volume-ratio valve assembly includes a spring disposed between the valve member and the second portion of the orbiting scroll, and wherein the spring biases the valve member toward a valve seat defined by the first portion of the orbiting scroll.
  • 25. The compressor of claim 1, further comprising a driveshaft having an eccentric recess, wherein the second end plate includes an annular hub extending from a side of the second end plate opposite the second spiral wrap, wherein the annular hub defines a cavity in which the variable-volume-ratio valve assembly is at least partially disposed, and wherein the annular hub is received within the eccentric recess of the driveshaft.
  • 26. The compressor of claim 25, wherein the driveshaft includes a flow passage in fluid communication with the cavity.
  • 27. The compressor of claim 26, wherein when the valve member is in the open position, fluid from the variable-volume-ratio port flows into the cavity, and wherein fluid in the cavity flows into the discharge chamber via the flow passage in the driveshaft.
  • 28. The compressor of claim 27, wherein the flow passage is disposed in a collar portion of the driveshaft, and wherein the collar portion is disposed at an axial end of the driveshaft and defines the eccentric recess.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 62/567,277, filed on Oct. 3, 2017. The entire disclosure of the above application is incorporated herein by reference.

US Referenced Citations (355)
Number Name Date Kind
4058988 Shaw Nov 1977 A
4216661 Tojo et al. Aug 1980 A
4382370 Suefuji et al. May 1983 A
4383805 Teegarden et al. May 1983 A
4389171 Eber et al. Jun 1983 A
4466784 Hiraga Aug 1984 A
4475360 Suefuji et al. Oct 1984 A
4475875 Sugimoto et al. Oct 1984 A
4496296 Arai Jan 1985 A
4497615 Griffith Feb 1985 A
4545742 Schaefer Oct 1985 A
4547138 Mabe et al. Oct 1985 A
4552518 Utter Nov 1985 A
4564339 Nakamura et al. Jan 1986 A
4580949 Maruyama et al. Apr 1986 A
4609329 Pillis et al. Sep 1986 A
4650405 Iwanami et al. Mar 1987 A
4696630 Sakata et al. Sep 1987 A
4727725 Nagata et al. Mar 1988 A
4772188 Kimura et al. Sep 1988 A
4774816 Uchikawa et al. Oct 1988 A
4818195 Murayama et al. Apr 1989 A
4824344 Kimura et al. Apr 1989 A
4838773 Noboru Jun 1989 A
4842499 Nishida et al. Jun 1989 A
4846633 Suzuki et al. Jul 1989 A
4877382 Caillat et al. Oct 1989 A
4886425 Itahana et al. Dec 1989 A
4886433 Maier Dec 1989 A
4898520 Nieter et al. Feb 1990 A
4927339 Riffe et al. May 1990 A
4940395 Yamamoto et al. Jul 1990 A
4954057 Caillat et al. Sep 1990 A
4990071 Sugimoto Feb 1991 A
4997349 Richardson, Jr. Mar 1991 A
5024589 Jetzer et al. Jun 1991 A
5040952 Inoue et al. Aug 1991 A
5040958 Arata et al. Aug 1991 A
5055010 Logan Oct 1991 A
5059098 Suzuki et al. Oct 1991 A
5071323 Sakashita et al. Dec 1991 A
5074760 Hirooka et al. Dec 1991 A
5080056 Kramer et al. Jan 1992 A
5085565 Barito Feb 1992 A
5098265 Machida et al. Mar 1992 A
5145346 Iio et al. Sep 1992 A
5152682 Morozumi et al. Oct 1992 A
RE34148 Terauchi et al. Dec 1992 E
5169294 Barito Dec 1992 A
5171141 Morozumi et al. Dec 1992 A
5192195 Iio et al. Mar 1993 A
5193987 Iio et al. Mar 1993 A
5199862 Kondo et al. Apr 1993 A
5213489 Kawahara et al. May 1993 A
5240389 Oikawa et al. Aug 1993 A
5253489 Yoshii Oct 1993 A
5304047 Shibamoto Apr 1994 A
5318424 Bush et al. Jun 1994 A
5330463 Hirano Jul 1994 A
5336068 Sekiya et al. Aug 1994 A
5340287 Kawahara et al. Aug 1994 A
5356271 Miura et al. Oct 1994 A
5411384 Bass et al. May 1995 A
5425626 Tojo et al. Jun 1995 A
5427512 Kohsokabe et al. Jun 1995 A
5451146 Inagaki et al. Sep 1995 A
5458471 Ni Oct 1995 A
5458472 Kobayashi et al. Oct 1995 A
5482637 Rao et al. Jan 1996 A
5511959 Tojo et al. Apr 1996 A
5547354 Shimizu et al. Aug 1996 A
