VARIANT CD58 DOMAINS AND USES THEREOF

Information

  • Patent Application
  • 20230071196
  • Publication Number
    20230071196
  • Date Filed
    May 19, 2020
    4 years ago
  • Date Published
    March 09, 2023
    a year ago
Abstract
The present disclosure provides CD2 binding molecules that specifically bind to CD2, including monospecific, bispecific and trispecific binding molecules, conjugates comprising the CD2 binding molecules, and pharmaceutical compositions comprising the CD2 binding molecules and the conjugates. The disclosure further provides methods of using the CD2 binding molecules to modulate CD2 signaling in order to treat a variety of immune (e.g., autoimmune), inflammatory and proliferative disorders. The disclosure yet further provides recombinant host cells engineered to express the CD2 binding molecules and methods of producing the CD2 binding molecules by culturing the host cells under conditions in which the CD2 binding molecules are expressed.
Description
2. SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on May 13, 2020, is named NOV-008WO_SL.txt and is 771,388 bytes in size.


3. FIELD OF INVENTION

The disclosure generally relates to variant CD58 domains and CD2 binding molecules, including monospecific and multispecific molecules, that comprise a variant CD58 domain, and their use for treating proliferative conditions, autoimmune disorders, and inflammatory conditions. The disclosure further relates to CD3 binding molecules.


4. BACKGROUND

CD58, also known as LFA-3, is a glycoprotein expressed on the surfaces of a variety of cell types. CD58 is a ligand for CD2, and this pair of adhesion molecules is involved in immune modulation in a variety of cell types. In particular, the CD2 pathway can directly mediate CD3-independent T cell activation (see, e.g., Ohno et al., 1991, J Immunol 146 (11):3742-3746)) and has a costimulatory role in a variety of immune cell types, such as CD8+ T cells (see, e.g., Leitner et al., 2015, J Immunol 195 (2):477-487) and NK cells (see, e.g., Liu et al., 2016, Cell Reports 15(5):1088-1099).


Due to the involvement of the CD2 pathway in cellular processes associated with immune responses, tumorigenesis and other disease states, there is a need for therapeutic agents that target this pathway. Molecules that modulate CD2 activity are candidate immunosuppressive and/or anti-inflammatory and/or anticancer agents with activity towards (1) autoimmune disorders such as multiple sclerosis; (2) a variety of inflammatory diseases or disorders with an inflammatory or T cell-mediated component such as various forms of arthritis; allograft rejections; asthma; inflammatory diseases of the bowel, including Crohn's disease; various dermatological conditions such as psoriasis; and the like, and (3) a variety of cancers and tumors.


5. SUMMARY

The disclosure provides variant CD58 domains. The variant CD58 domains have been engineered to include a pair of cysteines that are believed to form a disulfide bridge, which confers advantageous properties such as improved stability and reduced aggregation, without sacrificing binding affinity to human CD2 and can be used to modulate the CD2 pathway. The variant CD58 domains also bind to cynomolgus (cyno) CD2 and are therefore useful in animal testing during human therapeutic development.


The variant CD58 domains can, for example when administered in the form of immunoglobulin fusion proteins, inhibit the CD2 pathway similarly to anti-CD2 antibodies and ameliorate autoimmune and inflammatory conditions to which the pathway contributes. See, e.g., Erben et al., 2015, Clinical Immunology 157(1):16-25.


The variant CD58 domains can, for example when administered in the form of multispecific binding molecules, contribute to redirected targeted T-cell lysis (RTCC) of tumor cells, by cross-linking the target cells to an immune cell such as a T cell. When the variant CD58 domains are incorporated into trispecific binding molecules that also target a TCR and a TAA, the cross-linking of a tumor cell that expresses the TAA to a T cell can simultaneously engage both the TCR and CD2 pathways, resulting in more robust T cell activation.


Accordingly, the disclosure provides CD2 binding molecules, including monospecific and multispecific molecules, that comprise a variant CD58 domain. In some embodiments, the CD2 binding molecule is a monospecific binding molecule. For example, the monospecific binding molecule can comprise a variant CD58 domain that is optionally fused to an immunoglobulin domain to allow for dimerization. In other embodiments, the CD2 binding molecule is a multispecific (e.g., bispecific or trispecific) CD2 binding molecule.


In one aspect, the disclosure provides CD2 binding molecules e.g., monospecific or multispecific binding molecules, comprising variant CD58 domains as an antigen binding module (“ABM”) that binds to CD2 (sometimes referred to herein as “ABM1” or a “CD2 ABM”). Exemplary CD2 binding molecules are described in Section 7.2, and the variant CD58 domains that they comprise are described in Section 7.3 and specific embodiments 1 to 26, infra. In some embodiments the CD2 binding molecules are fusion polypeptides, e.g., Ig fusions, as exemplified in Section 7.4 and specific embodiments 27 to 29, infra.


In another aspect, the disclosure provides multispecific binding molecules (“MBMs”) comprising the CD2 ABMs of the disclosure.


In certain embodiments, the MBMs are bispecific binding molecules (“BBMs”). The BBMs of the disclosure comprise a CD2 ABM comprising the variant CD58 sequences of the disclosure (“ABM1” or “CD2 ABM”) and a second ABM that specifically binds to a second antigen (“ABM2”), e.g., component of a human T cell receptor (TCR) complex (sometimes referred to herein as a “TCR ABM”) or a human tumor-associated antigen (“TAA”) (sometimes referred to herein as a TAA ABM). The terms ABM1, ABM2, CD2 ABM, TCR ABM, and TAA ABM are used merely for convenience and are not intended to convey any particular configuration of a BBM. In some embodiments, a TCR ABM binds to CD3 (referred to herein a “CD3 ABM” or the like). Accordingly, disclosures relating to ABM2 and TCR ABMs are also applicable to CD3 ABMs. Features of exemplary MBMs are described in Sections 7.7 to 7.8 and specific embodiments 30 to 1356, infra.


The present disclosure also extends the principles of RTCC by providing trispecific binding molecules (“TBMs”) that engage (i) CD2, (ii) CD3 or other component of a TCR complex on T-cells or a TAA, and (iii) a TAA (or second TAA as the case dictates). The TBMs of the disclosure comprise at least three antigen-binding modules (“ABMs”) that can bind (i) CD2 (ABM1), (ii) a component of a TCR complex or a TAA (ABM2), and (iii) a TAA (ABM3). For TBMs of the disclosure that engage CD2 and two TAAs, the two TAAs can be referred to as TAA 1 and TAA 2, and the corresponding ABMs can be referred to as a TAA 1 ABM and a TAA 2 ABM, respectively. Because both TAA 1 and TAA 2 are tumor-associated antigens, the designations of the tumor associated antigens of the disclosure as TAA 1 and TAA 2 are arbitrary—thus, any disclosure pertaining to TAA 1 is applicable to TAA 2 and vice versa, unless the context dictates otherwise.


Without being bound by theory, the inventors believe that combining CD2- and TCR complex-engagement in a TBM of the disclosure can stimulate both a primary signaling pathway that promotes T-cell mediated lysis of tumor cells (by clustering TCRs, for example) and a second co-stimulatory pathway to induce T-cell proliferation and potentially overcome anergy.


In some embodiments, each antigen-binding module of a MBM of the disclosure is capable of binding its respective target at the same time as each of the one or more additional antigen-binding modules is bound to its respective target. ABM1 comprises a variant CD58 domain of the disclosure, while ABM2 and, when present, ABM3 can be immunoglobulin- or non-immunoglobulin-based modules. Therefore the MBMs can include any combination of immunoglobulin- and non-immunoglobulin-based ABMs. Immunoglobulin-based ABMs that can be used in the MBMs are described in Section 7.5.1 and specific embodiments 33 to 207, 607 to 614, 616 to 621, 623 to 792, 919 to 1086, and 1186 to 1240 infra. Non-immunoglobulin-based ABMs that can be used in the MBMs are described in Section 7.5.2 and specific embodiments 793 to 854 and 1087 to 1148, infra. Further features of exemplary ABMs that bind to a component of a TCR complex are described in Section 7.9 and specific embodiments 31 to 621, infra. Further features of exemplary ABMs that bind to TAAs are described in Section 7.10 and specific embodiments 622 to 854 and 917 to 1148, infra.


The ABMs of a MBM (or portions thereof) can be connected to each other, for example, by short peptide linkers or by an Fc domain. Methods and components for connecting ABMs to form a MBM are described in Section 7.6 and specific embodiments 1242 to 1356, infra.


BBMs have at least two ABMs (e.g., a BBM is at least bivalent) and TBMs have at least three ABMs (e.g., a TBM is at least trivalent), but they can have greater valencies. For example, a BBM can have three, four or more ABMs (i.e., is trivalent, tetravalent, or has a valency that is greater than tetravalent). Exemplary bivalent, trivalent, and tetravalent BBM configurations are shown in FIG. 1 and described in Section 7.7 and specific embodiments 857 to 916, infra.


A TBM can have four ABMs (i.e., is tetravalent), five ABMs (i.e., is pentavalent), or six ABMs (i.e., is hexavalent), provided that the TBM has: (a) at least one ABM that can bind CD2, at least one ABM that can bind a component of a TCR complex, and at least one ABM that can bind a TAA; or (b) at least at least one ABM that can bind CD2, at least one ABM that can bind a TAA, and at least one ABM that can bind a second TAA. Exemplary trivalent, tetravalent, pentavalent, and hexavalent TBM configurations are shown in FIG. 2 and described in Section 7.8 and specific embodiments 1149 to 1185 and 1243 to 1246, infra.


The disclosure further provides nucleic acids encoding the CD2 binding molecules (either in a single nucleic acid or a plurality of nucleic acids) and recombinant host cells and cell lines engineered to express the nucleic acids and CD2 binding molecules of the disclosure. Exemplary nucleic acids, host cells, and cell lines are described in Section 7.11 and specific embodiments 1552 to 1558, infra.


The present disclosure further provides drug conjugates comprising the CD2 binding molecules of the disclosure. Such conjugates are referred to herein as “antibody-drug conjugates” or “ADCs” for convenience, notwithstanding that some of the ABMs can be non-immunoglobulin domains. Examples of ADCs are described in Section 7.13 and specific embodiments 1357 to 1395, infra.


Pharmaceutical compositions comprising the CD2 binding molecules and ADCs are also provided. Examples of pharmaceutical compositions are described in Section 7.16 and specific embodiments 1396 and 1427, infra.


Further provided herein are methods of using the CD2 binding molecules, the ADCs, and the pharmaceutical compositions of the disclosure, for example for treating proliferative conditions (e.g., cancers), for treating autoimmune disorders, and for treating inflammatory conditions. Exemplary methods are described in Section 7.17 and specific embodiments 1397 to 1426 and 1428 to 1549, infra.


The disclosure further provides methods of using the CD2 binding molecules, the ADCs, and the pharmaceutical compositions in combination with other agents and therapies. Exemplary agents, therapies, and methods of combination therapy are described in Section 7.18 and specific embodiment 1550, infra.


The disclosure further provides CD3 binding molecules, e.g., MBMs, comprising CDR sequences of the CD3 binder designated CD3-129 in Table 12A and CD3 binding molecules, e.g., MBMs, comprising CDR sequences of the CD3 binder designated CD3-130 in Table 12A. CD3 binding molecules in the form of MBMs can include, for example, a CD2 ABM (e.g., comprising a CD58 moiety described in Section 7.3) and/or a TAA ABM (e.g., as described in Section 7.10). Exemplary CD3 binding molecules are described in specific embodiments 1560 to 1709.





6. BRIEF DESCRIPTION OF THE FIGURES


FIGS. 1A-1AH: Exemplary BBM configurations. FIG. 1A illustrates components of the exemplary BBM configurations illustrated in FIGS. 1B-1AH. Not all regions connecting the different domains of each chain are illustrated (e.g., the linker connecting the VH and VL domains of an scFv, the hinge connecting the CH2 and CH3 domains of an Fc domain, etc., are omitted). FIGS. 1B-1F illustrate bivalent BBMs; FIGS. 1G-1Z illustrate trivalent BBMs; FIGS. 1AA-1AH illustrate tetravalent BBMs. In the BBMs of the disclosure, a variant CD58 domain can substitute for a Fab and/or scFv in any of the configurations illustrated.



FIGS. 2A-2V: Exemplary TBM configurations. FIG. 2A illustrates components of the exemplary TBM configurations illustrated in FIGS. 2B-2V. Not all regions connecting the different domains of each chain are illustrated (e.g., the linker connecting the VH and VL domains of an scFv, the hinge connecting the CH2 and CH3 domains of an Fc, etc., are omitted). FIG. 2B-2P illustrates trivalent TBMs; FIGS. 2Q-2S illustrate tetravalent TBMs; FIG. 2T illustrates a pentavalent TBM, and FIGS. 2U-2V illustrate hexavalent TBMs. In the TBMs of the disclosure, a variant CD58 domain can substitute for a Fab and/or scFv in any of the configurations illustrated.



FIGS. 3A-3B: Schematics of the bispecific (FIG. 3A and FIG. 3C) and trispecific (FIG. 3B) constructs of Example 1.



FIGS. 4A-4B: Ability of CD19 BBMs to elicit redirected T-cell cytotoxic activity (RTCC) against CD19+ target cells. Both NEG258-based and NEG218-based BBMs mediated RTCC activity against CD19+ target cell lines. Nalm6-luc (FIG. 4A) and Karpas422-luc (FIG. 4B) cells were co-cultured with expanded T cells in the presence of serial diluted BBMs at an effector cell: target cell (E:T) ratio of 3:1. Luminescence signal was measured after 24 h of incubation.



FIGS. 5A-5B: Ability of CD19 BBMs to elicit T-cell proliferation. Both NEG258-based and NEG218-based BBMs induced T cell proliferation. Karpas422-luc (FIG. 5A) and Nalm6-luc (FIG. 5B) cells were co-cultured with expanded T cells in the presence of serial diluted BBMs at an E:T ratio of 1:1. Luminescence signal was measured after 96 h of incubation.



FIGS. 6A-6F: Ability of CD19 TBMs to elicit CD2 dependent T cell activation. CD2 knock out attenuated advantage of trispecific constructs. FIGS. 6A-6B show representative flow cytometry analysis of CD2 expression on JNL CD2 WT (FIG. 6A) and KO (FIG. 6B) cells. Staining by the anti-CD2 mAb (dot filled histogram) is overlaid with that of the mIgG1 isotype control (diagonal line filled histogram) or unstained (open histogram). FIGS. 6C-6F show data for JNL CD2+ (FIG. 6C-6D) and CD2 (FIG. 6E-6F) cells co-cultured with CD19+ target cells in the presence of serial diluted BBMs and TBMs at an E:T ratio of 3:1. Luminescence signal was measured after 24 h of incubation.



FIGS. 7A-7B: Binding of CD19 TBMs to cyno B cells. FIG. 7A shows data for a TBM with a NEG218-based CD19 binding arm and FIG. 7B shows data for a TBM with a NEG-258-based CD19 binding arm.



FIGS. 8A-8H: Ability of CD19 TBMs to induce T cell activation upon cyno B cell depletion in PBMCs. In FIG. 8A, PBMCs were isolated from cyno monkey whole blood using ficoll gradient centrifugation and were incubated with bi or trispecific constructs for overnight. Samples were harvested and simultaneously stained for CD3 and CD20 to identify B and T cells within the PBMC population. Percentage of B cell depletion was calculated as described in Section 8.6.1. FIGS. 8B-8H show the results of FACS analysis of CD69 and CD25 expression on CD3+ T cells to determine single (CD69+ CD25 or CD69CD25+) or double-positive cells (CD69+CD25+). FIG. 8B: untreated (media only); FIGS. 8C-8E: CD3hi TSP1L; FIGS. 8F-8H: CD3hi TSP1.



FIGS. 9A-9P: Ability of NEG258- and NEG218-based TBMs to induce redirected T cell cytotoxicity by human donor cells against Nalm6 (FIGS. 9A-9H) and Karpas422 (FIGS. 91-9P) target cells.



FIGS. 10A-10P: Ability of NEG258- and NEG218-based TBMs with different CD3 affinities to induce redirected T cell cytotoxicity by human donor cells against Nalm6 (FIGS. 10A-10H) and Karpas422 (FIGS. 101-10P) target cells.



FIGS. 11A-11L: Ability of NEG258-based TBMs that include a CD2-binding arm and those that include a control lysozyme binding arm to induce redirected T cell cytotoxicity by human donor cells against Nalm6 (FIGS. 11A-11H) and Karpas422 (FIGS. 11I-11L) target cells.



FIGS. 12A-12C: Induction of T cell cytokine release by NEG258- and NEG218-based TBMs. FIG. 12A: IFN-γ; FIG. 12B: TNF-α; FIG. 12C: IL2.



FIGS. 13A-13C: Binding of NEG258- and NEG218-based TBMs to murine 300.19 cell lines that overexpress human CD19 (FIG. 13A) or cyno CD19 (FIG. 13B). The TBMs show negligible binding to the wild type 300.19 cell line (FIG. 13C).



FIG. 14: A schematic representation of CD58.



FIG. 15: Redirected T cell cytotoxicity by TBMs containing CD58 variant sequences.



FIG. 16: Antigen-independent T-cell activation by TBMs containing CD58 variant sequences. Data expressed as relative luminescence units (RLU).





7. DETAILED DESCRIPTION
7.1. Definitions

As used herein, the following terms are intended to have the following meanings:


ABM chain: Individual ABMs can exist as one (e.g., in the case of an scFv) polypeptide chain or form through the association of more than one polypeptide chains (e.g., in the case of a Fab). As used herein, the term “ABM chain” refers to all or a portion of an ABM that exists on a single polypeptide chain. The use of the term “ABM chain” is intended for convenience and descriptive purposes only and does not connote a particular configuration or method of production.


ADCC: By “ADCC” or “antibody dependent cell-mediated cytotoxicity” as used herein is meant the cell-mediated reaction where nonspecific cytotoxic cells that express FcγRs recognize bound antibody on a target cell and subsequently cause lysis of the target cell. ADCC is correlated with binding to FcγRIIIa; increased binding to FcγRIIIa leads to an increase in ADCC activity.


ADCP: By “ADCP” or antibody dependent cell-mediated phagocytosis as used herein is meant the cell-mediated reaction where nonspecific phagocytic cells that express FcγRs recognize bound antibody on a target cell and subsequently cause phagocytosis of the target cell.


Additional Accent: For convenience, an agent that is used in combination with an antigen-binding molecule of the disclosure is referred to herein as an “additional” agent.


Antibody: The term “antibody” as used herein refers to a polypeptide (or set of polypeptides) of the immunoglobulin family that is capable of binding an antigen non-covalently, reversibly and specifically. For example, a naturally occurring “antibody” of the IgG type is a tetramer comprising at least two heavy (H) chains and two light (L) chains inter-connected by disulfide bonds. Each heavy chain is comprised of a heavy chain variable region (abbreviated herein as VH) and a heavy chain constant region. The heavy chain constant region is comprised of three domains, CH1, CH2 and CH3. Each light chain is comprised of a light chain variable region (abbreviated herein as VL) and a light chain constant region. The light chain constant region is comprised of one domain (abbreviated herein as CL). The VH and VL regions can be further subdivided into regions of hypervariability, termed complementarity determining regions (CDR), interspersed with regions that are more conserved, termed framework regions (FR). Each VH and VL is composed of three CDRs and four FRs arranged from amino-terminus to carboxy-terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4. The variable regions of the heavy and light chains contain a binding domain that interacts with an antigen. The constant regions of the antibodies can mediate the binding of the immunoglobulin to host tissues or factors, including various cells of the immune system (e.g., effector cells) and the first component (C1q) of the classical complement system. The term “antibody” includes, but is not limited to, monoclonal antibodies, human antibodies, humanized antibodies, camelised antibodies, chimeric antibodies, bispecific or multispecific antibodies and anti-idiotypic (anti-Id) antibodies (including, e.g., anti-Id antibodies to antibodies of the disclosure). The antibodies can be of any isotype/class (e.g., IgG, IgE, IgM, IgD, IgA and IgY) or subclass (e.g., IgG1, IgG2, IgG3, IgG4, IgA1 and IgA2).


Both the light and heavy chains are divided into regions of structural and functional homology. The terms “constant” and “variable” are used functionally. In this regard, it will be appreciated that the variable domains of both the light (VL) and heavy (VH) chain portions determine antigen recognition and specificity. Conversely, the constant domains of the light chain (CL) and the heavy chain (CH1, CH2 or CH3) confer important biological properties such as secretion, transplacental mobility, Fc receptor binding, complement binding, and the like. By convention the numbering of the constant region domains increases as they become more distal from the antigen-binding site or amino-terminus of the antibody. In a wild-type antibody, at the N-terminus is a variable region and at the C-terminus is a constant region; the CH3 and CL domains actually comprise the carboxy-terminus of the heavy and light chain, respectively.


Antibody fragment: The term “antibody fragment” of an antibody as used herein refers to one or more portions of an antibody. In some embodiments, these portions are part of the contact domain(s) of an antibody. In some other embodiments, these portion(s) are antigen-binding fragments that retain the ability of binding an antigen non-covalently, reversibly and specifically, sometimes referred to herein as the “antigen-binding fragment”, “antigen-binding fragment thereof,” “antigen-binding portion”, and the like. Examples of binding fragments include, but are not limited to, single-chain Fvs (scFv), a Fab fragment, a monovalent fragment consisting of the VL, VH, CL and CH1 domains; a F(ab)2 fragment, a bivalent fragment comprising two Fab fragments linked by a disulfide bridge at the hinge region; a Fd fragment consisting of the VH and CH1 domains; a Fv fragment consisting of the VL and VH domains of a single arm of an antibody; a dAb fragment (Ward et al., 1989, Nature 341:544-546), which consists of a VH domain; and an isolated complementarity determining region (CDR). Thus, the term “antibody fragment” encompasses both proteolytic fragments of antibodies (e.g., Fab and F(ab)2 fragments) and engineered proteins comprising one or more portions of an antibody (e.g., an scFv).


Antibody fragments can also be incorporated into single domain antibodies, maxibodies, minibodies, intrabodies, diabodies, triabodies, tetrabodies, v-NAR and bis-scFv (see, e.g., Hollinger and Hudson, 2005, Nature Biotechnology 23: 1126-1136). Antibody fragments can be grafted into scaffolds based on polypeptides such as Fibronectin type III (Fn3) (see U.S. Pat. No. 6,703,199, which describes fibronectin polypeptide monobodies).


Antibody fragments can be incorporated into single chain molecules comprising a pair of tandem Fv segments (for example, VH-CH1-VH-CH1) which, together with complementary light chain polypeptides (for example, VL-VC-VL-VC), form a pair of antigen-binding regions (Zapata et al., 1995, Protein Eng. 8:1057-1062; and U.S. Pat. No. 5,641,870).


Antibody Numbering System: In the present specification, the references to numbered amino acid residues in antibody domains are based on the EU numbering system unless otherwise specified (for example, in Table 12 or Table 17). This system was originally devised by Edelman et al., 1969, Proc. Nat'l Acad. Sci. USA 63:78-85 and is described in detail in Kabat et al., 1991, in Sequences of Proteins of Immunological Interest, US Department of Health and Human Services, NIH, USA.


Antigen-binding module: The term “antigen-binding module” or “ABM” as used herein refers to a portion of a MBM that has the ability to bind to an antigen non-covalently, reversibly and specifically. An ABM can be immunoglobulin- or non-immunoglobulin-based. As used herein, the terms “ABM1” and “CD2 ABM” (and the like) refer to an ABM that binds specifically to CD2 and comprises a variant CD58 domain. The term “ABM2” refers to an ABM that binds specifically to a component of a TCR complex or a TAA. The term “TCR ABM” (and the like) refer to an ABM that binds specifically to a component of a TCR complex. The terms “ABM3” and “TAA ABM” refer to an ABM that binds specifically to a TAA. The terms “TAA 1 ABM” and TAA 2 ABM″ refer to ABMs of a MBM that bind two different TAAs. The terms ABM1, ABM2, and ABM3 are used merely for convenience and are not intended to convey any particular configuration of a MBM. In some embodiments, an ABM2 binds to CD3 (referred to herein a “CD3 ABM” or the like). Accordingly, disclosures relating to TCR ABMs are also applicable to CD3 ABMs.


Antigen-binding fragment: The term “antigen-binding fragment” of an antibody refers to a portion of an antibody that retains has the ability to bind to an antigen non-covalently, reversibly and specifically.


Antigen-binding molecule: The term “antigen-binding molecule” refers to a molecule comprising one or more antigen-binding domains, for example an antibody. The antigen-binding molecule can comprise one or more polypeptide chains, e.g., one, two, three, four or more polypeptide chains. The polypeptide chains in an antigen-binding molecule can be associated with one another directly or indirectly (for example a first polypeptide chain can be associated with a second polypeptide chain which in turn can be associated with a third polypeptide chain to form an antigen-binding molecule in which the first and second polypeptide chains are directly associated with one another, the second and third polypeptide chains are directly associated with one another, and the first and third polypeptide chains are indirectly associated with one another through the second polypeptide chain).


Associated: The term “associated” in the context of an antigen-binding molecule refers to a functional relationship between two or more polypeptide chains and/or two or more portions of a single polypeptide chain. In particular, the term “associated” means that two or more polypeptides (or portions of a single polypeptide) are associated with one another, e.g., non-covalently through molecular interactions and/or covalently through one or more disulfide bridges or chemical cross-linkages, so as to produce a functional antigen-binding molecule, e.g., a BBM or TBM in which the antigen binding domains can bind their respective targets. Examples of associations that might be present in a MBM include (but are not limited to) associations between Fc regions in an Fc domain (homodimeric or heterodimeric as described in Section 7.6.1.5), associations between VH and VL regions in a Fab or Fv, and associations between CH1 and CL in a Fab.


B cell: As used herein, the term “B cell” refers to a cell of B cell lineage, which is a type of white blood cell of the lymphocyte subtype. Examples of B cells include plasmablasts, plasma cells, lymphoplasmacytoid cells, memory B cells, follicular B cells, marginal zone B cells, B-1 cells, B-2 cells, and regulatory B cells.


B cell malignancy: As used herein, a B cell malignancy refers to an uncontrolled proliferation of B cells. Examples of B cell malignancy include non-Hodgkin's lymphomas (NHL), Hodgkin's lymphomas, leukemia, and myeloma. For example, a B cell malignancy can be, but is not limited to, multiple myeloma, chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL), follicular lymphoma, mantle cell lymphoma (MCL), diffuse large B-cell lymphoma (DLBCL), marginal zone lymphomas, Burkitt lymphoma, lymphoplasmacytic lymphoma (Waldenstrom macroglobulinemia), hairy cell leukemia, primary central nervous system (CNS) lymphoma, primary mediastinal large B-cell lymphoma, mediastinal grey-zone lymphoma (MGZL), splenic marginal zone B-cell lymphoma, extranodal marginal zone B-cell lymphoma of MALT, nodal marginal zone B-cell lymphoma, and primary effusion lymphoma, and plasmacytic dendritic cell neoplasms.


Binding Sequences: In reference to Tables 12, 13, 15, 16, or 17 (including subparts thereof), the term “binding sequences” means an ABM having a full set of CDRs, a VH-VL pair, or an scFv set forth in that table.


Bispecific binding molecule: The term “bispecific binding molecule” or “BBM” refers to a molecule that specifically binds to two antigens and comprises two or more ABMs. The BBMs of the disclosure comprise a variant CD58 domain of the disclosure that binds to CD2 and at least one antigen-binding module which is specific for a different antigen, e.g., component of a TCR complex or a TAA. Representative BBMs are illustrated in FIG. 1B-1AH. BBMs can comprise one, two, three, four or even more polypeptide chains. In the BBMs of the disclosure, a variant CD58 domain can substitute for a Fab and/or scFv in any of the configurations illustrated.


Bivalent: The term “bivalent” as used herein in the context of an antigen-binding molecule refers to an antigen-binding molecule that has two antigen-binding domains. The domains can be the same or different. Accordingly, a bivalent antigen-binding molecule can be monospecific or bispecific. Bivalent BBMs can comprise a variant CD58 domain that binds to CD2 and another ABM that binds to another antigen, e.g., a component of the TCR complex or a TAA.


Cancer: The term “cancer” refers to a disease characterized by the uncontrolled (and often rapid) growth of aberrant cells. Cancer cells can spread locally or through the bloodstream and lymphatic system to other parts of the body. Examples of various cancers are described herein and include but are not limited to, leukemia, multiple myeloma, asymptomatic myeloma, Hodgkin's lymphoma and non-Hodgkin's lymphoma. The term “cancerous B cell” refers to a B cell that is undergoing or has undergone uncontrolled proliferation.


CD3: The term “CD3” or “cluster of differentiation 3” refers to the cluster of differentiation 3 co-receptor of the T cell receptor. CD3 helps in activation of both cytotoxic T-cell (e.g., CD8+ naïve T cells) and T helper cells (e.g., CD4+ naïve T cells) and is composed of four distinct chains: one CD3γ chain (e.g., Genbank Accession Numbers NM_000073 and MP_000064 (human)), one CD3δ chain (e.g., Genbank Accession Numbers NM_000732, NM_001040651, NP_00732 and NP_001035741 (human)), and two CD3c chains (e.g., Genbank Accession Numbers NM_000733 and NP_00724 (human)). The chains of CD3 are highly related cell-surface proteins of the immunoglobulin superfamily containing a single extracellular immunoglobulin domain. The CD3 molecule associates with the T-cell receptor (TCR) and ζ-chain to form the T-cell receptor (TCR) complex, which functions in generating activation signals in T lymphocytes. Unless expressly indicated otherwise, the reference to CD3 in the application can refer to the CD3 co-receptor, the CD3 co-receptor complex, or any polypeptide chain of the CD3 co-receptor complex.


CD19: The term “CD19” or “cluster of differentiation 19” refers to the Cluster of Differentiation 19 protein, which is an antigenic determinant detectable on leukemia precursor cells. The human and murine amino acid and nucleic acid sequences can be found in a public database, such as GenBank, UniProt and Swiss-Prot. For example, the amino acid sequence of human CD19 can be found as UniProt/Swiss-Prot Accession No. P15391 and the nucleotide sequence encoding of the human CD19 can be found at Accession No. NM_001178098. CD19 is expressed on most B lineage cancers, including, e.g., acute lymphoblastic leukaemia, chronic lymphocyte leukaemia and non-Hodgkin's lymphoma. Other cells with express CD19 are provided below in the definition of “disease associated with expression of CD19.” It is also an early marker of B cell progenitors. See, e.g., Nicholson et al., 1997, Mol. Immun. 34 (16-17): 1157-1165.


Chimeric Antibody: The term “chimeric antibody” (or antigen-binding fragment thereof) is an antibody molecule (or antigen-binding fragment thereof) in which (a) the constant region, or a portion thereof, is altered, replaced or exchanged so that the antigen-binding site (variable region) is linked to a constant region of a different or altered class, effector function and/or species, or an entirely different molecule which confers new properties to the chimeric antibody, e.g., an enzyme, toxin, hormone, growth factor, drug, etc.; or (b) the variable region, or a portion thereof, is altered, replaced or exchanged with a variable region having a different or altered antigen specificity. For example, a mouse antibody can be modified by replacing its constant region with the constant region from a human immunoglobulin. Due to the replacement with a human constant region, the chimeric antibody can retain its specificity in recognizing the antigen while having reduced antigenicity in human as compared to the original mouse antibody.


In combination: Administered “in combination,” as used herein, means that two (or more) different treatments are delivered to the subject during the course of the subject's affliction with the disorder, e.g., the two or more treatments are delivered after the subject has been diagnosed with the disorder and before the disorder has been cured or eliminated or treatment has ceased for other reasons.


