The present disclosure relates to a variable volume ratio compressor.
This section provides background information related to the present disclosure and is not necessarily prior art.
Compressors are used in a variety of industrial, commercial and residential applications to circulate a working fluid within a climate-control system (e.g., a refrigeration system, an air conditioning system, a heat-pump system, a chiller system, etc.) to provide a desired cooling and/or heating effect. A typical climate-control system may include a fluid circuit having an outdoor heat exchanger, an indoor heat exchanger, an expansion device disposed between the indoor and outdoor heat exchangers, and a compressor circulating a working fluid (e.g., refrigerant or carbon dioxide) between the indoor and outdoor heat exchangers. Efficient and reliable operation of the compressor is desirable to ensure that the climate-control system in which the compressor is installed is capable of effectively and efficiently providing a cooling and/or heating effect on demand.
This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.
The present disclosure provides a compressor may include a shell assembly, a non-orbiting scroll, and an orbiting scroll. The shell assembly may define a discharge chamber. The non-orbiting scroll includes a first end plate and a first spiral wrap extending from the first end plate. The first end plate may include a variable-volume-ratio port. The orbiting scroll may be disposed within the discharge chamber. The orbiting scroll includes a second end plate and a second spiral wrap extending from the second end plate and cooperating with the first spiral wrap to define a plurality of fluid pockets therebetween. The second end plate may include a discharge passage in communication with a radially innermost one of the fluid pockets and the discharge chamber. The variable-volume-ratio port may be disposed radially outward relative to the discharge passage and may be in selective communication with the radially innermost one of the fluid pockets.
In some configurations of the compressor of the above paragraph, the radially innermost one of the fluid pockets is in communication with the discharge chamber only through the discharge passage.
In some configurations of the compressor of either of the above paragraphs, the orbiting scroll includes an annular hub extending from the second end plate in a direction opposite the second spiral wrap. The annular hub may define a cavity that receives a driveshaft. The discharge passage may be open to and directly adjacent to the cavity.
In some configurations of the compressor of any of the above paragraphs, the non-orbiting scroll is enclosed within the shell assembly and is disposed within the discharge chamber.
In some configurations of the compressor of any of the above paragraphs, the non-orbiting scroll sealingly engages the shell assembly to seal the discharge chamber.
In some configurations of the compressor of any of the above paragraphs, the non-orbiting scroll is exposed to an ambient environment outside of the compressor. That is, the non-orbiting scroll may function as an end cap of the shell assembly.
In some configurations of the compressor of any of the above paragraphs, the compressor includes a discharge fitting extending through the shell assembly and in communication with the discharge chamber. The discharge fitting may be spaced apart from the non-orbiting scroll.
In some configurations of the compressor of any of the above paragraphs, the compressor includes a variable-volume-ratio valve member movable relative to the non-orbiting scroll between an open position in which the variable-volume-ratio valve member allows fluid flow between the variable-volume-ratio port and the discharge chamber and a closed position in which the variable-volume-ratio valve member restricts fluid flow between the variable-volume-ratio port and the discharge chamber.
In some configurations of the compressor of any of the above paragraphs, the first end plate of the non-orbiting scroll includes a valve recess in which the variable-volume-ratio valve member is movable between the open and closed positions. The valve recess may be in communication with the discharge chamber and the variable-volume-ratio port when the variable-volume-ratio valve member is in the open position.
In some configurations of the compressor of any of the above paragraphs, the compressor includes a valve backer and a spring. The valve backer may close an end of the valve recess. The spring may be disposed between the valve backer and the variable-volume-ratio valve member and may bias the variable-volume-ratio valve member toward the closed position.
In some configurations of the compressor of any of the above paragraphs, the valve backer is received within the valve recess.
In some configurations of the compressor of any of the above paragraphs, the first end plate includes another variable-volume-ratio port disposed radially outward relative to the discharge passage.
In some configurations of the compressor of any of the above paragraphs, the compressor includes another variable-volume-ratio valve member movable relative to the non-orbiting scroll between an open position allowing fluid flow between the another variable-volume-ratio port and the discharge chamber and a closed position restricting fluid flow between the another variable-volume-ratio port and the discharge chamber.
In some configurations of the compressor of any of the above paragraphs, the valve recess is an annular recess. The variable-volume-ratio valve member may be an annular member that closes both of the variable-volume-ratio ports in the closed position and opens both of the variable-volume-ratio ports in the open position.
In some configurations of the compressor of any of the above paragraphs, the first end plate includes a capacity-modulation port in communication with a radially intermediate one of the fluid pockets.
In some configurations of the compressor of any of the above paragraphs, the compressor includes a capacity-modulation valve assembly movable between a first position restricting communication between the capacity-modulation port and a suction-pressure region and a second position allowing communication between the capacity-modulation port and the suction-pressure region.
In some configurations of the compressor of any of the above paragraphs, the capacity-modulation valve assembly is movable to a third position restricting communication between the capacity-modulation port and the suction-pressure region and allowing communication between fluid-injection passage and the capacity-modulation port.
The present disclosure also provides a compressor that may include a shell assembly, a non-orbiting scroll, and an orbiting scroll. The shell assembly may define a discharge chamber. The non-orbiting scroll includes a first end plate and a first spiral wrap extending from the first end plate. The first end plate may include a variable-volume-ratio port and a first discharge passage. The variable-volume-ratio port may be disposed radially outward relative to the first discharge passage and may be in selective communication with the discharge chamber. The first discharge passage may be in communication with the discharge chamber. The orbiting scroll may be disposed within the discharge chamber and includes a second end plate and a second spiral wrap extending from the second end plate and cooperating with the first spiral wrap to define a plurality of fluid pockets therebetween. The second end plate may include a second discharge passage in communication with the discharge chamber. The first discharge passage and the second discharge passage may be in communication with an innermost one of the fluid pockets and the discharge chamber.
In some configurations of the compressor of the above paragraph, the second discharge passage is in selective fluid communication with the variable-volume-ratio port.
In some configurations of the compressor of either of the above paragraphs, the first discharge passage extends entirely through the first end plate.
In some configurations of the compressor of any of the above paragraphs, the second discharge passage extends entirely through the second end plate.
In some configurations of the compressor of any of the above paragraphs, the orbiting scroll includes an annular hub extending from the second end plate in a direction opposite the second spiral wrap. The annular hub may define a cavity that receives a driveshaft. The second discharge passage may be open to and directly adjacent to the cavity.
In some configurations of the compressor of any of the above paragraphs, the non-orbiting scroll is enclosed within the shell assembly and is disposed within the discharge chamber.
In some configurations of the compressor of any of the above paragraphs, the compressor includes a variable-volume-ratio valve member movable relative to the non-orbiting scroll between an open position in which the variable-volume-ratio valve member allows fluid flow between the variable-volume-ratio port and the discharge chamber and a closed position in which the variable-volume-ratio valve member restricts fluid flow between the variable-volume-ratio port and the discharge chamber.
In some configurations of the compressor of any of the above paragraphs, the variable-volume-ratio port communicates with the discharge chamber via one or both of the first and second discharge passages when the variable-volume-ratio valve member is in the open position.
In some configurations of the compressor of any of the above paragraphs, the first end plate of the non-orbiting scroll includes a valve recess in which the variable-volume-ratio valve member is movable between the open and closed positions. The valve recess may be in communication with the first and second discharge passages and the variable-volume-ratio port when the variable-volume-ratio valve member is in the open position.
In some configurations of the compressor of any of the above paragraphs, the compressor includes a valve backer and a spring. The valve backer may close an end of the valve recess. The spring may be disposed between the valve backer and the variable-volume-ratio valve member and may bias the variable-volume-ratio valve member toward the closed position.
In some configurations of the compressor of any of the above paragraphs, the valve backer is received within the valve recess.
In some configurations of the compressor of any of the above paragraphs, the first end plate includes another variable-volume-ratio port disposed radially outward relative to the first discharge passage.
In some configurations of the compressor of any of the above paragraphs, the compressor includes another variable-volume-ratio valve member movable relative to the non-orbiting scroll between an open position allowing fluid flow between the another variable-volume-ratio port and the discharge chamber via one or both of the first and second discharge passages and a closed position restricting fluid flow between the another variable-volume-ratio port and the discharge chamber.
In some configurations of the compressor of any of the above paragraphs, the first end plate includes a capacity-modulation port in communication with a radially intermediate one of the fluid pockets.
In some configurations of the compressor of any of the above paragraphs, the compressor includes a capacity-modulation valve assembly movable between a first position restricting communication between the capacity-modulation port and a suction-pressure region and a second position allowing communication between the capacity-modulation port and the suction-pressure region.
In some configurations of the compressor of any of the above paragraphs, the capacity-modulation valve assembly is movable to a third position restricting communication between the capacity-modulation port and the suction-pressure region and allowing communication between fluid-injection passage and the capacity-modulation port.
Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations, and are not intended to limit the scope of the present disclosure.
Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.
Example embodiments will now be described more fully with reference to the accompanying drawings.
Example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known device structures, and well-known technologies are not described in detail.
The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms “a,” “an,” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises,” “comprising,” “including,” and “having,” are inclusive and therefore specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. The method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. It is also to be understood that additional or alternative steps may be employed.
When an element or layer is referred to as being “on,” “engaged to,” “connected to,” or “coupled to” another element or layer, it may be directly on, engaged, connected or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly engaged to,” “directly connected to,” or “directly coupled to” another element or layer, there may be no intervening elements or layers present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.). As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
Although the terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another region, layer or section. Terms such as “first,” “second,” and other numerical terms when used herein do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the example embodiments.