5551846 Taylor et al. Sep 1996 A
5557897 Kranz et al. Sep 1996 A
5562426 Watanabe et al. Oct 1996 A
5577897 Inagaki et al. Nov 1996 A
5591014 Wallis et al. Jan 1997 A
5607288 Wallis et al. Mar 1997 A
5611674 Bass et al. Mar 1997 A
5613841 Bass et al. Mar 1997 A
5624247 Nakamura Apr 1997 A
5639225 Matsuda et al. Jun 1997 A
5640854 Fogt et al. Jun 1997 A
5649817 Yamazaki Jul 1997 A
5660539 Matsunaga et al. Aug 1997 A
5674058 Matsuda et al. Oct 1997 A
5678985 Brooke et al. Oct 1997 A
5707210 Ramsey et al. Jan 1998 A
5722257 Ishii et al. Mar 1998 A
5741120 Bass et al. Apr 1998 A
5775893 Takao et al. Jul 1998 A
5842843 Haga Dec 1998 A
5855475 Fujio et al. Jan 1999 A
5885063 Makino et al. Mar 1999 A
5888057 Kitano et al. Mar 1999 A
5938417 Takao et al. Aug 1999 A
5993171 Higashiyama Nov 1999 A
5993177 Terauchi et al. Nov 1999 A
6030192 Hill et al. Feb 2000 A
6047557 Pham et al. Apr 2000 A
6068459 Clarke et al. May 2000 A
6086335 Bass et al. Jul 2000 A
6093005 Nakamura Jul 2000 A
6095765 Khalifa Aug 2000 A
6102671 Yamamoto et al. Aug 2000 A
6123517 Brooke et al. Sep 2000 A
6123528 Sun et al. Sep 2000 A
6132179 Higashiyama Oct 2000 A
6139287 Kuroiwa et al. Oct 2000 A
6139291 Perevozchikov Oct 2000 A
6149401 Iwanami et al. Nov 2000 A
6152714 Mitsuya et al. Nov 2000 A
6164940 Terauchi et al. Dec 2000 A
6174149 Bush Jan 2001 B1
6176686 Wallis et al. Jan 2001 B1
6179589 Bass et al. Jan 2001 B1
6202438 Barito Mar 2001 B1
6210120 Hugenroth et al. Apr 2001 B1
6213731 Doepker et al. Apr 2001 B1
6231316 Wakisaka et al. May 2001 B1
6257840 Ignatiev et al. Jul 2001 B1
6264444 Nakane et al. Jul 2001 B1
6267565 Seibel et al. Jul 2001 B1
6273691 Morimoto et al. Aug 2001 B1
6280154 Clendenin et al. Aug 2001 B1
6290477 Gigon Sep 2001 B1
6293767 Bass Sep 2001 B1
6293776 Hahn et al. Sep 2001 B1
6309194 Fraser et al. Oct 2001 B1
6322340 Itoh et al. Nov 2001 B1
6338912 Ban et al. Jan 2002 B1
6350111 Perevozchikov et al. Feb 2002 B1
6361890 Ban et al. Mar 2002 B1
6379123 Makino et al. Apr 2002 B1
6389837 Morozumi May 2002 B1
6412293 Pham et al. Jul 2002 B1
6413058 Williams et al. Jul 2002 B1
6419457 Seibel et al. Jul 2002 B1
6428286 Shimizu et al. Aug 2002 B1
6454551 Kuroki et al. Sep 2002 B2
6457948 Pham Oct 2002 B1
6464481 Tsubai et al. Oct 2002 B2
6478550 Matsuba et al. Nov 2002 B2
6506036 Tsubai et al. Jan 2003 B2
6514060 Ishiguro Feb 2003 B1
6537043 Chen Mar 2003 B1
6544016 Gennami et al. Apr 2003 B2
6558143 Nakajima et al. May 2003 B2
6589035 Tsubono et al. Jul 2003 B1
6619062 Shibamoto et al. Sep 2003 B1
6679683 Seibel et al. Jan 2004 B2
6705848 Scancarello Mar 2004 B2
6715999 Ancel et al. Apr 2004 B2
6746223 Manole Jun 2004 B2
6769881 Lee Aug 2004 B2
6769888 Tsubono et al. Aug 2004 B2
6773242 Perevozchikov Aug 2004 B1
6817847 Agner Nov 2004 B2
6821092 Gehret et al. Nov 2004 B1
6863510 Cho Mar 2005 B2
6881046 Shibamoto et al. Apr 2005 B2
6884042 Zili et al. Apr 2005 B2
6887051 Sakuda et al. May 2005 B2
6893229 Choi et al. May 2005 B2
6896493 Chang et al. May 2005 B2
6896498 Patel May 2005 B1
6913448 Liang et al. Jul 2005 B2
6984114 Zili et al. Jan 2006 B2
7018180 Koo Mar 2006 B2
7029251 Chang et al. Apr 2006 B2
7118358 Tsubono et al. Oct 2006 B2
7137796 Tsubono et al. Nov 2006 B2
7160088 Peyton Jan 2007 B2
7172395 Shibamoto et al. Feb 2007 B2
7207787 Liang et al. Apr 2007 B2
7229261 Morimoto et al. Jun 2007 B2
7255542 Lifson et al. Aug 2007 B2
7261527 Alexander et al. Aug 2007 B2
7311740 Williams et al. Dec 2007 B2
7344365 Takeuchi et al. Mar 2008 B2
RE40257 Doepker et al. Apr 2008 E
7354259 Tsubono et al. Apr 2008 B2
7364416 Liang et al. Apr 2008 B2
7371057 Shin et al. May 2008 B2
7371059 Ignatiev et al. May 2008 B2
RE40399 Hugenroth et al. Jun 2008 E
RE40400 Bass et al. Jun 2008 E
7393190 Lee et al. Jul 2008 B2