Complementarity Determining Region: The terms “complementarity determining region” or “CDR,” as used herein, refer to the sequences of amino acids within antibody variable regions which confer antigen specificity and binding affinity. For example, in general, there are three CDRs in each heavy chain variable region (e.g., CDR-H1, CDR-H2, and CDR-H3) and three CDRs in each light chain variable region (CDR-L1, CDR-L2, and CDR-L3). The precise amino acid sequence boundaries of a given CDR can be determined using any of a number of well-known schemes, including those described by Kabat et al., 1991, “Sequences of Proteins of Immunological Interest,” 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (“Kabat” numbering scheme), AI-Lazikani et al., 1997, JMB 273:927-948 (“Chothia” numbering scheme) and ImMunoGenTics (IMGT) numbering (Lefranc, 1999, The Immunologist 7:132-136; Lefranc et al., 2003, Dev. Comp. Immunol. 27:55-77 (“IMGT” numbering scheme). For example, for classic formats, under Kabat, the CDR amino acid residues in the heavy chain variable domain (VH) are numbered 31-35 (CDR-H1), 50-65 (CDR-H2), and 95-102 (CDR-H3); and the CDR amino acid residues in the light chain variable domain (VL) are numbered 24-34 (CDR-L1), 50-56 (CDR-L2), and 89-97 (CDR-L3). Under Chothia, the CDR amino acids in the VH are numbered 26-32 (CDR-H1), 52-56 (CDR-H2), and 95-102 (CDR-H3); and the amino acid residues in VL are numbered 26-32 (CDR-L1), 50-52 (CDR-L2), and 91-96 (CDR-L3). By combining the CDR definitions of both Kabat and Chothia, the CDRs consist of amino acid residues 26-35 (CDR-H1), 50-65 (CDR-H2), and 95-102 (CDR-H3) in human VH and amino acid residues 24-34 (CDR-L1), 50-56 (CDR-L2), and 89-97 (CDR-L3) in human VL. Under IMGT the CDR amino acid residues in the VH are numbered approximately 26-35 (CDR-H1), 51-57 (CDR-H2) and 93-102 (CDR-H3), and the CDR amino acid residues in the VL are numbered approximately 27-32 (CDR-L1), 50-52 (CDR-L2), and 89-97 (CDR-L3) (numbering according to “Kabat”). Under IMGT, the CDR regions of an antibody can be determined using the program IMGT/DomainGap Align.


Concurrently: The term “concurrently” is not limited to the administration of therapies (e.g., prophylactic or therapeutic agents) at exactly the same time, but rather it is meant that a pharmaceutical composition comprising an antigen-binding molecule of the disclosure is administered to a subject in a sequence and within a time interval such that the molecules can act together with the additional therapy(ies) to provide an increased benefit than if they were administered otherwise.


Conservative Sequence Modifications: The term “conservative sequence modifications” refers to amino acid modifications that do not significantly affect or alter the binding characteristics of a CD2 binding molecule or a component thereof (e.g., a CD2-binding portion of CD58). Such conservative modifications include amino acid substitutions, additions and deletions. Modifications can be introduced into a binding molecule by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis. Conservative amino acid substitutions are ones in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine, tryptophan), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Thus, one or more amino acid residues within a binding molecule can be replaced with other amino acid residues from the same side chain family and the altered binding molecule can be tested for, e.g., binding to target molecules and/or effective heterodimerization and/or effector function.


Correspond: Generally, and unless indicated otherwise, the terms “correspond” and “corresponding” with respect to nucleotide or amino acid positions of a nucleic acid or polypeptide sequence, refer to nucleotides or amino acid positions identified upon alignment of a query sequence with all or a portion (e.g., a domain) of a reference sequence to maximize identity. For example, the variant CD58 domains of the disclosure include cysteine substitutions as compared to the corresponding domains in wild type CD58, for example as compared to the entire CD58 protein as set forth in SEQ ID NO:1, the extracellular domain as set forth in SEQ ID NO:4, or the Ig-V-like domain as set forth in SEQ ID NO:6.


Diabody: The term “diabody” as used herein refers to small antibody fragments with two antigen-binding sites, typically formed by pairing of scFv chains. Each scFv comprises a heavy chain variable domain (VH) connected to a light chain variable domain (VL) in the same polypeptide chain (VH-VL, where the VH is either N-terminal or C-terminal to the VL). Unlike a typical scFv in which the VH and VL are separated by a linker that allows the VH and VL on the same polypeptide chain to pair and form an antigen-binding domain, diabodies typically comprise a linker that is too short to allow pairing between the VH and VL domains on the same chain, forcing the VH and VL domains to pair with the complementary domains of another chain and create two antigen-binding sites. Diabodies are described more fully in, for example, EP 404,097; WO 93/11161; and Hollinger et al., 1993, Proc. Natl. Acad. Sci. USA 90:6444-6448.


dsFv: The term “dsFv” refers to disulfide-stabilized Fv fragments. In a dsFv, a VH and VL are connected by an interdomain disulfide bond. To generate such molecules, one amino acid each in the framework region of in VH and VL are mutated to a cysteine, which in turn form a stable interchain disulfide bond. Typically, position 44 in the VH and position 100 in the VL are mutated to cysteines. See Brinkmann, 2010, Antibody Engineering 181-189, DOI:10.1007/978-3-642-01147-4_14. The term dsFv encompasses both what is known as a dsFv (a molecule in which the VH and VL are connected by an interchain disulfide bond but not a linker peptide) or scdsFv (a molecule in which the VH and VL are connected by a linker as well as an interchain disulfide bond).


Effector Function: The term “effector function” refers to an activity of an antibody molecule that is mediated by binding through a domain of the antibody other than the antigen-binding domain, usually mediated by binding of effector molecules. Effector function includes complement-mediated effector function, which is mediated by, for example, binding of the C1 component of the complement to the antibody. Activation of complement is important in the opsonization and lysis of cell pathogens. The activation of complement also stimulates the inflammatory response and may also be involved in autoimmune hypersensitivity. Effector function also includes Fc receptor (FcR)-mediated effector function, which can be triggered upon binding of the constant domain of an antibody to an Fc receptor (FcR). Binding of antibody to Fc receptors on cell surfaces triggers a number of important and diverse biological responses including engulfment and destruction of antibody-coated particles, clearance of immune complexes, lysis of antibody-coated target cells by killer cells (called antibody-dependent cell-mediated cytotoxicity, or ADCC), release of inflammatory mediators, placental transfer and control of immunoglobulin production. An effector function of an antibody can be altered by altering, e.g., enhancing or reducing, the affinity of the antibody for an effector molecule such as an Fc receptor or a complement component. Binding affinity will generally be varied by modifying the effector molecule binding site, and in this case it is appropriate to locate the site of interest and modify at least part of the site in a suitable way. It is also envisaged that an alteration in the binding site on the antibody for the effector molecule need not alter significantly the overall binding affinity but can alter the geometry of the interaction rendering the effector mechanism ineffective as in non-productive binding. It is further envisaged that an effector function can also be altered by modifying a site not directly involved in effector molecule binding, but otherwise involved in performance of the effector function.


Epitope: An epitope, or antigenic determinant, is a portion of an antigen recognized by an antibody or other antigen-binding moiety as described herein. An epitope can be linear or conformational.


Fab: By “Fab” or “Fab region” as used herein is meant a polypeptide region that comprises the VH, CH1, VL, and CL immunoglobulin domain. These terms can refer to this region in isolation, or this region in the context of an antigen-binding molecule of the disclosure.


Fab domains are formed by association of a CH1 domain attached to a VH domain with a CL domain attached to a VL domain. The VH domain is paired with the VL domain to constitute the Fv region, and the CH1 domain is paired with the CL domain to further stabilize the binding module. A disulfide bond between the two constant domains can further stabilize the Fab domain.


Fab regions can be produced by proteolytic cleavage of immunoglobulin molecules (e.g., using enzymes such as papain) or through recombinant expression. In native immunoglobulin molecules, Fabs are formed by association of two different polypeptide chains (e.g., VH-CH1 on one chain associates with VL-CL on the other chain). The Fab regions are typically expressed recombinantly, typically on two polypeptide chains, although single chain Fabs are also contemplated herein.


Fc domain: The term “Fc domain” refers to a pair of associated Fc regions. The two Fc regions dimerize to create the Fc domain. The two Fc regions within the Fc domain can be the same (such an Fc domain being referred to herein as an “Fc homodimer”) or different from one another (such an Fc domain being referred to herein as an “Fc heterodimer”).


Fc region: The term “Fc region” or “Fc chain” as used herein is meant the polypeptide comprising the CH2-CH3 domains of an IgG molecule, and in some cases, inclusive of the hinge. In EU numbering for human IgG1, the CH2-CH3 domain comprises amino acids 231 to 447, and the hinge is 216 to 230. Thus the definition of “Fc region” includes both amino acids 231-447 (CH2-CH3) or 216-447 (hinge-CH2-CH3), or fragments thereof. An “Fc fragment” in this context can contain fewer amino acids from either or both of the N- and C-termini but still retains the ability to form a dimer with another Fc region as can be detected using standard methods, generally based on size (e.g., non-denaturing chromatography, size exclusion chromatography). Human IgG Fc regions are of particular use in the present disclosure, and can be the Fc region from human IgG1, IgG2 or IgG4.


Fv: The term “Fv” refers to the minimum antibody fragment derivable from an immunoglobulin that contains a complete target recognition and binding site. This region consists of a dimer of one heavy and one light chain variable domain in a tight, noncovalent association (VH-VL dimer). It is in this configuration that the three CDRs of each variable domain interact to define a target binding site on the surface of the VH-VL dimer. Often, the six CDRs confer target binding specificity to the antibody. However, in some instances even a single variable domain (or half of an Fv comprising only three CDRs specific for a target) can have the ability to recognize and bind target. The reference to a VH-VL dimer herein is not intended to convey any particular configuration. By way of example and not limitation, the VH and VL can come together in any configuration described herein to form a half antibody, or can each be present on a separate half antibody and come together to form an antigen binding domain when the separate half antibodies associate, for example to form a TBM of the disclosure. When present on a single polypeptide chain (e.g., a scFv), the VH and be N-terminal or C-terminal to the VL.


Half Antibody: The term “half antibody” refers to a molecule that comprises at least one ABM or ABM chain and can associate with another molecule comprising an ABM or ABM chain through, e.g., a disulfide bridge or molecular interactions (e.g., knob-in-hole interactions between Fc heterodimers). A half antibody can be composed of one polypeptide chain or more than one polypeptide chains (e.g., the two polypeptide chains of a Fab). In an embodiment, a half-antibody comprises an Fc region.


An example of a half antibody is a molecule comprising a heavy and light chain of an antibody (e.g., an IgG antibody). Another example of a half antibody is a molecule comprising a first polypeptide comprising a VL domain and a CL domain, and a second polypeptide comprising a VH domain, a CH1 domain, a hinge domain, a CH2 domain, and a CH3 domain, where the VL and VH domains form an ABM. Yet another example of a half antibody is a polypeptide comprising an scFv domain, a CH2 domain and a CH3 domain.


A half antibody might include more than one ABM, for example a half-antibody comprising (in N- to C-terminal order) an scFv domain, a CH2 domain, a CH3 domain, and another scFv domain.


Half antibodies might also include an ABM chain that when associated with another ABM chain in another half antibody forms a complete ABM.


Thus, a MBM can comprise one, more typically two, or even more than two half antibodies, and a half antibody can comprise one or more ABMs or ABM chains.


In some MBMs, a first half antibody will associate, e.g., heterodimerize, with a second half antibody. In other MBMs, a first half antibody will be covalently linked to a second half antibody, for example through disulfide bridges or chemical crosslinking. In yet other MBMs, a first half antibody will associate with a second half antibody through both covalent attachments and non-covalent interactions, for example disulfide bridges and knob-in-hole interactions.


The term “half antibody” is intended for descriptive purposes only and does not connote a particular configuration or method of production. Descriptions of a half antibody as a “first” half antibody, a “second” half antibody, a “left” half antibody, a “right” half antibody or the like are merely for convenience and descriptive purposes.


Hexavalent: The term “hexavalent” as used herein in the context of an antigen-binding molecule (e.g., a TBM) refers to an antigen-binding molecule that has six antigen-binding domains. Hexavalent TBMs of the disclosure generally have three pairs of antigen-binding domains that each bind to the same antigen, although different configurations (e.g., three antigen-binding domains, e.g., variant CD58 domains, that bind to CD2, two antigen-binding domains that bind to a component of a TCR complex, and one antigen-binding domain that binds to a TAA, or three antigen-binding domains that bind to CD2, two antigen-binding domains that bind to a TAA, and one antigen-binding domain that binds to a component of a TCR complex) are within the scope of the disclosure. Examples of hexavalent TBMs are shown schematically in FIGS. 2U-2V.


Hole: In the context of a knob-into-hole, a “hole” refers to at least one amino acid side chain which is recessed from the interface of a first Fc chain and is therefore positionable in a compensatory “knob” on the adjacent interfacing surface of a second Fc chain so as to stabilize the Fc heterodimer, and thereby favor Fc heterodimer formation over Fc homodimer formation, for example.


Host cell or recombinant host cell: The terms “host cell” or “recombinant host cell” refer to a cell that has been genetically-engineered, e.g., through introduction of a heterologous nucleic acid. It should be understood that such terms are intended to refer not only to the particular subject cell but to the progeny of such a cell. Because certain modifications can occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term “host cell” as used herein. A host cell can carry the heterologous nucleic acid transiently, e.g., on an extrachromosomal heterologous expression vector, or stably, e.g., through integration of the heterologous nucleic acid into the host cell genome. For purposes of expressing an antigen-binding molecule, a host cell can be a cell line of mammalian origin or mammalian-like characteristics, such as monkey kidney cells (COS, e.g., COS-1, COS-7), HEK293, baby hamster kidney (BHK, e.g., BHK21), Chinese hamster ovary (CHO), NSO, PerC6, BSC-1, human hepatocellular carcinoma cells (e.g., Hep G2), SP2/0, HeLa, Madin-Darby bovine kidney (MDBK), myeloma and lymphoma cells, or derivatives and/or engineered variants thereof. The engineered variants include, e.g., glycan profile modified and/or site-specific integration site derivatives.


Human Antibody: The term “human antibody” as used herein includes antibodies having variable regions in which both the framework and CDR regions are derived from sequences of human origin. Furthermore, if the antibody contains a constant region, the constant region also is derived from such human sequences, e.g., human germline sequences, or mutated versions of human germline sequences or antibody containing consensus framework sequences derived from human framework sequences analysis, for example, as described in Knappik et al., 2000, J Mol Biol 296, 57-86. The structures and locations of immunoglobulin variable domains, e.g., CDRs, can be defined using well known numbering schemes, e.g., the Kabat numbering scheme, the Chothia numbering scheme, or a combination of Kabat and Chothia (see, e.g., Lazikani et al., 1997, J. Mol. Bio. 273:927 948; Kabat et al., 1991, Sequences of Proteins of Immunological Interest, 5th edit., NIH Publication no. 91-3242 U.S. Department of Health and Human Services; Chothia et al., 1987, J. Mol. Biol. 196:901-917; Chothia et al., 1989, Nature 342:877-883).


Human antibodies can include amino acid residues not encoded by human sequences (e.g., mutations introduced by random or site-specific mutagenesis in vitro or by somatic mutation in vivo, or a conservative substitution to promote stability or manufacturing). However, the term “human antibody”, as used herein, is not intended to include antibodies in which CDR sequences derived from the germline of another mammalian species, such as a mouse, have been grafted onto human framework sequences.


Humanized: The term “humanized” forms of non-human (e.g., murine) antibodies are chimeric antibodies that contain minimal sequence derived from non-human immunoglobulin. For the most part, humanized antibodies are human immunoglobulins (recipient antibody) in which residues from a hypervariable region of the recipient are replaced by residues from a hypervariable region of a non-human species (donor antibody) such as mouse, rat, rabbit or non-human primate having the desired specificity, affinity, and capacity. In some instances, framework region (FR) residues of the human immunoglobulin are replaced by corresponding non-human residues. Furthermore, humanized antibodies can comprise residues that are not found in the recipient antibody or in the donor antibody. These modifications are made to further refine antibody performance. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the hypervariable loops correspond to those of a non-human immunoglobulin and all or substantially all of the FRs are those of a human immunoglobulin lo sequence. The humanized antibody optionally will also comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin. For further details, see Jones et al., 1986, Nature 321:522-525; Riechmann et al., 1988, Nature 332:323-329; and Presta, 1992, Curr. Op. Struct. Biol. 2:593-596. See also the following review articles and references cited therein: Vaswani and Hamilton, 1998, Ann. Allergy, Asthma & Immunol. 1:105-115; Harris, 1995, Biochem. Soc. Transactions 23:1035-1038; Hurle and Gross, 1994, Curr. Op. Biotech. 5:428-433.


Knob: In the context of a knob-into-hole, a “knob” refers to at least one amino acid side chain which projects from the interface of a first Fc chain and is therefore positionable in a compensatory “hole” in the interface with a second Fc chain so as to stabilize the Fc heterodimer, and thereby favor Fc heterodimer formation over Fc homodimer formation, for example.


Knobs and holes (or knobs-into-holes): One mechanism for Fc heterodimerization is generally referred to in the art as “knobs and holes”, or “knob-in-holes”, or “knobs-into-holes”. These terms refer to amino acid mutations that create steric influences to favor formation of Fc heterodimers over Fc homodimers, as described in, e.g., Ridgway et al., 1996, Protein Engineering 9(7):617; Atwell et al., 1997, J. Mol. Biol. 270:26; and U.S. Pat. No. 8,216,805. Knob-in-hole mutations can be combined with other strategies to improve heterodimerization, for example as described in Section 7.6.1.6.


Monoclonal Antibody: The term “monoclonal antibody” as used herein refers to polypeptides, including antibodies, antibody fragments, molecules (including MBMs), etc. that are derived from the same genetic source.


Monovalent: The term “monovalent” as used herein in the context of an antigen-binding molecule refers to an antigen-binding molecule that has a single antigen-binding domain.


Multispecific binding molecules: The term “multispecific binding molecules” or “MBMs” refers to molecules that specifically bind to at least two antigens and comprise two or more antigen-binding domains. The antigen-binding domains can each independently be an antibody fragment (e.g., scFv, Fab, nanobody), a ligand, or a non-antibody derived binder (e.g., fibronectin, Fynomer, DARPin).


Mutation or modification: In the context of the primary amino acid sequence of a polypeptide, the terms “modification” and “mutation” refer to an amino acid substitution, insertion, and/or deletion in the polypeptide sequence relative to a reference polypeptide. Additionally, the term “modification” further encompasses an alteration to an amino acid residue, for example by chemical conjugation (e.g., of a drug or polyethylene glycol moiety) or post-translational modification (e.g., glycosylation).


Nucleic Acid: The term “nucleic acid” is used herein interchangeably with the term “polynucleotide” and refers to deoxyribonucleotides or ribonucleotides and polymers thereof in either single- or double-stranded form. The term encompasses nucleic acids containing known nucleotide analogs or modified backbone residues or linkages, which are synthetic, naturally occurring, and non-naturally occurring, which have similar binding properties as the reference nucleic acid, and which are metabolized in a manner similar to the reference nucleotides. Examples of such analogs include, without limitation, phosphorothioates, phosphoramidates, methyl phosphonates, chiral-methyl phosphonates, 2-O-methyl ribonucleotides, and peptide-nucleic acids (PNAs).


Unless otherwise indicated, a particular nucleic acid sequence also implicitly encompasses conservatively modified variants thereof (e.g., degenerate codon substitutions) and complementary sequences, as well as the sequence explicitly indicated. Specifically, as detailed below, degenerate codon substitutions can be achieved by generating sequences in which the third position of one or more selected (or all) codons is substituted with mixed-base and/or deoxyinosine residues (Batzer et al., 1991, Nucleic Acid Res. 19:5081; Ohtsuka et al., 1985, J. Biol. Chem. 260:2605-2608; and Rossolini et al., 1994, Mol. Cell. Probes 8:91-98).


Operably linked: The term “operably linked” refers to a functional relationship between two or more peptide or polypeptide domains or nucleic acid (e.g., DNA) segments. In the context of a fusion protein or other polypeptide, the term “operably linked” means that two or more amino acid segments are linked so as to produce a functional polypeptide. For example, in the context of an antigen-binding molecule, separate ABMs (or chains of an ABM) can be operably linked through peptide linker sequences. In the context of a nucleic acid encoding a fusion protein, such as a polypeptide chain of an antigen-binding molecule, “operably linked” means that the two nucleic acids are joined such that the amino acid sequences encoded by the two nucleic acids remain in-frame. In the context of transcriptional regulation, the term refers to the functional relationship of a transcriptional regulatory sequence to a transcribed sequence. For example, a promoter or enhancer sequence is operably linked to a coding sequence if it stimulates or modulates the transcription of the coding sequence in an appropriate host cell or other expression system.


Pentavalent: The term “pentavalent” as used herein in the context of an antigen-binding molecule (e.g., a TBM) refers to an antigen-binding molecule that has five antigen-binding domains. Pentavalent TBMs of the disclosure generally have either (a) two pairs of antigen-binding domains that each bind to the same antigen and a single antigen-binding domain that binds to the third antigen or (b) three antigen-binding domains that bind to the same antigen and two antigen-binding domains that each bind to a separate antigen. An example of a pentavalent TBM is shown schematically in FIG. 1T.


Polypeptide and Protein: The terms “polypeptide” and “protein” are used interchangeably herein to refer to a polymer of amino acid residues. The terms encompass amino acid polymers in which one or more amino acid residue is an artificial chemical mimetic of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers and non-naturally occurring amino acid polymer. Additionally, the terms encompass amino acid polymers that are derivatized, for example, by synthetic derivatization of one or more side chains or termini, glycosylation, PEGylation, circular permutation, cyclization, linkers to other molecules, fusion to proteins or protein domains, and addition of peptide tags or labels.


Recognize: The term “recognize” as used herein refers to an ABM that finds and interacts (e.g., binds) with its epitope.


Sequence identity: Sequence identity between two similar sequences (e.g., antibody variable domains) can be measured by algorithms such as that of Smith, T. F. & Waterman, M. S. (1981) “Comparison Of Biosequences,” Adv. Appl. Math. 2:482 [local homology algorithm]; Needleman, S. B. & Wunsch, C D. (1970) “A General Method Applicable To The Search For Similarities In The Amino Acid Sequence Of Two Proteins,” J. Mol. Biol. 48:443 [homology alignment algorithm], Pearson, W. R. & Lipman, D. J. (1988) “Improved Tools For Biological Sequence Comparison,” Proc. Natl. Acad. Sci. (U.S.A.) 85:2444 [search for similarity method]; or Altschul, S. F. et al, 1990, “Basic Local Alignment Search Tool,” J. Mol. Biol. 215:403-10, the “BLAST” algorithm, see blast.ncbi.nlm.nih.gov/Blast.cgi. When using any of the aforementioned algorithms, the default parameters (for Window length, gap penalty, etc.) are used. In one embodiment, sequence identity is done using the BLAST algorithm, using default parameters.


Optionally, the identity is determined over a region that is at least about 50 nucleotides (or, in the case of a peptide or polypeptide, at least about 10 amino acids) in length, or in some cases over a region that is 100 to 500 or 1000 or more nucleotides (or 20, 50, 200 or more amino acids) in length. In some embodiments, the identity is determined over a defined domain, e.g., the VH or VL of an antibody. Unless specified otherwise, the sequence identity between two sequences is determined over the entire length of the shorter of the two sequences.


Single Chain Fab or scFab: The terms “single chain Fab” and “scFab” mean a polypeptide comprising an antibody heavy chain variable domain (VH), an antibody constant domain 1 (CH1), an antibody light chain variable domain (VL), an antibody light chain constant domain (CL) and a linker, such that the VH and VL are in association with one another and the CH1 and CL are in association with one another. In some embodiments, the antibody domains and the linker have one of the following orders in N-terminal to C-terminal direction: a) VH-CH1-linker-VL-CL, b) VL-CL-linker-VH-CH1, c) VH-CL-linker-VL-CH1 or d) VL-CH1-linker-VH-CL. The linker can be a polypeptide of at least 30 amino acids, for example between 32 and 50 amino acids. The single chain Fabs are stabilized via the natural disulfide bond between the CL domain and the CH1 domain.


Single Chain Fv or scFv: The term “single-chain Fv” or “scFv” as used herein refers to antibody fragments that comprise the VH and VL domains of an antibody, where these domains are present in a single polypeptide chain. The Fv polypeptide can further comprise a polypeptide linker between the VH and VL domains which enables the scFv to form the desired structure for antigen-binding. For a review of scFv see Pluckthun in The Pharmacology of Monoclonal Antibodies, vol. 113, Rosenburg and Moore eds., 1994, Springer-Verlag, New York, pp. 269-315.


Specifically (or selectively) binds: The term “specifically (or selectively) binds” to an antigen or an epitope refers to a binding reaction that is determinative of the presence of a cognate antigen or an epitope in a heterogeneous population of proteins and other biologics. The binding reaction can be but need not be mediated by an antibody or antibody fragment, but can also be mediated by, for example, any type of ABM described in 7.5, such as a ligand, a DARPin, etc. An ABM typically also has a dissociation rate constant (KD) (koff/kon) of less than 5×10−2M, less than 10−2M, less than 5×10−3M, less than 10−3M, less than 5×10−4M, less than 10−4M, less than 5×10−5M, less than 10−5M, less than 5×10−6M, less than 10−6M, less than 5×10−7M, less than 10−7M, less than 5×10−8M, less than 10−8M, less than 5×10−9M, or less than 10−9M, and binds to the target antigen with an affinity that is at least two-fold greater than its affinity for binding to a non-specific antigen (e.g., HSA). Binding affinity can be measured using a Biacore, SPR or BLI assay. The term “specifically binds” does not exclude cross-species reactivity. For example, an antigen-binding module (e.g., an antigen-binding fragment of an antibody) that “specifically binds” to an antigen from one species can also “specifically bind” to that antigen in one or more other species. Thus, such cross-species reactivity does not itself alter the classification of an antigen-binding module as a “specific” binder. In certain embodiments, an antigen-binding module that specifically binds to a human antigen has cross-species reactivity with one or more non-human mammalian species, e.g., a primate species (including but not limited to one or more of Macaca fascicularis, Macaca mulatta, and Macaca nemestrina) or a rodent species, e.g., Mus musculus. In other embodiments, the antigen-binding module does not have cross-species reactivity.


Subject: The term “subject” includes human and non-human animals. Non-human animals include all vertebrates, e.g., mammals and non-mammals, such as non-human primates, sheep, dog, cow, chickens, amphibians, and reptiles. Except when noted, the terms “patient” or “subject” are used herein interchangeably.


Tandem of VH Domains: The term “a tandem of VH domains (or VHs)” as used herein refers to a string of VH domains, consisting of multiple numbers of identical VH domains of an antibody. Each of the VH domains, except the last one at the end of the tandem, has its C-terminus connected to the N-terminus of another VH domain with or without a linker. A tandem has at least 2 VH domains, and in particular embodiments an antigen-binding molecule has 3, 4, 5, 6, 7, 8, 9, or 10 VH domains. The tandem of VH can be produced by joining the encoding nucleic acids of each VH domain in a desired order using recombinant methods with or without a linker (e.g., as described in Section 7.6.3) that enables them to be made as a single polypeptide chain. The N-terminus of the first VH domain in the tandem is defined as the N-terminus of the tandem, while the C-terminus of the last VH domain in the tandem is defined as the C-terminus of the tandem.


Tandem of VL Domains: The term “a tandem of VL domains (or VLs)” as used herein refers to a string of VL domains, consisting of multiple numbers of identical VL domains of an antibody. Each of the VL domains, except the last one at the end of the tandem, has its C-terminus connected to the N-terminus of another VL with or without a linker. A tandem has at least 2 VL domains, and in particular embodiments an antigen-binding molecule has 3, 4, 5, 6, 7, 8, 9, or 10 VL domains. The tandem of VL can be produced by joining the encoding nucleic acids of each VL domain in a desired order using recombinant methods with or without a linker (e.g., as described in Section 7.6.3) that enables them to be made as a single polypeptide chain. The N-terminus of the first VL domain in the tandem is defined as the N-terminus of the tandem, while the C-terminus of the last VL domain in the tandem is defined as the C-terminus of the tandem.


Target Antigen: By “target antigen” as used herein is meant the molecule that is bound non-covalently, reversibly and specifically by an antigen binding domain.


Tetravalent: The term “tetravalent” as used herein in the context of an antigen-binding molecule (e.g., a BBM or TBM) refers to an antigen-binding molecule that has four antigen-binding domains. Tetravalent TBMs of the disclosure generally have two antigen-binding domains that bind to the same antigen (e.g., CD2) and two antigen-binding domains that each bind to a separate antigen (e.g., a component of a TCR complex and a TAA). Examples of tetravalent BBMs are shown schematically in FIGS. 1AA-1AH and examples of tetravalent TBMs are shown schematically in FIGS. 2Q-2S.


Therapeutically effective amount: A “therapeutically effective amount” refers to an amount effective, at dosages and for periods of time necessary, to achieve a desired therapeutic result.


Treat, Treatment, Treating: As used herein, the terms “treat”, “treatment” and “treating” refer to the reduction or amelioration of the progression, severity and/or duration of a disease or disorder (e.g., a proliferative disorder), or the amelioration of one or more symptoms (e.g., one or more discernible symptoms) of a disorder resulting from the administration of one or more CD2 binding molecules of the disclosure. In some embodiments, the terms “treat”, “treatment” and “treating” refer to the amelioration of at least one measurable physical parameter of a disorder, such as growth of a tumor, not necessarily discernible by the patient. In other embodiments the terms “treat”, “treatment” and “treating” refer to the inhibition of the progression of a disorder, either physically by, e.g., stabilization of a discernible symptom, physiologically by, e.g., stabilization of a physical parameter, or both. In some embodiments, the terms “treat”, “treatment” and “treating” can refer to the reduction or stabilization of tumor size or cancerous cell count.


Trispecific binding molecules: The term “trispecific binding molecules” or “TBMs” refers to molecules that specifically bind to three antigens and comprise three or more antigen-binding domains. The TBMs of the disclosure comprise at least one antigen-binding domain, e.g., a variant CD58 domain, which is specific for CD2, at least one antigen-binding domain which is specific for a component of a TCR complex or a TAA, and at least one antigen-binding domain which is specific for a TAA or a second TAA. The antigen-binding domains can each independently be an antibody fragment (e.g., scFv, Fab, nanobody), a ligand, or a non-antibody derived binder (e.g., fibronectin, Fynomer, DARPin). Representative TBMs are illustrated in FIG. 1. TBMs can comprise one, two, three, four or even more polypeptide chains. For example, the TBM illustrated in FIG. 1M comprises a single polypeptide chain comprising three scFvs connected by ABM linkers one a single polypeptide chain. The TBM illustrated in FIG. 1K comprises two polypeptide chains comprising three scFvs connected by, inter alia, an Fc domain. The TBM illustrated in FIG. 1J comprises three polypeptide chains forming an scFv, a ligand, and a Fab connected by, inter alia, an Fc domain. The TBM illustrated in FIG. 1C comprises four polypeptide chains forming three Fabs connected by, inter alia, an Fc domain. The TBM illustrated in FIG. 1U comprises 6 polypeptide chains forming four Fabs and two scFvs connected by, inter alia, an Fc domain. In the TBMs of the disclosure, a variant CD58 domain can substitute for a Fab and/or scFv in any of the configurations illustrated.