Spatially relative terms, such as “inner,” “outer,” “beneath,” “below,” “lower,” “above,” “upper,” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. Spatially relative terms may be intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the example term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
With reference to
The shell assembly 12 may define a high-pressure discharge chamber 24 (containing compressed working fluid) and may include a cylindrical shell 26, a first end cap 28 at one end thereof, and a base or second end cap 30 at another end thereof. A discharge fitting 32 may be attached to the shell assembly 12 and extend through a first opening in the shell assembly 12 to allow working fluid in the discharge chamber 24 to exit the compressor 10. For example, the discharge fitting 32 may extend through the second end cap 30, as shown in
The first and second bearing assemblies 14, 16 may be disposed entirely within the discharge chamber 24. The first bearing assembly 14 may include a first bearing housing 36 and a first bearing 38. The first bearing housing 36 may be fixed to the shell assembly 12. The first bearing housing 36 houses the first bearing 38 and axially supports the compression mechanism 20. The second bearing assembly 16 may include a second bearing housing 40 and a second bearing 42. The second bearing housing 40 is fixed to the shell assembly 12 and supports the second bearing 42.
The motor assembly 18 may be disposed entirely within the discharge chamber 24 and may include a motor stator 44, a rotor 46, and a driveshaft 48. The stator 44 may be fixedly attached (e.g., by press fit) to the shell 26. The rotor 46 may be press fit on the driveshaft 48 and may transmit rotational power to the driveshaft 48. The driveshaft 48 may include a main body 50 and an eccentric crank pin 52 extending from an end of the main body 50. The main body 50 is received in the first and second bearings 38, 42 and is rotatably supported by the first and second bearing assemblies 14, 16. Therefore, the first and second bearings 38, 42 define a rotational axis of the driveshaft 48. The crank pin 52 may engage the compression mechanism 20.
The compression mechanism 20 may be disposed entirely within the discharge chamber 24 and may include an orbiting scroll 54 and a non-orbiting scroll 56. The orbiting scroll 54 may include an end plate 58 having a spiral wrap 60 extending from a first side of the end plate 58. An annular hub 62 may extend from a second side of the end plate 58 and may include a cavity 63 in which a drive bearing 64, a drive bushing 66 and the crank pin 52 may be disposed. The drive bushing 66 may be received within the drive bearing 64. The crank pin 52 may be received within the drive bushing 66.
The end plate 58 of the orbiting scroll 54 may also include a discharge passage 67 that may be open to and disposed directly adjacent to the cavity 63. The discharge passage 67 is in communication with the discharge chamber 24 via the cavity 63. The cavity 63 is in communication with the discharge chamber 24 via gaps between the hub 62 and the drive bearing 64, between the drive bearing 64 and drive bushing 66, and/or between the drive bushing 66 and the crank pin 52. In some configurations, cavity 63 is in communication with the discharge chamber 24 via flow passages formed in any one or more of the hub 62, drive bearing 64, or drive bushing 66, for example.
An Oldham coupling 68 may be engaged with the end plate 58 and either the non-orbiting scroll 56 or the first bearing housing 36 to prevent relative rotation between the orbiting and non-orbiting scrolls 54, 56. The annular hub 62 may be axially supported by a thrust surface 70 of the first bearing housing 36. The annular hub 62 may movably engage a seal 72 attached to the first bearing housing 36 to define an intermediate-pressure cavity 73 between the first bearing housing 36 and the orbiting scroll 54.
The non-orbiting scroll 56 may include an end plate 78 and a spiral wrap 80 projecting from the end plate 78. The spiral wrap 80 may meshingly engage the spiral wrap 60 of the orbiting scroll 54, thereby creating a series of moving fluid pockets therebetween. The fluid pockets defined by the spiral wraps 60, 80 may decrease in volume as they move from a radially outer position 82 to a radially intermediate position 84 to a radially innermost position 86 throughout a compression cycle of the compression mechanism 20. The inlet fitting 34 is fluidly coupled with a suction inlet 77 in the end plate 78 and provides suction-pressure working fluid to the fluid pockets at the radially outer positions 82.
The end plate 78 of the non-orbiting scroll 56 may include a discharge recess 88, one or more first VVR ports 90, and one or more second VVR ports 92. The discharge recess 88 may be in communication with the fluid pocket at the radially innermost position 86 and is in communication with the discharge passage 67 in the orbiting scroll 54. The first and second VVR ports 90, 92 are disposed radially outward relative to the discharge passage 67 and the discharge recess 88 and communicate with respective fluid pockets at the radially intermediate positions 84. The first and second VVR ports 90, 92 may be in selective communication with the discharge recess 88 via first and second radial passages 94, 96, respectively. In the configuration shown in
Each of the VVR valve assemblies 22 may be disposed in a respective valve recess 98 formed in the end plate 78 of the non-orbiting scroll 56. As will be described in more detail below, the VVR valve assemblies 22 are operable to selectively allow and restrict communication between the first and second VVR ports 90, 92 and the discharge recess 88. Therefore, the VVR valve assemblies 22 are operable to selectively allow and restrict communication between the first and second VVR ports 90, 92 and the discharge chamber 24 (i.e., since the discharge recess 88 is in communication with the discharge chamber via the discharge passage 67).
Each of the VVR valve assemblies 22 may include a valve backer 100, a spring 102, and a VVR valve member 104. The valve backers 100 may be a cylindrical block fixed to the end plate 78 and may close off or plug an end of the valve recesses 98. In some configurations, one or both valve backers 100 may be fixedly received (e.g., via threaded engagement, press fit, etc.) within the respective valve recesses 98, as shown in
In the configuration shown in
The VVR ports 90, 92 and the VVR valve assemblies 22 are operable to prevent the compression mechanism 20 from over-compressing working fluid. Over-compression is a compressor operating condition where the internal compressor-pressure ratio of the compressor (i.e., a ratio of a pressure of a fluid pocket in the compression mechanism at a radially innermost position to a pressure of a fluid pocket in the compression mechanism at a radially outermost position) is higher than a pressure ratio of a climate-control system in which the compressor is installed (i.e., a ratio of a pressure at a high side of the climate-control system to a pressure of a low side of the climate-control system). In an over-compression condition, the compression mechanism is compressing fluid to a pressure higher than the pressure of fluid downstream of a discharge fitting of the compressor. Accordingly, in an over-compression condition, the compressor is performing unnecessary work, which reduces the efficiency of the compressor. The VVR valve assemblies 22 of the present disclosure may reduce or prevent over-compression by selectively venting the fluid pockets at the radially intermediate positions 84 to the discharge chamber 24 (via the VVR ports 90, 92, the radial passages 94, 96, the discharge recess 88, the discharge passage 67, and the cavity 63) when the pressure within such fluid pockets has exceeded (or sufficiently exceeded) the pressure in the discharge chamber 24.
When fluid pressure within fluid pockets at the radially intermediate positions 84 are sufficiently higher (i.e., higher by a predetermined value determined based on the spring rate of the springs 102) than the fluid pressure within the discharge chamber 24, the fluid pressure within the fluid pockets at the radially intermediate positions 84 can move the valve members 104 toward the valve backers 100 (compressing the springs 102) to the open position to open the VVR ports 90, 92 and allow communication between the VVR ports 90, 92 and the discharge chamber 24. That is, while the VVR ports 90, 92 are open (i.e., while the valve members 104 are in the open positions), working fluid in the fluid pockets at the radially intermediate positions 84 can flow into the discharge chamber 24 (via the VVR ports 90, 92, the radial passages 94, 96, the discharge recess 88, the discharge passage 67, and the cavity 63). When the fluid pressures within fluid pockets at the radially intermediate positions 84 are less than, equal to, or not sufficiently higher than the fluid pressure within the discharge chamber 24, the springs 102 will force the valve members 104 back to the closed positions to seal against the valve seats defined by the end plate 78 to restrict or prevent communication between the discharge chamber 24 and the VVR ports 90, 92.
It will be appreciated that the valve members 104 can move between the open and closed positions together or independently of each other based on the fluid pressures within the respective fluid pockets to which the respective VVR ports 90, 92 are exposed. In other words, one of the valve members 104 could be in the open position while the other of the valve members 104 could be in the closed position, as shown in
While the valve members 104 shown in
With reference to
Like the non-orbiting scroll 56, the non-orbiting scroll 156 includes an end plate 178 and a spiral wrap (not shown) extending therefrom. The end plate 178 may include an annular valve recess 198 that selectively communicates with first and second VVR ports 190, 192 (similar or identical to VVR ports 90, 92) formed in the end plate 178.
The VVR valve assembly 122 may include an annular VVR valve member 204. The annular valve member 204 may be received within the annular valve recess 198 and can move between open and closed positions to allow and restrict communication between the VVR ports 190, 192 and the discharge chamber 24. In some configurations, an annular valve backer (not shown) may be fixedly disposed within or cover the annular valve recess 198 to retain the valve member 204 within the annular valve recess 198. One or more springs (not shown) may be disposed between the valve backer and the valve member 204 and bias the valve member 204 toward the closed position.
Referring now to
The compressor 310 may be a high-side compressor including a compression mechanism 320 and first and second variable-volume-ratio (VVR) valve assemblies 322, 323. Like the compression mechanism 20 described above, the compression mechanism 320 may be disposed in a discharge chamber 324 (defined by a shell assembly 312; similar or identical to the discharge chamber 24) and may include an orbiting scroll 354 and a non-orbiting scroll 356.
The structure and function of the orbiting scroll 354 may be similar or identical to that of the orbiting scroll 54. That is, the orbiting scroll 54 may include an end plate 358 and a spiral wrap 360 extending from the end plate 358. The end plate 358 may include a discharge passage 367 in communication with the discharge chamber 324.