7404706 Ishikawa et al. Jul 2008 B2
RE40554 Bass et al. Oct 2008 E
7510382 Jeong Mar 2009 B2
7547202 Knapke Jun 2009 B2
7695257 Joo et al. Apr 2010 B2
7717687 Reinhart May 2010 B2
7771178 Perevozchikov et al. Aug 2010 B2
7802972 Shimizu et al. Sep 2010 B2
7815423 Guo et al. Oct 2010 B2
7891961 Shimizu et al. Feb 2011 B2
7896629 Ignatiev et al. Mar 2011 B2
RE42371 Peyton May 2011 E
7956501 Jun et al. Jun 2011 B2
7967582 Akei et al. Jun 2011 B2
7967583 Stover et al. Jun 2011 B2
7972125 Stover et al. Jul 2011 B2
7976289 Masao Jul 2011 B2
7976295 Stover et al. Jul 2011 B2
7988433 Akei et al. Aug 2011 B2
7988434 Stover et al. Aug 2011 B2
8025492 Seibel et al. Sep 2011 B2
8303278 Roof et al. Nov 2012 B2
8303279 Hahn Nov 2012 B2
8308448 Fields et al. Nov 2012 B2
8328531 Milliff et al. Dec 2012 B2
8393882 Ignatiev et al. Mar 2013 B2
8506271 Seibel et al. Aug 2013 B2
8517703 Doepker Aug 2013 B2
8585382 Akei et al. Nov 2013 B2
8616014 Stover et al. Dec 2013 B2
8790098 Stover et al. Jul 2014 B2
8840384 Patel et al. Sep 2014 B2
8857200 Stover et al. Oct 2014 B2
8932036 Monnier et al. Jan 2015 B2
9127677 Doepker Sep 2015 B2
9145891 Kim et al. Sep 2015 B2
9249802 Doepker et al. Feb 2016 B2
9303642 Akei et al. Apr 2016 B2
9435340 Doepker et al. Sep 2016 B2
9494157 Doepker Nov 2016 B2
9541084 Ignatiev Jan 2017 B2
9605677 Heidecker et al. Mar 2017 B2
9624928 Yamazaki et al. Apr 2017 B2
9651043 Stover et al. May 2017 B2
9777730 Doepker et al. Oct 2017 B2
9790940 Doepker et al. Oct 2017 B2
9879674 Akei et al. Jan 2018 B2
9989057 Lochner et al. Jun 2018 B2
10066622 Pax et al. Sep 2018 B2
10087936 Pax et al. Oct 2018 B2
10094380 Doepker et al. Oct 2018 B2
20010010800 Kohsokabe et al. Aug 2001 A1
20020039540 Kuroki et al. Apr 2002 A1
20020057975 Nakajima et al. May 2002 A1
20030044296 Chen Mar 2003 A1
20030044297 Gennami et al. Mar 2003 A1
20030186060 Rao Oct 2003 A1
20030228235 Sowa et al. Dec 2003 A1
20040126259 Choi et al. Jul 2004 A1
20040136854 Kimura et al. Jul 2004 A1
20040146419 Kawaguchi et al. Jul 2004 A1
20040170509 Wehrenberg et al. Sep 2004 A1
20040184932 Lifson Sep 2004 A1
20040197204 Yamanouchi et al. Oct 2004 A1
20050019177 Shin et al. Jan 2005 A1
20050019178 Shin et al. Jan 2005 A1
20050053507 Takeuchi et al. Mar 2005 A1
20050069444 Peyton Mar 2005 A1
20050140232 Lee et al. Jun 2005 A1
20050201883 Clendenin et al. Sep 2005 A1
20050214148 Ogawa et al. Sep 2005 A1
20060099098 Lee et al. May 2006 A1
20060138879 Kusase et al. Jun 2006 A1
20060198748 Grassbaugh et al. Sep 2006 A1
20060228243 Sun et al. Oct 2006 A1
20060233657 Bonear et al. Oct 2006 A1
20070036661 Stover Feb 2007 A1
20070110604 Peyton May 2007 A1
20070130973 Lifson et al. Jun 2007 A1
20080115357 Li et al. May 2008 A1
20080138227 Knapke Jun 2008 A1
20080159892 Huang et al. Jul 2008 A1
20080159893 Caillat Jul 2008 A1
20080196445 Lifson et al. Aug 2008 A1
20080223057 Lifson et al. Sep 2008 A1
20080226483 Iwanami et al. Sep 2008 A1
20080305270 Uhlianuk et al. Dec 2008 A1
20090035167 Sun Feb 2009 A1
20090068048 Stover et al. Mar 2009 A1
20090071183 Stover et al. Mar 2009 A1
20090185935 Seibel et al. Jul 2009 A1
20090191080 Ignatiev et al. Jul 2009 A1
20090297377 Stover et al. Dec 2009 A1
20090297378 Stover et al. Dec 2009 A1
20090297379 Stover et al. Dec 2009 A1
20090297380 Stover et al. Dec 2009 A1
20100111741 Chikano et al. May 2010 A1
20100135836 Stover et al. Jun 2010 A1
20100158731 Akei et al. Jun 2010 A1
20100209278 Tarao et al. Aug 2010 A1
20100212311 McQuary et al. Aug 2010 A1
20100212352 Kim et al. Aug 2010 A1
20100254841 Akei et al. Oct 2010 A1
20100300659 Stover et al. Dec 2010 A1
20100303659 Stover et al. Dec 2010 A1
20110135509 Fields et al. Jun 2011 A1
20110206548 Doepker Aug 2011 A1
20110243777 Ito et al. Oct 2011 A1
20110250085 Stover et al. Oct 2011 A1