Trivalent: The term “trivalent” as used herein in the context of an antigen-binding molecule (e.g., a MBM) refers to an antigen-binding molecule that has three antigen-binding domains. Typically, bispecific BBMs specifically bind to CD2 and a component of a TCR complex or a TAA and trispecific TBMs specifically bind to CD2 (by virtue of a variant CD58 domain), a component of a TCR complex or a TAA, and a TAA or a second TAA. Accordingly, the trivalent BBMs have three antigen binding domains, two of which bind to CD2 and one of which binds to, for example, a component of the TCR, or vice versa. TBMs have three antigen-binding domains that each bind to a different antigen. Examples of trivalent BBMs are shown schematically in FIGS. 1G-1Z and examples of trivalent TBMs are shown schematically in FIGS. 2B-2V.


Tumor: The term “tumor” is used interchangeably with the term “cancer” herein, e.g., both terms encompass solid and liquid, e.g., diffuse or circulating, tumors. As used herein, the term “cancer” or “tumor” includes premalignant, as well as malignant cancers and tumors.


Tumor-Associated Antigen: The term “tumor-associated antigen” or “TAA” refers to a molecule (typically a protein, carbohydrate, lipid or some combination thereof) that is expressed on the surface of a cancer cell, either entirely or as a fragment (e.g., MHC/peptide), and which is useful for the preferential targeting of a pharmacological agent to the cancer cell. In some embodiments, a TAA is a marker expressed by both normal cells and cancer cells, e.g., a lineage marker, e.g., CD19 on B cells. In some embodiments, a TAA is a cell surface molecule that is overexpressed in a cancer cell in comparison to a normal cell, for instance, 1-fold over expression, 2-fold overexpression, 3-fold overexpression or more in comparison to a normal cell. In some embodiments, a TAA is a cell surface molecule that is inappropriately synthesized in the cancer cell, for instance, a molecule that contains deletions, additions or mutations in comparison to the molecule expressed on a normal cell. In some embodiments, a TAA will be expressed exclusively on the cell surface of a cancer cell, entirely or as a fragment (e.g., MHC/peptide), and not synthesized or expressed on the surface of a normal cell. Accordingly, the term “TAA” encompasses antigens that are specific to cancer cells, sometimes referred to as tumor-specific antigens (“TSAs”).


Trivalent: The term “trivalent” as used herein in the context of an antigen-binding molecule (e.g., a BBM) refers to an antigen-binding molecule that has three ABMs. Antigen-binding molecules of the disclosure that are BBMs are bispecific and specifically bind to CD2 (by virtue of a variant CD58 domain) and a second antigen, e.g., a component of a TCR complex. Accordingly, the trivalent BBMs have two ABMs that bind to one antigen (e.g., CD2) and one ABM that binds to a different antigen (e.g., a component of the TCR complex). Examples of trivalent configurations are shown schematically in FIGS. 1G-1Z. In the BBMs and TBMs of the disclosure, a variant CD58 domain can substitute for a Fab and/or scFv in any of the configurations illustrated.


Variable region: By “variable region” or “variable domain” as used herein is meant the region of an immunoglobulin that comprises one or more Ig domains substantially encoded by any of the Vκ, VΔ, and/or VH genes that make up the kappa, lambda, and heavy chain immunoglobulin genetic loci respectively, and contains the CDRs that confer antigen specificity. A “variable heavy domain” can pair with a “variable light domain” to form an antigen binding domain (“ABD”) or antigen-binding module (“ABM”). In addition, each variable domain comprises three hypervariable regions (“complementary determining regions,” “CDRs”) (CDR-H1, CDR-H2, CDR-H3 for the variable heavy domain and CDR-L1, CDR-L2, CDR-L3 for the variable light domain) and four framework (FR) regions, arranged from amino-terminus to carboxy-terminus in the following order: FR1-CDR1-FR2-CDR2-FR3-CDR3-FR4.


Vector: The term “vector” is intended to refer to a polynucleotide molecule capable of transporting another polynucleotide to which it has been linked. One type of vector is a “plasmid”, which refers to a circular double stranded DNA loop into which additional DNA segments can be ligated. Another type of vector is a viral vector, where additional DNA segments can be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) can be integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors are capable of directing the expression of genes to which they are operably linked. Such vectors are referred to herein as “recombinant expression vectors” (or simply, “expression vectors”). In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids. In the present specification, “plasmid” and “vector” can be used interchangeably as the plasmid is the most commonly used form of vector. However, the disclosure is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, adenoviruses and adeno-associated viruses), which serve equivalent functions.


VH: The term “VH” refers to the variable region of an immunoglobulin heavy chain of an antibody, including the heavy chain of an Fv, scFv, dsFv or Fab.


VL: The term “VL” refers to the variable region of an immunoglobulin light chain, including the light chain of an Fv, scFv, dsFv or Fab.


VH-VL or VH-VL Pair: In reference to a VH-VL pair, whether on the same polypeptide chain or on different polypeptide chains, the terms “VH-VL” and “VH-VL pair” are used for convenience and are not intended to convey any particular orientation, unless the context dictates otherwise. Thus, a scFv comprising a “VH-VL” or “VH-VL pair” can have the VH and VL domains in any orientation, for example the VH N-terminal to the VL or the VL N-terminal to the VH.


7.2. CD2 Binding Molecules

The present disclosure relates to CD2 binding molecules that comprise a variant CD58 domain as described in Section 7.3. Optionally, the CD2 binding molecules can be multispecific and include one or more antigen binding modules (ABMs) that bind to other target molecules, for example as described in Section 7.5.


The CD2 binding molecules can be fused or chemically conjugated (including both covalent and non-covalent conjugations) to a heterologous protein or polypeptide (or fragment thereof, for example to a polypeptide of at least 10, at least 20, at least 30, at least 40, at least 50, at least 60, at least 70, at least 80, at least 90 or at least 100 amino acids). For example, a CD2 binding molecule can be fused directly or indirectly to a detectable protein, e.g., an enzyme or a fluorescent protein such as those described in Section 7.14. Methods for fusing or conjugating proteins, polypeptides, or peptides to an antibody or an antibody fragment are known and can be used to fuse or conjugate a protein or polypeptide to a CD2 binding molecule of the disclosure. See, e.g., U.S. Pat. Nos. 5,336,603, 5,622,929, 5,359,046, 5,349,053, 5,447,851, and 5,112,946; European Patent Nos. EP 307,434 and EP 367,166; International Publication Nos. WO 96/04388 and WO 91/06570; Ashkenazi et al., 1991, Proc. Natl. Acad. Sci. USA 88:10535-10539; Zheng et al., 1995, J. Immunol. 154:5590-5600; and Vil et al., 1992, Proc. Natl. Acad. Sci. USA 89:11337-11341.


Exemplary fusion proteins are Ig fusions comprising the variant CD58 domains of the disclosure, as described in Section 7.4.


Additional CD2 binding molecules can be generated through the techniques of gene-shuffling, motif-shuffling, exon-shuffling, and/or codon-shuffling (collectively referred to as “DNA shuffling”). DNA shuffling can be employed to alter the activities of molecules of the disclosure or fragments thereof (e.g., molecules or fragments thereof with higher affinities and lower dissociation rates). See, generally, U.S. Pat. Nos. 5,605,793, 5,811,238, 5,830,721, 5,834,252, and 5,837,458; Patten et al., 1997, Curr. Opinion Biotechnol. 8:724-33; Harayama, 1998, Trends Biotechnol. 16(2):76-82; Hansson et al., 1999, J. Mol. Biol. 287:265-76; and Lorenzo and Blasco, 1998, Biotechniques 24(2):308-313. The CD2 binding molecules described herein or fragments thereof can be altered by being subjected to random mutagenesis by error-prone PCR, random nucleotide insertion or other methods prior to recombination. A polynucleotide encoding a fragment of a CD2 binding molecule described herein can be recombined with one or more components, motifs, sections, parts, domains, fragments, etc. of one or more heterologous molecules.


Moreover, CD2 binding molecules can be fused to marker sequences, such as a peptide to facilitate purification. In some embodiments, the marker amino acid sequence is a hexa-histidine peptide (SEQ ID NO: 716), such as the tag provided in a pQE vector (QIAGEN, Inc., 9259 Eton Avenue, Chatsworth, Calif., 91311), among others, many of which are commercially available. As described in Gentz et al., 1989, Proc. Natl. Acad. Sci. USA 86:821-824, for instance, hexa-histidine (SEQ ID NO: 716) provides for convenient purification of the fusion protein. Other peptide tags useful for purification include, but are not limited to, the hemagglutinin (“HA”) tag, which corresponds to an epitope derived from the influenza hemagglutinin protein (Wilson et al., 1984 Cell 37:767), and the “flag” tag.


7.3. Variant CD58 Domains

CD58, also known as LFA-3, is the natural ligand for CD2. CD58/LFA-3 proteins are glycoproteins that are expressed on the surfaces of a variety of cell types (Dustin et al., 1991, Annu. Rev. Immunol. 9:27) and play roles in mediating T-cell interactions with APCs in both antigen-dependent and antigen-independent manners (Wallner et al., 1987, J. Exp. Med. 166:923).


The sequence of human CD58 has the Uniprot identifier P19256 (www.uniprot.org/uniprot/P19256). The extracellular region of human CD58 comprises two Ig-like domains. The most N-terminal Ig-like domain, referred to as domain 1, is of V-type, and the second Ig-like domain, named domain 2, is of C-type. As schematic overview of the CD58 domains is illustrated in FIG. 14.


The interactions between CD58 and CD2 have been mapped through x-ray crystallography and molecular modeling and occur through domain 1, the Ig-V domain, of CD58. See, e.g., Ikemizu et al., 1999, Proc. Natl. Acad. Sci. USA 96:4289-94; Sun et al., 1999, EMBO J. 18(11): 2941-2949; and Wang et al., 1999, Cell 97(6):791-803.


The CD58 variants provided by the present disclosure comprise a domain 1 that has been engineered to include a pair of cysteine substitutions that upon recombinant expression create a disulfide bridge. Without being bound by theory, it is believed that the introduction of disulfide bridges improves the stability (e.g., thermostability) of CD58, which is advantageous for manufacturing a therapeutic molecule with improved storage characteristics, without impairing the ability of domain 1 to bind to CD2. Exemplary amino acid pairs that can be substituted with cysteines in order to form a disulfide bridge upon expression (with numbering referring to the full length polypeptide) are (a) a V45C substitution and a M105C substitution; (b) a V54C substitution and a G88C substitution; (c) a V45C substitution and a M114C substitution; and (d) a W56C substitution and a L900 substitution.


The CD58 variants can also include other substitutions, for example substitutions that do not significantly reduce binding to CD2. The following substitutions (with numbering referring to the full length polypeptide) did not impact binding to CD2: F29S; V37K; V49Q; V86K; T113S; and L121G. Ikemizu et al., 1999, Proc. Natl. Acad. Sci. USA 96:4289-94. Accordingly, a CD58 moiety can include one, two, three, four, five or all six of the foregoing substitutions.


In contrast, substitution of residues E25, K29, K30, K32, D33, K34, E37, D84 and K87 (with numbering referring to the in the mature polypeptide) can reduce binding to CD2. Ikemizu et al., 1999, Proc. Natl. Acad. Sci. USA 96:4289-94. Accordingly, in some embodiments the CD58 domain retains the wild type residues at E25, K29, K30, K32, D33, K34, E37, D84 and K87.


Sequences CD58-1 through CD58-7 in Table 1 are wild type CD58 sequences (full length, extracellular domain, and Ig-V domain (domain 1) and optionally contain the substitutions disclosed in Ikemizu et al., 1999, Proc. Natl. Acad. Sci. USA 96:4289-94. Sequences CD58-8 through CD58-11 in Table 1 are wild type Ig-V domains engineered to include a cysteine pair as described herein.









TABLE 1







CD58 sequences










Name
Description
Sequence
SEQ ID NO:













CD58-1
Full length CD58,
MVAGSDAGRALGVLSVVCLLHCFGFISCFSQQIYGVVY
1



including signal
GNVTFHVPSNVPLKEVLWKKQKDKVAELENSEFRAFS




sequence and full
SFKNRVYLDTVSGSLTIYNLTSSDEDEYEMESPNITDTM




intracellular domain
KFFLYVLESLPSPTLTCALTNGSIEVQCMIPEHYNSHRG




(P19256)
LIMYSWDCPMEQCKRNSTSIYFKMENDLPQKIQCTLSN





PLFNTTSSIILTTCIPSSGHSRHRYALIPIPLAVITTCIVLY





MNGILKCDRKPDRTNSN′






CD58-2
Full length CD58,
MVAGSDAGRALGVLSVVCLLHCFGFISCFSQQIYGVVY
2



including signal
GNVTFHVPSNVPLKEVLWKKQKDKVAELENSEFRAFS




sequence and but
SFKNRVYLDTVSGSLTIYNLTSSDEDEYEMESPNITDTM




no intracellular
KFFLYVLESLPSPTLTCALTNGSIEVQCMIPEHYNSHRG




domain (P19256-2)
LIMYSWDCPMEQCKRNSTSIYFKMENDLPQKIQCTLSN





PLFNTTSSIILTTCIPSSGHSRHRYALIPIPLAVITTCIVLY





MNVL






CD58-3
Full length CD58, 
MVAGSDAGRALGVLSVVCLLHCFGFISCFSQQIYGVVY
3



including signal
GNVTFHVPSNVPLKEVLWKKQKDKVAELENSEFRAFS




sequence and
SFKNRVYLDTVSGSLTIYNLTSSDEDEYEMESPNITDTM




variant intracellular
KFFLYVLESLPSPTLTCALTNGSIEVQCMIPEHYNSHRG




domain (P19256-3)
LIMYSWDCPMEQCKRNSTSIYFKMENDLPQKIQCTLSN





PLFNTTSSIILTTCIPSSGHSRHRYALIPIPLAVITTCIVLY





MNGILKCDRKPDRTK






CD58-4
Extracellular domain
FSQQIYGVVYGNVTFHVPSNVPLKEVLWKKQKDKVAE
4



of CD58,
LENSEFRAFSSFKNRVYLDTVSGSLTIYNLTSSDEDEYE




corresponding to
MESPNITDTMKFFLYVLESLPSPTLTCALTNGSIEVQCM




amino acids 29-215
IPEHYNSHRGLIMYSWDCPMEQCKRNSTSIYFKMENDL




of CD58 (WT)
PQKIQCTLSNPLFNTTSSIILTTCIPSSGHSRHR






CD58-5
Extracellular domain
BSQQIYGVJYGNVTFHVPSNOPLKEVLWKKQKDK
5



of CD58,
VAELENSEFRAFSSFKNRVYLDTUSGSLTIYNLTS




corresponding to
SDEDEYEMESPNITDXMKFFLYVZESLPSPTLTCA




amino acids 29-215
LTNGSIEVQCMIPEHYNSHRGLIMYSWDCPMEQC




of CD58 (with
KRNSTSIYFKMENDLPQKIQCTLSNPLFNTTSSIILT




permitted
TCIPSSGHSRHR




substitutions)
B = F or S





J = V or K





O = V or Q





U = V or K





X = T or S





Z = L or G






CD58-6
Amino acids 30-123
SQQIYGVVYGNVTFHVPSNVPLKEVLWKKQKDKVAEL
6



(WT)
ENSEFRAFSSFKNRVYLDTVSGSLTIYNLTSSDEDEYE




Ig-V like domain
MESPNITDTMKFFLYVLES






CD58-7
Amino acids 30-123
SQQIYGVJYGNVTFHVPSNOPLKEVLWKKQKDKVAEL
7



(with permitted
ENSEFRAFSSFKNRVYLDTVSGSLTIYNLTSSDEDEYE




substitutions)
MESPNITDTMKFFLYVLES




Ig-V like domain
J = V or K





O = V or Q






CD58-8
Amino acids 30-123
SQQIYGVVYGNVTFHCPSNVPLKEVLWKKQKDKVAEL
8



(V45C_M105C)
ENSEFRAFSSFKNRVYLDTVSGSLTIYNLTSSDEDEYE




Ig-V like domain
CESPNITDTMKFFLYVLES






CD58-9
Amino acids 30-123
SQQIYGVVYGNVTFHVPSNVPLKECLWKKQKDKVAEL
9



(V54C_G88C)
ENSEFRAFSSFKNRVYLDTVSCSLTIYNLTSSDEDEYE




Ig-V like domain
MESPNITDTMKFFLYVLES






CD58-10
Amino acids 30-123
SQQIYGVVYGNVTFHCPSNVPLKEVLWKKQKDKVAEL
10



(V45C_M114C)
ENSEFRAFSSFKNRVYLDTVSGSLTIYNLTSSDEDEYE




Ig-V like domain
MESPNITDTCKFFLYVLES






CD58-11
Amino acids 30-123
SQQIYGVVYGNVTFHVPSNVPLKEVLCKKQKDKVAELE
11



(W56C_L90C)
NSEFRAFSSFKNRVYLDTVSGSCTIYNLTSSDEDEYEM




Ig-V like domain
ESPNITDTMKFFLYVLES









The CD58 domains of the disclosure comprises an amino acid sequence comprising at least 70% sequence identity to a CD2-binding portion of CD58, e.g., at least 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identity to a CD2-binding portion of CD58, together with at least one pair of cysteine substitutions, such as a V45C+M105C; V54C+G88C; V45C+M114C; or W56C+L900 (amino acid numbering based on the full length CD58 protein).


It has been established that CD58 fragments containing amino acid residues 30-123 of full length CD58 (i.e., the sequence designated as CD58-6 in Table 1 above) are sufficient for binding to CD2. Wang et al., 1999, Cell 97:791-803. Accordingly, in certain aspects, a CD58 moiety comprises an amino acid sequence comprising at least 70% sequence identity to amino acids 30-123 of CD58, e.g., at least 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identity to the amino acid sequence designated CD58-6 and contain at least one pair of cysteine substitutions, such as a V45C+M105C; V54C+G88C; V45C+M114C; or W56C+L900 (amino acid numbering based on the full length CD58 protein).


7.4. Ig Fusion Proteins

In certain aspects of the disclosure, the variant CD58 domains of the disclosure are in the form of Ig fusion proteins, for example an Ig fusion protein comprising an Fc region in addition to the variant CD58 domain.


In some embodiment, the Fc portion of an Ig fusion protein is a native Fc region. Exemplary Fc regions are IgG1, IgG2, IgG3, and IgG4 Fc regions.


In other embodiments, the Fc region is a variant Fc region.


In some aspects, the variant Fc region enhances affinity to the neonatal Fc receptor FcRn and/or extends half-life of the Ig fusion protein in vivo. Exemplary variants for enhancing FcRn affinity and/or extending half-life in vivo include but are not limited to 259I, 307Q, 308F, 311I, 311V, 378V, 378T, 426V, 428L, 434S, 436I, 436V, 250Q, 434A, 252Y, 254T, and 256E, wherein numbering is according to the EU index. In a particular embodiment, the variant comprises the amino acid substitution(s) 428L and/or 434S, wherein numbering is according to the EU index.


Other exemplary Fc sequences are described in Section 7.6.1


7.5. Multispecific Binding Molecules

The CD2 binding molecules of the disclosure can be multispecific, i.e., they can contain additional binding modules other than the CD2 ABM. For example, the CD2 binding molecules of the disclosure can be a bispecific binding molecule with a second ABM (“ABM2”), or a trispecific binding molecule with an ABM2 and a third ABM (“ABM3”), etc.


In some embodiments, ABM2 and/or ABM3 (when present), are chimeric or humanized monoclonal antibodies. Chimeric and/or humanized antibodies, can be engineered to minimize the immune response by a human patient to antibodies produced in non-human subjects or derived from the expression of non-human antibody genes. Chimeric antibodies comprise a non-human animal antibody variable region and a human antibody constant region. Such antibodies retain the epitope binding specificity of the original monoclonal antibody, but can be less immunogenic when administered to humans, and therefore more likely to be tolerated by the patient. For example, one or all (e.g., one, two, or three) of the variable regions of the light chain(s) and/or one or all (e.g., one, two, or three) of the variable regions the heavy chain(s) of a mouse antibody (e.g., a mouse monoclonal antibody) can each be joined to a human constant region, such as, without limitation an IgG1 human constant region. Chimeric monoclonal antibodies can be produced by known recombinant DNA techniques. For example, a gene encoding the constant region of a non-human antibody molecule can be substituted with a gene encoding a human constant region (see Robinson et al., PCT Patent Publication PCT/US86/02269; Akira, et al., European Patent Application 184,187; or Taniguchi, M., European Patent Application 171,496). In addition, other suitable techniques that can be used to generate chimeric antibodies are described, for example, in U.S. Pat. Nos. 4,816,567; 4,978,775; 4,975,369; and 4,816,397.


Chimeric or humanized antibodies and antigen binding fragments thereof of the present disclosure can be prepared based on the sequence of a murine monoclonal antibody. DNA encoding the heavy and light chain immunoglobulins can be obtained from a murine hybridoma of interest and engineered to contain non-murine (e.g., human) immunoglobulin sequences using standard molecular biology techniques. For example, to create a chimeric antibody, the murine variable regions can be linked to human constant regions using known methods (see e.g., U.S. Pat. No. 4,816,567 to Cabilly et al.). To create a humanized antibody, the murine CDR regions can be inserted into a human framework using known methods. See e.g., U.S. Pat. No. 5,225,539 to Winter, and U.S. Pat. Nos. 5,530,101; 5,585,089; 5,693,762 and 6,180,370 to Queen et al.


A humanized antibody can be produced using a variety of known techniques, including but not limited to, CDR-grafting (see, e.g., European Patent No. EP 239,400; International Publication No. WO 91/09967; and U.S. Pat. Nos. 5,225,539, 5,530,101, and 5,585,089), veneering or resurfacing (see, e.g., European Patent Nos. EP 592,106 and EP 519,596; Padlan, 1991, Molecular Immunology, 28(4/5):489-498; Studnicka et al., 1994, Protein Engineering, 7(6):805-814; and Roguska et al., 1994, PNAS, 91:969-973), chain shuffling (see, e.g., U.S. Pat. No. 5,565,332), and techniques disclosed in, e.g., U.S. Patent Application Publication No. US2005/0042664, U.S. Patent Application Publication No. US2005/0048617, U.S. Pat. Nos. 6,407,213, 5,766,886, International Publication No. WO 9317105, Tan et al., J. Immunol., 169:1119-25 (2002), Caldas et al., Protein Eng., 13(5):353-60 (2000), Morea et al., Methods, 20(3):267-79 (2000), Baca et al., J. Biol. Chem., 272(16):10678-84 (1997), Roguska et al., Protein Eng., 9(10):895-904 (1996), Couto et al., Cancer Res., 55 (23 Supp):5973s-5977s (1995), Couto et al., Cancer Res., 55(8):1717-22 (1995), Sandhu J S, Gene, 150(2):409-10 (1994), and Pedersen et al., J. Mol. Biol., 235(3):959-73 (1994). Often, framework residues in the framework regions will be substituted with the corresponding residue from the CDR donor antibody to alter, for example improve, antigen binding. These framework substitutions, e.g., conservative substitutions are identified by known methods, e.g., by modeling of the interactions of the CDR and framework residues to identify framework residues important for antigen binding and sequence comparison to identify unusual framework residues at particular positions. (See, e.g., Queen et al., U.S. Pat. No. 5,585,089; and Riechmann et al., 1988, Nature, 332:323).


As provided herein, humanized antibodies or antibody fragments can comprise one or more CDRs from nonhuman immunoglobulin molecules and framework regions where the amino acid residues comprising the framework are derived completely or mostly from human germline. Multiple techniques for humanization of antibodies or antibody fragments are well-known and can essentially be performed following the method of Winter and co-workers (Jones et al., Nature, 321:522-525 (1986); Riechmann et al., Nature, 332:323-327 (1988); Verhoeyen et al., Science, 239:1534-1536 (1988)), by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody, i.e., CDR-grafting (EP 239,400; PCT Publication No. WO 91/09967; and U.S. Pat. Nos. 4,816,567; 6,331,415; 5,225,539; 5,530,101; 5,585,089; 6,548,640). In such humanized antibodies and antibody fragments, substantially less than an intact human variable domain has been substituted by the corresponding sequence from a nonhuman species. Humanized antibodies are often human antibodies in which some CDR residues and possibly some framework (FR) residues are substituted by residues from analogous sites in rodent antibodies. Humanization of antibodies and antibody fragments can also be achieved by veneering or resurfacing (EP 592,106; EP 519,596; Padlan, 1991, Molecular Immunology, 28(4/5):489-498; Studnicka et al., Protein Engineering, 7(6):805-814 (1994); and Roguska et al., PNAS, 91:969-973 (1994)) or chain shuffling (U.S. Pat. No. 5,565,332).


The choice of human variable domains, both light and heavy, to be used in making the humanized antibodies is to reduce antigenicity. According to the so-called “best-fit” method, the sequence of the variable domain of a rodent antibody is screened against the entire library of known human variable-domain sequences. The human sequence which is closest to that of the rodent is then accepted as the human framework (FR) for the humanized antibody (Sims et al., J. Immunol., 151:2296 (1993); Chothia et al., J. Mol. Biol., 196:901 (1987)). Another method uses a particular framework derived from the consensus sequence of all human antibodies of a particular subgroup of light or heavy chains. The same framework can be used for several different humanized antibodies (see, e.g., Nicholson et al. Mol. Immun. 34 (16-17): 1157-1165 (1997); Carter et al., Proc. Natl. Acad. Sci. USA, 89:4285 (1992); Presta et al., J. Immunol., 151:2623 (1993). In some embodiments, the framework region, e.g., all four framework regions, of the heavy chain variable region are derived from a VH4_4-59 germline sequence. In one embodiment, the framework region can comprise, one, two, three, four or five modifications, e.g., substitutions, e.g., conservative substitutions, e.g., from the amino acid at the corresponding murine sequence. In one embodiment, the framework region, e.g., all four framework regions of the light chain variable region are derived from a VK3_1.25 germline sequence. In one embodiment, the framework region can comprise, one, two, three, four or five modifications, e.g., substitutions, e.g., conservative substitutions, e.g., from the amino acid at the corresponding murine sequence.


In certain embodiments, the CD2 binding molecules comprise a heavy chain variable region from a particular germline heavy chain immunoglobulin gene and/or a light chain variable region from a particular germline light chain immunoglobulin gene. For example, such antibodies can comprise or consist of a human antibody comprising heavy or light chain variable regions that are “the product of” or “derived from” a particular germline sequence. A human antibody that is “the product of” or “derived from” a human germline immunoglobulin sequence can be identified as such by comparing the amino acid sequence of the human antibody to the amino acid sequences of human germline immunoglobulins and selecting the human germline immunoglobulin sequence that is closest in sequence (i.e., greatest % identity) to the sequence of the human antibody (using the methods outlined herein). A human antibody that is “the product of” or “derived from” a particular human germline immunoglobulin sequence can contain amino acid differences as compared to the germline sequence, due to, for example, naturally-occurring somatic mutations or intentional introduction of site-directed mutation. However, a humanized antibody typically is at least 90% identical in amino acids sequence to an amino acid sequence encoded by a human germline immunoglobulin gene and contains amino acid residues that identify the antibody as being derived from human sequences when compared to the germline immunoglobulin amino acid sequences of other species (e.g., murine germline sequences). In certain cases, a humanized antibody can be at least 95, 96, 97, 98 or 99%, or even at least 96%, 97%, 98%, or 99% identical in amino acid sequence to the amino acid sequence encoded by the germline immunoglobulin gene. Typically, a humanized antibody derived from a particular human germline sequence will display no more than 10-20 amino acid differences from the amino acid sequence encoded by the human germline immunoglobulin gene (prior to the introduction of any skew, and ablation variants herein; that is, the number of variants is generally low, prior to the introduction of the variants of the disclosure). In certain cases, the humanized antibody can display no more than 5, or even no more than 4, 3, 2, or 1 amino acid difference from the amino acid sequence encoded by the germline immunoglobulin gene (again, prior to the introduction of any skew, pI and ablation variants herein; that is, the number of variants is generally low, prior to the introduction of the variants of the disclosure).


In one embodiment, the parent antibody has been affinity matured. Structure-based methods can be employed for humanization and affinity maturation, for example as described in U.S. Ser. No. 11/004,590. Selection based methods can be employed to humanize and/or affinity mature antibody variable regions, including but not limited to methods described in Wu et al., 1999, J. Mol. Biol. 294:151-162; Baca et al., 1997, J. Biol. Chem. 272(16):10678-10684; Rosok et al., 1996, J. Biol. Chem. 271(37): 22611-22618; Rader et al., 1998, Proc. Natl. Acad. Sci. USA 95: 8910-8915; Krauss et al., 2003, Protein Engineering 16(10):753-759. Other humanization methods can involve the grafting of only parts of the CDRs, including but not limited to methods described in U.S. Ser. No. 09/810,510; Tan et al., 2002, J. Immunol. 169:1119-1125; De Pascalis et al., 2002, J. Immunol. 169:3076-3084.


In some embodiments, a CD2 MBM comprises an ABM2 and/or an ABM3 (when present) which is a Fab. Fab domains can be produced by proteolytic cleavage of immunoglobulin molecules, using enzymes such as papain, or through recombinant expression. Fab domains typically comprise a CH1 domain attached to a VH domain which pairs with a CL domain attached to a VL domain. In a wild-type immunoglobulin, the VH domain is paired with the VL domain to constitute the Fv region, and the CH1 domain is paired with the CL domain to further stabilize the binding module. A disulfide bond between the two constant domains can further stabilize the Fab domain.


In some embodiments, a CD2 MBM comprises an ABM2 and/or an ABM3 (when present) which is a scFab. In an embodiment, the antibody domains and the linker in the scFab fragment have one of the following orders in N-terminal to C-terminal direction: a) VH-CH1-linker-VL-CL, or b) VL-CL-linker-VH-CH1. In some cases, VL-CL-linker-VH-CH1 is used.


In another embodiment, the antibody domains and the linker in the scFab fragment have one of the following orders in N-terminal to C-terminal direction: a) VH-CL-linker-VL-CH1 or b) VL-CH1-linker-VH-CL.


Optionally in the scFab fragment, additionally to the natural disulfide bond between the CL-domain and the CH1 domain, also the antibody heavy chain variable domain (VH) and the antibody light chain variable domain (VL) are disulfide stabilized by introduction of a disulfide bond between the following positions: i) heavy chain variable domain position 44 to light chain variable domain position 100, ii) heavy chain variable domain position 105 to light chain variable domain position 43, or iii) heavy chain variable domain position 101 to light chain variable domain position 100 (numbering according to EU index of Kabat).


Such further disulfide stabilization of scFab fragments is achieved by the introduction of a disulfide bond between the variable domains VH and VL of the single chain Fab fragments. Techniques to introduce unnatural disulfide bridges for stabilization for a single chain Fv are described e.g. in WO 94/029350, Rajagopal et al., 1997, Prot. Engin. 10:1453-59; Kobayashi et al., 1998, Nuclear Medicine & Biology, 25:387-393; and Schmidt, et al., 1999, Oncogene 18:1711-1721. In one embodiment, the optional disulfide bond between the variable domains of the scFab fragments is between heavy chain variable domain position 44 and light chain variable domain position 100. In one embodiment, the optional disulfide bond between the variable domains of the scFab fragments is between heavy chain variable domain position 105 and light chain variable domain position 43 (numbering according to EU index of Kabat).


In some embodiments, a CD2 MBM comprises an ABM2 and/or an ABM3 (when present) which is which is a scFv. Single chain Fv antibody fragments comprise the VH and VL domains of an antibody in a single polypeptide chain, are capable of being expressed as a single chain polypeptide, and retain the specificity of the intact antibody from which it is derived. Generally, the scFv polypeptide further comprises a polypeptide linker between the VH and VL domain that enables the scFv to form the desired structure for target binding. Examples of linkers suitable for connecting the VH and VL chains of an scFV are the ABM linkers identified in Section 7.6.3, for example any of the linkers designated L1 through L58.