The non-orbiting scroll 356 may include an end plate 378 and a spiral wrap 380 projecting from the end plate 378. The end plate 378 of the non-orbiting scroll 356 may include a discharge passage 388, one or more first VVR ports 390, and one or more second VVR ports 392. The discharge passage 388 may be in communication with the discharge chamber 324, a fluid pocket at the radially innermost position 386, and the discharge passage 367 in the orbiting scroll 354. The first and second VVR ports 390, 392 are disposed radially outward relative to the discharge passages 367, 388 and communicate with respective fluid pockets at radially intermediate positions 384. The first VVR port 390 may be in selective communication with the discharge passage 388 via a radial passage 394. The second VVR port 392 may extend through first and second ends 377, 379 of the end plate 378. In the configuration shown in
As described above, the VVR ports 390, 392 and the VVR valve assemblies 322, 323 are operable to prevent the compression mechanism 20 from over-compressing working fluid. The VVR valve assemblies 322, 323 are operable to selectively allow and restrict communication between the first and second VVR ports 390, 392 and the discharge chamber 324. The first VVR valve assembly 322 may be disposed in a valve recess 398 formed in the end plate 378 of the non-orbiting scroll 356. The structure and function of the first VVR valve assembly 322 may be similar or identical to that of the VVR valve assemblies 22 described above. Briefly, the first VVR valve assembly 322 may include a valve backer 400, a spring 402, and a VVR valve member 404. The valve backer 400 may be fixed to the end plate 378 and may close off or plug an end of the valve recesses 98. In some configurations, the valve backer 400 may be fixedly received (e.g., via threaded engagement, press fit, etc.) within the valve recess 398, as shown in
The second VVR valve assembly 323 may be mounted to the second end 379 of the end plate 378 and may include a valve housing or backer 401, a spring 403, and a VVR valve member 405. The valve backer 401 of the second VVR valve assembly 323 may be fixedly mounted to the second end 379 of the end plate 378 and may define a cavity 406 in which the spring 403 and valve member 405 are movably disposed. The valve backer 401 may include one or more apertures 408 in communication with the discharge chamber 324 and the cavity 406.
In the configuration shown in
Like the valve members 104, the valve member 404 of the first VVR valve assembly 322 may be received within the valve recess 398 and is movable therein between a closed position restricting fluid flow between the first VVR port 390 and the radial passage 394 and an open position allowing fluid to flow from the VVR port 390 to the radial passage 394 into the discharge passage 388 and subsequently through either of the discharge passages 367, 388 to the discharge chamber 324.
The valve member 405 of the second VVR valve assembly 323 is movably disposed within the cavity 406 between a closed position and an open position. In the closed position, the valve member 405 contacts the second end 379 of the end plate 378 and restricts fluid communication between the second VVR port 392 and the cavity 406. In the open position, the valve member 405 is spaced apart from the end plate 378 to allow fluid to flow from the second VVR port 392 to the discharge chamber (via the cavity 406 and apertures 408).
While the compressor 310 is described above and shown in
Referring now to
Like the compressor 10, the compressor 510 also includes a compression mechanism 520 and VVR valve assemblies 522. The compression mechanism 520 may include an orbiting scroll 554 and a non-orbiting scroll 556. The structure and function of the orbiting scroll 554 may be similar or identical to that of the orbiting scroll 54. The structure and function of the non-orbiting scroll 556 may be similar or identical to that of the non-orbiting scroll 56, except, unlike the non-orbiting scroll 56, an entire periphery of the end plate 578 of the non-orbiting scroll 556 may extend radially outward to fixedly engage (e.g., via welding) and seal against the shell 526. In this manner, the end plate 578 of the non-orbiting scroll 556 sealingly encloses a discharge chamber 524 (like discharge chamber 24) of the compressor 510. The end plate 578 is exposed to the ambient environment outside of the compressor 510. Valve backers 600 of the VVR valve assemblies 522 will sealingly plug or sealingly close off valve recesses 598 in which the VVR valve assemblies 522 are received. Therefore, the shell assembly 512 does not need an end cap like the end cap 28. Therefore, the overall height of the compressor 510 can be reduced to allow the compressor 510 to fit within a smaller space.
While not specifically shown in the figures, any of the compressors 10, 310, 510 could include ports and/or valves for vapor injection (i.e., passageways in one or both scroll members and valves that allow for selective injection of compressed working fluid into an intermediate-pressure compression pocket of the compression mechanism) and/or mechanical modulation (i.e., passageways in one or both scroll members and valves that allow for selective leakage of intermediate-pressure compression pockets to a suction conduit or other suction-pressure region of the compressor).
Referring now to
Like the compression mechanism 520, the compression mechanism 720 may include an orbiting scroll 754 and a non-orbiting scroll 756. The structure and function of the orbiting scroll 754 may be similar or identical to that of the orbiting scroll 54, 554. Like the non-orbiting scroll 56, 556, an end plate 778 of the non-orbiting scroll 756 may include a discharge recess 788, one or more first VVR ports 790, and one or more second VVR ports 792. As described above, the VVR ports 792 may be in communication with the discharge recess 788 and respective fluid pockets at radially intermediate positions. The discharge recess 788 is in communication with a discharge passage 767 in an end plate of the 758 of the orbiting scroll 754.
The end plate 778 may also include one or more capacity-modulation ports 793 that may be in communication with one or more other fluid pockets at a radially intermediate position(s). One or more fittings 795 may engage the end plate 778 and may fluidly connect the capacity-modulation port(s) 793 with a fluid-injection source (e.g., a flash tank, an economizer, or another source of intermediate-pressure fluid that is at a pressure greater than suction-pressure fluid and less than discharge-pressure fluid). In this manner, intermediate-pressure fluid from the fluid-injection source can be injected into the fluid pocket via the capacity-modulation port 793 to modulate the capacity of the compressor 710. A valve assembly (e.g., a solenoid valve; not shown) may control a flow of fluid from the fluid-injection source to the fitting 795 and capacity-modulation port 793. In some configurations, a check valve (not shown) may be installed in the fitting 795 to restrict or prevent fluid from flowing from the capacity-modulation port 793 to the fitting 795.
Working fluid compressed by the compression mechanism 720 may be discharged from the compression mechanism 720 into a discharge chamber 724 through the discharge passage 767 in the end plate of the 758 of the orbiting scroll 754. Like the discharge chamber 24, 524, the discharge chamber 724 is a chamber defined by the shell assembly 712 in which the motor assembly, first and second bearing assemblies, and at least a portion of the orbiting scroll 754 are disposed.
Referring now to
Like the compression mechanism 520, the compression mechanism 920 may include an orbiting scroll 954 and a non-orbiting scroll 956. The structure and function of the orbiting scroll 954 may be similar or identical to that of the orbiting scroll 54, 554. Like the non-orbiting scroll 56, 556, an end plate 978 of the non-orbiting scroll 956 may include a discharge recess 988, one or more first VVR ports 990, and one or more second VVR ports 992. As described above, the VVR ports 992 may be in communication with the discharge recess 988 and respective fluid pockets at radially intermediate positions. The discharge recess 988 is in communication with a discharge passage 967 in an end plate of the 958 of the orbiting scroll 954.
The end plate 978 may also include one or more capacity-modulation ports 993 that may be in communication with one or more other fluid pockets at a radially intermediate position(s). A recess 995 may be formed in the end plate 978 and may provide communication between the capacity-modulation port 993 and a communication passage 997. The communication passage 997 may be formed in the end plate 978 and may be in communication with a suction-pressure region such as a suction inlet fitting 934, which may be similar or identical to inlet fitting 34.
The capacity-modulation valve assembly 923 may be a solenoid valve, for example, and may control fluid communication between the capacity-modulation port 993 and the communication passage 997. The capacity-modulation valve assembly 923 may include a valve housing 1010 and a capacity-modulation valve member 1012. The valve housing 1010 may be mounted to the end plate 978 and may define a cavity in which the capacity-modulation valve member 1012 is movable between a closed position (
While
Working fluid compressed by the compression mechanism 920 may be discharged from the compression mechanism 920 into a discharge chamber 924 through the discharge passage 967 in the end plate of the 958 of the orbiting scroll 954. Like the discharge chamber 24, 524, the discharge chamber 924 is a chamber defined by the shell assembly 912 in which the motor assembly, first and second bearing assemblies, and at least a portion of the orbiting scroll 954 are disposed.
Referring now to
Like the compression mechanism 920, the compression mechanism 1120 may include an orbiting scroll 1154 and a non-orbiting scroll 1156. The structure and function of the orbiting scroll 1154 may be similar or identical to that of the orbiting scroll 54, 554. Like the non-orbiting scroll 56, 556, an end plate 1178 of the non-orbiting scroll 1156 may include a discharge recess 1188, one or more first VVR ports 1190, and one or more second VVR ports 1192. As described above, the VVR ports 1192 may be in communication with the discharge recess 1188 and respective fluid pockets at radially intermediate positions. The discharge recess 1188 is in communication with a discharge passage 1167 in an end plate of the 1158 of the orbiting scroll 1154.
The end plate 1178 may also include one or more capacity-modulation ports 1193 that may be in communication with one or more other fluid pockets at a radially intermediate position(s). A recess 1195 may be formed in the end plate 1178 and may provide communication between the capacity-modulation port 1193 and a communication passage 1197. The communication passage 1197 may be in communication with a suction-pressure region such as a suction inlet fitting 1134, which may be similar or identical to inlet fitting 34.
The capacity-modulation valve assembly 1123 may be a solenoid valve, for example, and may control fluid communication between the capacity-modulation port 1193 and the communication passage 1197. The capacity-modulation valve assembly 1123 may include a valve housing 1210 and a capacity-modulation valve member 1212. The valve housing 1210 may be mounted to the end plate 1178 and may define a cavity 1213 in which the capacity-modulation valve member 1212 is movable between a closed position (
While the communication passage 997 of the compressor 910 is described above as being formed in the end plate 978, the communication passage 1197 of the compressor 1110 may be a conduit (e.g., a tube or pipe) that is separate and spaced apart from the end plate 1178. The communication passage 1197 may be in communication with the suction inlet fitting 1134 and to the cavity 1213 of the valve housing 1210.