20110293456 Seibel et al. Dec 2011 A1
20120009076 Kim et al. Jan 2012 A1
20120107163 Monnier et al. May 2012 A1
20120183422 Bahmata Jul 2012 A1
20120195781 Stover et al. Aug 2012 A1
20130078128 Akei Mar 2013 A1
20130089448 Ginies et al. Apr 2013 A1
20130094987 Yamashita et al. Apr 2013 A1
20130121857 Liang et al. May 2013 A1
20130177465 Clendenin Jul 2013 A1
20130302198 Ginies et al. Nov 2013 A1
20130309118 Ginies et al. Nov 2013 A1
20130315768 Le Coat et al. Nov 2013 A1
20140023540 Heidecker et al. Jan 2014 A1
20140024563 Heidecker et al. Jan 2014 A1
20140037486 Stover et al. Feb 2014 A1
20140134030 Stover et al. May 2014 A1
20140134031 Doepker et al. May 2014 A1
20140147294 Fargo et al. May 2014 A1
20140154121 Doepker Jun 2014 A1
20140154124 Doepker et al. Jun 2014 A1
20140219846 Ignatiev et al. Aug 2014 A1
20150037184 Rood et al. Feb 2015 A1
20150086404 Kiem et al. Mar 2015 A1
20150192121 Sung et al. Jul 2015 A1
20150330386 Doepker Nov 2015 A1
20150345493 Lochner et al. Dec 2015 A1
20150354719 van Beek et al. Dec 2015 A1
20160025093 Doepker Jan 2016 A1
20160025094 Ignatiev et al. Jan 2016 A1
20160032924 Stover Feb 2016 A1
20160047380 Kim et al. Feb 2016 A1
20160053759 Choi et al. Feb 2016 A1
20160076543 Akei et al. Mar 2016 A1
20160115954 Doepker et al. Apr 2016 A1
20160138879 Matsukado et al. May 2016 A1
20160201673 Perevozchikov et al. Jul 2016 A1
20160208803 Uekawa et al. Jul 2016 A1
20170002817 Stover Jan 2017 A1
20170002818 Stover Jan 2017 A1
20170030354 Stover Feb 2017 A1
20170241417 Jin et al. Aug 2017 A1
20170268510 Stover et al. Sep 2017 A1
20170306960 Pax et al. Oct 2017 A1
20170314558 Pax et al. Nov 2017 A1
20170342978 Doepker Nov 2017 A1
20170342983 Jin et al. Nov 2017 A1
20170342984 Jin et al. Nov 2017 A1
20180023570 Huang et al. Jan 2018 A1
20180038369 Doepker et al. Feb 2018 A1
20180038370 Doepker et al. Feb 2018 A1
20180066656 Perevozchikov et al. Mar 2018 A1
20180066657 Perevozchikov et al. Mar 2018 A1
20180149155 Akei et al. May 2018 A1
20180223823 Ignatiev et al. Aug 2018 A1
20190040861 Doepker et al. Feb 2019 A1
20190186491 Perevozchikov et al. Jun 2019 A1
20190203709 Her et al. Jul 2019 A1
20190353164 Berning et al. Nov 2019 A1
Foreign Referenced Citations (128)
Number Date Country
1137614 Dec 1996 CN
1158944 Sep 1997 CN
1158945 Sep 1997 CN
1177681 Apr 1998 CN
1177683 Apr 1998 CN
1259625 Jul 2000 CN
1286358 Mar 2001 CN
1289011 Mar 2001 CN
1339087 Mar 2002 CN
1349053 May 2002 CN
1382912 Dec 2002 CN
1407233 Apr 2003 CN
1407234 Apr 2003 CN
1517553 Aug 2004 CN
1601106 Mar 2005 CN
1680720 Oct 2005 CN
1702328 Nov 2005 CN
2747381 Dec 2005 CN
1757925 Apr 2006 CN
1828022 Sep 2006 CN
1854525 Nov 2006 CN
1963214 May 2007 CN
1995756 Jul 2007 CN
101358592 Feb 2009 CN
101684785 Mar 2010 CN
101761479 Jun 2010 CN
101806302 Aug 2010 CN
101910637 Dec 2010 CN
102076963 May 2011 CN
102089525 Jun 2011 CN
102272454 Dec 2011 CN
102400915 Apr 2012 CN
102422024 Apr 2012 CN
102449314 May 2012 CN
102705234 Oct 2012 CN
102762866 Oct 2012 CN
202926640 May 2013 CN
103502644 Jan 2014 CN
103671125 Mar 2014 CN
203962320 Nov 2014 CN
204041454 Dec 2014 CN
104838143 Aug 2015 CN
105317678 Feb 2016 CN
205533207 Aug 2016 CN
205823629 Dec 2016 CN
205876712 Jan 2017 CN
205876713 Jan 2017 CN
205895597 Jan 2017 CN
207513832 Jun 2018 CN
209621603 Nov 2019 CN
209654225 Nov 2019 CN
209781195 Dec 2019 CN
3917656 Nov 1995 DE
102011001394 Sep 2012 DE
0747598 Dec 1996 EP
0822335 Feb 1998 EP
1067289 Jan 2001 EP
1087142 Mar 2001 EP
1182353 Feb 2002 EP
1241417 Sep 2002 EP
1371851 Dec 2003 EP
1382854 Jan 2004 EP
2151577 Feb 2010 EP
1927755 Nov 2013 EP
2764347 Dec 1998 FR
2107829 May 1983 GB
S58214689 Dec 1983 JP
S60259794 Dec 1985 JP
S62220789 Sep 1987 JP
S6385277 Apr 1988 JP
S63205482 Aug 1988 JP
H01178789 Jul 1989 JP