Unless specified, as used herein an scFv can have the VL and VH variable regions in either order, e.g., with respect to the N-terminal and C-terminal ends of the polypeptide, the scFv can comprise VL-linker-VH or can comprise VH-linker-VL.


To create an scFv-encoding nucleic acid, the VH and VL-encoding DNA fragments are operably linked to another fragment encoding a linker, e.g., encoding any of the linkers described in Section 7.6.3 (such as the amino acid sequence (Gly4″Ser)3 (SEQ ID NO: 717)), such that the VH and VL sequences can be expressed as a contiguous single-chain protein, with the VL and VH regions joined by the flexible linker (see e.g., Bird et al., 1988, Science 242:423-426; Huston et al., 1988, Proc. Natl. Acad. Sci. USA 85:5879-5883; McCafferty et al., 1990, Nature 348:552-554).


In some embodiments, a CD2 MBM comprises an ABM2 and/or an ABM3 (when present) which is a Fv, a dsFv, a (Fab′)2, a single domain antibody (SDAB), a VH or VL domain, or a camelid VHH domain (also called a nanobody).


In some embodiments, a CD2 MBM comprises an ABM2 and/or an ABM3 (when present) can comprise a single domain antibody composed of a single VH or VL domain which exhibits sufficient affinity to that ABM's target molecule. In an embodiment, the single domain antibody is a camelid VHH domain (see, e.g., Riechmann, 1999, Journal of Immunological Methods 231:25-38; WO 94/04678).


Immunoglobulin-based ABMs can comprise modifications to framework residues within a VH and/or a VL, e.g. to improve the properties of a MBM containing the ABM. For example, framework modifications can be made to decrease immunogenicity of a MBM. One approach for making such framework modifications is to “back-mutate” one or more framework residues of the ABM to a corresponding germline sequence. Such residues can be identified by comparing framework sequences to germline sequences from which the ABM is derived. To “match” framework region sequences to desired germline configuration, residues can be “back-mutated” to a corresponding germline sequence by, for example, site-directed mutagenesis. MBMs having such “back-mutated” ABMs are intended to be encompassed by the disclosure.


Another type of framework modification involves mutating one or more residues within a framework region, or even within one or more CDR regions, to remove T-cell epitopes to thereby reduce potential immunogenicity of a MBM. This approach is also referred to as “deimmunization” and is described in further detail in U.S. Patent Publication 20030153043 by Carr et al.


ABM2 and/or ABM3, when present, can also be modified to have altered glycosylation, which can be useful, for example, to increase the affinity of a MBM for one or more of its antigens. Such carbohydrate modifications can be accomplished by, for example, altering one or more sites of glycosylation within an ABM sequence. For example, one or more amino acid substitutions can be made that result in elimination of one or more variable region framework glycosylation sites to thereby eliminate glycosylation at that site. Such aglycosylation can increase the affinity of the MBM for an antigen. Such an approach is described in, e.g., U.S. Pat. Nos. 5,714,350 and 6,350,861 by Co et al.


7.5.1. Immunoglobulin Based ABMs


7.5.1.1. Fabs


In certain aspects, ABM2 and/or ABM3 (when present) is a Fab domain.


For the MBMs of the disclosure, it is advantageous to use Fab heterodimerization strategies to permit the correct association of Fab domains belonging to the same ABM and minimize aberrant pairing of Fab domains belonging to different ABMs. For example, the Fab heterodimerization strategies shown in Table 2 below can be used:









TABLE 2







Fab Heterodimerization Strategies













Name
STRATEGY
VH
CH1
VL
CL
REFERENCE





F1
CrossMabCH1-CL
WT
CL domain
WT
CH1
Schaefer et al.,







domain
2011, Cancer Cell








2011; 20: 472-86;








PMID: 22014573.


F2
orthogonal Fab
39K, 62E
H172A,
1R, 38D,
L135Y,
Lewis et al., 2014,



VHVRD1CH1CRD2 -

F174G
(36F)
S176W
Nat Biotechnol



VLVRD1CλCRD2




32: 191-8


F3
orthogonal Fab
39Y
WT
38R
WT
Lewis et al., 2014,



VHVRD2CH1wt -




Nat Biotechnol



VLVRD2Cλwt




32: 191-8


F4
TCR CαCβ
39K
TCR Cα
38D
TCR Cβ
Wu et al., 2015,








MAbs 7: 364-76


F5
CR3
WT
T192E
WT
N137K,
Golay at al., 2016, J







S114A
Immunol 196: 3199-








211.


F6
MUT4
WT
L143Q,
WT
V133T,
Golay at al., 2016, J





S188V

S176V
Immunol 196: 3199-








211.


F7
DuetMab
WT
F126C
WT
S121C
Mazor et al., 2015,








MAbs 7: 377-89;








Mazor et al., 2015,








MAbs 7: 461-669.









Accordingly, in certain embodiments, correct association between the two polypeptides of a Fab is promoted by exchanging the VL and VH domains of the Fab for each other or exchanging the CH1 and CL domains for each other, e.g., as described in WO 2009/080251.


Correct Fab pairing can also be promoted by introducing one or more amino acid modifications in the CH1 domain and one or more amino acid modifications in the CL domain of the Fab and/or one or more amino acid modifications in the VH domain and one or more amino acid modifications in the VL domain. The amino acids that are modified are typically part of the VH:VL and CH1:CL interface such that the Fab components preferentially pair with each other rather than with components of other Fabs.


In one embodiment, the one or amino acid modifications are limited to the conserved framework residues of the variable (VH, VL) and constant (CH1, CL) domains as indicated by the Kabat numbering of residues. Almagro, 2008, Frontiers In Bioscience 13:1619-1633 provides a definition of the framework residues on the basis of Kabat, Chothia, and IMGT numbering schemes.


In one embodiment, the modifications introduced in the VH and CH1 and/or VL and CL domains are complementary to each other. Complementarity at the heavy and light chain interface can be achieved on the basis of steric and hydrophobic contacts, electrostatic/charge interactions or a combination of the variety of interactions. The complementarity between protein surfaces is broadly described in the literature in terms of lock and key fit, knob into hole, protrusion and cavity, donor and acceptor etc., all implying the nature of structural and chemical match between the two interacting surfaces.


In one embodiment, the one or more introduced modifications introduce a new hydrogen bond across the interface of the Fab components. In one embodiment, the one or more introduced modifications introduce a new salt bridge across the interface of the Fab components. Exemplary substitutions are described in WO 2014/150973 and WO 2014/082179.


In some embodiments, the Fab domain comprises a 192E substitution in the CH1 domain and 114A and 137K substitutions in the CL domain, which introduces a salt-bridge between the CH1 and CL domains (see, Golay et al., 2016, J Immunol 196:3199-211).


In some embodiments, the Fab domain comprises a 143Q and 188V substitutions in the CH1 domain and 113T and 176V substitutions in the CL domain, which serves to swap hydrophobic and polar regions of contact between the CH1 and CL domain (see, Golay et al., 2016, J Immunol 196:3199-211).


In some embodiments, the Fab domain can comprise modifications in some or all of the VH, CH1, VL, CL domains to introduce orthogonal Fab interfaces which promote correct assembly of Fab domains (Lewis et al., 2014 Nature Biotechnology 32:191-198). In an embodiment, 39K, 62E modifications are introduced in the VH domain, H172A, F174G modifications are introduced in the CH1 domain, 1R, 38D, (36F) modifications are introduced in the VL domain, and L135Y, S176W modifications are introduced in the CL domain. In another embodiment, a 39Y modification is introduced in the VH domain and a 38R modification is introduced in the VL domain.


Fab domains can also be modified to replace the native CH1:CL disulfide bond with an engineered disulfide bond, thereby increasing the efficiency of Fab component pairing. For example, an engineered disulfide bond can be introduced by introducing a 126C in the CH1 domain and a 121C in the CL domain (see, Mazor et al., 2015, MAbs 7:377-89).


Fab domains can also be modified by replacing the CH1 domain and CL domain with alternative domains that promote correct assembly. For example, Wu et al., 2015, MAbs 7:364-76, describes substituting the CH1 domain with the constant domain of the α T cell receptor and substituting the CL domain with the β domain of the T cell receptor, and pairing these domain replacements with an additional charge-charge interaction between the VL and VH domains by introducing a 38D modification in the VL domain and a 39K modification in the VH domain.


ABMs can comprise a single chain Fab fragment, which is a polypeptide consisting of an antibody heavy chain variable domain (VH), an antibody constant domain 1 (CH1), an antibody light chain variable domain (VL), an antibody light chain constant domain (CL) and a linker. In some embodiments, the antibody domains and the linker have one of the following orders in N-terminal to C-terminal direction: a) VH-CH1-linker-VL-CL, b) VL-CL-linker-VH-CH1, c) VH-CL-linker-VL-CH1 or d) VL-CH1-linker-VH-CL. The linker can be a polypeptide of at least 30 amino acids, e.g., between 32 and 50 amino acids. The single chain Fab domains are stabilized via the natural disulfide bond between the CL domain and the CH1 domain.


In an embodiment, the antibody domains and the linker in the single chain Fab fragment have one of the following orders in N-terminal to C-terminal direction: a) VH-CH1-linker-VL-CL, or b) VL-CL-linker-VH-CH1. In some cases, VL-CL-linker-VH-CH1 is used.


In another embodiment, the antibody domains and the linker in the single chain Fab fragment have one of the following orders in N-terminal to C-terminal direction: a) VH-CL-linker-VL-CH1 or b) VL-CH1-linker-VH-CL.


Optionally in the single chain Fab fragment, additionally to the natural disulfide bond between the CL-domain and the CH1 domain, also the antibody heavy chain variable domain (VH) and the antibody light chain variable domain (VL)ABM are disulfide stabilized by introduction of a disulfide bond between the following positions: i) heavy chain variable domain position 44 to light chain variable domain position 100, ii) heavy chain variable domain position 105 to light chain variable domain position 43, or iii) heavy chain variable domain position 101 to light chain variable domain position 100 (numbering according to EU index of Kabat).


In one embodiment, the optional disulfide bond between the variable domains of the single chain Fab fragments is between heavy chain variable domain position 44 and light chain variable domain position 100. In one embodiment, the optional disulfide bond between the variable domains of the single chain Fab fragments is between heavy chain variable domain position 105 and light chain variable domain position 43 (numbering according to EU index of Kabat).


7.5.1.2. scFvs


In certain aspects, an ABM is a single chain Fv or “scFv”. Examples of linkers suitable for connecting the VH and VL chains of an scFV are the ABM linkers identified in Section 7.6.3, for example any of the linkers designated L1 through L54.


To create an scFv-encoding nucleic acid, the VH and VL-encoding DNA fragments are operably linked to another fragment encoding a linker, e.g., encoding any of the ABM linkers described in Section 7.6.3 (such as the amino acid sequence (Gly4″Ser)3 (SEQ ID NO: 717).


7.5.1.3. Other Immunoglobulin-Based ABMs.


MBMs can also comprise ABMs having an immunoglobulin format which is other than Fab or scFv, for example Fv, dsFv, (Fab′)2, a single domain antibody (SDAB), a VH or VL domain, or a camelid VHH domain (also called a nanobody).


An ABM2 and/or ABM3 (when present) can be a single domain antibody composed of a single VH or VL domain which exhibits sufficient affinity to the target. In an embodiment, the single domain antibody is a camelid VHH domain (see, e.g., Riechmann, 1999, Journal of Immunological Methods 231:25-38; WO 94/04678).


7.5.2. Non-Immunoglobulin Based ABM


In certain embodiments, ABM2 and/or ABM3 (when present) is derived from non-antibody scaffold proteins (including, but not limited to, designed ankyrin repeat proteins (DARPins), Avimers (short for avidity multimers), Anticalin/Lipocalins, Centyrins, Kunitz domains, Adnexins, Affilins, Affitins (also known as Nonfitins), Knottins, Pronectins, Versabodies, Duocalins, and Fynomers), ligands, receptors, cytokines or chemokines.


Non-immunoglobulin scaffolds that can be used in the MBMs include those listed in Tables 3 and 4 of Mintz and Crea, 2013, Bioprocess International 11(2):40-48; in FIG. 1, Table 1 and Figure I of Vazquez-Lombardi et al., 2015, Drug Discovery Today 20(10):1271-83; in Table 1 and Box 2 of Skrlec et al., 2015, Trends in Biotechnology 33(7):408-18. The contents of Tables 3 and 4 of Mintz and Crea, 2013, Bioprocess International 11(2):40-48; in FIG. 1, Table 1 and Figure I of Vazquez-Lombardi et al., 2015, Drug Discovery Today 20(10):1271-83; in Table 1 and Box 2 of Skrlec et al., 2015, Trends in Biotechnology 33(7):408-18 (collectively, “Scaffold Disclosures”). In a particular embodiment, the Scaffold Disclosures are incorporated by reference for what they disclose relating to Adnexins. In another embodiment, the Scaffold Disclosures are incorporated by reference for what they disclose relating to Avimers. In another embodiment, the Scaffold Disclosures are incorporated by reference for what they disclose relating to Affibodies. In yet another embodiment, the Scaffold Disclosures are incorporated by reference for what they disclose relating to Anticalins. In yet another embodiment, the Scaffold Disclosures are incorporated by reference for what they disclose relating to DARPins. In yet another embodiment, the Scaffold Disclosures are incorporated by reference for what they disclose relating to Kunitz domains. In yet another embodiment, the Scaffold Disclosures are incorporated by reference for what they disclose relating to Knottins. In yet another embodiment, the Scaffold Disclosures are incorporated by reference for what they disclose relating to Pronectins. In yet another embodiment, the Scaffold Disclosures are incorporated by reference for what they disclose relating to Nanofitins. In yet another embodiment, the Scaffold Disclosures are incorporated by reference for what they disclose relating to Affilins. In yet another embodiment, the Scaffold Disclosures are incorporated by reference for what they disclose relating to Adnectins. In yet another embodiment, the Scaffold Disclosures are incorporated by reference for what they disclose relating to ABMs. In yet another embodiment, the Scaffold Disclosures are incorporated by reference for what they disclose relating to Adhirons. In yet another embodiment, the Scaffold Disclosures are incorporated by reference for what they disclose relating to Affimers. In yet another embodiment, the Scaffold Disclosures are incorporated by reference for what they disclose relating to Alphabodies. In yet another embodiment, the Scaffold Disclosures are incorporated by reference for what they disclose relating to Armadillo Repeat Proteins. In yet another embodiment, the Scaffold Disclosures are incorporated by reference for what they disclose relating to Atrimers/Tetranectins. In yet another embodiment, the Scaffold Disclosures are incorporated by reference for what they disclose relating to Obodies/OB-folds. In yet another embodiment, the Scaffold Disclosures are incorporated by reference for what they disclose relating to Centyrins. In yet another embodiment, the Scaffold Disclosures are incorporated by reference for what they disclose relating to Repebodies. In yet another embodiment, the Scaffold Disclosures are incorporated by reference for what they disclose relating to Anticalins. In yet another embodiment, the Scaffold Disclosures are incorporated by reference for what they disclose relating to Atrimers. In yet another embodiment, the Scaffold Disclosures are incorporated by reference for what they disclose relating to bicyclic peptides. In yet another embodiment, the Scaffold Disclosures are incorporated by reference for what they disclose relating to cys-knots. In yet another embodiment, the Scaffold Disclosures are incorporated by reference for what they disclose relating to Fn3 scaffolds (including Adnectins, Centryrins, Pronectins, and Tn3).


In an embodiment, an ABM2 and/or ABM3 (when present) can be a designed ankyrin repeat protein (“DARPin”). DARPins are antibody mimetic proteins that typically exhibit highly specific and high-affinity target protein binding. They are typically genetically engineered and derived from natural ankyrin proteins and consist of at least three, usually four or five repeat motifs of these proteins. Their molecular mass is about 14 or 18 kDa (kilodaltons) for four- or five-repeat DARPins, respectively. Examples of DARPins can be found, for example in U.S. Pat. No. 7,417,130. Multispecific binding molecules comprising DARPin binding modules and immunoglobulin-based binding modules are disclosed in, for example, U.S. Publication No. 2015/0030596 A1.


In another embodiment, ABM2 and/or ABM3 (when present) can be an Affibody. An Affibody is well known and refers to affinity proteins based on a 58 amino acid residue protein domain, derived from one of the IgG binding domain of staphylococcal protein A.


In another embodiment, ABM2 and/or ABM3 (when present) can be an Anticalin. Anticalins are well known and refer to another antibody mimetic technology, where the binding specificity is derived from Lipocalins. Anticalins can also be formatted as dual targeting protein, called Duocalins.


In another embodiment, ABM2 and/or ABM3 (when present) can be a Versabody. Versabodies are well known and refer to another antibody mimetic technology. They are small proteins of 3-5 kDa with >15% cysteines, which form a high disulfide density scaffold, replacing the hydrophobic core of typical proteins.


Other non-immunoglobulin ABMs include “A” domain oligomers (also known as Avimers) (see for example, U.S. Patent Application Publication Nos. 2005/0164301, 2005/0048512, and 2004/017576), Fn3 based protein scaffolds (see for example, U.S. Patent Application Publication 2003/0170753), VASP polypeptides, Avian pancreatic polypeptide (aPP), Tetranectin (based on CTLD3), Affililin (based on γB-crystallin/ubiquitin), Knottins, SH3 domains, PDZ domains, Tendamistat, Neocarzinostatin, Protein A domains, Lipocalins, Transferrin, or Kunitz domains. In one aspect, ABMs useful in the construction of the MBMs comprise fibronectin-based scaffolds as exemplified in WO 2011/130324.


Moreover, in certain aspects, ABM2 and/or ABM3 (when present) can comprise a ligand binding domain of a receptor or a receptor binding domain of a ligand.


7.6. Connectors

It is contemplated that the CD2 binding molecules can in some instances include pairs of ABMs or ABM chains (e.g., the VH-CH1 or VL-CL component of a Fab) connected directly to one another, e.g., as a fusion protein without a linker. For example, the CD2 binding molecules comprise connector moieties linking individual ABMs or ABM chains. The use of connector moieties can improve target binding, for example by increasing flexibility of the ABMs within a CD2 binding molecule and thus reducing steric hindrance. The ABMs or ABM chains can be connected to one another through, for example, Fc domains (each Fc domain representing a pair of associated Fc regions) and/or ABM linkers. The use of Fc domains will typically require the use of hinge regions as connectors of the ABMs or ABM chains for optimal antigen binding. Thus, the term “connector” encompasses, but is not limited to, Fc regions, Fc domains, and hinge regions.


Connectors can be selected or modified to, for example, increase or decrease the biological half-life of a CD2 binding molecule. For example, to decrease biological half-life, one or more amino acid mutations can be introduced into a CH2-CH3 domain interface region of an Fc-hinge fragment such that a CD2 binding molecule comprising the fragment has impaired Staphylococcyl Protein A (SpA) binding relative to native Fc-hinge domain SpA binding. This approach is described in further detail in U.S. Pat. No. 6,165,745 by Ward et al. Alternatively, a CD2 binding molecule can be modified to increase its biological half-life. For example, one or more of the following mutations can be introduced: T252L, T254S, T256F, as described in U.S. Pat. No. 6,277,375 to Ward. Alternatively, to increase the biological half-life, a CD2 binding molecule can be altered within a CH1 or CL region to contain a salvage receptor binding epitope taken from two loops of a CH2 domain of an Fc region of an IgG, as described in U.S. Pat. Nos. 5,869,046 and 6,121,022 by Presta et al.


Examples of Fc domains (formed by the pairing of two Fc regions), hinge regions and ABM linkers are described in Sections 7.6.1, 7.6.2, and 7.6.3, respectively.


7.6.1. Fc Domains


The CD2 binding molecules can include an Fc domain derived from any suitable species. In one embodiment, the Fc domain is derived from a human Fc domain.


The Fc domain can be derived from any suitable class of antibody, including IgA (including subclasses IgA1 and IgA2), IgD, IgE, IgG (including subclasses IgG1, IgG2, IgG3 and IgG4), and IgM. In one embodiment, the Fc domain is derived from IgG1, IgG2, IgG3 or IgG4. In one embodiment, the Fc domain is derived from IgG1. In one embodiment, the Fc domain is derived from IgG4.


The Fc domain comprises two polypeptide chains, each referred to as a heavy chain Fc region. The two heavy chain Fc regions dimerize to create the Fc domain. The two Fc regions within the Fc domain can be the same or different from one another. In a native antibody the Fc regions are typically identical, but for the purpose of producing multispecific binding molecules of the disclosure, the Fc regions might advantageously be different to allow for heterodimerization, as described in Section 7.6.1.5 below.


Typically each heavy chain Fc region comprises or consists of two or three heavy chain constant domains.


In native antibodies, the heavy chain Fc region of IgA, IgD and IgG is composed of two heavy chain constant domains (CH2 and CH3) and that of IgE and IgM is composed of three heavy chain constant domains (CH2, CH3 and CH4). These dimerize to create an Fc domain.


In the present disclosure, the heavy chain Fc region can comprise heavy chain constant domains from one or more different classes of antibody, for example one, two or three different classes.


In one embodiment, the heavy chain Fc region comprises CH2 and CH3 domains derived from IgG1. An exemplary sequence of a heavy chain Fc region derived from human IgG1 is given in SEQ ID NO:1338:









(SEQ ID NO: 1338)


DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHED





PEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYK





CKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVK





GFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG





NVFSCSVMHEALHNHYTQKSLSLSP.






In some embodiments, a CD2 binding molecule of the disclosure comprises a Fc region whose amino acid sequence comprises the amino acid sequence of SEQ ID NO:1338 modified with one or more of the substitutions described in Section 7.6.1 and its subparts.


In one embodiment, the heavy chain Fc region comprises CH2 and CH3 domains derived from IgG2.


In one embodiment, the heavy chain Fc region comprises CH2 and CH3 domains derived from IgG3.


In one embodiment, the heavy chain Fc region comprises CH2 and CH3 domains derived from IgG4.


In one embodiment, the heavy chain Fc region comprises a CH4 domain from IgM. The IgM CH4 domain is typically located at the C-terminus of the CH3 domain.


In one embodiment, the heavy chain Fc region comprises CH2 and CH3 domains derived from IgG and a CH4 domain derived from IgM.


It will be appreciated that the heavy chain constant domains for use in producing a heavy chain Fc region for the CD2 binding molecules of the present disclosure can include variants of the naturally occurring constant domains described above. Such variants can comprise one or more amino acid variations compared to wild type constant domains. In one example the heavy chain Fc region of the present disclosure comprises at least one constant domain that varies in sequence from the wild type constant domain. It will be appreciated that the variant constant domains can be longer or shorter than the wild type constant domain. For example, the variant constant domains are at least 60% identical or similar to a wild type constant domain. In another example the variant constant domains are at least 70% identical or similar. In another example the variant constant domains are at least 75% identical or similar. In another example the variant constant domains are at least 80% identical or similar. In another example the variant constant domains are at least 85% identical or similar. In another example the variant constant domains are at least 90% identical or similar. In another example the variant constant domains are at least 95% identical or similar. In another example the variant constant domains are at least 99% identical or similar. Exemplary Fc variants are described in Sections 7.6.1.1 through 7.6.1.5, infra.


IgM and IgA occur naturally in humans as covalent multimers of the common H2L2 antibody unit. IgM occurs as a pentamer when it has incorporated a J-chain, or as a hexamer when it lacks a J-chain. IgA occurs as monomer and dimer forms. The heavy chains of IgM and IgA possess an 18 amino acid extension to the C-terminal constant domain, known as a tailpiece. The tailpiece includes a cysteine residue that forms a disulfide bond between heavy chains in the polymer, and is believed to have an important role in polymerization. The tailpiece also contains a glycosylation site. In certain embodiments, the CD2 binding molecules of the present disclosure do not comprise a tailpiece.


The Fc domains that are incorporated into the CD2 binding molecules of the present disclosure can comprise one or more modifications that alter one or more functional properties of the proteins, such as serum half-life, complement fixation, Fc receptor binding, and/or antigen-dependent cellular cytotoxicity. Furthermore, a CD2 binding molecule can be chemically modified (e.g., one or more chemical moieties can be attached to the CD2 binding molecule) or be modified to alter its glycosylation, again to alter one or more functional properties of the CD2 binding molecule.


Effector function of an antibody molecule includes complement-mediated effector function, which is mediated by, for example, binding of the C1 component of the complement to the antibody. Activation of complement is important in the opsonization and direct lysis of pathogens. In addition, it stimulates the inflammatory response by recruiting and activating phagocytes to the site of complement activation. Effector function includes Fc receptor (FcR)-mediated effector function, which can be triggered upon binding of the constant domains of an antibody to an Fc receptor (FcR). Antigen-antibody complex-mediated crosslinking of Fc receptors on effector cell surfaces triggers a number of important and diverse biological responses including engulfment and destruction of antibody-coated particles, clearance of immune complexes, lysis of antibody-coated target cells by killer cells (called antibody-dependent cell-mediated cytotoxicity, or ADCC), release of inflammatory mediators, placental transfer and control of immunoglobulin production.


Fc regions can be altered by replacing at least one amino acid residue with a different amino acid residue to alter the effector functions. For example, one or more amino acids can be replaced with a different amino acid residue such that the Fc region has an altered affinity for an effector ligand. The effector ligand to which affinity is altered can be, for example, an Fc receptor or the C1 component of complement. This approach is described in, e.g., U.S. Pat. Nos. 5,624,821 and 5,648,260, both by Winter et al. Modified Fc regions can also alter C1q binding and/or reduce or abolish complement dependent cytotoxicity (CDC). This approach is described in, e.g., U.S. Pat. No. 6,194,551 by Idusogie et al. Modified Fc regions can also alter the ability of an Fc region to fix complement. This approach is described in, e.g., the PCT Publication WO 94/29351 by Bodmer et al. Allotypic amino acid residues include, but are not limited to, constant region of a heavy chain of the IgG1, IgG2, and IgG3 subclasses as well as constant region of a light chain of the kappa isotype as described by Jefferis et al., 2009, MAbs, 1:332-338.


Fc regions can also be modified to “silence” the effector function, for example, to reduce or eliminate the ability of a CD2 binding molecule to mediate antibody dependent cellular cytotoxicity (ADCC) and/or antibody dependent cellular phagocytosis (ADCP). This can be achieved, for example, by introducing a mutation in an Fc region. Such mutations have been described in the art: LALA and N297A (Strohl, 2009, Curr. Opin. Biotechnol. 20(6):685-691); and D265A (Baudino et al., 2008, J. Immunol. 181: 6664-69; Strohl, supra). Examples of silent Fc IgG1 antibodies comprise the so-called LALA mutant comprising L234A and L235A mutation in the IgG1 Fc amino acid sequence. Another example of a silent IgG1 antibody comprises the D265A mutation. Another silent IgG1 antibody comprises the so-called DAPA mutant comprising D265A and P329A mutations in the IgG1 Fc amino acid sequence. Another silent IgG1 antibody comprises the N297A mutation, which results in aglycosylated/non-glycosylated antibodies.


Fc regions can be modified to increase the ability of a CD2 binding molecule containing the Fc region to mediate antibody dependent cellular cytotoxicity (ADCC) and/or antibody dependent cellular phagocytosis (ADCP), for example, by modifying one or more amino acid residues to increase the affinity of the CD2 binding molecule for an activating Fcγ receptor, or to decrease the affinity of the CD2 binding molecule for an inhibitory Fcγ receptor. Human activating Fcγ receptors include FcγRIa, FcγRIIa, FcγRIIIa, and FcγRIIIb, and human inhibitory Fcγ receptor includes FcγRIIb. This approach is described in, e.g., the PCT Publication WO 00/42072 by Presta. Moreover, binding sites on human IgG1 for FcγRI, FcγRII, FcγRIII and FcRn have been mapped and variants with improved binding have been described (see Shields et al., J. Biol. Chem. 276:6591-6604, 2001). Optimization of Fc-mediated effector functions of monoclonal antibodies such as increased ADCC/ADCP function has been described (see Strohl, 2009, Current Opinion in Biotechnology 20:685-691). Mutations that can enhance ADCC/ADCP function include one or more mutations selected from G236A, S239D, F243L, P2471, D280H, K290S, R292P, S298A, S298D, S298V, Y300L, V305I, A330L, I332E, E333A, K334A, A339D, A339Q, A339T, and P396L (all positions by EU numbering).


Fc regions can also be modified to increase the ability of a CD2 binding molecule to mediate ADCC and/or ADCP, for example, by modifying one or more amino acids to increase the affinity of the CD2 binding molecule for an activating receptor that would typically not recognize the parent CD2 binding molecule, such as FcαRI. This approach is described in, e.g., Borrok et al., 2015, mAbs. 7(4):743-751.


Accordingly, in certain aspects, the CD2 binding molecules of the present disclosure can include Fc domains with altered effector function such as, but not limited to, binding to Fc-receptors such as FcRn or leukocyte receptors (for example, as described above or in Section 7.6.1.1), binding to complement (for example as described above or in Section 7.6.1.2), modified disulfide bond architecture (for example as described above or in Section 7.6.1.3), or altered glycosylation patterns (for example as described above or in Section 7.6.1.4). The Fc domains can also be altered to include modifications that improve manufacturability of asymmetric CD2 binding molecules, for example by allowing heterodimerization, which is the preferential pairing of non-identical Fc regions over identical Fc regions. Heterodimerization permits the production of CD2 binding molecules in which different ABMs are connected to one another by an Fc domain containing Fc regions that differ in sequence. Examples of heterodimerization strategies are exemplified in Section 7.6.1.5 (and subsections thereof).


It will be appreciated that any of the modifications described in Sections 7.6.1.1 through 7.6.1.5 can be combined in any suitable manner to achieve the desired functional properties and/or combined with other modifications to alter the properties of the CD2 binding molecules. In some embodiments, a CD2 binding molecule comprises a IgG1 Fc domain having a mutation at 1, 2, 3, 4, 5, 6, or more than 6 of positions 233, 234, 235, 236, 237, 239, 265, 266, 267, 268, 269, 297, 299, 322, 327, 328, 329, 330, 331 and 332 (EU numbering). For example, a CD2 binding molecule can comprise an IgG1 sequence of SEQ ID NO:1338 with a mutation at 1, 2, 3, 4, 5, 6, or more than 6 of positions 233, 234, 235, 236, 237, 239, 265, 266, 267, 268, 269, 297, 299, 322, 327, 328, 329, 330, 331 and 332.


7.6.1.1. Fc Domains with Altered FcR Binding


The Fc domains of the CD2 binding molecules can show altered binding to one or more Fc-receptors (FcRs) in comparison with the corresponding native immunoglobulin. The binding to any particular Fc-receptor can be increased or decreased. In one embodiment, the Fc domain comprises one or more modifications which alter its Fc-receptor binding profile.