While
Working fluid compressed by the compression mechanism 1120 may be discharged from the compression mechanism 1120 into a discharge chamber 1124 through the discharge passage 1167 in the end plate of the 1158 of the orbiting scroll 1154. Like the discharge chamber 24, 524, the discharge chamber 1124 is a chamber defined by the shell assembly 1112 in which the motor assembly, first and second bearing assemblies, and at least a portion of the orbiting scroll 1154 are disposed.
Referring now to
Like the compression mechanism 1120, the compression mechanism 1320 may include an orbiting scroll 1354 and a non-orbiting scroll 1356. The structure and function of the orbiting scroll 1354 may be similar or identical to that of the orbiting scroll 54, 554. Like the non-orbiting scroll 56, 556, an end plate 1378 of the non-orbiting scroll 1356 may include a discharge recess 1388, one or more first VVR ports 1390, and one or more second VVR ports 1392. As described above, the VVR ports 1392 may be in communication with the discharge recess 1388 and respective fluid pockets at radially intermediate positions. The discharge recess 1388 is in communication with a discharge passage 1367 in an end plate of the 1358 of the orbiting scroll 1354.
The end plate 1378 may also include one or more capacity-modulation ports 1393 that may be in communication with one or more other fluid pockets at a radially intermediate position(s). A recess 1395 may be formed in the end plate 1378 and may provide communication between the capacity-modulation port 1393 and a first communication passage 1397 (similar or identical to the communication passage 1197) and a second communication passage (e.g., a fluid-injection passage) 1399. The first communication passage 1397 may be in communication with a suction-pressure region such as a suction inlet fitting 1334, which may be similar or identical to inlet fitting 34. The second communication passage 1399 may be in communication with a fluid-injection source (e.g., a flash tank, an economizer, or another source of intermediate-pressure fluid that is at a pressure greater than suction-pressure fluid and less than discharge-pressure fluid).
The capacity-modulation valve assembly 1323 may be a solenoid valve, for example, and may control fluid communication between the capacity-modulation port 1393 and the first and second communication passages 1397, 1399. The capacity-modulation valve assembly 1323 may include a valve housing 1410 and a capacity-modulation valve member 1412. The valve housing 1410 may be mounted to the end plate 1378 and may define a cavity 1413 in which the capacity-modulation valve member 1412 is movable between a first position (
In the first position (
In the second position (
In the third position (
Working fluid compressed by the compression mechanism 1320 may be discharged from the compression mechanism 1320 into a discharge chamber 1324 through the discharge passage 1367 in the end plate of the 1358 of the orbiting scroll 1354. Like the discharge chamber 24, 524, the discharge chamber 1324 is a chamber defined by the shell assembly 1312 in which the motor assembly, first and second bearing assemblies, and at least a portion of the orbiting scroll 1354 are disposed.
The motor assemblies of any of the compressors 10, 310, 510, 710, 910, 1110, 1310 can be fixed-speed, multi-speed, or variable-speed motors, for example.
The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure.
This application claims the benefit of U.S. Provisional Application No. 62/599,182, filed on Dec. 15, 2017. The entire disclosure of the above application is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4058988 | Shaw | Nov 1977 | A |
4216661 | Tojo et al. | Aug 1980 | A |
4382370 | Suefuji et al. | May 1983 | A |
4383805 | Teegarden et al. | May 1983 | A |
4389171 | Eber et al. | Jun 1983 | A |
4466784 | Hiraga | Aug 1984 | A |
4475360 | Suefuji et al. | Oct 1984 | A |
4475875 | Sugimoto et al. | Oct 1984 | A |
4496296 | Arai et al. | Jan 1985 | A |
4497615 | Griffith | Feb 1985 | A |
4545742 | Schaefer | Oct 1985 | A |
4547138 | Mabe et al. | Oct 1985 | A |
4552518 | Utter | Nov 1985 | A |
4564339 | Nakamura et al. | Jan 1986 | A |
4580949 | Maruyama et al. | Apr 1986 | A |
4609329 | Pillis et al. | Sep 1986 | A |
4650405 | Iwanami et al. | Mar 1987 | A |
4696630 | Sakata et al. | Sep 1987 | A |
4727725 | Nagata et al. | Mar 1988 | A |
4772188 | Kimura et al. | Sep 1988 | A |
4774816 | Uchikawa et al. | Oct 1988 | A |
4818195 | Murayama et al. | Apr 1989 | A |
4824344 | Kimura et al. | Apr 1989 | A |
4838773 | Noboru | Jun 1989 | A |
4842499 | Nishida et al. | Jun 1989 | A |
4846633 | Suzuki et al. | Jul 1989 | A |
4877382 | Caillat et al. | Oct 1989 | A |
4886425 | Itahana et al. | Dec 1989 | A |
4886433 | Maier | Dec 1989 | A |
4898520 | Nieter et al. | Feb 1990 | A |
4927339 | Riffe et al. | May 1990 | A |
4940395 | Yamamoto et al. | Jul 1990 | A |
4954057 | Caillat et al. | Sep 1990 | A |
4990071 | Sugimoto | Feb 1991 | A |
4997349 | Richardson, Jr. | Mar 1991 | A |
5024589 | Jetzer et al. | Jun 1991 | A |
5040952 | Inoue et al. | Aug 1991 | A |
5040958 | Arata et al. | Aug 1991 | A |
5055010 | Logan | Oct 1991 | A |
5059098 | Suzuki et al. | Oct 1991 | A |
5071323 | Sakashita et al. | Dec 1991 | A |
5074760 | Hirooka et al. | Dec 1991 | A |
5080056 | Kramer et al. | Jan 1992 | A |
5085565 | Barito | Feb 1992 | A |
5098265 | MacHida et al. | Mar 1992 | A |
5145346 | Iio et al. | Sep 1992 | A |
5152682 | Morozumi et al. | Oct 1992 | A |
RE34148 | Terauchi et al. | Dec 1992 | E |
5169294 | Barito | Dec 1992 | A |
5171141 | Morozumi et al. | Dec 1992 | A |
5192195 | Iio et al. | Mar 1993 | A |
5193987 | Iio et al. | Mar 1993 | A |
5199862 | Kondo et al. | Apr 1993 | A |
5213489 | Kawahara et al. | May 1993 | A |
5240389 | Oikawa et al. | Aug 1993 | A |
5253489 | Yoshii | Oct 1993 | A |
5304047 | Shibamoto | Apr 1994 | A |
5318424 | Bush et al. | Jun 1994 | A |
5330463 | Hirano | Jul 1994 | A |
5336068 | Sekiya et al. | Aug 1994 | A |
5340287 | Kawahara et al. | Aug 1994 | A |
5356271 | Miura et al. | Oct 1994 | A |
5411384 | Bass et al. | May 1995 | A |
5425626 | Tojo et al. | Jun 1995 | A |
5427512 | Kohsokabe et al. | Jun 1995 | A |
5451146 | Inagaki et al. | Sep 1995 | A |
5458471 | Ni | Oct 1995 | A |
5458472 | Kobayashi et al. | Oct 1995 | A |
5482637 | Rao et al. | Jan 1996 | A |
5511959 | Tojo et al. | Apr 1996 | A |
5547354 | Shimizu et al. | Aug 1996 | A |
5551846 | Taylor et al. | Sep 1996 | A |
5557897 | Kranz et al. | Sep 1996 | A |
5562426 | Watanabe et al. | Oct 1996 | A |
5577897 | Inagaki et al. | Nov 1996 | A |
5591014 | Wallis et al. | Jan 1997 | A |
5607288 | Wallis et al. | Mar 1997 | A |
5611674 | Bass et al. | Mar 1997 | A |
5613841 | Bass et al. | Mar 1997 | A |
5624247 | Nakamura | Apr 1997 | A |
5639225 | Matsuda et al. | Jun 1997 | A |
5640854 | Fogt et al. | Jun 1997 | A |
5649817 | Yamazaki | Jul 1997 | A |
5660539 | Matsunaga et al. | Aug 1997 | A |
5674058 | Matsuda et al. | Oct 1997 | A |
5678985 | Brooke et al. | Oct 1997 | A |
5707210 | Ramsey et al. | Jan 1998 | A |
5722257 | Ishii et al. | Mar 1998 | A |
5741120 | Bass et al. | Apr 1998 | A |
5775893 | Takao et al. | Jul 1998 | A |
5842843 | Haga | Dec 1998 | A |
5855475 | Fujio et al. | Jan 1999 | A |
5885063 | Makino et al. | Mar 1999 | A |
5888057 | Kitano et al. | Mar 1999 | A |
5938417 | Takao et al. | Aug 1999 | A |
5993171 | Higashiyama | Nov 1999 | A |
5993177 | Terauchi et al. | Nov 1999 | A |
6030192 | Hill et al. | Feb 2000 | A |
6047557 | Pham et al. | Apr 2000 | A |
6068459 | Clarke et al. | May 2000 | A |
6086335 | Bass et al. | Jul 2000 | A |
6093005 | Nakamura | Jul 2000 | A |
6095765 | Khalifa | Aug 2000 | A |
6102671 | Yamamoto et al. | Aug 2000 | A |
6123517 | Brooke et al. | Sep 2000 | A |
6123528 | Sun et al. | Sep 2000 | A |
6132179 | Higashiyama | Oct 2000 | A |
6139287 | Kuroiwa et al. | Oct 2000 | A |