H0281982 Mar 1990 JP
H02153282 Jun 1990 JP
H03081588 Apr 1991 JP
H03233101 Oct 1991 JP
H04121478 Apr 1992 JP
H04272490 Sep 1992 JP
H0610601 Jan 1994 JP
H0726618 Mar 1995 JP
H07293456 Nov 1995 JP
H08247053 Sep 1996 JP
H8320079 Dec 1996 JP
H08334094 Dec 1996 JP
H09177689 Jul 1997 JP
H11107950 Apr 1999 JP
H11166490 Jun 1999 JP
2951752 Sep 1999 JP
H11324950 Nov 1999 JP
2000104684 Apr 2000 JP
2000161263 Jun 2000 JP
2000329078 Nov 2000 JP
3141949 Mar 2001 JP
2002202074 Jul 2002 JP
2003074481 Mar 2003 JP
2003074482 Mar 2003 JP
2003106258 Apr 2003 JP
2003214365 Jul 2003 JP
2003227479 Aug 2003 JP
2004239070 Aug 2004 JP
2005264827 Sep 2005 JP
2006083754 Mar 2006 JP
2006183474 Jul 2006 JP
2007154761 Jun 2007 JP
2007228683 Sep 2007 JP
2008248775 Oct 2008 JP
2013104305 May 2013 JP
2013167215 Aug 2013 JP
1019870000015 May 1985 KR
870000015 Jan 1987 KR
20050027402 Mar 2005 KR
20050095246 Sep 2005 KR
100547323 Jan 2006 KR
20100017008 Feb 2010 KR
20120008045 Jan 2012 KR
101192642 Oct 2012 KR
20120115581 Oct 2012 KR
20130094646 Aug 2013 KR
WO-9515025 Jun 1995 WO
WO-0073659 Dec 2000 WO
WO-2007046810 Apr 2007 WO
WO-2008060525 May 2008 WO
WO-2009017741 Feb 2009 WO
WO-2009155099 Dec 2009 WO
WO-2010118140 Oct 2010 WO
WO-2011106422 Sep 2011 WO
WO-2012114455 Aug 2012 WO
WO-2017071641 May 2017 WO
Non-Patent Literature Citations (164)
Entry
Office Action regarding Chinese Patent Application No. 201710795228.8, dated Oct. 28, 2019. Translation provided by Unitalen Attorneys at Law.
Office Action regarding European Patent Application No. 11747996.4, dated Nov. 5, 2019.
Notice of Allowance regarding U.S. Appl. No. 15/186,151, dated Nov. 14, 2019.
Office Action regarding Indian Patent Application No. 2043/MUMNP/2011, dated Nov. 27, 2019.
Office Action regarding Chinese Patent Application No. 201811480347.5, dated Jan. 10, 2020. Translation provided by Unitalen Attorneys at Law.
Office Action regarding Chinese Patent Application No. 201811541653.5, dated Jan. 10, 2020. Translation provided by Unitalen Attorneys at Law.
Office Action regarding European Patent Application No. 11747996.4, dated Jan. 14, 2020.
Office Action regarding U.S. Appl. No. 15/881,016, dated Jan. 23, 2020.
Office Action regarding U.S. Appl. No. 15/682,599, dated Jan. 24, 2020.
Office Action regarding U.S. Appl. No. 15/831,423, dated Jan. 31, 2020.
U.S. Appl. No. 16/154,406, filed Oct. 8, 2018, Roy J. Doepker et al.
U.S. Appl. No. 16/154,844, filed Oct. 9, 2018, Jeffrey Lee Berning et al.
U.S. Appl. No. 16/177,902, filed Nov. 1, 2018, Michael M. Perevozchikov et al.
Luckevich, Mark, “MEMS microvalves: the new valve world.” Valve World, May 2007, pp. 79-83.
Non-Final Office Action for U.S. Appl. No. 11/522,250, dated Aug. 1, 2007.
Extended European Search Report regarding Application No. EP07254962, dated Mar. 12, 2008.
Notification of the First Office Action received from the Chinese Patent Office, dated Mar. 6, 2009 regarding Application No. 200710153687.2, translated by CCPIT Patent and Trademark Law Office.
Non-Final Office Action for U.S. Appl. No. 12/103,265, dated May 27, 2009.
U.S. Office Action regarding U.S. Appl. No. 11/645,288, dated Nov. 30, 2009.
Non-Final Office Action for U.S. Appl. No. 12/103,265, dated Dec. 17, 2009.
Notice of Grounds for Rejection regarding Korean Patent Application No. 10-2007-0093478, dated Feb. 25, 2010. Translation provided by Y.S. Chang & Associates.
Final Office Action for U.S. Appl. No. 12/103,265, dated Jun. 15, 2010.
First China Office Action regarding Application No. 200710160038.5, dated Jul. 8, 2010. Translation provided by Unitalen Attorneys at Law.
Final Preliminary Notice of Grounds for Rejection regarding Korean Patent Application No. 10-2007-0093478, dated Aug. 31, 2010. Translation provided by Y.S. Chang & Associates.