Human cells can express a number of membrane bound FcRs selected from FcαR, FcεR, FcγR, FcRn and glycan receptors. Some cells are also capable of expressing soluble (ectodomain) FcR (Fridman et al., 1993, J Leukocyte Biology 54: 504-512). FcγR can be further divided by affinity of IgG binding (high/low) and biological effect (activating/inhibiting). Human FcγRI is widely considered to be the sole ‘high affinity’ receptor whilst all of the others are considered as medium to low. FcγRIIb is the sole receptor with ‘inhibitory’ functionality by virtue of its intracellular ITIM motif whilst all of the others are considered as ‘activating’ by virtue of ITAM motifs or pairing with the common FcγR-γchain. FcγRIIIb is also unique in that although activatory it associates with the cell via a GPI anchor. In total, humans express six “standard” FcγRs: FcγRI, FcγRIIa, FcγRIIb, FcγRIIc, FcγRIIIa, and FcγRIIIb. In addition to these sequences there are a large number of sequence or allotypic variants spread across these families. Some of these have been found to have important functional consequence and so are sometimes considered to be receptor sub-types of their own. Examples include FcγRIIaH134R, FcγRIIbI190T, FcγRIIIaF158V, FcγRIIIbNA1, FcγRIIIbNA2, and FcγRIIISH. Each receptor sequence has been shown to have different affinities for the 4 sub-classes of IgG: IgG1, IgG2, IgG3 and IgG4 (Bruhns, 1993, Blood 113:3716-3725). Other species have somewhat different numbers and functionality of FcγR, with the mouse system being the best studied to date and comprising of 4 FcγR, FcγRI FcγRIIb FcγRIII FcγRIV (Bruhns, 2012, Blood 119:5640-5649). Human FcγRI on cells is normally considered to be “occupied” by monomeric IgG in normal serum conditions due to its affinity for IgG1/IgG3/IgG4 (about 10−8 M) and the concentration of these IgG in serum (about 10 mg/ml). Hence cells bearing FcγRI on their surface are considered to be capable for “screening” or “sampling” of their antigenic environment vicariously through the bound polyspecific IgG. The other receptors having lower affinities for IgG sub-classes (in the range of about 10−5-10−7 M) are normally considered to be “unoccupied.” The low affinity receptors are hence inherently sensitive to the detection of and activation by antibody involved immune complexes. The increased Fc density in an antibody immune complex results in increased functional affinity of binding avidity to low affinity FcγR. This has been demonstrated in vitro using a number of methods (Shields et al., 2001, J Biol Chem 276(9):6591-6604; Lux et al., 2013, J Immunol 190:4315-4323). It has also been implicated as being one of the primary modes of action in the use of anti-RhD to treat ITP in humans (Crow, 2008, Transfusion Medicine Reviews 22:103-116).


Many cell types express multiple types of FcγR and so binding of IgG or antibody immune complex to cells bearing FcγR can have multiple and complex outcomes depending upon the biological context. Most simply, cells can either receive an activatory, inhibitory or mixed signal. This can result in events such as phagocytosis (e.g., macrophages and neutrophils), antigen processing (e.g., dendritic cells), reduced IgG production (e.g., B-cells) or degranulation (e.g., neutrophils, mast cells). There are data to support that the inhibitory signal from FcγRIIb can dominate that of activatory signals (Proulx, 2010, Clinical Immunology 135:422-429).


There are a number of useful Fc substitutions that can be made to alter binding to one or more of the FcγR receptors. Substitutions that result in increased binding as well as decreased binding can be useful. For example, it is known that increased binding to FcγRIIIa generally results in increased ADCC (antibody dependent cell-mediated cytotoxicity; the cell-mediated reaction where nonspecific cytotoxic cells that express FcγRs recognize bound antibody on a target cell and subsequently cause lysis of the target cell). Similarly, decreased binding to FcγRIIb (an inhibitory receptor) can be beneficial as well in some circumstances. Amino acid substitutions that find use in the present disclosure include those listed in US 2006/0024298 (particularly FIG. 41), US 2006/0121032, US 2006/0235208, US 2007/0148170, and US 2019/0100587. Particular variants that find use include, but are not limited to, 236A, 239D, 239E, 332E, 332D, 239D/332E, 267D, 267E, 328F, 267E/328F, 236A/332E, 239D/332E/330Y, 239D, 332E/330L, 243A, 243L, 264A, 264V, 299T, 265A/297A/329A, 265N/297D/329G, and 265E/297Q/329S.


FcRn has a crucial role in maintaining the long half-life of IgG in the serum of adults and children. The receptor binds IgG in acidified vesicles (pH<6.5) protecting the IgG molecule from degradation, and then releasing it at the higher pH of 7.4 in blood.


FcRn is unlike leukocyte Fc receptors, and instead, has structural similarity to MHC class I molecules. It is a heterodimer composed of a β2-microglobulin chain, non-covalently attached to a membrane-bound chain that includes three extracellular domains. One of these domains, including a carbohydrate chain, together with β2-microglobulin interacts with a site between the CH2 and CH3 domains of Fc. The interaction includes salt bridges made to histidine residues on IgG that are positively charged at pH<6.5. At higher pH, the His residues lose their positive charges, the FcRn-IgG interaction is weakened and IgG dissociates.


In one embodiment, a CD2 binding molecule comprises an Fc domain that binds to human FcRn.


In one embodiment, the Fc domain has an Fc region(s) (e.g., one or two) comprising a histidine residue at position 310, and in some cases also at position 435. These histidine residues are important for human FcRn binding. In one embodiment, the histidine residues at positions 310 and 435 are native residues, i.e., positions 310 and 435 are not modified. Alternatively, one or both of these histidine residues can be present as a result of a modification.


The CD2 binding molecules can comprise one or more Fc regions that alter Fc binding to FcRn. The altered binding can be increased binding or decreased binding.


In one embodiment, the CD2 binding molecule comprises an Fc domain in which at least one (and optionally both) Fc regions comprises one or more modifications such that it binds to FcRn with greater affinity and avidity than the corresponding native immunoglobulin.


Fc substitutions that increase binding to the FcRn receptor and increase serum half life are described in US 2009/0163699, including, but not limited to, 434S, 434A, 428L, 308F, 259I, 428L/434S, 259I/308F, 436I/428L, 436I or V/434S, 436V/428L and 259I/308F/428L.


In one embodiment, the Fc region is modified by substituting the threonine residue at position 250 with a glutamine residue (T250Q).


In one embodiment, the Fc region is modified by substituting the methionine residue at position 252 with a tyrosine residue (M252Y)


In one embodiment, the Fc region is modified by substituting the serine residue at position 254 with a threonine residue (S254T).


In one embodiment, the Fc region is modified by substituting the threonine residue at position 256 with a glutamic acid residue (T256E).


In one embodiment, the Fc region is modified by substituting the threonine residue at position 307 with an alanine residue (T307A).


In one embodiment, the Fc region is modified by substituting the threonine residue at position 307 with a proline residue (T307P).


In one embodiment, the Fc region is modified by substituting the valine residue at position 308 with a cysteine residue (V308C).


In one embodiment, the Fc region is modified by substituting the valine residue at position 308 with a phenylalanine residue (V308F).


In one embodiment, the Fc region is modified by substituting the valine residue at position 308 with a proline residue (V308P).


In one embodiment, the Fc region is modified by substituting the glutamine residue at position 311 with an alanine residue (Q311A).


In one embodiment, the Fc region is modified by substituting the glutamine residue at position 311 with an arginine residue (Q311R).


In one embodiment, the Fc region is modified by substituting the methionine residue at position 428 with a leucine residue (M428L).


In one embodiment, the Fc region is modified by substituting the histidine residue at position 433 with a lysine residue (H433K).


In one embodiment, the Fc region is modified by substituting the asparagine residue at position 434 with a phenylalanine residue (N434F).


In one embodiment, the Fc region is modified by substituting the asparagine residue at position 434 with a tyrosine residue (N434Y).


In one embodiment, the Fc region is modified by substituting the methionine residue at position 252 with a tyrosine residue, the serine residue at position 254 with a threonine residue, and the threonine residue at position 256 with a glutamic acid residue (M252Y/S254T/T256E).


In one embodiment, the Fc region is modified by substituting the valine residue at position 308 with a proline residue and the asparagine residue at position 434 with a tyrosine residue (V308P/N434Y).


In one embodiment, the Fc region is modified by substituting the methionine residue at position 252 with a tyrosine residue, the serine residue at position 254 with a threonine residue, the threonine residue at position 256 with a glutamic acid residue, the histidine residue at position 433 with a lysine residue and the asparagine residue at position 434 with a phenylalanine residue (M252Y/S254T/T256E/H433K/N434F).


It will be appreciated that any of the modifications listed above can be combined to alter FcRn binding.


In one embodiment, the CD2 binding molecule comprises an Fc domain in which one or both Fc regions comprise one or more modifications such that the Fc domain binds to FcRn with lower affinity and avidity than the corresponding native immunoglobulin.


In one embodiment, the Fc region comprises any amino acid residue other than histidine at position 310 and/or position 435.


The CD2 binding molecule can comprise an Fc domain in which one or both Fc regions comprise one or more modifications which increase its binding to FcγRIIb. FcγRIIb is the only inhibitory receptor in humans and the only Fc receptor found on B cells.


In one embodiment, the Fc region is modified by substituting the proline residue at position 238 with an aspartic acid residue (P238D).


In one embodiment, the Fc region is modified by substituting the glutamic acid residue at position 258 with an alanine residue (E258A).


In one embodiment, the Fc region is modified by substituting the serine residue at position 267 with an alanine residue (S267A).


In one embodiment, the Fc region is modified by substituting the serine residue at position 267 with a glutamic acid residue (S267E).


In one embodiment, the Fc region is modified by substituting the leucine residue at position 328 with a phenylalanine residue (L328F).


In one embodiment, the Fc region is modified by substituting the glutamic acid residue at position 258 with an alanine residue and the serine residue at position 267 with an alanine residue (E258A/S267A).


In one embodiment, the Fc region is modified by substituting the serine residue at position 267 with a glutamic acid residue and the leucine residue at position 328 with a phenylalanine residue (S267E/L328F).


It will be appreciated that any of the modifications listed above can be combined to increase FcγRIIb binding.


In one embodiment, CD2 binding molecules are provided comprising Fc domains which display decreased binding to FcγR.


In one embodiment, the CD2 binding molecule comprises an Fc domain in which one or both Fc regions comprise one or more modifications that decrease Fc binding to FcγR.


The Fc domain can be derived from IgG1.


In one embodiment, the Fc region is modified by substituting the leucine residue at position 234 with an alanine residue (L234A).


In one embodiment, the Fc region is modified by substituting the leucine residue at position 235 with an alanine residue (L235A).


In one embodiment, the Fc region is modified by substituting the glycine residue at position 236 with an arginine residue (G236R).


In one embodiment, the Fc region is modified by substituting the asparagine residue at position 297 with an alanine residue (N297A) or a glutamine residue (N297Q).


In one embodiment, the Fc region is modified by substituting the serine residue at position 298 with an alanine residue (S298A).


In one embodiment, the Fc region is modified by substituting the leucine residue at position 328 with an arginine residue (L328R).


In one embodiment, the Fc region is modified by substituting the leucine residue at position 234 with an alanine residue and the leucine residue at position 235 with an alanine residue (L234A/L235A).


In one embodiment, the Fc region is modified by substituting the phenylalanine residue at position 234 with an alanine residue and the leucine residue at position 235 with an alanine residue (F234A/L235A).


In one embodiment, the Fc region is modified by substituting the glycine residue at position 236 with an arginine residue and the leucine residue at position 328 with an arginine residue (G236R/L328R).


In one embodiment, the Fc region is modified by substituting the aspartate residue at position 265 with an alanine residue, the asparagine residue at position 297 with an alanine residue and the proline residue at position 329 with an alanine residue (D265A/N297A/P329A).


In one embodiment, the Fc region is modified by substituting the aspartate residue at position 265 with an asparagine residue, the asparagine residue at position 297 with an aspartate residue and the proline residue at position 329 with a glycine residue (D265N/N297D/P329G).


In one embodiment, the Fc region is modified by substituting the aspartate residue at position 265 with a glutamate residue, the asparagine residue at position 297 with an glutamine residue and the proline residue at position 329 with a serine residue (D265E/N297Q/P329S).


It will be appreciated that any of the modifications listed above can be combined to decrease FcγR binding.


In one embodiment, a CD2 binding molecule comprises an Fc domain in which one or both Fc regions comprise one or more modifications that decrease Fc binding to FcγRIIIa without affecting the Fc's binding to FcγRII.


In one embodiment, the Fc region is modified by substituting the serine residue at position 239 with an alanine residue (S239A).


In one embodiment, the Fc region is modified by substituting the glutamic acid residue at position 269 with an alanine residue (E269A).


In one embodiment, the Fc region is modified by substituting the glutamic acid residue at position 293 with an alanine residue (E293A).


In one embodiment, the Fc region is modified by substituting the tyrosine residue at position 296 with a phenylalanine residue (Y296F).


In one embodiment, the Fc region is modified by substituting the valine residue at position 303 with an alanine residue (V303A).


In one embodiment, the Fc region is modified by substituting the alanine residue at position 327 with a glycine residue (A327G).


In one embodiment, the Fc region is modified by substituting the lysine residue at position 338 with an alanine residue (K338A).


In one embodiment, the Fc region is modified by substituting the aspartic acid residue at position 376 with an alanine residue (D376A).


It will be appreciated that any of the modifications listed above can be combined to decrease FcγRIIIa binding.


Fc region variants with decreased FcR binding can be referred to as “FcγR ablation variants,” “FcγR silencing variants” or “Fc knock out (FcKO or KO)” variants. For some therapeutic applications, it is desirable to reduce or remove the normal binding of an Fc domain to one or more or all of the Fcγ receptors (e.g., FcγR1, FcγRIIa, FcγRIIb, FcγRIIIa) to avoid additional mechanisms of action. That is, for example, in many embodiments, particularly in the use of MBMs that bind CD3 monovalently, it is generally desirable to ablate FcγRIIIa binding to eliminate or significantly reduce ADCC activity. In some embodiments, at least one of the Fc regions of the MBMs described herein comprises one or more Fcγ receptor ablation variants. In some embodiments, both of the Fc regions comprise one or more Fcγ receptor ablation variants. These ablation variants are depicted in Table 3, and each can be independently and optionally included or excluded, with some aspects utilizing ablation variants selected from the group consisting of G236R/L328R, E233P/L234V/L235A/G236del/S239K, E233P/L234V/L235A/G236del/S267K, E233P/L234V/L235A/G236del/S239K/A327G, E233P/L234V/L235A/G236del/S267K/A327G, E233P/L234V/L235A/G236del, D265A/N297A/P329A, D265N/N297D/P329G, and D265E/N297Q/P329S (“del” connotes a deletion, e.g., G236del refers to a deletion of the glycine at position 236). It should be noted that the ablation variants referenced herein ablate FcγR binding but generally not FcRn binding.









TABLE 3







Ablation Variants










Variant
Variant(s), cont.







G236R
P329K



S239G
A330L



S239K
A330S/P331S



S239Q
I332K



S239R
I332R



V266D
V266D/A327Q



S267K
V266D/P329K



S267R
S267R/A327Q



H268K
S267R/P329K



E269R
G236R/L328R



299R
E233P/L234V/L235A/G236del/S239K



299K
E233P/L234V/L235A/G236del/S267K



K322A
E233P/L234V/L235A/G236del/S239K/A327G



A327G
E233P/L234V/L235A/G236del/S267K/A327G



A327L
E233P/L234V/L235A/G236del



A327N
S239K/S267K



A327Q
267K/P329K



L328E
D265A/N297A/P329A



L328R
D265N/N297D/P329G



P329A
D265E/N297Q/P329S



P329H










In some embodiments, the MBMs of the present disclosure comprises a first Fc region and a second Fc region. In some embodiments, the first Fc region and/or the second Fc region can comprise the following mutations: E233P, L234V, L235A, G236del, and S267K.


The Fc domain of human IgG1 has the highest binding to the Fcγ receptors, and thus ablation variants can be used when the constant domain (or Fc domain) in the backbone of the heterodimeric antibody is IgG1.


Alternatively, or in addition to ablation variants in an IgG1 background, mutations at the glycosylation position 297, e.g., substituting the asparagine residue at position 297 with an alanine residue (N297A) or a glutamine residue (N297Q), can significantly ablate binding to FcγRIIIa, for example. Human IgG2 and IgG4 have naturally reduced binding to the Fcγ receptors, and thus those backbones can be used with or without the ablation variants.


7.6.1.2. Fc Domains with Altered Complement Binding


The CD2 binding molecules can comprise an Fc domain in which one or both Fc regions comprises one or more modifications that alter Fc binding to complement. Altered complement binding can be increased binding or decreased binding.


In one embodiment, the Fc region comprises one or more modifications which decrease its binding to C1q. Initiation of the classical complement pathway starts with binding of hexameric C1q protein to the CH2 domain of antigen bound IgG and IgM.


In one embodiment, the CD2 binding molecule comprises an Fc domain in which one or both Fc regions comprises one or more modifications to decrease Fc binding to C1q.


In one embodiment, the Fc region is modified by substituting the leucine residue at position 234 with an alanine residue (L234A).


In one embodiment, the Fc region is modified by substituting the leucine residue at position 235 with an alanine residue (L235A).


In one embodiment, the Fc region is modified by substituting the leucine residue at position 235 with a glutamic acid residue (L235E).


In one embodiment, the Fc region is modified by substituting the glycine residue at position 237 with an alanine residue (G237A).


In one embodiment, the Fc region is modified by substituting the lysine residue at position 322 with an alanine residue (K322A).


In one embodiment, the Fc region is modified by substituting the proline residue at position 331 with an alanine residue (P331A).


In one embodiment, the Fc region is modified by substituting the proline residue at position 331 with a serine residue (P331S).


In one embodiment, a CD2 binding molecule comprises an Fc domain derived from IgG4. IgG4 has a naturally lower complement activation profile than IgG1, but also weaker binding of FcγR. Thus, in one embodiment, the CD2 binding molecule comprises an IgG4 Fc domain and also comprises one or more modifications that increase FcγR binding.


It will be appreciated that any of the modifications listed above can be combined to reduce C1q binding.


7.6.1.3. Fc Domains with Altered Disulfide Architecture


The CD2 binding molecule can include an Fc domain comprising one or more modifications to create and/or remove a cysteine residue. Cysteine residues have an important role in the spontaneous assembly of Fc-based multispecific binding molecules, by forming disulfide bridges between individual pairs of polypeptide monomers. Thus, by altering the number and/or position of cysteine residues, it is possible to modify the structure of the CD2 binding molecule to produce a protein with improved therapeutic properties.


A CD2 binding molecule of the present disclosure can comprise an Fc domain in which one or both Fc regions, e.g., both Fc regions, comprise a cysteine residue at position 309. In one embodiment, the cysteine residue at position 309 is created by a modification, e.g., for an Fc domain derived from IgG1, the leucine residue at position 309 is substituted with a cysteine residue (L3090), for an Fc domain derived from IgG2, the valine residue at position 309 is substituted with a cysteine residue (V3090).


In one embodiment, the Fc region is modified by substituting the valine residue at position 308 with a cysteine residue (V3080).


In one embodiment, two disulfide bonds in the hinge region are removed by mutating a core hinge sequence CPPC (SEQ ID NO: 726) to SPPS (SEQ ID NO: 731).


7.6.1.4. Fc Domains with Altered Glycosylation


In certain aspects, CD2 binding molecules with improved manufacturability are provided that comprise fewer glycosylation sites than a corresponding immunoglobulin. These proteins have less complex post translational glycosylation patterns and are thus simpler and less expensive to manufacture.


In one embodiment a glycosylation site in the CH2 domain is removed by substituting the asparagine residue at position 297 with an alanine residue (N297A) or a glutamine residue (N297Q). In addition to improved manufacturability, these aglycosyl mutants also reduce FcγR binding as described herein above.


In some embodiments, a CD2 binding molecule can be made that has an altered type of glycosylation, such as a hypofucosylated antibody having reduced amounts of fucosyl residues or an antibody having increased bisecting GlcNac structures. Such altered glycosylation patterns have been demonstrated to increase the ADCC ability of antibodies. Such carbohydrate modifications can be accomplished by, for example, expressing a CD2 binding molecule in a host cell with altered glycosylation machinery. Cells with altered glycosylation machinery have been described in the art and can be used as host cells in which to express CD2 binding molecules to thereby produce CD2 binding molecules with altered glycosylation. For example, EP 1,176,195 by Hang et al. describes a cell line with a functionally disrupted FUT8 gene, which encodes a fucosyl transferase, such that antibodies expressed in such a cell line exhibit hypofucosylation. PCT Publication WO 03/035835 by Presta describes a variant CHO cell line, LecI3 cells, with reduced ability to attach fucose to Asn(297)-linked carbohydrates, also resulting in hypofucosylation of antibodies expressed in that host cell (see also Shields et al., 2002, J. Biol. Chem. 277:26733-26740). PCT Publication WO 99/54342 by Umana et al. describes cell lines engineered to express glycoprotein-modifying glycosyl transferases (e.g., beta(1,4)-N acetylglucosaminyltransferase III (GnTIII)) such that antibodies expressed in the engineered cell lines exhibit increased bisecting GlcNac structures which results in increased ADCC activity of the antibodies (see also Umana et al., Nat. Biotech. 17:176-180, 1999).


7.6.1.5. Fc Heterodimerization


Many multispecific molecule formats entail dimerization between two Fc regions that, unlike a native immunoglobulin, are operably linked to non-identical antigen-binding domains (or portions thereof, e.g., a VH or VH-CH1 of a Fab). Inadequate heterodimerization of two Fc regions to form an Fc domain has always been an obstacle for increasing the yield of desired multispecific molecules and represents challenges for purification. A variety of approaches available in the art can be used in for enhancing dimerization of Fc regions that might be present in the CD2 binding molecules (and particularly in the MBMs of the disclosure), for example as disclosed in EP 1870459A1; U.S. Pat. Nos. 5,582,996; 5,731,168; 5,910,573; 5,932,448; 6,833,441; 7,183,076; U.S. Patent Application Publication No. 2006204493A1; and PCT Publication No. WO2009/089004A1.


The present disclosure provides CD2 binding molecules comprising Fc heterodimers, i.e., Fc domains comprising heterologous, non-identical Fc regions. Heterodimerization strategies are used to enhance dimerization of Fc regions operably linked to different ABMs (or portions thereof, e.g., a VH or VH-CH1 of a Fab) and reduce dimerization of Fc regions operably linked to the same ABM or portion thereof. Typically, each Fc region in the Fc heterodimer comprises a CH3 domain of an antibody. The CH3 domains are derived from the constant region of an antibody of any isotype, class or subclass, and in some cases, of IgG (IgG1, IgG2, IgG3 and IgG4) class, as described in the preceding section.


Typically, the MBMs comprise other antibody fragments in addition to CH3 domains, such as, CH1 domains, CH2 domains, hinge domain, VH domain(s), VL domain(s), CDR(s), and/or antigen-binding fragments described herein. In some embodiments, the two hetero-polypeptides are two heavy chains forming a bispecific or multispecific molecules. Heterodimerization of the two different heavy chains at CH3 domains give rise to the desired antibody or antibody-like molecule, while homodimerization of identical heavy chains will reduce yield of the desired antibody or molecule. In an exemplary embodiment, the two or more hetero-polypeptide chains comprise two chains comprising CH3 domains and forming the molecules of any of the multispecific molecule formats described above of the present disclosure. In an embodiment, the two hetero-polypeptide chains comprising CH3 domains comprise modifications that favor heterodimeric association of the polypeptides, relative to unmodified chains. Various examples of modification strategies are provided below in Table 4 and Sections 7.6.1.5.1 to 7.6.1.5.7.









TABLE 4







Fc Heterodimerization Strategies











NO.
STRATEGY
CH3 DOMAIN 1
CH3 DOMAIN 2
REFERENCES





Fc 1
knobs-into-holes
T366Y
Y407T
Ridgway et al., 1996,



(Y-T)


Protein Eng 9: 617-21


Fc 2
knobs-into-holes
S354C, T366W
Y349C, T366S,
Atwell et al., 1997, J



(CW-CSAV)

L368A, Y407V
Mol Biol. 270(1): 26-






35; Merchant et al.,






1998, Nat Biotechnol






16: 677-681


Fc 3
HA-TF
S364H, F405A
Y349T, T394F
Moore et al., 2011,






MAbs 3(6): 546-57


Fc 4
ZW1 (VYAV-VLLW)
T350V, L351Y,
T350V, T366L,
Von Kreudenstein et




F405A, Y407V
K392L, T394W
al., 2013, MAbs






5: 646-54


Fc 5
CH3 charge pairs
K392D, K409D
E356K, D399K
Gunasekaran et al.,



(DD-KK)


2010, J Biol Chem






285: 19637-46


Fc 6
IgG1 hingE, CH3
IgG1: D221E,
IgG1: D221R,
Strop et al., 2012, J



charge pairs
P228E, L368E
P228R, K409R
Mol Biol 420: 204-19



(EEE-RRR)


Fc 7
IgG2 hingE, CH3
IgG2: C223E,
IgG2: C223R,
Strop et al., 2012, J



charge pairs
P228E, L368E
E225R, P228R,
Mol Biol 420: 204-19



(EEE-RRRR)