6139291 | Perevozchikov | Oct 2000 | A |
6149401 | Iwanami et al. | Nov 2000 | A |
6152714 | Mitsuya et al. | Nov 2000 | A |
6164940 | Terauchi et al. | Dec 2000 | A |
6174149 | Bush | Jan 2001 | B1 |
6176686 | Wallis et al. | Jan 2001 | B1 |
6179589 | Bass et al. | Jan 2001 | B1 |
6202438 | Barito | Mar 2001 | B1 |
6210120 | Hugenroth et al. | Apr 2001 | B1 |
6213731 | Doepker et al. | Apr 2001 | B1 |
6231316 | Wakisaka et al. | May 2001 | B1 |
6257840 | Ignatiev et al. | Jul 2001 | B1 |
6264444 | Nakane et al. | Jul 2001 | B1 |
6267565 | Seibel et al. | Jul 2001 | B1 |
6273691 | Morimoto et al. | Aug 2001 | B1 |
6280154 | Clendenin et al. | Aug 2001 | B1 |
6290477 | Gigon | Sep 2001 | B1 |
6293767 | Bass | Sep 2001 | B1 |
6293776 | Hahn et al. | Sep 2001 | B1 |
6309194 | Fraser et al. | Oct 2001 | B1 |
6322340 | Itoh et al. | Nov 2001 | B1 |
6338912 | Ban et al. | Jan 2002 | B1 |
6350111 | Perevozchikov et al. | Feb 2002 | B1 |
6361890 | Ban et al. | Mar 2002 | B1 |
6379123 | Makino et al. | Apr 2002 | B1 |
6389837 | Morozumi | May 2002 | B1 |
6412293 | Pham et al. | Jul 2002 | B1 |
6413058 | Williams et al. | Jul 2002 | B1 |
6419457 | Seibel et al. | Jul 2002 | B1 |
6428286 | Shimizu et al. | Aug 2002 | B1 |
6454551 | Kuroki et al. | Sep 2002 | B2 |
6457948 | Pham | Oct 2002 | B1 |
6464481 | Tsubai et al. | Oct 2002 | B2 |
6478550 | Matsuba et al. | Nov 2002 | B2 |
6506036 | Tsubai et al. | Jan 2003 | B2 |
6514060 | Ishiguro et al. | Feb 2003 | B1 |
6537043 | Chen | Mar 2003 | B1 |
6544016 | Gennami et al. | Apr 2003 | B2 |
6558143 | Nakajima et al. | May 2003 | B2 |
6589035 | Tsubono et al. | Jul 2003 | B1 |
6619062 | Shibamoto et al. | Sep 2003 | B1 |
6679683 | Seibel et al. | Jan 2004 | B2 |
6705848 | Scancarello | Mar 2004 | B2 |
6715999 | Ancel et al. | Apr 2004 | B2 |
6746223 | Manole | Jun 2004 | B2 |
6769881 | Lee | Aug 2004 | B2 |
6769888 | Tsubono et al. | Aug 2004 | B2 |
6773242 | Perevozchikov | Aug 2004 | B1 |
6817847 | Agner | Nov 2004 | B2 |
6821092 | Gehret et al. | Nov 2004 | B1 |
6863510 | Cho | Mar 2005 | B2 |
6881046 | Shibamoto | Apr 2005 | B2 |
6884042 | Zili et al. | Apr 2005 | B2 |
6887051 | Sakuda et al. | May 2005 | B2 |
6893229 | Choi et al. | May 2005 | B2 |
6896493 | Chang et al. | May 2005 | B2 |
6896498 | Patel | May 2005 | B1 |
6913448 | Liang et al. | Jul 2005 | B2 |
6984114 | Zili et al. | Jan 2006 | B2 |
7018180 | Koo | Mar 2006 | B2 |
7029251 | Chang et al. | Apr 2006 | B2 |
7118358 | Tsubono et al. | Oct 2006 | B2 |
7137796 | Tsubono et al. | Nov 2006 | B2 |
7160088 | Peyton | Jan 2007 | B2 |
7172395 | Shibamoto et al. | Feb 2007 | B2 |
7207787 | Liang et al. | Apr 2007 | B2 |
7229261 | Morimoto et al. | Jun 2007 | B2 |
7255542 | Lifson et al. | Aug 2007 | B2 |
7261527 | Alexander et al. | Aug 2007 | B2 |
7311740 | Williams et al. | Dec 2007 | B2 |
7344365 | Takeuchi et al. | Mar 2008 | B2 |
RE40257 | Doepker et al. | Apr 2008 | E |
7354259 | Tsubono et al. | Apr 2008 | B2 |
7364416 | Liang et al. | Apr 2008 | B2 |
7371057 | Shin et al. | May 2008 | B2 |
7371059 | Ignatiev et al. | May 2008 | B2 |
RE40399 | Hugenroth et al. | Jun 2008 | E |
RE40400 | Bass et al. | Jun 2008 | E |
7393190 | Lee et al. | Jul 2008 | B2 |
7404706 | Ishikawa et al. | Jul 2008 | B2 |
RE40554 | Bass et al. | Oct 2008 | E |
7510382 | Jeong | Mar 2009 | B2 |
7547202 | Knapke | Jun 2009 | B2 |
7695257 | Joo et al. | Apr 2010 | B2 |
7717687 | Reinhart | May 2010 | B2 |
7771178 | Perevozchikov et al. | Aug 2010 | B2 |
7802972 | Shimizu et al. | Sep 2010 | B2 |
7815423 | Guo et al. | Oct 2010 | B2 |
7891961 | Shimizu et al. | Feb 2011 | B2 |
7896629 | Ignatiev et al. | Mar 2011 | B2 |
RE42371 | Peyton | May 2011 | E |
7956501 | Jun et al. | Jun 2011 | B2 |
7967582 | Akei et al. | Jun 2011 | B2 |
7967583 | Stover et al. | Jun 2011 | B2 |
7972125 | Stover et al. | Jul 2011 | B2 |
7976289 | Masao | Jul 2011 | B2 |
7976295 | Stover et al. | Jul 2011 | B2 |
7988433 | Akei et al. | Aug 2011 | B2 |
7988434 | Stover et al. | Aug 2011 | B2 |
8025492 | Seibel et al. | Sep 2011 | B2 |
8303278 | Roof et al. | Nov 2012 | B2 |
8303279 | Hahn | Nov 2012 | B2 |
8308448 | Fields et al. | Nov 2012 | B2 |
8328531 | Milliff et al. | Dec 2012 | B2 |
8393882 | Ignatiev et al. | Mar 2013 | B2 |
8506271 | Seibel et al. | Aug 2013 | B2 |
8517703 | Doepker | Aug 2013 | B2 |
8585382 | Akei et al. | Nov 2013 | B2 |
8616014 | Stover et al. | Dec 2013 | B2 |
8790098 | Stover et al. | Jul 2014 | B2 |
8840384 | Patel et al. | Sep 2014 | B2 |
8857200 | Stover et al. | Oct 2014 | B2 |
8932036 | Monnier et al. | Jan 2015 | B2 |
9127677 | Doepker | Sep 2015 | B2 |
9145891 | Kim et al. | Sep 2015 | B2 |
9249802 | Doepker et al. | Feb 2016 | B2 |
9303642 | Akei et al. | Apr 2016 | B2 |
9435340 | Doepker et al. | Sep 2016 | B2 |
9494157 | Doepker | Nov 2016 | B2 |
9605677 | Heidecker et al. | Mar 2017 | B2 |
9624928 | Yamazaki et al. | Apr 2017 | B2 |
9651043 | Stover et al. | May 2017 | B2 |
9777730 | Doepker et al. | Oct 2017 | B2 |
9790940 | Doepker et al. | Oct 2017 | B2 |
9879674 | Akei et al. | Jan 2018 | B2 |
9989057 | Lochner et al. | Jun 2018 | B2 |
10066622 | Pax et al. | Sep 2018 | B2 |
10087936 | Pax et al. | Oct 2018 | B2 |
10094380 | Doepker et al. | Oct 2018 | B2 |
20010010800 | Kohsokabe et al. | Aug 2001 | A1 |
20020039540 | Kuroki | Apr 2002 | A1 |
20020057975 | Nakajima et al. | May 2002 | A1 |
20030044296 | Chen | Mar 2003 | A1 |
20030044297 | Gennami et al. | Mar 2003 | A1 |
20030186060 | Rao | Oct 2003 | A1 |
20030228235 | Sowa et al. | Dec 2003 | A1 |
20040126259 | Choi et al. | Jul 2004 | A1 |
20040136854 | Kimura et al. | Jul 2004 | A1 |
20040146419 | Kawaguchi et al. | Jul 2004 | A1 |
20040170509 | Wehrenberg et al. | Sep 2004 | A1 |
20040184932 | Lifson | Sep 2004 | A1 |
20040197204 | Yamanouchi et al. | Oct 2004 | A1 |
20050019177 | Shin et al. | Jan 2005 | A1 |
20050019178 | Shin et al. | Jan 2005 | A1 |
20050053507 | Takeuchi et al. | Mar 2005 | A1 |
20050069444 | Peyton | Mar 2005 | A1 |
20050140232 | Lee et al. | Jun 2005 | A1 |
20050201883 | Clendenin et al. | Sep 2005 | A1 |
20050214148 | Ogawa et al. | Sep 2005 | A1 |
20060099098 | Lee et al. | May 2006 | A1 |
20060138879 | Kusase et al. | Jun 2006 | A1 |
20060198748 | Grassbaugh et al. | Sep 2006 | A1 |
20060228243 | Sun et al. | Oct 2006 | A1 |
20060233657 | Bonear et al. | Oct 2006 | A1 |
20070036661 | Stover | Feb 2007 | A1 |
20070110604 | Peyton | May 2007 | A1 |
20070130973 | Lifson et al. | Jun 2007 | A1 |
20080115357 | Li et al. | May 2008 | A1 |
20080138227 | Knapke | Jun 2008 | A1 |
20080159892 | Huang et al. | Jul 2008 | A1 |
20080159893 | Caillat | Jul 2008 | A1 |
20080196445 | Lifson et al. | Aug 2008 | A1 |
20080223057 | Lifson et al. | Sep 2008 | A1 |
20080226483 | Iwanami et al. | Sep 2008 | A1 |
20080305270 | Uhlianuk et al. | Dec 2008 | A1 |
20090035167 | Sun | Feb 2009 | A1 |
20090068048 | Stover et al. | Mar 2009 | A1 |
20090071183 | Stover et al. | Mar 2009 | A1 |
20090185935 | Seibel et al. | Jul 2009 | A1 |
20090191080 | Ignatiev et al. | Jul 2009 | A1 |
20090297377 | Stover et al. | Dec 2009 | A1 |
20090297378 | Stover et al. | Dec 2009 | A1 |
20090297379 | Stover et al. | Dec 2009 | A1 |
20090297380 | Stover et al. | Dec 2009 | A1 |
20100111741 | Chikano et al. | May 2010 | A1 |
20100135836 | Stover et al. | Jun 2010 | A1 |
20100158731 | Akei et al. | Jun 2010 | A1 |
20100209278 | Tarao et al. | Aug 2010 | A1 |
20100212311 | McQuary et al. | Aug 2010 | A1 |
20100212352 | Kim et al. | Aug 2010 | A1 |
20100254841 | Akei et al. | Oct 2010 | A1 |
20100300659 | Stover et al. | Dec 2010 | A1 |
20100303659 | Stover et al. | Dec 2010 | A1 |
20110135509 | Fields et al. | Jun 2011 | A1 |
20110206548 | Doepker | Aug 2011 | A1 |
20110243777 | Ito et al. | Oct 2011 | A1 |
20110250085 | Stover et al. | Oct 2011 | A1 |
20110293456 | Seibel et al. | Dec 2011 | A1 |
20120009076 | Kim et al. | Jan 2012 | A1 |
20120107163 | Monnier et al. | May 2012 | A1 |