Advisory Action for U.S. Appl. No. 12/103,265, dated Sep. 17, 2010.
International Search Report regarding Application No. PCT/US2010/030248, dated Nov. 26, 2010.
Written Opinion of the International Searching Authority regarding Application No. PCT/US2010/030248, dated Nov. 26, 2010.
International Search Report regarding Application No. PCT/US2011/025921, dated Oct. 7, 2011.
Written Opinion of the International Search Authority regarding Application No. PCT/US2011/025921, dated Oct. 7, 2011.
China Office Action regarding Application No. 200710160038.5, dated Jan. 31, 2012. Translation provided by Unitalen Attorneys at Law.
First Office Action regarding Chinese Patent Application No. 201010224582.3, dated Apr. 17, 2012. English translation provided by Unitalen Attorneys at Law.
First Examination Report regarding Indian Patent Application No. 1071/KOL/2007, dated Apr. 27, 2012.
Non-Final Office Action for U.S. Appl. No. 13/0365,529, dated Aug. 22, 2012.
U.S. Office Action regarding U.S. Appl. No. 13/181,065, dated Nov. 9, 2012.
International Search Report regarding Application No. PCT/US2013/051678, dated Oct. 21, 2013.
Written Opinion of the International Searching Authority regarding Application No. PCT/US2013/051678, dated Oct. 21, 2013.
China Office Action regarding Application No. 201080020243.1, dated Nov. 5, 2013. Translation provided by Unitalen Attorneys at Law.
International Search Report regarding Application No. PCT/US2013/069456, dated Feb. 18, 2014.
Written Opinion of the International Searching Authority regarding Application No. PCT/US2013/069456, dated Feb. 18, 2014.
International Search Report regarding Application No. PCT/US2013/069462, dated Feb. 21, 2014.
Written Opinion of the International Searching Authority regarding Application No. PCT/US2013/069462, dated Feb. 21, 2014.
International Search Report regarding Application No. PCT/US2013/070992, dated Feb. 25, 2014.
Written Opinion of the International Searching Authority regarding Application No. PCT/US2013/070992, dated Feb. 25, 2014.
International Search Report regarding Application No. PCT/US2013/070981, dated Mar. 4, 2014.
Written Opinion of the International Searching Authority regarding Application No. PCT/US2013/070981, dated Mar. 4, 2014.
Second Office Action regarding China Application No. 201180010366.1, dated Dec. 31, 2014. Translation provided by Unitalen Attorneys at Law.
Office Action regarding U.S. Appl. No. 14/081,390, dated Mar. 27, 2015.
Search Report regarding European Patent Application No. 10762374.6-1608 / 2417356 PCT/US2010030248, dated Jun. 16, 2015.
Office Action regarding U.S. Appl. No. 14/060,240, dated Aug. 12, 2015.
International Search Report regarding International Application No. PCT/US2015/033960, dated Sep. 1, 2015.
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2015/033960, dated Sep. 1, 2015.
Office Action regarding U.S. Appl. No. 14/073,293, dated Sep. 25, 2015.
Restriction Requirement regarding U.S. Appl. No. 14/060,102, dated Oct. 7, 2015.
International Search Report regarding International Application No. PCT/US2015/042479, dated Oct. 23, 2015.
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2015/042479, dated Oct. 23, 2015.
Office Action regarding Chinese Patent Application No. 201410461048.2, dated Nov. 30, 2015. Translation provided by Unitalen Attorneys at Law.
Interview Summary regarding U.S. Appl. No. 14/060,240, dated Dec. 1, 2015.
Office Action regarding U.S. Appl. No. 14/073,293, dated Jan. 29, 2016.
Office Action regarding Chinese Patent Application No. 201410460792.0, dated Feb. 25, 2016. Translation provided by Unitalen Attorneys at Law.
Restriction Requirement regarding U.S. Appl. No. 14/060,102, dated Mar. 16, 2016.
First Office Action regarding Chinese Application No. 201380059666.8, dated Apr. 5, 2016. Translation provided by Unitalen Attorneys at Law.
First Office Action regarding Chinese Application No. 201380062614.6, dated Apr. 5, 2016. Translation provided by Unitalen Attorneys at Law.
Advisory Action regarding U.S. Appl. No. 14/073,293, dated Apr. 18, 2016.
Office Action regarding Chinese Patent Application No. 201380062657.4, dated May 4, 2016. Translation provided by Unitalen Attorneys at Law.
Office Action regarding Chinese Patent Application No. 201380059963.2, dated May 10, 2016. Translation provided by Unitalen Attorneys at Law.
Office Action regarding U.S. Appl. No. 14/060,102, dated Jun. 14, 2016.
Office Action regarding U.S. Appl. No. 14/846,877, dated Jul. 15, 2016.
Office Action regarding Chinese Patent Application No. 201410461048.2, dated Jul. 26, 2016. Translation provided by Unitalen Attorneys at Law.
Search Report regarding European Patent Application No. 13858194.7, dated Aug. 3, 2016.
Search Report regarding European Patent Application No. 13859308.2, dated Aug. 3, 2016.
Office Action regarding U.S. Appl. No. 14/294,458, dated Aug. 19, 2016.
Office Action regarding Chinese Patent Application No. 201410460792.0, dated Oct. 21, 2016. Translation provided by Unitalen Attorneys at Law.