K409R


Fc 8
EW-RVT
K360E, K409W,
Q347R, D399V,
Choi et al., 2013, Mol





F405T
Cancer Ther






12: 2748-59


Fc 9
EW-RVTS-S
K360E, K409W,
Q347R, D399V,
Choi et al., 2015, Mol




Y349C
F405T, S354C
Immunol 65: 377-83


Fc 10
Biclonic
366K (+351K)
351D or E or D at
Geuijen et al., 2014,





349, 368, 349, or
Journal of Clinical





349 + 355
Oncology






32: suppl: 560


Fc 11
DuoBody (L-R)
F405L
K409R
Labrijn et al., 2013,






Proc Natl Acad Sci






USA 110: 5145-50


Fc 12
SEEDbody
IgG/A chimera
IgG/A chimera
Davis et al., 2010,






Protein Eng Des Sei






23: 195-202


Fc 13
BEAT
residues from
residues from
Moretti et al., 2013,




TCRα interface
TCRβ interface
BMC Proceedings






7(Suppl 6): O9


Fc 14
7.8.60
K360D, D399M,
E345R, Q347R,
Leaver-Fey et al.,



(DMA-RRVV)
Y407A
T366V, K409V
Structure 24: 641-51


Fc 15
20.8.34
Y349S, K370Y,
E356G, E357D,
Leaver-Fey et al.,



(SYMV-GDQA)
T366M, K409V
S364Q, Y407A
Structure 24: 641-51


Fc 16
Skew variant 12757
None
None
FIG. 34 of US






2016/0355600


Fc 17
Skew variant 12758
L368D, K370S
S364K
FIG. 34 of US






2016/0355600


Fc 18
Skew variant 12759
L368D, K370S
S364K, E357L
FIG. 34 of US






2016/0355600


Fc 19
Skew variant 12760
L368D, K370S
S364K, E357Q
FIG. 34 of US






2016/0355600


Fc 20
Skew variant 12761
T411E, K360E,
D401K
FIG. 34 of US




Q362E

2016/0355600


Fc 21
Skew variant 12496
L368E, K370S
S364K
FIG. 34 of US






2016/0355600


Fc 22
Skew variant 12511
K370S
S364K
FIG. 34 of US






2016/0355600


Fc 23
Skew variant 12840
L368E, K370S
S364K, E357Q
FIG. 34 of US






2016/0355600


Fc 24
Skew variant 12841
K370S
S364K, E357Q
FIG. 34 of US






2016/0355600


Fc 25
Skew variant 12894
L368E, K370S
S364K
FIG. 34 of US






2016/0355600


Fc 26
Skew variant 12895
K370S
S364K
FIG. 34 of US






2016/0355600


Fc 27
Skew variant 12896
L368E, K370S
S364K, E357Q
FIG. 34 of US






2016/0355600


Fc 28
Skew variant 12901
K370S
S364K, E357Q
FIG. 34 of US






2016/0355600


Fc 29
pl_ISO(−)
I199T, N203D,

FIG. 31 of US




K274Q, R355Q,

2016/0355600




N384S, K392N,




V397M, Q419E,




DEL447


Fc 30
pl_(−)_Isosteric_A
N208D, Q295E,

FIG. 31 of US




N384D, Q418E,

2016/0355600




N421D


Fc 31
pl_(−)_isosteric_B
N208D, Q295E,

FIG. 31 of US




Q418E, N421D

2016/0355600


Fc 32
pl_ISO(+RR)
Q196K, I199T,

FIG. 31 of US




P217R, P228R,

2016/0355600




N276K


Fc 33
pl_ISO(+)
Q196K, I199T,

FIG. 31 of US




N276K

2016/0355600


Fc 34
pl_(+) isosteric_A
E269Q, E272Q,

FIG. 31 of US




E283Q, E357Q,

2016/0355600


Fc 35
pl_(+)_isosteric_B
E269Q, E272Q,

FIG. 31 of US




E283Q

2016/0355600


Fc 36
pl_(+) isosteric_E269Q,
E269Q, E272Q

FIG. 31 of US



E272Q


2016/0355600


Fc 37
pl_(+)_isosteric_E269Q,
E269Q, E283Q

FIG. 31 of US



E283Q


2016/0355600


Fc 38
pl_(+) isosteric_E2720,
E272Q, E283Q

FIG. 31 of US



E283Q


2016/0355600


Fc 39
pl_(+)_isosteric_E269Q
E269Q

FIG. 31 of US






2016/0355600


Fc 40
Heterodimerization
F405A
T394F
FIG. 30A of US






2016/0355600


Fc 41
Heterodimerization
S364D
Y349K
FIG. 30A of US






2016/0355600


Fc 42
Heterodimerization
S364E
L368K
FIG. 30A of US






2016/0355600


Fc 43
Heterodimerization
S364E
Y349K
FIG. 30A of US






2016/0355600


Fc 44
Heterodimerization
S364F
K370G
FIG. 30A of US






2016/0355600


Fc 45
Heterodimerization
S364H
Y349K
FIG. 30A of US






2016/0355600


Fc 46
Heterodimerization
S364H
Y349T
FIG. 30A of US






2016/0355600


Fc 47
Heterodimerization
S364Y
K370G
FIG. 30A of US






2016/0355600


Fc 48
Heterodimerization
T411K
K370E
FIG. 30A of US






2016/0355600


Fc 49
Heterodimerization
V397S, F405A
T394F
FIG. 30A of US






2016/0355600


Fc 50
Heterodimerization
K370R, T411K
K370E, T411E
FIG. 30A of US






2016/0355600


Fc 51
Heterodimerization
L351E, S364D
Y349K, L351K
FIG. 30A of US






2016/0355600


Fc 52
Heterodimerization
L351E, S364E
Y349K, L351K
FIG. 30A of US






2016/0355600


Fc 53
Heterodimerization
L351E, T366D
L351K, T366K
FIG. 30A of US






2016/0355600


Fc 54
Heterodimerization
P395T, V397S,
T394F
FIG. 30A of US




F405A

2016/0355600


Fc 55
Heterodimerization
S364D, K370G
S364Y, K370R
FIG. 30A of US






2016/0355600


Fc 56
Heterodimerization
S364D, T394F
Y349K, F405A
FIG. 30A of US






2016/0355600


Fc 57
Heterodimerization
S364E, F405A
Y349K, T394F
FIG. 30A of US






2016/0355600


Fc 58
Heterodimerization
S364E, F405S
Y349K, T394Y
FIG. 30A of US






2016/0355600


Fc 59
Heterodimerization
S364E, T411E
Y349K, D401K
FIG. 30A of US






2016/0355600


Fc 60
Heterodimerization
S364H, D401K
Y349T, T411E
FIG. 30A of US






2016/0355600


Fc 61
Heterodimerization
S364H, F405A
Y349T, T394F
FIG. 30A of US






2016/0355600


Fc 62
Heterodimerization
S364H, T394F
Y349T, F405A
FIG. 30A of US






2016/0355600


Fc 63
Heterodimerization
Y349C, S364E
Y349K, S354C
FIG. 30A of US






2016/0355600


Fc 64
Heterodimerization
L351E, S364D,
Y349K, L351K,
FIG. 30A of US




F405A
T394F
2016/0355600


Fc 65
Heterodimerization
L351K, S364H,
Y349T, L351E,
FIG. 30A of US




D401K
T411E
2016/0355600


Fc 66
Heterodimerization
S364E, T411E,
Y349K, T394F,
FIG. 30A of US




F405A
D401K
2016/0355600


Fc 67
Heterodimerization
S364H, D401K,
Y349T, T394F,
FIG. 30A of US




F405A
T411E
2016/0355600


Fc 68
Heterodimerization
S364H, F405A,
Y349T, T394F,
FIG. 30A of US




T411E
D401K
2016/0355600


Fc 69
Heterodimerization
T411E, K360E,
D401K
FIG. 30C of US




N390D

2016/0355600


Fc 70
Heterodimerization
T411E, Q362E,
D401K
FIG. 30C of US




N390D

2016/0355600


Fc 71
Heterodimerization
T411E, Q347R
D401K, K360D
FIG. 30C of US






2016/0355600


Fc 72
Heterodimerization
T411E, Q347R
D401K, K360E
FIG. 30C of US






2016/0355600


Fc 73
Heterodimerization
T411E, K360
D401K, Q347K
FIG. 30C of US






2016/0355600


Fc 74
Heterodimerization
T411E, K360D
D401K, Q347R
FIG. 30C of US






2016/0355600


Fc 75
Heterodimerization
T411E, K360E
D401K, Q347K
FIG. 30C of US






2016/0355600


Fc 76
Heterodimerization
T411E, K360E
D401K, Q347R
FIG. 30C of US






2016/0355600


Fc 77
Heterodimerization
T411E, S364K
D401K, K370S
FIG. 30C of US






2016/0355600


Fc 78
Heterodimerization
T411E, K370S
D401K, S364K
FIG. 30C of US






2016/0355600


Fc 79
Heterodimerization
Q347E
E357Q
FIG. 30C of US






2016/0355600


Fc 80
Heterodimerization
Q347E
E357Q, Q362K
FIG. 30C of US






2016/0355600


Fc 81
Heterodimerization
K360D, Q362E
Q347R
FIG. 30C of US






2016/0355600


Fc 82
Heterodimerization
K360D, Q362E
D401K
FIG. 30C of US






2016/0355600


Fc 83
Heterodimerization
K360D, Q362E
Q347R, D401K
FIG. 30C of US






2016/0355600


Fc 84
Heterodimerization
K360E, Q362E
Q347R
FIG. 30C of US






2016/0355600


Fc 85
Heterodimerization
K360E, Q362E
D401K
FIG. 30C of US






2016/0355600


Fc 86
Heterodimerization
K360E, Q362E
Q347R, D401K
FIG. 30C of US






2016/0355600


Fc 87
Heterodimerization
Q362E, N390D
D401K
FIG. 30C of US






2016/0355600


Fc 88
Heterodimerization
Q347E, K360D
D401N
FIG. 30C of US






2016/0355600


Fc 89
Heterodimerization
K360D
Q347R, N390K
FIG. 30C of US






2016/0355600


Fc 90
Heterodimerization
K360D
N390K, D401N
FIG. 30C of US






2016/0355600


Fc 91
Heterodimerization
K360E
Y349H
FIG. 30C of US






2016/0355600


Fc 92
Heterodimerization
K370S, Q347E
S364K
FIG. 30C of US






2016/0355600


Fc 93
Heterodimerization
K370S, E357L
S364K
FIG. 30C of US






2016/0355600


Fc 94
Heterodimerization
K370S, E357Q
S364K
FIG. 30C of US






2016/0355600


Fc 95
Heterodimerization
K370S, Q347E,
S364K
FIG. 30C of US




E357L

2016/0355600


Fc 96
Heterodimerization
K370S, Q347E,
S364K
FIG. 30C of US




E357Q

2016/0355600


Fc 97
Heterodimerization
L368D, K370S,
S364K
FIG. 30D of US




Q347E

2016/0355600


Fc 98
Heterodimerization
L368D, K370S,
S364K
FIG. 30D of US




E357L

2016/0355600


Fc 99
Heterodimerization
L368D, K370S,
S364K
FIG. 30D of US




E357Q

2016/0355600


Fc 100
Heterodimerization
L368D, K370S,
S364K
FIG. 30D of US




Q347E, E357L

2016/0355600


Fc 101
Heterodimerization
L368D, K370S,
S364K
FIG. 30D of US




Q347E, E357Q

2016/0355600


Fc 102
Heterodimerization
L368E, K370S,
S364K
FIG. 30D of US




Q347E

2016/0355600


Fc 103
Heterodimerization
L368E, K370S,
S364K
FIG. 30D of US




E357L

2016/0355600


Fc 104
Heterodimerization
L368E, K370S,
S364K
FIG. 30D of US




E357Q

2016/0355600


Fc 105
Heterodimerization
L368E, K370S,
S364K
FIG. 30D of US




Q347E, E357L

2016/0355600


Fc 106
Heterodimerization
L368E, K370S,
S364K
FIG. 30D of US




Q347E, E357Q

2016/0355600


Fc 107
Heterodimerization
L368D, K370T,
S364K
FIG. 30D of US




Q347E

2016/0355600


Fc 108
Heterodimerization
L368D, K370T,
S364K
FIG. 30D of US




E357L

2016/0355600


Fc 109
Heterodimerization
L368D, K370T,
S364K
FIG. 30D of US




E357Q

2016/0355600


Fc 110
Heterodimerization
L368D, K370T,
S364K
FIG. 30D of US




Q347E, E357L

2016/0355600


Fc 111
Heterodimerization
L368D, K370T,
S364K
FIG. 30D of US




Q347E, E357Q

2016/0355600


Fc 112
Heterodimerization
L368E, K370T,
S364K
FIG. 30D of US




Q347E

2016/0355600


Fc 113
Heterodimerization
L368E, K370T,
S364K
FIG. 30D of US




E357L

2016/0355600


Fc 114
Heterodimerization
L368E, K370T,
S364K
FIG. 30D of US




E357Q

2016/0355600


Fc 115
Heterodimerization
L368E, K370T,
S364K
FIG. 30D of US




Q347E, E357L

2016/0355600


Fc 116
Heterodimerization
L368E, K370T,
S364K
FIG. 30D of US




Q347E, E357Q

2016/0355600


Fc 117
Heterodimerization
T411E, Q362E
D401K, T411K
FIG. 30D of US






2016/0355600


Fc 118
Heterodimerization
T411E, N390D
D401K, T411K
FIG. 30D of US






2016/0355600


Fc 119
Heterodimerization
T411E, Q362E
D401R, T411R
FIG. 30D of US






2016/0355600


Fc 120
Heterodimerization
T411E, N390D
D401R, T411R
FIG. 30D of US






2016/0355600


Fc 121
Heterodimerization
Y407T
T366Y
FIG. 30D of US






2016/0355600


Fc 122
Heterodimerization
F405A
T394W
FIG. 30D of US






2016/0355600


Fc 123
Heterodimerization
T366Y, F405A
T394W, Y407T
FIG. 30D of US






2016/0355600


Fc 124
Heterodimerization
T366S, L368A,
T366W
FIG. 30D of US




Y407V

2016/0355600


Fc 125
Heterodimerization
T366S, L368A,
T366W, S354C
FIG. 30D of US




Y407V, Y349C

2016/0355600


Fc 126
Heterodimerization
K392D, K409D
E356K, D399K
FIG. 30E of US






2016/0355600


Fc 127
Heterodimerization
K370D, K392D,
E356K, E357K,
FIG. 30E of US




K409D
D399K
2016/0355600


Fc 128
Heterodimerization
I199T, N203D,
Q196K, L99T,
FIG. 30E of US




K247Q, R355Q,
P217R, P228R,
2016/0355600




N384S, K392N,
N276K




V397M, Q419E,




K447


Fc 129
Heterodimerization
I199T, N203D,
Q196K, L99T,
FIG. 30E of US




K247Q, R355Q,
N276K
2016/0355600




N384S, K392N,




V397M, Q419E,




K447


Fc 130
Heterodimerization
N384S, K392N,
N276K
FIG. 30E of US




V397M, Q419E

2016/0355600


Fc 131
Heterodimerization
D221E, P228E,
D221R, P228R,
FIG. 30E of US




L368E
K409R
2016/0355600


Fc 132
Heterodimerization
C220E, P228E,
C220R, E224R,
FIG. 30E of US




L368E
P228R, K409R
2016/0355600


Fc 133
Heterodimerization
F405L
K409R
FIG. 30E of US






2016/0355600


Fc 134
Heterodimerization
T366I, K392M,
F405A, Y407V
FIG. 30E of US




T394W

2016/0355600


Fc 135
Heterodimerization
T366V, K409F
L351Y, Y407A
FIG. 30E of US






2016/0355600


Fc 136
Heterodimerization
T366A, K392E,
D399R, S400R,
FIG. 30E of US




K409F, T411E
Y407A
2016/0355600


Fc 137
Heterodimerization
L351K
L351E
FIG. 30E of US






2016/0355600


Fc 138
Heterodimerization
I199T, N203D,
Q196K, L199T,
FIG. 30E of US




K247Q, R355Q,
P217R, P228R,
2016/0355600




Q419E, K447
N276K


Fc 139
Heterodimerization
I199T, N203D,
Q196K, I199T,
FIG. 30E of US




K247Q, R355Q,
N276K
2016/0355600




Q419E, K447


Fc 140
Heterodimerization
I199T, N203D,

FIG. 30E of US




K274Q, R355Q,

2016/0355600




N384S, K392N,




V397M, Q419E




DEL447


Fc 141
Heterodimerization
N208D, Q295E

FIG. 30E of US




N384D, Q418E

2016/0355600




N421D


Fc 142
Heterodimerization
N208D, Q295E

FIG. 30E of US




Q418E, N421D

2016/0355600


Fc 143
Heterodimerization
Q196K, I199T

FIG. 30E of US




P217R, P228R

2016/0355600




N276K


Fc 144
Heterodimerization
Q196K, I199T

FIG. 30E of US




N276K

2016/0355600


Fc 145
Heterodimerization
E269Q, E272Q

FIG. 30E of US




E283Q, E357Q

2016/0355600


Fc 146
Heterodimerization
E269Q, E272Q

FIG. 30E of US




E283Q,

2016/0355600


Fc 147
Heterodimerization
E269Q, E272Q

FIG. 30E of US






2016/0355600


Fc 148
Heterodimerization
E269Q, E283Q

FIG. 30E of US






2016/0355600


Fc 149
Heterodimerization
E272Q, E283Q

FIG. 30E of US






2016/0355600


Fc 150
Heterodimerization
E269Q

FIG. 30E of US






2016/0355600









Exemplary pairs of heterologous, non-identical Fc sequences that can pair to form a Fc heterodimer, and which can be included in a CD2 binding molecule of the disclosure, include (i) SEQ ID NO:1335 and SEQ ID NO:1336, and (ii) SEQ ID NO:1335 and SEQ ID NO:1337.









(SEQ ID NO: 1335)


DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHED





PEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYK





CKVSNKALPAPIEKTISKAKGQPREPQVCTLPPSREEMTKNQVSLSCAVK





GFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQG





NVFSCSVMHEALHNHYTQKSLSLSPGK





(SEQ ID NO: 1336)


DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHED





PEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYK





CKVSNKALPAPIEKTISKAKGQPREPQVYTLPPCREEMTKNQVSLWCLVK





GFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG





NVFSCSVMHEALHNHYTQKSLSLSPGK





(SEQ ID NO: 1337)


DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHED





PEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYK





CKVSNKALPAPIEKTISKAKGQPREPQVYTLPPCREEMTKNQVSLWCLVK





GFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG





NVFSCSVMHEALHNRYTQKSLSLSPGK







An Fc region having an amino acid sequence of one of SEQ ID NOS: 1335-1337 can be modified to include one or more of the substitutions described in Section 7.6.1 (including its subparts), for example to include the substitution(s) corresponding to an ablation variant set forth in Table 3. In some embodiments, a CD2 binding molecule comprises an Fc region having an amino acid sequence of one of SEQ ID NOs:1335-1337 with a mutation at 1, 2, 3, 4, 5, 6, or more than 6 of positions 233, 234, 235, 236, 237, 239, 265, 266, 267, 268, 269, 297, 299, 322, 327, 328, 329, 330, 331 and 332 (EU numbering), for example mutation(s) described in Section 7.6.1 (including its subparts). For example, a CD2 binding molecule can comprise an Fc region having an amino acid sequence of SEQ ID NO:1335 with a mutation at 1, 2, 3, 4, 5, 6, or more than 6 of positions 233, 234, 235, 236, 237, 239, 265, 266, 267, 268, 269, 297, 299, 322, 327, 328, 329, 330, 331 and 332 and/or an Fc region having an amino acid sequence of SEQ ID NO:1336 with a mutation at 1, 2, 3, 4, 5, 6, or more than 6 of positions 233, 234, 235, 236, 237, 239, 265, 266, 267, 268, 269, 297, 299, 322, 327, 328, 329, 330, 331 and 332 and/or an Fc region having an amino acid sequence of SEQ ID NO:1337 with a mutation at 1, 2, 3, 4, 5, 6, or more than 6 of positions 233, 234, 235, 236, 237, 239, 265, 266, 267, 268, 269, 297, 299, 322, 327, 328, 329, 330, 331 and 332.


7.6.1.5.1. Steric Variants


CD2 binding molecules can comprise one or more, e.g., a plurality, of modifications to one or more of the constant domains of an Fc domain, e.g., to the CH3 domains. In one example, a CD2 binding molecule of the present disclosure comprises two polypeptides that each comprise a heavy chain constant domain of an antibody, e.g., a CH2 or CH3 domain. In an example, the two heavy chain constant domains, e.g., the CH2 or CH3 domains of the CD2 binding molecule comprise one or more modifications that allow for a heterodimeric association between the two chains. In one aspect, the one or more modifications are disposed on CH2 domains of the two heavy chains. In one aspect, the one or more modifications are disposed on CH3 domains of at least two polypeptides of the CD2 binding molecule.


One mechanism for Fc heterodimerization is generally referred to as “knobs and holes” or “knobs-into-holes”. These terms refer to amino acid mutations that create steric influences to favor formation of Fc heterodimers over Fc homodimers, as described in, e.g., Ridgway et al., 1996, Protein Engineering 9(7):617; Atwell et al., 1997, J. Mol. Biol. 270:26; U.S. Pat. No. 8,216,805. Knob-in-hole mutations can be combined with other strategies to improve heterodimerization.


In one aspect, the one or more modifications to a first polypeptide of the CD2 binding molecule comprising a heavy chain constant domain can create a “knob” and the one or more modifications to a second polypeptide of the CD2 binding molecule creates a “hole,” such that heterodimerization of the polypeptide of the CD2 binding molecule comprising a heavy chain constant domain causes the “knob” to interface (e.g., interact, e.g., a CH2 domain of a first polypeptide interacting with a CH2 domain of a second polypeptide, or a CH3 domain of a first polypeptide interacting with a CH3 domain of a second polypeptide) with the “hole.” The knob projects from the interface of a first polypeptide of the CD2 binding molecule comprising a heavy chain constant domain and is therefore positionable in a compensatory “hole” in the interface with a second polypeptide of the CD2 binding molecule comprising a heavy chain constant domain so as to stabilize the heteromultimer, and thereby favor heteromultimer formation over homomultimer formation, for example. The knob can exist in the original interface or can be introduced synthetically (e.g. by altering nucleic acid encoding the interface). The import residues for the formation of a knob are generally naturally occurring amino acid residues and can be selected from arginine (R), phenylalanine (F), tyrosine (Y) and tryptophan (W). In some cases, tryptophan and tyrosine are selected. In an embodiment, the original residue for the formation of the protuberance has a small side chain volume, such as alanine, asparagine, aspartic acid, glycine, serine, threonine or valine.


A “hole” comprises at least one amino acid side chain which is recessed from the interface of a second polypeptide of the CD2 binding molecule comprising a heavy chain constant domain and therefore accommodates a corresponding knob on the adjacent interfacing surface of a first polypeptide of the CD2 binding molecule comprising a heavy chain constant domain. The hole can exist in the original interface or can be introduced synthetically (e.g. by altering nucleic acid encoding the interface). The import residues for the formation of a hole are usually naturally occurring amino acid residues and are in some embodiments selected from alanine (A), serine (S), threonine (T) and valine (V). In one embodiment, the amino acid residue is serine, alanine or threonine. In another embodiment, the original residue for the formation of the hole has a large side chain volume, such as tyrosine, arginine, phenylalanine or tryptophan.


In an embodiment, a first CH3 domain is modified at residue 366, 405 or 407 to create either a “knob” or a hole” (as described above), and the second CH3 domain that heterodimerizes with the first CH3 domain is modified at: residue 407 if residue 366 is modified in the first CH3 domain, residue 394 if residue 405 is modified in the first CH3 domain, or residue 366 if residue 407 is modified in the first CH3 domain to create a “hole” or “knob” complementary to the “knob” or “hole” of the first CH3 domain.


In another embodiment, a first CH3 domain is modified at residue 366, and the second CH3 domain that heterodimerizes with the first CH3 domain is modified at residues 366, 368 and/or 407, to create a “hole” or “knob” complementary to the “knob” or “hole” of the first CH3 domain. In one embodiment, the modification to the first CH3 domain introduces a tyrosine (Y) residue at position 366. In an embodiment, the modification to the first CH3 is T366Y. In one embodiment, the modification to the first CH3 domain introduces a tryptophan (W) residue at position 366. In an embodiment, the modification to the first CH3 is T366W. In some embodiments, the modification to the second CH3 domain that heterodimerizes with the first CH3 domain modified at position 366 (e.g., has a tyrosine (Y) or tryptophan (W) introduced at position 366, e.g., comprises the modification T366Y or T366W), comprises a modification at position 366, a modification at position 368 and a modification at position 407. In some embodiments, the modification at position 366 introduces a serine (S) residue, the modification at position 368 introduces an alanine (A), and the modification at position 407 introduces a valine (V). In some embodiments, the modifications comprise T366S, L368A and Y407V. In one embodiment, the first CH3 domain of the multispecific molecule comprises the modification T366Y, and the second CH3 domain that heterodimerizes with the first CH3 domain comprises the modifications T366S, L368A and Y407V, or vice versa. In one embodiment, the first CH3 domain of the multispecific molecule comprises the modification T366W, and the second CH3 domain that heterodimerizes with the first CH3 domain comprises the modifications T366S, L368A and Y407V, or vice versa.


Additional steric or “skew” (e.g., knob in hole) modifications are described in PCT publication no. WO2014/145806 (for example, FIG. 3, FIG. 4 and FIG. 12 of WO2014/145806), PCT publication no. WO2014/110601, and PCT publication no. WO 2016/086186, WO 2016/086189, WO 2016/086196 and WO 2016/182751. An example of a KIH variant comprises a first constant chain comprising a L368D and a K370S modification, paired with a second constant chain comprising a S364K and E357Q modification.


Additional knob in hole modification pairs suitable for use in any of the CD2 binding molecules of the present disclosure are further described in, for example, WO1996/027011, and Merchant et al., 1998, Nat. Biotechnol., 16:677-681.


In further embodiments, the CH3 domains can be additionally modified to introduce a pair of cysteine residues. Without being bound by theory, it is believed that the introduction of a pair of cysteine residues capable of forming a disulfide bond provide stability to heterodimerized CD2 binding molecules, e.g., MBMs, comprising paired CH3 domains. In some embodiments, the first CH3 domain comprises a cysteine at position 354, and the second CH3 domain that heterodimerizes with the first CH3 domain comprises a cysteine at position 349. In some embodiments, the first CH3 domain comprises a cysteine at position 354 (e.g., comprises the modification S354C) and a tyrosine (Y) at position 366 (e.g., comprises the modification T366Y), and the second CH3 domain that heterodimerizes with the first CH3 domain comprises a cysteine at position 349 (e.g., comprises the modification Y349C), a serine at position 366 (e.g., comprises the modification T366S), an alanine at position 368 (e.g., comprises the modification L368A), and a valine at position 407 (e.g., comprises the modification Y407V). In some embodiments, the first CH3 domain comprises a cysteine at position 354 (e.g., comprises the modification S354C) and a tryptophan (W) at position 366 (e.g., comprises the modification T366W), and the second CH3 domain that heterodimerizes with the first CH3 domain comprises a cysteine at position 349 (e.g., comprises the modification Y349C), a serine at position 366 (e.g., comprises the modification T366S), an alanine at position 368 (e.g., comprises the modification L368A), and a valine at position 407 (e.g., comprises the modification Y407V).


An additional mechanism that finds use in the generation of heterodimers is sometimes referred to as “electrostatic steering” as described in Gunasekaran et al., 2010, J. Biol. Chem. 285(25):19637. This is sometimes referred to herein as “charge pairs”. In this embodiment, electrostatics are used to skew the formation towards heterodimerization. As a skilled artisan will appreciate, these can also have an effect on pI, and thus on purification, and thus could in some cases also be considered pI variants. However, as these were generated to force heterodimerization and were not used as purification tools, they are classified as “steric variants”. These include, but are not limited to, D221E/P228E/L368E paired with D221R/P228R/K409R and C220E/P228E/368E paired with C220R/E224R/P228R/K409R.


Additional variants that can be combined with other variants, optionally and independently in any amount, such as pI variants outlined herein or other steric variants that are shown in FIG. 37 of US 2012/0149876.


In some embodiments, the steric variants outlined herein can be optionally and independently incorporated with any pI variant (or other variants such as Fc variants, FcRn variants) into one or both Fc regions, and can be independently and optionally included or excluded from the CD2 binding molecules of the disclosure.


A list of suitable skew variants is found in Table 5 showing some pairs of particular utility in many embodiments. Of particular use in many embodiments are the pairs of sets including, but not limited to, S364K/E357Q:L368D/K370S; L368D/K370S:S364K; L368E/K370S:S364K; T411T/E360E/Q362E:D401K; L368D/K370S:S364K/E357L; and K370S:S364K/E357Q. In terms of nomenclature, the pair “S364K/E357Q:L368D/K370S” means that one of the Fc regions has the double variant set S364K/E357Q and the other has the double variant set L368D/K370S.









TABLE 5







Exemplary skew variants








Fc region 1
Fc region 2





F405A
T394F


S364D
Y349K


S364E
L368K


S364E
Y349K


S364F
K370G


S364H
Y349K


S364H
Y349T


S364Y
K370G


T411K
K370E


V397S/F405A
T394F


K370R/T411K
K370E/T411E


L351E/S364D
Y349K/L351K


L351E/S364E
Y349K/L351K


L351E/T366D
L351K/T366K


P395T/V397S/F405A
T394F


S364D/K370G
S364Y/K370R


S364D/T394F
Y349K/F405A


S364E/F405A
Y349K/T394F


S364E/F405S
Y349K/T394Y


S364E/T411E
Y349K/D401K


S364H/D401K
Y349T/T411E


S364H/F405A
Y349T/T394F


S364H/T394F
Y349T/F405A


Y349C/S364E
Y349K/S354C


L351E/S364D/F405A
Y349K/L351K/T394F


L351K/S364H/D401K
Y349T/L351E/T411E


S364E/T411E/F405A
Y349K/T394F/D401K


S364H/D401K/F405A
Y349T/T394F/T411E


S364H/F405A/T411E
Y349T/T394F/D401K


K370E/T411D
T411K


L368E/K409E
L368K


Y349T/T394F/S354C
S364H/F405A/Y349C


T411E
D401K


T411E
D401R/T411R


Q347E/K360E
Q347R


L368E
S364K


L368E/K370S
S364K


L368E/K370T
S364K


L368E/D401R
S364K


L368E/D401N
S364K


L368E
E357S/S364K


L368E
S364K/K409E


L368E
S364K/K409V


L368D
S364K


L368D/K370S
S364K


L368D/K370S
S364K/E357L


L368D/K370S
S364K/E357Q


T411E/K360E/Q362E
D401K


K370S
S364K


L368E/K370S
S364K/E357Q


K370S
S364K/E357Q


T411E/K360D
D401K


T411E/K360E
D401K


T411E/Q362E
D401K


T411E/N390D
D401K


T411E
D401K/Q347K


T411E
D401K/Q347R


T411E/K360D/Q362E
D401K


K392D/K409D
E356K/D399K


K370D/K392D/K409D
E356K/E357K/D399K


I199T/N203D/K247Q/R355Q/N384S/
Q196K/I199T/P217R/P228R/N276K


K392N/V397M/Q419E/K447


I199T/N203D/K247Q/R355Q/N384S/
Q196K/I199T/N276K


K392N/V397M/Q419E/K447


N384S/K392N/V397M/Q419E
N276K


D221E/P228E/L368E
D221R/P228R/K409R


C220E/P228E/L368E
C220R/E224R/P228R/K409R


F405L
K409R


T366I/K392M/T394W
F405A/Y407V


T366V/K409F
L351Y/Y407A


T366A/K392E/K409F/T411E
D399R/S400R/Y407A


L351K
L351E


I199T/N203D/K247Q/R355Q/Q419E/K447
Q196K/I199T/P217R/P228R/N276K


I199T/N203D/K247Q/R355Q/Q419E/K447
Q196K/I199T/N276K


I199T N203D K274Q R355Q N384S K392N


V397M Q419E DEL447


N208D Q295E N384D Q418E N421D


N208D Q295E Q418E N421D


Q196K I199T P217R P228R N276K


Q196K I199T N276K


E269Q E272Q E283Q E357Q


E269Q E272Q E283Q


E269Q E272Q


E269Q E283Q


E272Q E283Q


E269Q


T411E/K360E/N390D
D401K


T411E/Q362E/N390D
D401K


T411E/Q347R
D401K/K360D


T411E/Q347R
D401K/K360E


T411E/K360
D401K/Q347K


T411E/K360D
D401K/Q347R


T411E/K360E
D401K/Q347K


T411E/K360E
D401K/Q347R


T411E/S364K
D401K/K370S


T411E/K370S
D401K/S364K


Q347E
E357Q


Q347E
E357Q/Q362K


K360D/Q362E
Q347R


K360D/Q362E
D401K


K360D/Q362E
Q347R/D401K


K360E/Q362E
Q347R


K360E/Q362E
D401K


K360E/Q362E
Q347R/D401K


Q362E/N390D
D401K


Q347E/K360D
D401N


K360D
Q347R/N390K


K360D
N390K/D401N


K360E
Y349H


K370S/Q347E
S364K


K370S/E357L
S364K


K370S/E357Q
S364K


K370S/Q347E/E357L
S364K


K370S/Q347E/E357Q
S364K


L368D/K370S/Q347E
S364K


L368D/K370S/E357L
S364K


L368D/K370S/E357Q
S364K


L368D/K370S/Q347E/E357L
S364K


L368D/K370S/Q347E/E357Q
S364K


L368E/K370S/Q347E
S364K


L368E/K370S/E357L
S364K


L368E/K370S/E357Q
S364K


L368E/K370S/Q347E/E357L
S364K


L368E/K370S/Q347E/E357Q
S364K


L368D/K370T/Q347E
S364K


L368D/K370T/E357L
S364K


L368D/K370T/E357Q
S364K


L368D/K370T/Q347E/E357L
S364K


L368D/K370T/Q347E/E357Q
S364K


L368E/K370T/Q347E
S364K


L368E/K370T/E357L
S364K


L368E/K370T/E357Q
S364K


L368E/K370T/Q347E/E357L
S364K


L368E/K370T/Q347E/E357Q
S364K


T411E/Q362E
D401K/T411K


T411E/N390D
D401K/T411K


T411E/Q362E
D401R/T411R


T411E/N390D
D401R/T411R


Y407T
T366Y


F405A
T394W


T366Y/F405A
T394W/Y407T


Y407A
T366W


T366S/L368A/Y407V
T366W


T366S/L368A/Y407V/Y349C
T366W/S354C


K392D/K409D
E356K/D399K


K370D/K392D/K409D
E356K/E357K/D399K


I199T/N203D/K247Q/R355Q/N384S/K392NA/
Q196K/I199T/P217R/P228R/N276K


397M/Q419E/K447


I199T/N203D/K247Q/R355Q/N384S/K392N/
Q196K/I199T/N276K


V397M/Q419E/K447


N384S/K392N/V397M/Q419E
N276K


D221E/P228E/L368E
D221R/P228R/K409R


C220E/P228E/L368E
C220R/E224R/P228R/K409R


F405L
K409R


T366I/K392M/T394W
F405A/Y407V


T366V/K409F
L351Y/Y407A


T366A/K392E/K409F/T411E
D399R/S400R/Y407A


L351K
L351E


I199T/N203D/K247Q/R355Q/Q419E/K447
Q196K/I199T/P217R/P228R/N276K


I199T/N203D/K247Q/R355Q/Q419E/K447
Q196K/I199T/N276K


I199T N203D K274Q R355Q N384S K392N


V397M Q419E DEL447


N208D Q295E N384D Q418E N421D


Q295E N384D Q418E N421D


N208D Q295E Q418E N421D


Q295E Q418E N421D


Q196K I199T P217R P228R N276K


Q196K I199T N276K


E269Q E272Q E283Q E357Q


E269Q E272Q E283Q


E269Q E272Q


E269Q E283Q


E272Q E283Q


E269Q









In some embodiments, a CD2 binding molecule comprises a first Fc region and a second Fc region. In some embodiments, the first Fc region comprises the following mutations: L368D and K370S, and the second Fc region comprises the following mutations: S364K and E357Q. In some embodiments, the first Fc region comprises the following mutations: S364K and E357Q, and the second Fc region comprises the following mutations: L368D and K370S.


7.6.1.5.2. Alternative Knob and Hole: IgG Heterodimerization


Heterodimerization of polypeptide chains of a CD2 binding molecule comprising paired CH3 domains can be increased by introducing one or more modifications in a CH3 domain which is derived from the IgG1 antibody class. In an embodiment, the modifications comprise a K409R modification to one CH3 domain paired with F405L modification in the second CH3 domain. Additional modifications can also, or alternatively, be at positions 366, 368, 370, 399, 405, 407, and 409. In some cases, heterodimerization of polypeptides comprising such modifications is achieved under reducing conditions, e.g., 10-100 mM 2-MEA (e.g., 25, 50, or 100 mM 2-MEA) for 1-10, e.g., 1.5-5, e.g., 5, hours at 25-37 C, e.g., 25 C or 37 C.


The amino acid replacements described herein can be introduced into the CH3 domains using techniques which are well known (see, e.g., McPherson, ed., 1991, Directed Mutagenesis: a Practical Approach; Adelman et al., 1983, DNA, 2:183).


The IgG heterodimerization strategy is further described in, for example, WO2008/119353, WO2011/131746, and WO2013/060867.


In any of the embodiments described in this Section, the CH3 domains can be additionally modified to introduce a pair of cysteine residues as described in Section 7.6.1.3.


7.6.1.5.3. pI (Isoelectric Point) Variants


In general, as will be appreciated by a skilled artisan, there are two general categories of pI variants: those that increase the pI of the protein (basic changes) and those that decrease the pI of the protein (acidic changes). As described herein, all combinations of these variants can be done: one Fc region can be wild type, or a variant that does not display a significantly different pI from wild-type, and the other can be either more basic or more acidic. Alternatively, each Fc region is changed, one to more basic and one to more acidic.


Exemplary combinations of pI variants are shown in Table 6. As outlined herein and shown in Table 6, these changes are shown relative to IgG1, but all isotypes can be altered this way, as well as isotype hybrids. In the case where the heavy chain constant domain is from IgG2-4, R133E and R133Q can also be used.