20120183422 | Bahmata | Jul 2012 | A1 |
20120195781 | Stover et al. | Aug 2012 | A1 |
20130078128 | Akei | Mar 2013 | A1 |
20130089448 | Ginies et al. | Apr 2013 | A1 |
20130094987 | Yamashita et al. | Apr 2013 | A1 |
20130121857 | Liang et al. | May 2013 | A1 |
20130302198 | Ginies et al. | Nov 2013 | A1 |
20130309118 | Ginies et al. | Nov 2013 | A1 |
20130315768 | Le Coat et al. | Nov 2013 | A1 |
20140023540 | Heidecker et al. | Jan 2014 | A1 |
20140024563 | Heidecker et al. | Jan 2014 | A1 |
20140037486 | Stover et al. | Feb 2014 | A1 |
20140134030 | Stover et al. | May 2014 | A1 |
20140134031 | Doepker et al. | May 2014 | A1 |
20140147294 | Fargo et al. | May 2014 | A1 |
20140154121 | Doepker | Jun 2014 | A1 |
20140154124 | Doepker | Jun 2014 | A1 |
20140219846 | Ignatiev | Aug 2014 | A1 |
20150037184 | Rood et al. | Feb 2015 | A1 |
20150086404 | Kiem et al. | Mar 2015 | A1 |
20150192121 | Sung et al. | Jul 2015 | A1 |
20150330386 | Doepker | Nov 2015 | A1 |
20150345493 | Lochner et al. | Dec 2015 | A1 |
20150354719 | van Beek et al. | Dec 2015 | A1 |
20160025093 | Doepker | Jan 2016 | A1 |
20160025094 | Ignatiev et al. | Jan 2016 | A1 |
20160032924 | Stover | Feb 2016 | A1 |
20160047380 | Kim et al. | Feb 2016 | A1 |
20160053759 | Choi et al. | Feb 2016 | A1 |
20160076543 | Akei et al. | Mar 2016 | A1 |
20160115954 | Doepker et al. | Apr 2016 | A1 |
20160138879 | Matsukado et al. | May 2016 | A1 |
20160201673 | Perevozchikov et al. | Jul 2016 | A1 |
20160208803 | Uekawa et al. | Jul 2016 | A1 |
20170002817 | Stover | Jan 2017 | A1 |
20170002818 | Stover | Jan 2017 | A1 |
20170030354 | Stover | Feb 2017 | A1 |
20170241417 | Jin et al. | Aug 2017 | A1 |
20170268510 | Stover et al. | Sep 2017 | A1 |
20170306960 | Pax et al. | Oct 2017 | A1 |
20170314558 | Pax et al. | Nov 2017 | A1 |
20170342978 | Doepker | Nov 2017 | A1 |
20170342983 | Jin et al. | Nov 2017 | A1 |
20170342984 | Jin et al. | Nov 2017 | A1 |
20180023570 | Huang et al. | Jan 2018 | A1 |
20180038369 | Doepker et al. | Feb 2018 | A1 |
20180038370 | Doepker et al. | Feb 2018 | A1 |
20180066656 | Perevozchikov et al. | Mar 2018 | A1 |
20180066657 | Perevozchikov et al. | Mar 2018 | A1 |
20180149155 | Akei et al. | May 2018 | A1 |
20180216618 | Jeong | Aug 2018 | A1 |
20180223823 | Ignatiev et al. | Aug 2018 | A1 |
20190040861 | Doepker et al. | Feb 2019 | A1 |
20190101120 | Perevozchikov et al. | Apr 2019 | A1 |
20190203709 | Her et al. | Jul 2019 | A1 |
20190353164 | Berning et al. | Nov 2019 | A1 |
Number | Date | Country |
---|---|---|
1137614 | Dec 1996 | CN |
1158944 | Sep 1997 | CN |
1158945 | Sep 1997 | CN |
1177681 | Apr 1998 | CN |
1177683 | Apr 1998 | CN |
1259625 | Jul 2000 | CN |
1286358 | Mar 2001 | CN |
1289011 | Mar 2001 | CN |
1339087 | Mar 2002 | CN |
1349053 | May 2002 | CN |
1382912 | Dec 2002 | CN |
1407233 | Apr 2003 | CN |
1407234 | Apr 2003 | CN |
1517553 | Aug 2004 | CN |
1601106 | Mar 2005 | CN |
1680720 | Oct 2005 | CN |
1702328 | Nov 2005 | CN |
2747381 | Dec 2005 | CN |
1757925 | Apr 2006 | CN |
1828022 | Sep 2006 | CN |
1854525 | Nov 2006 | CN |
1963214 | May 2007 | CN |
1995756 | Jul 2007 | CN |
101358592 | Feb 2009 | CN |
101684785 | Mar 2010 | CN |
101761479 | Jun 2010 | CN |
101806302 | Aug 2010 | CN |
101910637 | Dec 2010 | CN |
102076963 | May 2011 | CN |
102089525 | Jun 2011 | CN |
102272454 | Dec 2011 | CN |
102400915 | Apr 2012 | CN |
102422024 | Apr 2012 | CN |
102449314 | May 2012 | CN |
102705234 | Oct 2012 | CN |
102762866 | Oct 2012 | CN |
202926640 | May 2013 | CN |
103502644 | Jan 2014 | CN |
103671125 | Mar 2014 | CN |
203962320 | Nov 2014 | CN |
204041454 | Dec 2014 | CN |
104838143 | Aug 2015 | CN |
105317678 | Feb 2016 | CN |
205533207 | Aug 2016 | CN |
205823629 | Dec 2016 | CN |
205876712 | Jan 2017 | CN |
205876713 | Jan 2017 | CN |
205895597 | Jan 2017 | CN |
207513832 | Jun 2018 | CN |
209621603 | Nov 2019 | CN |
209654225 | Nov 2019 | CN |
209781195 | Dec 2019 | CN |
3917656 | Nov 1995 | DE |
102011001394 | Sep 2012 | DE |
0747598 | Dec 1996 | EP |
0822335 | Feb 1998 | EP |
1067289 | Jan 2001 | EP |
1087142 | Mar 2001 | EP |
1182353 | Feb 2002 | EP |
1241417 | Sep 2002 | EP |
1371851 | Dec 2003 | EP |
1382854 | Jan 2004 | EP |
2151577 | Feb 2010 | EP |
1927755 | Nov 2013 | EP |
2764347 | Dec 1998 | FR |
2107829 | May 1983 | GB |
S58214689 | Dec 1983 | JP |
S60259794 | Dec 1985 | JP |
S62220789 | Sep 1987 | JP |
S6385277 | Apr 1988 | JP |
S63205482 | Aug 1988 | JP |
H01178789 | Jul 1989 | JP |
H0281982 | Mar 1990 | JP |
H02153282 | Jun 1990 | JP |
H03081588 | Apr 1991 | JP |
H03233101 | Oct 1991 | JP |
H04121478 | Apr 1992 | JP |
H04272490 | Sep 1992 | JP |
H0610601 | Jan 1994 | JP |
H0726618 | Mar 1995 | JP |
H07293456 | Nov 1995 | JP |
H08247053 | Sep 1996 | JP |
H8320079 | Dec 1996 | JP |
H08334094 | Dec 1996 | JP |
H09177689 | Jul 1997 | JP |
H11107950 | Apr 1999 | JP |
H11166490 | Jun 1999 | JP |
2951752 | Sep 1999 | JP |
H11324950 | Nov 1999 | JP |
2000104684 | Apr 2000 | JP |
2000161263 | Jun 2000 | JP |
2000329078 | Nov 2000 | JP |
3141949 | Mar 2001 | JP |
2002202074 | Jul 2002 | JP |
2003074481 | Mar 2003 | JP |
2003074482 | Mar 2003 | JP |
2003106258 | Apr 2003 | JP |
2003214365 | Jul 2003 | JP |
2003227479 | Aug 2003 | JP |
2004239070 | Aug 2004 | JP |
2005264827 | Sep 2005 | JP |
2006083754 | Mar 2006 | JP |
2006183474 | Jul 2006 | JP |
2007154761 | Jun 2007 | JP |
2007228683 | Sep 2007 | JP |
2008248775 | Oct 2008 | JP |
2013104305 | May 2013 | JP |
2013167215 | Aug 2013 | JP |
1019870000015 | May 1985 | KR |
870000015 | Jan 1987 | KR |
20050027402 | Mar 2005 | KR |
20050095246 | Sep 2005 | KR |
100547323 | Jan 2006 | KR |
20100017008 | Feb 2010 | KR |
20120008045 | Jan 2012 | KR |
101192642 | Oct 2012 | KR |
20120115581 | Oct 2012 | KR |
20130094646 | Aug 2013 | KR |
WO-9515025 | Jun 1995 | WO |
WO-0073659 | Dec 2000 | WO |
WO-2007046810 | Apr 2007 | WO |
WO-2008060525 | May 2008 | WO |
WO-2009017741 | Feb 2009 | WO |
WO-2009155099 | Dec 2009 | WO |
WO-2010118140 | Oct 2010 | WO |
WO-2011106422 | Sep 2011 | WO |
WO-2012114455 | Aug 2012 | WO |
WO-2017071641 | May 2017 | WO |
Entry |
---|
Notice of Allowance regarding U.S. Appl. No. 15/186,151, dated Jul. 25, 2019. |
Office Action regarding Chinese Patent Application No. 201610499158.7, dated Aug. 1, 2019. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding Chinese Patent Application No. 201811168307.7, dated Aug. 12, 2019. Translation provided by Unitalen Attorneys at Law. |
Restriction Requirement regarding U.S. Appl. No. 15/682,599, dated Aug. 14, 2019. |
Notice of Allowance regarding U.S. Appl. No. 15/587,735, dated Aug. 23, 2019. |
International Search Report regarding International Application No. PCT/US2019/032718, dated Aug. 23, 2019. |
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2019/032718, dated Aug. 23, 2019. |
Office Action regarding Chinese Patent Application No. 201780055443.2, dated Sep. 2, 2019. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding U.S. Appl. No. 15/692,844, dated Sep. 20, 2019. |
Office Action regarding Chinese Patent Application No. 201180010366.1, dated Jun. 4, 2014. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding Chinese Patent Application No. 201610516097.0, dated Jun. 27, 2017. Translation provided by Unitalen Attorneys at Law. |
Notice of Allowance regarding U.S. Appl. No. 15/186,092, dated Dec. 20, 2018. |
Office Action regarding Indian Patent Application No. 1306/MUMNP/2015, dated Dec. 31, 2018. |
Notice of Allowance regarding U.S. Appl. No. 15/187,225, dated Jan. 3, 2019. |
Office Action regarding Chinese Patent Application No. 201610499158.7, dated Feb. 1, 2019. Translation provided by Unitalen Attorneys at Law. |
Notice of Allowance regarding U.S. Appl. No. 15/784,458, dated Feb. 7, 2019. |
Notice of Allowance regarding U.S. Appl. No. 15/784,540, dated Feb. 7, 2019. |
Search Report regarding European Patent Application No. 18198310.7, dated Feb. 27, 2019. |