Search Report regarding European Patent Application No. 11747996.4, dated Nov. 7, 2016.
Office Action regarding Chinese Patent Application No. 201380059666.8, dated Nov. 23, 2016. Translation provided by Unitalen Attorneys at Law.
Office Action regarding U.S. Appl. No. 14/060,102, dated Dec. 28, 2016.
International Search Report regarding International Application No. PCT/CN2016/103763, dated Jan. 25, 2017.
Written Opinion of the International Searching Authority regarding International Application No. PCT/CN2016/103763, dated Jan. 25, 2017.
Office Action regarding U.S. Appl. No. 15/156,400, dated Feb. 23, 2017.
Office Action regarding U.S. Appl. No. 14/294,458, dated Feb. 28, 2017.
Advisory Action regarding U.S. Appl. No. 14/060,102, dated Mar. 3, 2017.
Office Action regarding U.S. Appl. No. 14/663,073, dated Apr. 11, 2017.
Office Action regarding Chinese Patent Application No. 201410460792.0, dated Apr. 24, 2017. Translation provided by Unitalen Attorneys at Law.
Office Action regarding U.S. Appl. No. 14/946,824, dated May 10, 2017.
Advisory Action regarding U.S. Appl. No. 14/294,458, dated Jun. 9, 2017.
Office Action regarding Chinese Patent Application No. 201610703191.7, dated Jun. 13, 2017. Translation provided by Unitalen Attorneys at Law.
Office Action regarding Indian Patent Application No. 2043/MUMNP/2011, dated Jul. 28, 2017.
Restriction Requirement regarding U.S. Appl. No. 14/809,786, dated Aug. 16, 2017.
Office Action regarding U.S. Appl. No. 14/294,458, dated Sep. 21, 2017.
Office Action regarding U.S. Appl. No. 14/757,407, dated Oct. 13, 2017.
Office Action regarding Chinese Patent Application No. 201610158216.X, dated Oct. 30, 2017. Translation provided by Unitalen Attorneys at Law.
Office Action regarding Chinese Patent Application No. 201410460792.0, dated Nov. 1, 2017. Translation provided by Unitalen Attorneys at Law.
Office Action regarding Chinese Patent Application No. 201610512702.7, dated Dec. 20, 2017. Partial translation provided by Unitalen Attorneys at Law.
International Search Report regarding International Application No. PCT/US2017/050525, dated Dec. 28, 2017.
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2017/050525, dated Dec. 28, 2017.
Office Action regarding Chinese Patent Application No. 201610499158.7, dated Jan. 9, 2018. Translation provided by Unitalen Attorneys at Law.
Non-Final Office Action for U.S. Appl. No. 14/809,786, dated Jan. 11, 2018.
Office Action regarding Chinese Patent Application No. 201580029636.1, dated Jan. 17, 2018. Translation provided by Unitalen Attorneys at Law.
Office Action regarding Chinese Patent Application No. 201580041209.5, dated Jan. 17, 2018. Translation provided by Unitalen Attorneys at Law.
Office Action regarding U.S. Appl. No. 15/646,654, dated Feb. 9, 2018.
Office Action regarding U.S. Appl. No. 15/651,471 dated Feb. 23, 2018.
Office Action regarding Indian Patent Application No. 1907/MUMNP/2012, dated Feb. 26, 2018.
Election Requirement regarding U.S. Appl. No. 15/186,092, dated Apr. 3, 2018.
Election Requirement regarding U.S. Appl. No. 15/784,458, dated Apr. 5, 2018.
Office Action regarding Korean Patent Application No. 10-2016-7034539, dated Apr. 11, 2018. Translation provided by Y.S. Chang & Associates.
Office Action regarding U.S. Appl. No. 15/186,151, dated May 3, 2018.
Office Action regarding Chinese Patent Application No. 201610930347.5, dated May 14, 2018. Translation provided by Unitalen Attorneys at Law.
Election/Restriction Requirement regarding U.S. Appl. No. 15/187,225, dated May 15, 2018.
Notice of Allowance regarding U.S. Appl. No. 14/757,407, dated May 24, 2018.
Office Action regarding Chinese Patent Application No. 201610158216.X, dated Jun. 13, 2018. Translation provided by Unitalen Attorneys at Law.
Office Action regarding European Patent Application No. 13859308.2, dated Jun. 22, 2018.
Office Action regarding U.S. Appl. No. 15/186,092, dated Jun. 29, 2018.
Notice of Allowance regarding U.S. Appl. No. 15/646,654, dated Jul. 11, 2018.
Notice of Allowance regarding U.S. Appl. No. 15/651,471, dated Jul. 11, 2018.
Office Action regarding U.S. Appl. No. 15/784,540, dated Jul. 17, 2018.
Office Action regarding U.S. Appl. No. 15/784,458, dated Jul. 19, 2018.
Election/Restriction Requirement regarding U.S. Appl. No. 15/587,735, dated Jul. 23, 2018.
Office Action regarding Chinese Patent Application No. 201610499158.7, dated Aug. 1, 2018. Translation provided by Unitalen Attorneys at Law.
Applicant-Initiated Interview Summary regarding U.S. Appl. No. 15/186,092, dated Aug. 14, 2018.
Office Action regarding U.S. Appl. No. 15/187,225, dated Aug. 27, 2018.