TABLE 6







Exemplary pl Variant Combinations








Variant constant region
Substitutions





pl_ISO(−)
I199T N203D K274Q R355Q N384S



K392N V397M Q419E DEL447


pl_(−)_isosteric_A
N208D Q295E N384D Q418E



N421D


pl_(−)_isosteric A-Fc only
Q295E N384D Q418E N421D


pl_(−)_isosteric_B
N208D Q295E Q418E N421D


pl_(−)_isosteric_B-Fc only
Q295E Q418E N421D


pl_ISO(+RR)
Q196K I199T P217R P228R



N276K


pl_ISO(+)
Q196K I199T N276K


pl_(+)_isosteric_A
E269Q E272Q E283Q E357Q


pl_(+)_isosteric_B
E269Q E272Q E283Q


pl_(+)_isosteric_E269Q/E272Q
E269Q E272Q


pl_(+)_isosteric_E269Q/E283Q
E269Q E283Q


pl_(+)_isosteric_E272Q/E283Q
E272Q E283Q


pl_(+)_isosteric_E269Q
E269Q









In one embodiment, for example in the FIG. 1B-1W, FIG. 1Y-1AH, FIG. 2B-2L, and FIG. 2N-2V formats, a combination of pI variants has one Fc region (the negative Fab side) comprising 208D/295E/384D/418E/421D variants (N208D/Q295E/N384D/Q418E/N421D when relative to human IgG1) and a second Fc region (the positive scFv side) comprising a positively charged scFv linker, e.g., L36 (described in Section 7.6.3). However, as will be appreciated by a skilled artisan, the first Fc region includes a CH1 domain, including position 208. Accordingly, in constructs that do not include a CH1 domain (for example for MBMs that do not utilize a CH1 domain as one of the domains, for example in a format depicted in FIG. 2K), a negative pI variant Fc set can include 295E/384D/418E/421D variants (Q295E/N384D/Q418E/N421D when relative to human IgG1).


In some embodiments, a first Fc region has a set of substitutions from Table 6 and a second Fc region is connected to a charged linker (e.g., selected from those described in Section 7.6.3).


In some embodiments, the CD2 binding molecule of the present disclosure comprises a first Fc region and a second Fc region. In some embodiments, the first Fc region comprises the following mutations: N208D, Q295E, N384D, Q418E, and N421D. In some embodiments, the second Fc region comprises the following mutations: N208D, Q295E, N384D, Q418E, and N421D.


7.6.1.5.4. Isotopic Variants


In addition, many embodiments of the disclosure rely on the “importation” of pI amino acids at particular positions from one IgG isotype into another, thus reducing or eliminating the possibility of unwanted immunogenicity being introduced into the variants. A number of these are shown in FIG. 21 of US Publ. 2014/0370013. That is, IgG1 is a common isotype for therapeutic antibodies for a variety of reasons, including high effector function. However, the heavy constant region of IgG1 has a higher pI than that of IgG2 (8.10 versus 7.31). By introducing IgG2 residues at particular positions into the IgG1 backbone, the pI of the resulting Fc region is lowered (or increased) and additionally exhibits longer serum half-life. For example, IgG1 has a glycine (pI 5.97) at position 137, and IgG2 has a glutamic acid (pI 3.22); importing the glutamic acid will affect the pI of the resulting protein. As is described below, a number of amino acid substitutions are generally required to significantly affect the pI of the variant antibody. However, it should be noted as discussed below that even changes in IgG2 molecules allow for increased serum half-life.


In other embodiments, non-isotypic amino acid changes are made, either to reduce the overall charge state of the resulting protein (e.g., by changing a higher pI amino acid to a lower pI amino acid), or to allow accommodations in structure for stability, as is further described below.


In addition, by pI engineering both the heavy and light constant domains of a CD2 binding molecule comprising two half antibodies, significant changes in each half antibody can be seen. Having the pIs of the two half antibodies differ by at least 0.5 can allow separation by ion exchange chromatography or isoelectric focusing, or other methods sensitive to isoelectric point.


7.6.1.5.5. Calculating pI


The pI of a half antibody comprising an Fc region and an ABM or ABM chain can depend on the pI of the variant heavy chain constant domain and the pI of the total half antibody, including the variant heavy chain constant domain and ABM or ABM chain. Thus, in some embodiments, the change in pI is calculated on the basis of the variant heavy chain constant domain, using the chart in the FIG. 19 of US Pub. 2014/0370013. As discussed herein, which half antibody to engineer is generally decided by the inherent pI of the half antibodies. Alternatively, the pI of each half antibody can be compared.


7.6.1.5.6. pI Variants that Also Confer Better FcRn In Vivo Binding


In the case where a pI variant decreases the pI of an Fc region, it can have the added benefit of improving serum retention in vivo.


pI variant Fc regions are believed to provide longer half-lives to antigen binding molecules in vivo, because binding to FcRn at pH 6 in an endosome sequesters the Fc (Ghetie and Ward, 1997, Immunol Today. 18(12): 592-598). The endosomal compartment then recycles the Fc to the cell surface. Once the compartment opens to the extracellular space, the higher pH ˜7.4, induces the release of Fc back into the blood. In mice, DaII′ Acqua et al. showed that Fc mutants with increased FcRn binding at pH 6 and pH 7.4 actually had reduced serum concentrations and the same half life as wild-type Fc (Dall'Acqua et al. 2002, J. Immunol. 169:5171-5180). The increased affinity of Fc for FcRn at pH 7.4 is thought to forbid the release of the Fc back into the blood. Therefore, the Fc mutations that will increase Fc's half-life in vivo will ideally increase FcRn binding at the lower pH while still allowing release of Fc at higher pH. The amino acid histidine changes its charge state in the pH range of 6.0 to 7.4. Therefore, it is not surprising to find His residues at important positions in the Fc/FcRn complex.


It has been suggested that antibodies with variable regions that have lower isoelectric points can also have longer serum half-lives (Igawa et al., 2010, PEDS. 23(5): 385-392). However, the mechanism of this is still poorly understood. Moreover, variable regions differ from antibody to antibody. Constant region variants with reduced pI and extended half-life would provide a more modular approach to improving the pharmacokinetic properties of CD2 binding molecules, as described herein.


7.6.1.5.7. Polar Bridge


Heterodimerization of polypeptide chains of CD2 binding molecules, e.g., MBMs, comprising an Fc domain can be increased by introducing modifications based on the “polar-bridging” rationale, which is to make residues at the binding interface of the two polypeptide chains to interact with residues of similar (or complimentary) physical property in the heterodimer configuration, while with residues of different physical property in the homodimer configuration. In particular, these modifications are designed so that, in the heterodimer formation, polar residues interact with polar residues, while hydrophobic residues interact with hydrophobic residues. In contrast, in the homodimer formation, residues are modified so that polar residues interact with hydrophobic residues. The favorable interactions in the heterodimer configuration and the unfavorable interactions in the homodimer configuration work together to make it more likely for Fc regions to form heterodimers than to form homodimers.


In an exemplary embodiment, the above modifications are generated at one or more positions of residues 364, 368, 399, 405, 409, and 411 of a CH3 domain.


In some embodiments, one or more modifications selected from the group consisting of S364L, T366V, L368Q, N399K, F405S, K409F and R411K are introduced into one of the two CH3 domains. One or more modifications selected from the group consisting of Y407F, K409Q and T411N can be introduced into the second CH3 domain.


In another embodiment, one or more modifications selected from the group consisting of S364L, T366V, L368Q, D399K, F405S, K409F and T411K are introduced into one CH3 domain, while one or more modifications selected from the group consisting of Y407F, K409Q and T411D are introduced into the second CH3 domain.


In one exemplary embodiment, the original residue of threonine at position 366 of one CH3 domain is replaced by valine, while the original residue of tyrosine at position 407 of the other CH3 domain is replaced by phenylalanine.


In another exemplary embodiment, the original residue of serine at position 364 of one CH3 domain is replaced by leucine, while the original residue of leucine at position 368 of the same CH3 domain is replaced by glutamine.


In yet another exemplary embodiment, the original residue of phenylalanine at position 405 of one CH3 domain is replaced by serine and the original residue of lysine at position 409 of this CH3 domain is replaced by phenylalanine, while the original residue of lysine at position 409 of the other CH3 domain is replaced by glutamine.


In yet another exemplary embodiment, the original residue of aspartic acid at position 399 of one CH3 domain is replaced by lysine, and the original residue of threonine at position 411 of the same CH3 domain is replaced by lysine, while the original residue of threonine at position 411 of the other CH3 domain is replaced by aspartic acid.


The amino acid replacements described herein can be introduced into the CH3 domains using techniques which are well known (see, e.g., McPherson, ed., 1991, Directed Mutagenesis: a Practical Approach; Adelman et al., 1983, DNA, 2:183). The polar bridge strategy is described in, for example, WO2006/106905, WO2009/089004 and Gunasekaran et al., 2010, JBC 285:19637-19646.


Additional polar bridge modifications are described in, for example, PCT publication no. WO2014/145806 (for example, FIG. 6 of WO2014/145806), PCT publication no. WO2014/110601, and PCT publication no. WO 2016/086186, WO 2016/086189, WO 2016/086196 and WO 2016/182751. An example of a polar bridge variant comprises a constant chain comprising a N208D, Q295E, N384D, Q418E and N421D modification.


In any of the embodiments described herein, the CH3 domains can be additionally modified to introduce a pair of cysteine residues as described in Section 7.6.1.3.


Additional strategies for enhancing heterodimerization are described in, for example, WO2016/105450, WO2016/086186, WO2016/086189, WO2016/086196, WO2016/141378, and WO2014/145806, and WO2014/110601. Any of the strategies can be employed in a CD2 binding molecule described herein.


7.6.1.6. Combination of Heterodimerization Variants and Other Fc Variants


As will be appreciated by a skilled artisan, all of the recited heterodimerization variants (including skew and/or pI variants) can be optionally and independently combined in any way, as long as the Fc regions of an Fc domain retain their ability to dimerize. In addition, all of these variants can be combined into any of the heterodimerization formats.


In the case of pI variants, while embodiments finding particular use are shown in the Table 6, other combinations can be generated, following the basic rule of altering the pI difference between two Fc regions in an Fc heterodimer to facilitate purification.


In addition, any of the heterodimerization variants, skew and pI, are also independently and optionally combined with Fc ablation variants, Fc variants, FcRn variants, as generally outlined herein.


In some embodiments, a particular combination of skew and pI variants that finds use in the present disclosure is T366S/L368A/Y407V:T366W (optionally including a bridging disulfide, T366S/L368A/Y407V/Y349C:T366W/S354C) with one Fc region comprising Q295E/N384D/Q418E/N481D and the other a positively charged scFv linker (when the format includes an scFv domain). As will be appreciated by a skilled artisan, the “knobs in holes” variants do not change pI, and thus can be used on either one of the Fc regions in an Fc heterodimer.


In some embodiments, first and second Fc regions that find use the present disclosure include the amino acid substitutions S364K/E357Q:L368D/K370S, where the first and/or second Fc region includes the ablation variant substitutions 233P/L234V/L235A/G236del/S267K, and the first and/or second Fc region comprises the pI variant substitutions N208D/Q295E/N384D/Q418E/N421D (pI_(−)_isosteric_A).


7.6.2. Hinge Regions


The CD2 binding molecules can also comprise hinge regions, e.g., connecting an antigen-binding domain to an Fc region. The hinge region can be a native or a modified hinge region. Hinge regions are typically found at the N-termini of Fc regions.


A native hinge region is the hinge region that would normally be found between Fab and Fc domains in a naturally occurring antibody. A modified hinge region is any hinge that differs in length and/or composition from the native hinge region. Such hinges can include hinge regions from other species, such as human, mouse, rat, rabbit, shark, pig, hamster, camel, llama or goat hinge regions. Other modified hinge regions can comprise a complete hinge region derived from an antibody of a different class or subclass from that of the heavy chain Fc region. Alternatively, the modified hinge region can comprise part of a natural hinge or a repeating unit in which each unit in the repeat is derived from a natural hinge region. In a further alternative, the natural hinge region can be altered by converting one or more cysteine or other residues into neutral residues, such as serine or alanine, or by converting suitably placed residues into cysteine residues. By such means the number of cysteine residues in the hinge region can be increased or decreased. This approach is described further in U.S. Pat. No. 5,677,425 by Bodmer et al.. Altering the number of cysteine residues in a hinge region can, for example, facilitate assembly of light and heavy chains, or increase or decrease the stability of a CD2 binding molecule. Other modified hinge regions can be entirely synthetic and can be designed to possess desired properties such as length, cysteine composition and flexibility.


A number of modified hinge regions have been described for example, in U.S. Pat. No. 5,677,425, WO9915549, WO2005003170, WO2005003169, WO2005003170, WO9825971 and WO2005003171.


Examples of suitable hinge sequences are shown in Table 7.









TABLE 7







Hinge Sequences













SEQ


Hinge
Hinge

ID


Name
Description
Hinge Sequence
NO:





H1
Human IgA1
VPSTPPTPSPSTPPTPSPS
718





H2
Human IgA2
VPPPPP
719





H3
Human IgD
ESPKAQASSVPTAQPQAEGSLAKAT
720




TAPATTRNTGRGGEEKKKEKEKEEQ





EERETKTP






H4
Human IgG1
EPKSCDKTHTCPPCP
721





H5
Human IgG2
ERKCCVECPPCP
722





H6
Human IgG3
ELKTPLGDTTHTCPRCPEPKSCDTP
723




PPCPRCPEPKSCDTPPPCPRCPEPK





SCDTPPPCPRCP






H7
Human IgG4
ESKYGPPCPSCP
724





H8
Human IgG4(P)
ESKYGPPCPPCP
725





H9
Engineered v1
CPPC
726





H10
Engineered v2
CPSC
727





H11
Engineered v3
CPRC
728





H12
Engineered v4
SPPC
729





H13
Engineered v5
CPPS
730





H14
Engineered v6
SPPS
731





H15
Engineered v7
DKTHTCAA
732





H16
Engineered v8
DKTHTCPPCPA
733





H17
Engineered v9
DKTHTCPPCPATCPPCPA
734





H18
Engineered v10
DKTHTCPPCPATCPPCPATCPPCPA
735





H19
Engineered v11
DKTHTCPPCPAGKPTLYNSLVMSDT
736




AGTCY






H20
Engineered v12
DKTHTCPPCPAGKPTHVNVSVVMAE
737




VDGTCY






H21
Engineered v13
DKTHTCCVECPPCPA
738





H22
Engineered v14
DKTHTCPRCPEPKSCDTPPPCPRCP
739




A






H23
Engineered v15
DKTHTCPSCPA
740









In one embodiment, the heavy chain Fc region possesses an intact hinge region at its N-terminus.


In one embodiment, the heavy chain Fc region and hinge region are derived from IgG4 and the hinge region comprises the modified sequence CPPC (SEQ ID NO: 726). The core hinge region of human IgG4 contains the sequence CPSC (SEQ ID NO: 727) compared to IgG1 which contains the sequence CPPC (SEQ ID NO: 726). The serine residue present in the IgG4 sequence leads to increased flexibility in this region, and therefore a proportion of molecules form disulfide bonds within the same protein chain (an intrachain disulfide) rather than bridging to the other heavy chain in the IgG molecule to form the interchain disulfide. (Angel et al., 1993, Mol Immunol 30(1):105-108). Changing the serine residue to a proline to give the same core sequence as IgG1 allows complete formation of inter-chain disulfides in the IgG4 hinge region, thus reducing heterogeneity in the purified product. This altered isotype is termed IgG4P.


7.6.3. ABM Linkers


In certain aspects, the present disclosure provides CD2 binding molecules where two or more components of an ABM (e.g., a VH and a VL of an scFv), two or more ABMs, or an ABM and a non-ABM domain (e.g., a dimerization domain such as an Fc region) are connected to one another by a peptide linker. Such linkers are referred to herein an “ABM linkers”, as opposed to the ADC linkers used to attach drugs to CD2 binding molecules as described, for example, in Section 7.13.2.


A peptide linker can range from 2 amino acids to 60 or more amino acids, and in certain aspects a peptide linker ranges from 3 amino acids to 50 amino acids, from 4 to 30 amino acids, from 5 to 25 amino acids, from 10 to 25 amino acids or from 12 to 20 amino acids. In particular embodiments, a peptide linker is 2 amino acids, 3 amino acids, 4 amino acid, 5 amino acids, 6 amino acids, 7 amino acids, 8 amino acids, 9 amino acids, 10 amino acids, 11 amino acids, 12 amino acids, 13 amino acids, 14 amino acid, 15 amino acids, 16 amino acids, 17 amino acids, 18 amino acids, 19 amino acids, 20 amino acids, 21 amino acids, 22 amino acids, 23 amino acids, 24 amino acid, 25 amino acids, 26 amino acids, 27 amino acids, 28 amino acids, 29 amino acids, 30 amino acids, 31 amino acids, 32 amino acids, 33 amino acids, 34 amino acid, 35 amino acids, 36 amino acids, 37 amino acids, 38 amino acids, 39 amino acids, 40 amino acids, 41 amino acids, 42 amino acids, 43 amino acids, 44 amino acid, 45 amino acids, 46 amino acids, 47 amino acids, 48 amino acids, 49 amino acids, or 50 amino acids in length.


Charged and/or flexible linkers can be used.


Examples of flexible ABM linkers that can be used in the CD2 binding molecules include those disclosed by Chen et al., 2013, Adv Drug Deliv Rev. 65(10):1357-1369 and Klein et al., 2014, Protein Engineering, Design & Selection 27(10):325-330. A particularly useful flexible linker is (GGGGS)n (also referred to as (G4S)n) (SEQ ID NO: 741). In some embodiments, n is any number between 1 and 10, i.e., 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10, or any range bounded by any two of the foregoing numbers, e.g., 1 to 5, 2 to 5, 3 to 6, 2 to 4, 1 to 4, and so on and so forth.


Other examples of suitable ABM linkers for use in the CD2 binding molecules of the present disclosure are shown in Table 8 below:









TABLE 8







ABM Linker Sequences











SEQ ID


Linker Name
Linker Sequence
NO:





L1
ADAAP
742





L2
ADAAPTVSIFP
743





L3
ADAAPTVSIFPP
744





L4
AKTTAP
745





L5
AKTTAPSVYPLAP
746





L6
AKTTPKLEEGEFSEARV
747





L7
AKTTPKLGG
748





L8
AKTTPP
749





L9
AKTTPPSVTPLAP
750





L10
ASTKGP
751





L11
ASTKGPSVFPLAP
752





L12
ASTKGPSVFPLAPASTKGPSVFPLAP
753





L13
EGKSSGSGSESKST
754





L14
GEGESGEGESGEGES
755





L15
GEGESGEGESGEGESGEGES
756





L16
GEGGSGEGGSGEGGS
757





L17
GENKVEYAPALMALS
758





L18
GGEGSGGEGSGGEGS
759





L19
GGGESGGEGSGEGGS
760





L20
GGGESGGGESGGGES
761





L21
(GGGGS)n (also referred to as
762



(G4S)n), Where n can be 1-10.






L22
GGGGSGGGGS
763





L23
GGGGSGGGGSGGGGS
717





L24
GGGGSGGGGSGGGGSGGGGS
764





L25
GGGKSGGGKSGGGKS
765





L26
GGGKSGGKGSGKGGS
766





L27
GGKGSGGKGSGGKGS
767





L28
GGSGG
768





L29
GGSGGGGSG
769





L30
GGSGGGGSGGGGS
770





L31
GHEAAAVMQVQYPAS
771





L32
GKGGSGKGGSGKGGS
772





L33
GKGKSGKGKSGKGKS
773





L34
GKGKSGKGKSGKGKSGKGKS
774





L35
GKPGSGKPGSGKPGS
775





L36
GKPGSGKPGSGKPGSGKPGS
776





L37
GPAKELTPLKEAKVS
777





L38
GSAGSAAGSGEF
778





L39
IRPRAIGGSKPRVA
779





L40
KESGSVSSEQLAQFRSLD
780





L41
KTTPKLEEGEFSEAR
781





L42
QPKAAP
782





L43
QPKAAPSVTLFPP
783





L44
RADAAAA(G4S)4
784





L45
RADAAAAGGPGS
785





L46
RADAAP
786





L47
RADAAPTVS
787





L48
SAKTTP
788





L49
SAKTTPKLEEGEFSEARV
789





L50
SAKTTPKLGG
790





L51
STAGDTHLGGEDFD
791





L52
TVAAP
792





L53
TVAAPSVFIFPP
793





L54
TVAAPSVFIFPPTVAAPSVFIFPP
794





L55
GSTSGSGKPGSGEGSTKG
795





L56
PRGASKSGSASQTGSAPGS
796





L57
GTAAAGAGAAGGAAAGAAG
797





L58
GTSGSSGSGSGGSGSGGGG
798









In various aspects, the disclosure provides a CD2 binding molecule which comprises one or more ABM linkers. Each of the ABM linkers can be range from 2 amino acids to 60 amino acids in length, e.g., 4 to 30 amino acids, from 5 to 25 amino acids, from 10 to 25 amino acids or from 12 to 20 amino acids in length, optionally selected from Table 8 above. In particular embodiments, the CD2 binding molecule comprises two, three, four, five or six ABM linkers. The ABM linkers can be on one, two, three, four or even more polypeptide chains of the CD2 binding molecule.


7.7. Bispecific Binding Molecule Configurations

Exemplary BBM configurations are shown in FIG. 1. FIG. 1A shows the components of the BBM configurations shown in FIGS. 1B-1AH. The scFv, Fab, scFab, non-immunoglobulin based ABM, and Fc domains each can have the characteristics described for these components in Sections 7.5 and 7.6. The components of the BBM configurations shown in FIG. 1 can be associated with each other by any of the means described in Sections 7.5 and 7.6 (e.g., by direct bonds, ABM linkers, disulfide bonds, Fc domains with modified with knob in hole interactions, etc.). The orientations and associations of the various components shown in FIG. 1 are merely exemplary; as will be appreciated by a skilled artisan, other orientations and associations can be suitable (e.g., as described in Sections 7.5 and 7.6).


BBMs are not limited to the configurations shown in FIG. 1. Other configurations that can be used are known to those skilled in the art. See, e.g., WO 2014/145806; WO 2017/124002; Liu et al., 2017, Front Immunol. 8:38; Brinkmann & Kontermann, 2017, mAbs 9:2, 182-212; US 2016/0355600; Klein et al., 2016, MAbs 8(6):1010-20; and US 2017/0145116.


7.7.1. Exemplary Bivalent BBMs


The BBMs can be bivalent, i.e., they have two antigen-binding domains, one of which binds CD2 (ABM1) and one of which binds a second target antigen (ABM2), e.g., a component of a TCR complex or a TAA. In the BBMs of the disclosure, ABM1 is a variant CD58 domain as described herein.


Exemplary bivalent BBM configurations are shown in FIGS. 1B-1F. In the BBMs of the disclosure, a variant CD58 domain can substitute for a Fab and/or scFv in any of the configurations illustrated.


As depicted in FIGS. 1B-1D, a BBM can comprise two half antibodies, one comprising one ABM and the other comprising one ABM, the two halves paired through an Fc domain.


In the embodiment of FIG. 1B, the first (or left) half antibody comprises a Fab and an Fc region, and the second (or right) half antibody comprises a Fab and an Fc region. The first and second half antibodies are associated through the Fc regions forming an Fc domain.


In the embodiment of FIG. 1C, the first (or left) half antibody comprises a Fab and an Fc region, and the second (or right) half antibody comprises a scFv and an Fc region. The first and second half antibodies are associated through the Fc regions forming an Fc domain.


In the embodiment of FIG. 1D, the first (or left) half antibody comprises an scFv and an Fc region, and the second (or right) half antibody comprises an scFv and an Fc region. The first and second half antibodies are associated through the Fc regions forming an Fc domain.


As depicted in FIGS. 1E-1F, a bivalent BBM can comprise two ABMs attached to one Fc region of an Fc domain.


In the embodiment of FIG. 1E, the BBM comprises a Fab, a scFv and an Fc domain, where the scFv is located between the Fab and the Fc domain.


In the embodiment of FIG. 1F, (the “one-arm scFv-mAb” configuration) BBM comprises a Fab, a scFv and an Fc domain, where the Fab is located between the scFv and the Fc domain.


In the configuration shown in FIGS. 1B-1F, each of X and Y represent either ABM1 or ABM2, provided that the BBM comprises one ABM1 and one ABM2. Accordingly, the present disclosure provides a bivalent BBM as shown in any one of FIGS. 1B through 1F, where X is an ABM1 and Y is an ABM2 (this configuration of ABMs designated as “B1” for convenience). The present disclosure also provides a bivalent BBM as shown in any one of FIGS. 1B through 1F, where X is an ABM2 and Y is an ABM1 (this configuration of ABMs designated as “B2” for convenience).


7.7.2. Exemplary Trivalent BBMs


The BBMs can be trivalent, i.e., they have three antigen-binding domains, one or two of which binds CD2 (ABM1) and one or two of which binds a second target antigen (ABM2), e.g., a component of a TCR complex or a TAA. In the BBMs of the disclosure, ABM1 is a variant CD58 domain as described herein.


Exemplary trivalent BBM configurations are shown in FIGS. 1G-1Z. In the BBMs of the disclosure, a variant CD58 domain can substitute for a Fab and/or scFv in any of the configurations illustrated.


As depicted in FIGS. 1G-1N, 1Q-1W, 1Y-1Z a BBM can comprise two half antibodies, one comprising two ABMs and the other comprising one ABM, the two halves paired through an Fc domain.


In the embodiment of FIG. 1G, the first (or left) half antibody comprises Fab and an Fc region, and the second (or right) half antibody comprises a scFv, a Fab, and an Fc region. The first and second half antibodies are associated through the Fc regions forming an Fc domain.


In the embodiment of FIG. 1H, the first (or left) half antibody comprises a Fab and an Fc region, and the second (or right) half antibody comprises a Fab, an scFv, and an Fc region. The first and second half antibodies are associated through the Fc regions forming an Fc domain.


In the embodiment of FIG. 1I, the first (or left) half antibody comprises an scFv and an Fc region, and the second (or right) half antibody comprises two Fabs and an Fc region. The first and second half antibodies are associated through the Fc regions forming an Fc domain.


In the embodiment of FIG. 1J, the first (or left) half antibody comprises two Fav and an Fc region, and the second (or right) half antibody comprises a Fab and an Fc region. The first and second half antibodies are associated through the Fc regions forming an Fc domain.


In the embodiment of FIG. 1K, the first (or left) half antibody comprises an scFv and an Fc region, and the second (or right) half antibody comprises two scFvs and an Fc region. The first and second half antibodies are associated through the Fc regions forming an Fc domain.


In the embodiment of FIG. 1L, the first (or left) half antibody comprises an scFv and an Fc region, and the second (or right) half antibody comprises an scFv, a Fab, and an Fc region.


The first and second half antibodies are associated through the Fc regions forming an Fc domain.


In the embodiment of FIG. 1M, the first (or left) half antibody comprises a scFv and an Fc region, and the second (or right) half antibody comprises a Fab, a scFv and an Fc region. The first and second half antibodies are associated through the Fc regions forming an Fc domain.


In the embodiment of FIG. 1N, the first (or left) half antibody comprises a diabody-type binding domain and an Fc region, and the second (or right) half antibody comprises a Fab and an Fc region. The first and second half antibodies are associated through the Fc regions forming an Fc domain.


In the embodiment of FIG. 1Q, the first (or left) half antibody comprises a Fab and an Fc region, and the second (or right) half antibody comprises a Fab, an Fc region, and an scFv. The first and second half antibodies are associated through the Fc regions forming an Fc domain.


In the embodiment of FIG. 1R, the first (or left) half antibody comprises a scFv and an Fc region, and the second (or right) half antibody comprises a Fab, an Fc region, and an scFv. The first and second half antibodies are associated through the Fc regions forming an Fc domain.


In the embodiment of FIG. 1S, the first (or left) half antibody comprises an scFv and an Fc region, and the second (or right) half antibody comprises an scFv, an Fc region, and a second scFv. The first and second half antibodies are associated through the Fc regions forming an Fc domain.


In the embodiment of FIG. 1T, the first (or left) half antibody comprises an scFv, an Fc region, and a Fab, and the second (or right) half antibody comprises a Fab and an Fc region. The first and second half antibodies are associated through the Fc regions forming an Fc domain.


In the embodiment of FIG. 1U, the first (or left) half antibody comprises two Fab and an Fc region, and the second (or right) half antibody comprises a non-immunoglobulin based ABM and an Fc region. The first and second half antibodies are associated through the Fc regions forming an Fc domain.


In the embodiment of FIG. 1V, the first (or left) half antibody comprises a Fab, an scFv, and an Fc region, and the second (or right) half antibody comprises a non-immunoglobulin based ABM and an Fc region. The first and second half antibodies are associated through the Fc regions forming an Fc domain.


In the embodiment of FIG. 1W, the first (or left) half antibody comprises a Fab and an Fc region, and the second (or right) half antibody comprises a scFv, a non-immunoglobulin based ABM, and an Fc region. The first and second half antibodies are associated through the Fc regions forming an Fc domain.


In the embodiment of FIG. 1Y, the first (or left) half antibody comprises an scFv and an Fc region, and the second (or right) half antibody comprises a Fab, an scFv and an Fc region. The first and second half antibodies are associated through the Fc regions forming an Fc domain.


In the embodiment of FIG. 1Z, the first (or left) half antibody comprises a Fab, an Fc region, and a scFab, and the second (or right) half antibody comprises a Fab and an Fc region. The first and second half antibodies are associated through the Fc regions forming an Fc domain.


Alternatively, as depicted in FIGS. 1O and 1P, trivalent a BBM can comprise two half antibodies, each comprising one complete ABM (a Fab in FIGS. 1O and 1P) and a portion of another ABM (one a VH, the other a VL). The two half antibodies are paired through an Fc domain, whereupon the VH and the VL associate to form a complete antigen-binding Fv domain.


The BBM can be a single chain, as shown in FIG. 1X. The BBM of FIG. 1X comprises three scFv domains connected through linkers.


In the configuration shown in FIGS. 1G-1Z, each of X, Y and A represent either an ABM1 or ABM2, provided that the BBM comprises at least ABM1 and at least one ABM2. Thus, the trivalent MBMs will include one or two ABM1s and one or two ABM2s. In some embodiments, a trivalent BBM comprises two ABM1s and one ABM2. In other embodiments, a trivalent BBM of the disclosure comprises one ABM1 and two ABM2s.


Accordingly, in the present disclosure provides a trivalent BBM as shown in any one of FIGS. 1G through 1Z, where X is an ABM1, Y is an ABM1 and A is an ABM2 (this configuration of ABMs designated as “T1” for convenience).


The disclosure further provides a trivalent BBM as shown in any one of FIGS. 1G through 1Z, where X is an ABM1, Y is an ABM2 and A is an ABM1 (this configuration of ABMs designated as “T2” for convenience).


The disclosure further provides a trivalent BBM as shown in any one of FIGS. 1G through 1Z, where X is an ABM2, Y is an ABM1 and A is an ABM1 (this configuration of ABMs designated as “T3” for convenience).


The disclosure further provides a trivalent BBM as shown in any one of FIGS. 1G through 1Z, where X is an ABM1, Y is an ABM2 and A is an ABM2 (this configuration of ABMs designated as “T4” for convenience).


The disclosure further provides a trivalent BBM as shown in any one of FIGS. 1G through 1Z, where X is an ABM2, Y is an ABM1 and A is an ABM2 (this configuration of ABMs designated as “T5” for convenience).


The disclosure further provides a trivalent BBM as shown in any one of FIGS. 1G through 1Z, where X is an ABM2, Y is an ABM2 and A is an ABM1 (this configuration of ABMs designated as “T6” for convenience).


7.7.3. Exemplary Tetravalent BBMs


The BBMs can be tetravalent, i.e., they have four antigen-binding domains, one, two, or three of which binds CD2 (ABM1) and one, two, or three of which binds a second target antigen (ABM2), e.g., a component of a TCR complex or a TAA. In the BBMs of the disclosure, ABM1 is a variant CD58 domain as described herein.