Notice of Allowance regarding U.S. Appl. No. 15/186,151, dated Mar. 19, 2019. |
Notice of Allowance regarding U.S. Appl. No. 15/186,092, dated Apr. 19, 2019. |
Office Action regarding Chinese Patent Application No. 201710795228.8, dated Apr. 29, 2019. Translation provided by Unitalen Attorneys at Law. |
Notice of Allowance regarding U.S. Appl. No. 15/187,225, dated May 2, 2019. |
Office Action regarding U.S. Appl. No. 15/587,735, dated May 17, 2019. |
Office Action regarding Chinese Patent Application No. 201811011292.3, dated Jun. 21, 2019. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding European Patent Application No. 11747996.4, dated Jun. 26, 2019. |
Office Action regarding Chinese Patent Application No. 201710795228.8, dated Oct. 28, 2019. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding European Patent Application No. 11747996.4, dated Nov. 5, 2019. |
Notice of Allowance regarding U.S. Appl. No. 15/186,151, dated Nov. 14, 2019. |
Office Action regarding Indian Patent Application No. 2043/MUMNP/2011, dated Nov. 27, 2019. |
Office Action regarding Chinese Patent Application No. 201811480347.5, dated Jan. 10, 2020. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding Chinese Patent Application No. 201811541653.5, dated Jan. 10, 2020. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding European Patent Application No. 11747996.4, dated Jan. 14, 2020. |
Office Action regarding U.S. Appl. No. 15/881,016, dated Jan. 23, 2020. |
Office Action regarding U.S. Appl. No. 15/682,599, dated Jan. 24, 2020. |
Office Action regarding U.S. Appl. No. 15/831,423, dated Jan. 31, 2020. |
U.S. Appl. No. 16/147,920, filed Oct. 1, 2018, Michael M. Perevozchikov et al. |
U.S. Appl. No. 16/154,406, filed Oct. 8, 2018, Roy J. Doepker et al. |
U.S. Appl. No. 16/154,844, filed Oct. 9, 2018, Jeffrey Lee Berning et al. |
Luckevich, Mark, “MEMS microvalves: the new valve world.” Valve World, May 2007, pp. 79-83. |
Non-Final Office Action for U.S. Appl. No. 11/522,250, dated Aug. 1, 2007. |
Extended European Search Report regarding Application No. EP07254962, dated Mar. 12, 2008. |
Notification of the First Office Action received from the Chinese Patent Office, dated Mar. 6, 2009 regarding Application No. 200710153687.2, translated by CCPIT Patent and Trademark Law Office. |
Non-Final Office Action for U.S. Appl. No. 12/103,265, dated May 27, 2009. |
U.S. Office Action regarding U.S. Appl. No. 11/645,288, dated Nov. 30, 2009. |
Non-Final Office Action for U.S. Appl. No. 12/103,265, dated Dec. 17, 2009. |
Notice of Grounds for Rejection regarding Korean Patent Application No. 10-2007-0093478, dated Feb. 25, 2010. Translation provided by Y.S. Chang & Associates. |
Final Office Action for U.S. Appl. No. 12/103,265, dated Jun. 15, 2010. |
First China Office Action regarding Application No. 200710160038.5, dated Jul. 8, 2010. Translation provided by Unitalen Attorneys At Law. |
Final Preliminary Notice of Grounds for Rejection regarding Korean Patent Application No. 10-2007-0093478, dated Aug. 31, 2010. Translation provided by Y.S. Chang & Associates. |
Advisory Action for U.S. Appl. No. 12/103,265, dated Sep. 17, 2010. |
International Search Report regarding Application No. PCT/US2010/030248, dated Nov. 26, 2010. |
Written Opinion of the International Searching Authority regarding Application No. PCT/US2010/030248, dated Nov. 26, 2010. |
International Search Report regarding Application No. PCT/US2011/025921, dated Oct. 7, 2011. |
Written Opinion of the International Search Authority regarding Application No. PCT/US2011/025921, dated Oct. 7, 2011. |
China Office Action regarding Application No. 200710160038.5, dated Jan. 31, 2012. Translation provided by Unitalen Attorneys at Law. |
First Office Action regarding Chinese Patent Application No. 201010224582.3, dated Apr. 17, 2012. English translation provided by Unitalen Attorneys at Law. |
First Examination Report regarding Indian Patent Application No. 1071/KOL/2007, dated Apr. 27, 2012. |
Non-Final Office Action for U.S. Appl. No. 13/0365,529, dated Aug. 22, 2012. |
U.S. Office Action regarding U.S. Appl. No. 13/181,065, dated Nov. 9, 2012. |
International Search Report regarding Application No. PCT/US2013/051678, dated Oct. 21, 2013. |
Written Opinion of the International Searching Authority regarding Application No. PCT/US2013/051678, dated Oct. 21, 2013. |
China Office Action regarding Application No. 201080020243.1, dated Nov. 5, 2013. Translation provided by Unitalen Attorneys at Law. |
International Search Report regarding Application No. PCT/US2013/069456, dated Feb. 18, 2014. |
Written Opinion of the International Searching Authority regarding Application No. PCT/US2013/069456, dated Feb. 18, 2014. |
International Search Report regarding Application No. PCT/US2013/069462, dated Feb. 21, 2014. |
Written Opinion of the International Searching Authority regarding Application No. PCT/US2013/069462, dated Feb. 21, 2014. |
International Search Report regarding Application No. PCT/US2013/070992, dated Feb. 25, 2014. |
Written Opinion of the International Searching Authority regarding Application No. PCT/US2013/070992, dated Feb. 25, 2014. |
International Search Report regarding Application No. PCT/US2013/070981, dated Mar. 4, 2014. |
Written Opinion of the International Searching Authority regarding Application No. PCT/US2013/070981, dated Mar. 4, 2014. |
Second Office Action regarding China Application No. 201180010366.1, dated Dec. 31, 2014. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding U.S. Appl. No. 14/081,390, dated Mar. 27, 2015. |
Search Report regarding European Patent Application No. 10762374.6-1608 / 2417356 PCT/US2010030248, dated Jun. 16, 2015. |
Office Action regarding U.S. Appl. No. 14/060,240, dated Aug. 12, 2015. |
International Search Report regarding International Application No. PCT/US2015/033960, dated Sep. 1, 2015. |
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2015/033960, dated Sep. 1, 2015. |
Office Action regarding U.S. Appl. No. 14/073,293, dated Sep. 25, 2015. |
Restriction Requirement regarding U.S. Appl. No. 14/060,102, dated Oct. 7, 2015. |
International Search Report regarding International Application No. PCT/US2015/042479, dated Oct. 23, 2015. |
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2015/042479, dated Oct. 23, 2015. |
Office Action regarding Chinese Patent Application No. 201410461048.2, dated Nov. 30, 2015. Translation provided by Unitalen Attorneys at Law. |
Interview Summary regarding U.S. Appl. No. 14/060,240, dated Dec. 1, 2015. |
Office Action regarding U.S. Appl. No. 14/073,293, dated Jan. 29, 2016. |
Office Action regarding Chinese Patent Application No. 201410460792.0, dated Feb. 25, 2016. Translation provided by Unitalen Attorneys at Law. |
Restriction Requirement regarding U.S. Appl. No. 14/060,102, dated Mar. 16, 2016. |
First Office Action regarding Chinese Application No. 201380059666.8, dated Apr. 5, 2016. Translation provided by Unitalen Attorneys at Law. |
First Office Action regarding Chinese Application No. 201380062614.6, dated Apr. 5, 2016. Translation provided by Unitalen Attorneys at Law. |
Advisory Action regarding U.S. Appl. No. 14/073,293, dated Apr. 18, 2016. |
Office Action regarding Chinese Patent Application No. 201380062657.4, dated May 4, 2016. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding Chinese Patent Application No. 201380059963.2, dated May 10, 2016. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding U.S. Appl. No. 14/060,102, dated Jun. 14, 2016. |
Office Action regarding U.S. Appl. No. 14/846,877, dated Jul. 15, 2016. |
Office Action regarding Chinese Patent Application No. 201410461048.2, dated Jul. 26, 2016. Translation provided by Unitalen Attorneys at Law. |
Search Report regarding European Patent Application No. 13858194.7, dated Aug. 3, 2016. |
Search Report regarding European Patent Application No. 13859308.2, dated Aug. 3, 2016. |