Office Action regarding Chinese Patent Application No. 201710795228.8, dated Sep. 5, 2018. Translation provided by Unitalen Attorneys at Law.
Office Action regarding Korean Patent Application No. 10-2016-7034539, dated Sep. 6, 2018. Translation provided by Y.S. Chang & Associates.
Office Action regarding Indian Patent Application No. 1307/MUMNP/2015, dated Sep. 12, 2018.
Office Action regarding Chinese Patent Application No. 201580029636.1, dated Oct. 8, 2018. Translation provided by Unitalen Attorneys at Law.
Office Action regarding U.S. Appl. No. 15/587,735, dated Oct. 9, 2018.
Office Action regarding U.S. Appl. No. 15/186,151, dated Nov. 1, 2018.
Office Action regarding Korean Patent Application No. 10-2017-7033995, dated Nov. 29, 2018. Translation provided by KS KORYO International IP Law Firm.
Notice of Allowance regarding U.S. Appl. No. 15/186,151, dated Jul. 25, 2019.
Office Action regarding Chinese Patent Application No. 201610499158.7, dated Aug. 1, 2019. Translation provided by Unitalen Attorneys at Law.
Office Action regarding Chinese Patent Application No. 201811168307.7, dated Aug. 12, 2019. Translation provided by Unitalen Attorneys at Law.
Restriction Requirement regarding U.S. Appl. No. 15/682,599, dated Aug. 14, 2019.
Notice of Allowance regarding U.S. Appl. No. 15/587,735, dated Aug. 23, 2019.
International Search Report regarding International Application No. PCT/US2019/032718, dated Aug. 23, 2019.
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2019/032718, dated Aug. 23, 2019.
Office Action regarding Chinese Patent Application No. 201780055443.2, dated Sep. 2, 2019. Translation provided by Unitalen Attorneys at Law.
Office Action regarding U.S. Appl. No. 15/692,844, dated Sep. 20, 2019.
Notice of Allowance regarding U.S. Appl. No. 15/692,844, dated Feb. 20, 2020.
Office Action regarding European Patent Application No. 13859308.2, dated Mar. 4, 2020.
Office Action regarding Chinese Patent Application No. 201811168307.7, dated Mar. 27, 2020. Translation provided by Unitalen Attorneys at Law.
Office Action regarding Korean Patent Application No. 10-2018-0159231, dated Apr. 7, 2020. Translation provided by KS KORYO International IP Law Firm.
Office Action regarding Chinese Patent Application No. 201780055443.2, dated Apr. 14, 2020. Translation provided by Unitalen Attorneys at Law.
Notice of Allowance regarding U.S. Appl. No. 15/682,599, dated Apr. 22, 2020.
Notice of Allowance regarding U.S. Appl. No. 15/831,423, dated May 20, 2020.
Notice of Allowance regarding U.S. Appl. No. 15/692,844, dated Jun. 4, 2020.
Office Action regarding U.S. Appl. No. 16/154,406, dated Jun. 29, 2020.
Restriction Requirement regarding U.S. Appl. No. 16/154,844, dated Jul. 2, 2020.
Office Action regarding Chinese Patent Application No. 201811480347.5, dated Jul. 21, 2020. Translation provided by Unitalen Attorneys at Law.
Office Action regarding U.S. Appl. No. 15/881,016, dated Jul. 21, 2020.
Office Action regarding U.S. Appl. No. 16/177,902, dated Jul. 23, 2020.
Office Action regarding Chinese Patent Application No. 201180010366.1, dated Jun. 4, 2014. Translation provided by Unitalen Attorneys at Law.
Office Action regarding Chinese Patent Application No. 201610516097.0, dated Jun. 27, 2017. Translation provided by Unitalen Attorneys at Law.
Notice of Allowance regarding U.S. Appl. No. 15/186,092, dated Dec. 20, 2018.
Office Action regarding Indian Patent Application No. 1306/MUMNP/2015, dated Dec. 31, 2018.
Notice of Allowance regarding U.S. Appl. No. 15/187,225, dated Jan. 3, 2019.
Office Action regarding Chinese Patent Application No. 201610499158.7, dated Feb. 1, 2019. Translation provided by Unitalen Attorneys at Law.
Notice of Allowance regarding U.S. Appl. No. 15/784,458, dated Feb. 7, 2019.
Notice of Allowance regarding U.S. Appl. No. 15/784,540, dated Feb. 7, 2019.
Search Report regarding European Patent Application No. 18198310.7, dated Feb. 27, 2019.
Notice of Allowance regarding U.S. Appl. No. 15/186,151, dated Mar. 19, 2019.
Notice of Allowance regarding U.S. Appl. No. 15/186,092, dated Apr. 19, 2019.
Office Action regarding Chinese Patent Application No. 201710795228.8, dated Apr. 29, 2019. Translation provided by Unitalen Attorneys at Law.
Notice of Allowance regarding U.S. Appl. No. 15/187,225, dated May 2, 2019.
Office Action regarding U.S. Appl. No. 15/587,735, dated May 17, 2019.
Office Action regarding Chinese Patent Application No. 201811011292.3, dated Jun. 21, 2019. Translation provided by Unitalen Attorneys at Law.
Office Action regarding European Patent Application No. 11747996.4, dated Jun. 26, 2019.
Related Publications (1)
Number Date Country
20190101120 A1 Apr 2019 US
Provisional Applications (1)
Number Date Country
62567277 Oct 2017 US