Office Action regarding U.S. Appl. No. 14/294,458, dated Aug. 19, 2016. |
Office Action regarding Chinese Patent Application No. 201410460792.0, dated Oct. 21, 2016. Translation provided by Unitalen Attorneys at Law. |
Search Report regarding European Patent Application No. 11747996.4, dated Nov. 7, 2016. |
Office Action regarding Chinese Patent Application No. 201380059666.8, dated Nov. 23, 2016. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding U.S. Appl. No. 14/060,102, dated Dec. 28, 2016. |
International Search Report regarding International Application No. PCT/CN2016/103763, dated Jan. 25, 2017. |
Written Opinion of the International Searching Authority regarding International Application No. PCT/CN2016/103763, dated Jan. 25, 2017. |
Office Action regarding U.S. Appl. No. 15/156,400, dated Feb. 23, 2017. |
Office Action regarding U.S. Appl. No. 14/294,458, dated Feb. 28, 2017. |
Advisory Action regarding U.S. Appl. No. 14/060,102, dated Mar. 3, 2017. |
Office Action regarding U.S. Appl. No. 14/663,073, dated Apr. 11, 2017. |
Office Action regarding Chinese Patent Application No. 201410460792.0, dated Apr. 24, 2017. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding U.S. Appl. No. 14/946,824, dated May 10, 2017. |
Advisory Action regarding U.S. Patent Application No. 14/294,458, dated Jun. 9, 2017. |
Office Action regarding Chinese Patent Application No. 201610703191.7, dated Jun. 13, 2017. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding Indian Patent Application No. 2043/MUMNP/2011, dated Jul. 28, 2017. |
Restriction Requirement regarding U.S. Appl. No. 14/809,786, dated Aug. 16, 2017. |
Office Action regarding U.S. Appl. No. 14/294,458, dated Sep. 21, 2017. |
Office Action regarding U.S. Appl. No. 14/757,407, dated Oct. 13, 2017. |
Office Action regarding Chinese Patent Application No. 201610158216.X, dated Oct. 30, 2017. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding Chinese Patent Application No. 201410460792.0, dated Nov. 1, 2017. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding Chinese Patent Application No. 201610512702.7, dated Dec. 20, 2017. Partial translation provided by Unitalen Attorneys at Law. |
International Search Report regarding International Application No. PCT/US2017/050525, dated Dec. 28, 2017. |
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2017/050525, dated Dec. 28, 2017. |
Office Action regarding Chinese Patent Application No. 201610499158.7, dated Jan. 9, 2018. Translation provided by Unitalen Attorneys at Law. |
Non-Final Office Action for U.S. Appl. No. 14/809,786, dated Jan. 11, 2018. |
Office Action regarding Chinese Patent Application No. 201580029636.1, dated Jan. 17, 2018. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding Chinese Patent Application No. 201580041209.5, dated Jan. 17, 2018. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding U.S. Appl. No. 15/646,654, dated Feb. 9, 2018. |
Office Action regarding U.S. Appl. No. 15/651,471 dated Feb. 23, 2018. |
Office Action regarding Indian Patent Application No. 1907/MUMNP/2012, dated Feb. 26, 2018. |
Election Requirement regarding U.S. Appl. No. 15/186,092, dated Apr. 3, 2018. |
Election Requirement regarding U.S. Appl. No. 15/784,458, dated Apr. 5, 2018. |
Office Action regarding Korean Patent Application No. 10-2016-7034539, dated Apr. 11, 2018. Translation provided by Y.S. Chang & Associates. |
Office Action regarding U.S. Appl. No. 15/186,151, dated May 3, 2018. |
Office Action regarding Chinese Patent Application No. 201610930347.5, dated May 14, 2018. Translation provided by Unitalen Attorneys at Law. |
Election/Restriction Requirement regarding U.S. Appl. No. 15/187,225, dated May 15, 2018. |
Notice of Allowance regarding U.S. Appl. No. 14/757,407, dated May 24, 2018. |
Office Action regarding Chinese Patent Application No. 201610158216.X, dated Jun. 13, 2018. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding European Patent Application No. 13859308.2, dated Jun. 22, 2018. |
Office Action regarding U.S. Appl. No. 15/186,092, dated Jun. 29, 2018. |
Notice of Allowance regarding U.S. Appl. No. 15/646,654, dated Jul. 11, 2018. |
Notice of Allowance regarding U.S. Appl. No. 15/651,471, dated Jul. 11, 2018. |
Office Action regarding U.S. Appl. No. 15/784,540, dated Jul. 17, 2018. |
Office Action regarding U.S. Appl. No. 15/784,458, dated Jul. 19, 2018. |
Election/Restriction Requirement regarding U.S. Appl. No. 15/587,735, dated Jul. 23, 2018. |
Office Action regarding Chinese Patent Application No. 201610499158.7, dated Aug. 1, 2018. Translation provided by Unitalen Attorneys at Law. |
Applicant-Initiated Interview Summary regarding U.S. Appl. No. 15/186,092, dated Aug. 14, 2018. |
Office Action regarding U.S. Appl. No. 15/187,225, dated Aug. 27, 2018. |
Office Action regarding Chinese Patent Application No. 201710795228.8, dated Sep. 5, 2018. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding Korean Patent Application No. 10-2016-7034539, dated Sep. 6, 2018. Translation provided by Y.S. Chang & Associates. |
Office Action regarding Indian Patent Application No. 1307/MUMNP/2015, dated Sep. 12, 2018. |
Office Action regarding Chinese Patent Application No. 201580029636.1, dated Oct. 8, 2018. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding U.S. Appl. No. 15/587,735, dated Oct. 9, 2018. |
Office Action regarding U.S. Appl. No. 15/186,151, dated Nov. 1, 2018. |
Office Action regarding Korean Patent Application No. 10-2017-7033995, dated Nov. 29, 2018. Translation provided by KS Koryo International IP Law Firm. |
Notice of Allowance regarding U.S. Appl. No. 15/692,844, dated Feb. 20, 2020. |
Office Action regarding European Patent Application No. 13859308.2, dated Mar. 4, 2020. |
Office Action regarding Chinese Patent Application No. 201811168307.7, dated Mar. 27, 2020. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding Korean Patent Application No. 10-2018-0159231, dated Apr. 7, 2020. Translation provided by KS Koryo International IP Law Firm. |
Office Action regarding Chinese Patent Application No. 201780055443.2, dated Apr. 14, 2020. Translation provided by Unitalen Attorneys at Law. |
Notice of Allowance regarding U.S. Appl. No. 15/682,599, dated Apr. 22, 2020. |
Notice of Allowance regarding U.S. Appl. No. 15/831,423, dated May 20, 2020. |
Notice of Allowance regarding U.S. Appl. No. 15/692,844, dated Jun. 4, 2020. |
Restriction Requirement regarding U.S. Appl. No. 16/147,920, dated Jun. 25, 2020. |
Office Action regarding U.S. Appl. No. 16/154,406, dated Jun. 29, 2020. |
U.S. Appl. No. 15/186,092, filed Jun. 17, 2016, Robert C. Stover. |
U.S. Appl. No. 15/186,151, filed Jun. 17, 2016, Robert C. Stover. |
U.S. Appl. No. 15/187,225, filed Jun. 20, 2016, Robert C. Stover. |
U.S. Appl. No. 15/587,735, filed May 5, 2017, Robert C. Stover et al. |
U.S. Appl. No. 15/682,599, filed Aug. 22, 2017, Michael M. Perevozchikov et al. |
U.S. Appl. No. 15/692,844, filed Aug. 31, 2017, Michael M. Perevozchikov et al. |
U.S. Appl. No. 15/784,458, filed Oct. 16, 2017, Roy J. Doepker et al. |
U.S. Appl. No. 15/784,540, filed Oct. 16, 2017, Roy J. Doepker et al. |
U.S. Appl. No. 15/831,423, filed Dec. 5, 2017, Kirill M. Ignatiev et al. |
U.S. Appl. No. 15/881,016, filed Jan. 26, 2018, Masao Akei et al. |
Restriction Requirement regarding U.S. Appl. No. 16/154,844, dated Jul. 2, 2020. |
Office Action regarding Chinese Patent Application No. 201811480347.5, dated Jul. 21, 2020. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding U.S. Appl. No. 15/881,016, dated Jul. 21, 2020. |
Office Action regarding U.S. Appl. No. 16/147,920, dated Sep. 25, 2020. |
Notice of Allowance regarding U.S. Appl. No. 16/154,406, dated Oct. 2, 2020. |
Office Action regarding U.S. Appl. No. 16/154,844, dated Oct. 5, 2020. |
Number | Date | Country | |
---|---|---|---|
20190186491 A1 | Jun 2019 | US |
Number | Date | Country | |
---|---|---|---|
62599182 | Dec 2017 | US |