Exemplary tetravalent BBM configurations are shown in FIGS. 1AA-1AH. In the BBMs of the disclosure, a variant CD58 domain can substitute for a Fab and/or scFv in any of the configurations illustrated.


As depicted in FIGS. 1AA-1AH, a tetravalent BBM can comprise two half antibodies, each comprising two complete ABMs, the two halves paired through an Fc domain.


In the embodiment of FIG. 1AA, the first (or left) half antibody comprises a Fab, an Fc region, and an scFv, and the second (or right) half antibody comprises a Fab, an Fc region, and an scFv. The first and second half antibodies are associated through the Fc regions forming an Fc domain.


In the embodiment of FIG. 1AB, the first (or left) half antibody comprises a Fab, an scFv, and an Fc region, and the second (or right) half antibody comprises a Fab, an scFv, and an Fc region. The first and second half antibodies are associated through the Fc regions forming an Fc domain.


In the embodiment of FIG. 1AC, the first (or left) half antibody comprises an scFv, a Fab, and an Fc region, and the second (or right) half antibody comprises an scFv, a Fab, and an Fc region. The first and second half antibodies are associated through the Fc regions forming an Fc domain.


In the embodiment of FIG. 1AD, the first (or left) half antibody comprises a Fab, an Fc region, and a second Fab, and the second (or right) half antibody comprises a Fab, an Fc region, and a second Fab. The first and second half antibodies are associated through the Fc regions forming an Fc domain.


In the embodiment of FIG. 1AE, the first (or left) half antibody comprises an scFv, a second scFv, and an Fc region, and the second (or right) half antibody comprises an scFv, a second scFv, and an Fc region. The first and second half antibodies are associated through the Fc regions forming an Fc domain.


In the embodiment of FIG. 1AF, the first (or left) half antibody comprises a Fab, an scFv, and an Fc region, and the second (or right) half antibody comprises a Fab, an scFv, and an Fc region. The first and second half antibodies are associated through the Fc regions forming an Fc domain.


In the embodiment of FIG. 1AG, the first (or left) half antibody comprises a Fab, an Fc region, and an scFv, and the second (or right) half antibody comprises a scFv, an Fc region, and a Fab. The first and second half antibodies are associated through the Fc regions forming an Fc domain.


In the embodiment of FIG. 1AH, the first (or left) half antibody comprises a scFv, an Fc region, and an Fab, and the second (or right) half antibody comprises a scFv, an Fc region, and a Fab. The first and second half antibodies are associated through the Fc regions forming an Fc domain.


In the configuration shown in FIGS. 1AA-1AH, each of X, Y, A, and B represent ABM1 or ABM2, although not necessarily in that order, and provided that the BBM comprises at least one ABM1 and at least one ABM2. Thus, the tetravalent ABMs will include one, two, or three ABM1s and one, two, or ABM2s. In some embodiments, a tetravalent BBM comprises three ABM1s and one ABM2. In other embodiments, a tetravalent BBM comprises two ABM1s two ABM2s. In yet other embodiments, a tetravalent BBM comprises one ABM1 and three ABM2s.


Accordingly, in the present disclosure provides a tetravalent BBM as shown in any one of FIGS. 1AA-1AH, where X is an ABM1 and each of Y, A, and B are ABM2s (this configuration of ABMs designated as “Tv 1” for convenience).


The disclosure further provides a tetravalent BBM as shown in any one of FIGS. 1AA-1AH, where Y is an ABM1 and each of X, A, and B are ABM2s (this configuration of ABMs designated as “Tv 2” for convenience).


The disclosure further provides a tetravalent BBM as shown in any one of FIGS. 1AA-1AH, where A is an ABM1 and each of X, Y, and B are ABM2s (this configuration of ABMs designated as “Tv 3” for convenience).


The disclosure further provides a tetravalent BBM as shown in any one of FIGS. 1AA-1AH, where B is an ABM1 and each of X, Y, and A are ABM2s (this configuration of ABMs designated as “Tv 4” for convenience).


The disclosure further provides a tetravalent BBM as shown in any one of FIGS. 1AA-1AH, where X and Y are both ABM1s and both of A and B are ABM2s (this configuration of ABMs designated as “Tv 5” for convenience).


The disclosure further provides a tetravalent BBM as shown in any one of FIGS. 1AA-1AH, where X and A are both ABM1s and both of Y and B are ABM2s (this configuration of ABMs designated as “Tv 6” for convenience).


The disclosure further provides a tetravalent BBM as shown in any one of FIGS. 1AA-1AH, where X and B are both ABM1s and both of Y and A are ABM2s (this configuration of ABMs designated as “Tv 7” for convenience).


The disclosure further provides a tetravalent BBM as shown in any one of FIGS. 1AA-1AH, where Y and A are both ABM1s and both of X and B are ABM2s (this configuration of ABMs designated as “Tv 8” for convenience).


The disclosure further provides a tetravalent BBM as shown in any one of FIGS. 1AA-1AH, where Y and B are both ABM1s and both of X and A are ABM2s (this configuration of ABMs designated as “Tv 9” for convenience).


The disclosure further provides a tetravalent BBM as shown in any one of FIGS. 1AA-1AH, where A and B are both ABM1s and both of X and Y are ABM2s (this configuration of ABMs designated as “Tv 10” for convenience).


The disclosure further provides a tetravalent BBM as shown in any one of FIGS. 1AA-1AH, where each of X, Y, and A is an ABM1 and B is an ABM2 (this configuration of ABMs designated as “Tv 11” for convenience).


The disclosure further provides a tetravalent BBM as shown in any one of FIGS. 1AA-1AH, where each of X, Y, and B is an ABM1 and A is an ABM2 (this configuration of ABMs designated as “Tv 12” for convenience).


The disclosure further provides a tetravalent BBM as shown in any one of FIGS. 1AA-1AH, where each of X, A, and B is an ABM1 and Y is an ABM2 (this configuration of ABMs designated as “Tv 13” for convenience).


The disclosure further provides a tetravalent BBM as shown in any one of FIGS. 1AA-1AH, where each of Y, A, and B is an ABM1 and X is an ABM2 (this configuration of ABMs designated as “Tv 14” for convenience).


7.8. Trispecific Binding Molecule Configurations

Exemplary TBM configurations are shown in FIG. 2. FIG. 2A shows the components of the TBM configurations shown in FIGS. 2B-1V. The scFv, Fab, non-immunoglobulin based ABM, and Fc each can have the characteristics described for these components in Sections 7.5 and 7.6. The components of the TBM configurations shown in FIG. 2 can be associated with each other by any of the means described in Sections 7.5 and 7.6 (e.g., by direct bonds, ABM linkers, disulfide bonds, Fc domains with modified with knob in hole interactions, etc.). The orientations and associations of the various components shown in FIG. 2 are merely exemplary; as will be appreciated by a skilled artisan, other orientations and associations can be suitable (e.g., as described in Sections 7.5 and 7.6).


TBMs are not limited to the configurations shown in FIG. 2. Other configurations that can be used are known to those skilled in the art. See, e.g., WO 2014/145806; WO 2017/124002; Liu et al., 2017, Front Immunol. 8:38; Brinkmann & Kontermann, 2017, mAbs 9:2, 182-212; US 2016/0355600; Klein et al., 2016, MAbs 8(6):1010-20; and US 2017/0145116.


7.8.1. Exemplary Trivalent TBMs


The TBMs of the disclosure can be trivalent, e.g., they can have three antigen-binding modules, one of which binds CD2, one of which binds a component of a TCR complex, and one of which binds a TAA; or they can have three antigen-binding modules, one of which binds CD2, one of which binds a TAA, and one of which binds a second TAA. In the TBMs of the disclosure, the antigen-binding module that binds to CD2 is a variant CD58 domain as described herein.


Exemplary trivalent TBM configurations are shown in FIGS. 2B through 2P. In the TBMs of the disclosure, a variant CD58 domain can substitute for a Fab and/or scFv in any of the configurations illustrated.


As depicted in FIGS. 2B-2K and 2N-2P, a TBM can comprise two half antibodies, one comprising two ABMs and the other comprising one ABM, the two halves paired through an Fc domain.


In the embodiment of FIG. 2B, the first (or left) half antibody comprises an scFv and an Fc region, and the second (or right) half antibody comprises a Fab, an scFv and an Fc region. The first and second half antibodies are associated through the Fc regions forming an Fc domain.


In the embodiment of FIG. 2C, the first (or left) half antibody comprises two Fab and an Fc region, and the second (or right) half antibody comprises a Fab and an Fc region. The first and second half antibodies are associated through the Fc regions forming an Fc domain.


In the embodiment of FIG. 2D, the first (or left) half antibody comprises a Fab, an scFv and an Fc region, and the second (or right) half antibody comprises a Fab and an Fc region. The first and second half antibodies are associated through the Fc regions forming an Fc domain.


In the embodiment of FIG. 2E, the first (or left) half antibody comprises an scFv and an Fc region, and the second (or right) half antibody comprises two Fab and an Fc region. The first and second half antibodies are associated through the Fc regions forming an Fc domain.


In the embodiment of FIG. 2F, the first (or left) half antibody comprises an scFv, an Fc region, and a Fab, and the second (or right) half antibody comprises a Fab and an Fc region. The first and second half antibodies are associated through the Fc regions forming an Fc domain.


In the embodiment of FIG. 2G, the first (or left) half antibody comprises an scFv and an Fc region, and the second (or right) half antibody comprises a Fab an Fc region, and an scFV. The first and second half antibodies are associated through the Fc regions forming an Fc domain.


In the embodiment of FIG. 2H, the first (or left) half antibody comprises two Fab and an Fc region, and the second (or right) half antibody comprises a non-immunoglobulin based ABM and an Fc region. The first and second half antibodies are associated through the Fc regions forming an Fc domain.


In the embodiment of FIG. 2I, the first (or left) half antibody comprises a Fab, an scFv, and an Fc region, and the second (or right) half antibody comprises a non-immunoglobulin based ABM and an Fc region. The first and second half antibodies are associated through the Fc regions forming an Fc domain.


In the embodiment of FIG. 2J, the first (or left) half antibody comprises a Fab and an Fc region, and the second (or right) half antibody comprises an scFv, a non-immunoglobulin based ABM and an Fc region. The first and second half antibodies are associated through the Fc regions forming an Fc domain.


In the embodiment of FIG. 2K, the first (or left) half antibody comprises an scFv and an Fc region, and the second (or right) half antibody comprises an scFv, an Fc region, and a second scFv. The first and second half antibodies are associated through the Fc regions forming an Fc domain.


In the embodiment of FIG. 2N, the first (or left) half antibody comprises a Fab, an Fc region, and an scFv, and the second (or right) half antibody comprises a Fab, and an Fc region. The first and second half antibodies are associated through the Fc regions forming an Fc domain.


In the embodiment of FIG. 2O, the first (or left) half antibody comprises a Fab, an Fc region, and a scFab, and the second (or right) half antibody comprises a Fab and an Fc region. The first and second half antibodies are associated through the Fc regions forming an Fc domain.


In the embodiment of FIG. 2P, the first (or left) half antibody comprises a Fab, a non-immunoglobulin based ABM, and an Fc region, and the second (or right) half antibody comprises a scFv and an Fc region. The first and second half antibodies are associated through the Fc regions forming an Fc domain.


Alternatively, as depicted in FIG. 2L, trivalent a TBM can comprise two half antibodies, each comprising one complete ABM and a portion of another ABM (one a VH, the other a VL). The two half antibodies are paired through an Fc domain, whereupon the VH and the VL associate to form a complete antigen-binding Fv domain.


The TBM can be a single chain, as shown in FIG. 2M. The TBM of FIG. 2M comprises three scFv domains connected through linkers.


In each of the configurations shown in FIGS. 2B-2P, each of the domains designated X, Y, and Z represents an ABM1, ABM2, or ABM3, although not necessarily in that order. In other words, X can be ABM1, ABM2, or ABM3, Y can be ABM1, ABM2, or ABM3, and Z can be ABM1, ABM2, or ABM3, provided that the TBM comprises one ABM1, one ABM2, and one ABM3.


Accordingly, in the present disclosure provides a trivalent TBM as shown in any one of FIGS. 2B through 2P, where X is an ABM1, Y is an ABM3 and Z is an ABM2 (this configuration of ABMs designated as “T1” for convenience).


The present disclosure also provides a trivalent TBM as shown in any one of FIGS. 2B through 2P, where X is an ABM1, Y is an ABM2, and Z is an ABM3 (this configuration of ABMs designated as “T2” for convenience).


The present disclosure further provides a trivalent TBM as shown in any one of FIGS. 2B through 2P, where X is an ABM3, Y is an ABM1, and Z is an ABM2 (this configuration of ABMs designated as “T3” for convenience).


The present disclosure yet further provides a trivalent TBM as shown in any one of FIGS. 2B through 2P, where X is an ABM3, Y is an ABM2, and Z is an ABM1 (this configuration of ABMs designated as “T4” for convenience).


The present disclosure yet further provides a trivalent TBM as shown in any one of FIGS. 2B through 2P, where X is an ABM2, Y is an ABM1, and Z is an ABM3 (this configuration of ABMs designated as “T5” for convenience).


The present disclosure yet further provides a trivalent TBM as shown in any one of FIGS. 2B through 2P, where X is an ABM2, Y is an ABM3, and Z is an ABM1 (this configuration of ABMs designated as “T6” for convenience).


7.8.2. Exemplary Tetravalent TBMs


The TBMs of the disclosure can be tetravalent, e.g., they can have four antigen-binding modules, one or two of which binds CD2, one or two of which binds a component of a TCR complex, and one or two of which binds a TAA; or they can have four antigen-binding modules, one or two of which binds CD2, one or two of which binds a TAA, and one or two of which binds a second TAA. In the TBMs of the disclosure, the antigen-binding module that binds to CD2 is a variant CD58 domain as described herein.


Exemplary tetravalent TBM configurations are shown in FIGS. 2Q-2S. In the TBMs of the disclosure, a variant CD58 domain can substitute for a Fab and/or scFv in any of the configurations illustrated.


As depicted in FIGS. 2Q-2S, a tetravalent TBM can comprise two half antibodies, each comprising two complete ABMs, the two halves paired through an Fc domain.


In the embodiment of FIG. 2Q, the first (or left) half antibody comprises a Fab, an Fc region, and a second Fab, and the second (or right) half antibody comprises a Fab, an Fc region, and a second Fab. The first and second half antibodies are associated through the Fc regions forming an Fc domain.


In the embodiment of FIG. 2R, the first (or left) half antibody comprises a Fab, an Fc region, and an scFv, and the second (or right) half antibody comprises a Fab, an Fc region, and an scFv. The first and second half antibodies are associated through the Fc regions forming an Fc domain.


In the embodiment of FIG. 2S, the first (or left) half antibody comprises a Fab, an Fc region, and an scFv, and the second (or right) half antibody comprises an scFv, an Fc region, and a Fab. The first and second half antibodies are associated through the Fc regions forming an Fc domain.


In the configuration shown in FIGS. 2Q-2S, each of X, Y, Z, and A represent an ABM1, an ABM2, or an ABM3, although not necessarily in that order, and provided that the TBM comprises at least one ABM1, at least one ABM2, and at least one ABM3. Thus, the tetravalent ABMs can include, for example, two ABMs against one of CD2, a component of a TCR complex, and a TAA. In some cases, a tetravalent TBM has two ABM1s, 2 ABM2s, or two ABM3s.


Accordingly, the present disclosure provides tetravalent TBMs as shown in any one of FIGS. 2Q-2S, where X, Y, Z, and A are ABM1s, ABM2s, and ABM3s, as shown in Table 9.









TABLE 9







ABM Permutations in Tetravalent TBMs













Tetravalent







Configuration
X
Y
Z
A







Tv 1
ABM1
ABM1
ABM3
ABM2



Tv 2
ABM1
ABM1
ABM2
ABM3



Tv 3
ABM1
ABM3
ABM1
ABM2



Tv 4
ABM1
ABM2
ABM1
ABM3



Tv 5
ABM1
ABM3
ABM2
ABM1



Tv 6
ABM1
ABM2
ABM3
ABM1



Tv 7
ABM3
ABM1
ABM1
ABM2



Tv 8
ABM2
ABM1
ABM1
ABM3



Tv 9
ABM3
ABM1
ABM2
ABM1



Tv 10
ABM2
ABM1
ABM3
ABM1



Tv 11
ABM3
ABM2
ABM1
ABM1



Tv 12
ABM2
ABM3
ABM1
ABM1



Tv 13
ABM1
ABM3
ABM2
ABM2



Tv 14
ABM1
ABM2
ABM3
ABM2



Tv 15
ABM1
ABM2
ABM2
ABM3



Tv 16
ABM3
ABM1
ABM2
ABM2



Tv 17
ABM2
ABM1
ABM3
ABM2



Tv 18
ABM2
ABM1
ABM2
ABM3



Tv 19
ABM3
ABM2
ABM1
ABM2



Tv 20
ABM2
ABM3
ABM1
ABM2



Tv 21
ABM2
ABM2
ABM1
ABM3



Tv 22
ABM3
ABM2
ABM2
ABM1



Tv 23
ABM2
ABM3
ABM2
ABM1



Tv 24
ABM2
ABM2
ABM3
ABM1










7.8.3. Exemplary Pentavalent TBMs


The TBMs of the disclosure can be pentavalent, e.g., they can have five antigen-binding domains, one, two, or three of which binds CD2, one, two, or three of which binds a component of a TCR complex, and one, two, or three of which binds a TAA; or they can have five antigen-binding domains, one, two, or three of which binds CD2, one, two, or three of which binds a TAA, and one, two, or three of which binds a second TAA. In the TBMs of the disclosure, the antigen-binding module that binds to CD2 is a variant CD58 domain as described herein.


An exemplary pentavalent TBM configuration is shown in FIG. 2T. In the TBMs of the disclosure, a variant CD58 domain can substitute for a Fab and/or scFv in any of the configurations illustrated.


As depicted in FIG. 2T, a pentavalent TBM can comprise two half antibodies, one of which comprises two complete ABMs and the other of which comprises one complete ABM, the two halves paired through an Fc domain.


In the embodiment of FIG. 2T, the first (or left) half antibody comprises a Fab, an scFv, and an Fc region, and the second (or right) half antibody comprises a Fab, an Fc region, and an scFv. The first and second half antibodies are associated through the Fc regions forming an Fc domain.


In the configuration shown in FIG. 2T, each of X, Y, Z, A, and B represent an ABM1, an ABM2, or an ABM3, although not necessarily in that order, and provided that the TBM comprises at least one ABM1, one ABM2, and one ABM3. Thus, the pentavalent TBMs can include, for example, two ABMs against two of CD2, a component of a TCR complex, and a TAA, or three ABMs against one of CD2, a component of a TCR complex, and a TAA. In some cases, a pentavalent TBM has two or three CD2 ABMs. In some embodiments, a pentavalent TBM has three ABM1s, one ABM2 and one ABM3.


Accordingly, the present disclosure provides a pentavalent TBM as shown in FIG. 2T, where X, Y, Z, A, and B are ABM1s, ABM2s, and ABM3s as shown in Table 10.









TABLE 10







ABM Permutations in Pentavalent TBMs












Pentavalent







Configuration
X
Y
Z
A
B





Pv 1
ABM1
ABM1
ABM1
ABM3
ABM2


Pv 2
ABM1
ABM1
ABM1
ABM2
ABM3


Pv 3
ABM1
ABM1
ABM3
ABM1
ABM2


Pv 4
ABM1
ABM1
ABM2
ABM1
ABM3


Pv 5
ABM1
ABM1
ABM3
ABM2
ABM1


Pv 6
ABM1
ABM1
ABM2
ABM3
ABM1


Pv 7
ABM1
ABM3
ABM1
ABM1
ABM2


Pv 8
ABM1
ABM2
ABM1
ABM1
ABM3


Pv 9
ABM1
ABM3
ABM1
ABM2
ABM1


Pv 10
ABM1
ABM2
ABM1
ABM3
ABM1


Pv 11
ABM1
ABM3
ABM2
ABM1
ABM1


Pv 12
ABM1
ABM2
ABM3
ABM1
ABM1


Pv 13
ABM3
ABM1
ABM1
ABM1
ABM2


Pv 14
ABM2
ABM1
ABM1
ABM1
ABM3


Pv 15
ABM3
ABM1
ABM1
ABM2
ABM1


Pv 16
ABM2
ABM1
ABM1
ABM3
ABM1


Pv 17
ABM3
ABM1
ABM2
ABM1
ABM1


Pv 18
ABM2
ABM1
ABM3
ABM1
ABM1


Pv 19
ABM3
ABM2
ABM1
ABM1
ABM1


Pv 20
ABM2
ABM3
ABM1
ABM1
ABM1


Pv 21
ABM1
ABM1
ABM3
ABM3
ABM2


Pv 22
ABM1
ABM1
ABM3
ABM2
ABM3


Pv 23
ABM1
ABM1
ABM2
ABM3
ABM3


Pv 24
ABM1
ABM3
ABM1
ABM3
ABM2


Pv 25
ABM1
ABM3
ABM1
ABM2
ABM3


Pv 26
ABM1
ABM2
ABM1
ABM3
ABM3


Pv 27
ABM1
ABM3
ABM3
ABM1
ABM2


Pv 28
ABM1
ABM3
ABM2
ABM1
ABM3


Pv 29
ABM1
ABM2
ABM3
ABM1
ABM3


Pv 30
ABM1
ABM3
ABM3
ABM2
ABM1


Pv 31
ABM1
ABM3
ABM2
ABM3
ABM1


Pv 32
ABM1
ABM2
ABM3
ABM3
ABM1


Pv 33
ABM3
ABM1
ABM1
ABM3
ABM2


Pv 34
ABM3
ABM1
ABM1
ABM2
ABM3


Pv 35
ABM2
ABM1
ABM1
ABM3
ABM3


Pv 36
ABM3
ABM1
ABM3
ABM1
ABM2


Pv 37
ABM3
ABM1
ABM2
ABM1
ABM3


Pv 38
ABM2
ABM1
ABM3
ABM1
ABM3


Pv 39
ABM3
ABM1
ABM3
ABM2
ABM1


Pv 40
ABM3
ABM1
ABM2
ABM3
ABM1


Pv 41
ABM2
ABM1
ABM3
ABM3
ABM1


Pv 42
ABM3
ABM3
ABM1
ABM1
ABM2


Pv 43
ABM3
ABM2
ABM1
ABM1
ABM3


Pv 44
ABM2
ABM3
ABM1
ABM1
ABM3


Pv 45
ABM3
ABM3
ABM1
ABM2
ABM1


Pv 46
ABM3
ABM2
ABM1
ABM3
ABM1


Pv 47
ABM2
ABM3
ABM1
ABM3
ABM1


Pv 48
ABM3
ABM3
ABM2
ABM1
ABM1


Pv 49
ABM3
ABM2
ABM3
ABM1
ABM1


Pv 50
ABM2
ABM3
ABM3
ABM1
ABM1


Pv 51
ABM1
ABM1
ABM3
ABM2
ABM2


Pv 52
ABM1
ABM1
ABM2
ABM3
ABM2


Pv 53
ABM1
ABM1
ABM2
ABM2
ABM3


Pv 54
ABM1
ABM3
ABM1
ABM2
ABM2


Pv 55
ABM1
ABM2
ABM1
ABM3
ABM2


Pv 56
ABM1
ABM2
ABM1
ABM2
ABM3


Pv 57
ABM1
ABM3
ABM2
ABM1
ABM2


Pv 58
ABM1
ABM2
ABM3
ABM1
ABM2


Pv 59
ABM1
ABM2
ABM2
ABM1
ABM3


Pv 60
ABM1
ABM3
ABM2
ABM2
ABM1


Pv 61
ABM1
ABM2
ABM3
ABM2
ABM1


Pv 62
ABM1
ABM2
ABM2
ABM3
ABM1


Pv 63
ABM3
ABM1
ABM1
ABM2
ABM2


Pv 64
ABM2
ABM1
ABM1
ABM3
ABM2


Pv 65
ABM2
ABM1
ABM1
ABM2
ABM3


Pv 66
ABM3
ABM1
ABM2
ABM1
ABM2


Pv 67
ABM2
ABM1
ABM3
ABM1
ABM2


Pv 68
ABM2
ABM1
ABM2
ABM1
ABM3


Pv 69
ABM3
ABM1
ABM2
ABM2
ABM1


Pv 70
ABM2
ABM1
ABM3
ABM2
ABM1


Pv 71
ABM2
ABM1
ABM2
ABM3
ABM1


Pv 72
ABM3
ABM2
ABM1
ABM1
ABM2


Pv 73
ABM2
ABM3
ABM1
ABM1
ABM2


Pv 74
ABM2
ABM2
ABM1
ABM1
ABM3


Pv 75
ABM3
ABM2
ABM1
ABM2
ABM1


Pv 76
ABM2
ABM3
ABM1
ABM2
ABM1


Pv 77
ABM2
ABM2
ABM1
ABM3
ABM1


Pv 78
ABM3
ABM2
ABM2
ABM1
ABM1


Pv 79
ABM2
ABM3
ABM2
ABM1
ABM1


Pv 80
ABM2
ABM2
ABM3
ABM1
ABM1


Pv 81
ABM1
ABM3
ABM2
ABM2
ABM2


Pv 82
ABM1
ABM2
ABM3
ABM2
ABM2


Pv 83
ABM1
ABM2
ABM2
ABM3
ABM2


Pv 84
ABM1
ABM2
ABM2
ABM2
ABM3


Pv 85
ABM3
ABM1
ABM2
ABM2
ABM2


Pv 86
ABM2
ABM1
ABM3
ABM2
ABM2


Pv 87
ABM2
ABM1
ABM2
ABM3
ABM2


Pv 88
ABM2
ABM1
ABM2
ABM2
ABM3


Pv 89
ABM3
ABM2
ABM1
ABM2
ABM2


Pv 90
ABM2
ABM3
ABM1
ABM2
ABM2


Pv 91
ABM2
ABM2
ABM1
ABM3
ABM2


Pv 92
ABM2
ABM2
ABM1
ABM2
ABM3


Pv 93
ABM3
ABM2
ABM2
ABM1
ABM2


Pv 94
ABM2
ABM3
ABM2
ABM1
ABM2


Pv 95
ABM2
ABM2
ABM3
ABM1
ABM2


Pv 96
ABM2
ABM2
ABM2
ABM1
ABM3


Pv 97
ABM3
ABM2
ABM2
ABM2
ABM1


Pv 98
ABM2
ABM3
ABM2
ABM2
ABM1


Pv 99
ABM2
ABM2
ABM3
ABM2
ABM1


Pv 100
ABM2
ABM2
ABM2
ABM3
ABM1









7.8.4. Exemplary Hexavalent TBMs


The TBMs of the disclosure can be hexavalent, e.g., they can have six antigen-binding modules, one, two, three, or four of which binds CD2, one, two, three, or four of which binds a component of a TCR complex, and one, two, three, or four of which binds a TAA; or they can have six antigen-binding modules, one, two, three, or four of which binds CD2, one, two, three, or four of which binds a TAA, and one, two, three, or four of which binds a second TAA. In the TBMs of the disclosure, the ABM that binds CD2 is a variant CD58 domain as described herein.


Exemplary hexavalent TBM configurations are shown in FIGS. 2U-2V. In the TBMs of the disclosure, a variant CD58 domain can substitute for a Fab and/or scFv in any of the configurations illustrated.


As depicted in FIGS. 2U-2V, a hexavalent TBM can comprise two half antibodies, one of which comprises two complete ABMs and the other of which comprises one complete ABM, the two halves paired through an Fc domain.


In the embodiment of FIG. 2U, the first (or left) half antibody comprises a Fab, a second Fab, an Fc region, and an scFv, and the second (or right) half antibody comprises a Fab, a second Fab, an Fc region, and an scFv. The first and second half antibodies are associated through the Fc regions forming an Fc domain.


In the embodiment of FIG. 2V, the first (or left) half antibody comprises a first Fv, a second Fv, a third Fv, and an Fc region, and the second (or right) half antibody comprises a first Fv, a second Fv, a third Fv, and an Fc region. The first and second half antibodies are associated through the Fc regions forming an Fc domain.


In the configuration shown in FIGS. 2U-2V, each of X, Y, Z, A, B, and C represent an ABM1, an ABM2, or an ABM3, although not necessarily in that order, and provided that the TBM comprises at least one ABM1, one ABM2, and one ABM3. Thus, the hexavalent TBMs can include, for example, (i) two ABMs against each of CD2, a component of a TCR complex, and a TAA, (ii) three ABMs against one of CD2, a component of a TCR complex, and a TAA, or (iii) four ABMs against one of CD2, a component of a TCR complex, and a TAA. For example, a hexavalent ABM can include three ABMs against CD2, two ABMs against a TAA and one ABM against a component of a TCR complex. As another example, a hexavalent ABM can include three ABMs against CD2, two ABMs against a component of a TCR complex and one ABM against a TAA. In some cases, a hexavalent TBM has two, three, our four CD2 ABMs. In some embodiments, a hexavalent TBM has three CD2 ABMs. In other embodiments, a hexavalent TBM has four CD2 ABMs.


Accordingly, in the present disclosure provides hexavalent TBMs as shown in any one of FIGS. 2U-2V, where X, Y, Z, A, B, and C are ABM1s, ABM2s, and ABM3s, as shown in Table 11.









TABLE 11







ABM Permutations in Hexavalent TBMs













Hexavalent








Configuration
X
Y
Z
A
B
C





Hv 1
ABM1
ABM1
ABM1
ABM1
ABM3
ABM2


Hv 2
ABM1
ABM1
ABM1
ABM1
ABM2
ABM3


Hv 3
ABM1
ABM1
ABM1
ABM3
ABM1
ABM2


Hv 4
ABM1
ABM1
ABM1
ABM2
ABM1
ABM3


Hv 5
ABM1
ABM1
ABM1
ABM3
ABM2
ABM1


Hv 6
ABM1
ABM1
ABM1
ABM2
ABM3
ABM1


Hv 7
ABM1
ABM1
ABM3
ABM1
ABM1
ABM2


Hv 8
ABM1
ABM1
ABM2
ABM1
ABM1
ABM3


Hv 9
ABM1
ABM1
ABM3
ABM1
ABM2
ABM1


Hv 10
ABM1
ABM1
ABM2
ABM1
ABM3
ABM1


Hv 11
ABM1
ABM1
ABM3
ABM2
ABM1
ABM1


Hv 12
ABM1
ABM1
ABM2
ABM3
ABM1
ABM1


Hv 13
ABM1
ABM3
ABM1
ABM1
ABM1
ABM2


Hv 14
ABM1
ABM2
ABM1
ABM1
ABM1
ABM3


Hv 15
ABM1
ABM3
ABM1
ABM1
ABM2
ABM1


Hv 16
ABM1
ABM2
ABM1
ABM1
ABM3
ABM1


Hv 17
ABM1
ABM3
ABM1
ABM2
ABM1
ABM1


Hv 18
ABM1
ABM2
ABM1
ABM3
ABM1
ABM1


Hv 19
ABM1
ABM3
ABM2
ABM1
ABM1
ABM1


Hv 20
ABM1
ABM2
ABM3
ABM1
ABM1
ABM1


Hv 21
ABM3
ABM1
ABM1
ABM1
ABM1
ABM2


Hv 22
ABM2
ABM1
ABM1
ABM1
ABM1
ABM3


Hv 23
ABM3
ABM1
ABM1
ABM1
ABM2
ABM1


Hv 24
ABM2
ABM1
ABM1
ABM1
ABM3
ABM1


Hv 25
ABM3
ABM1
ABM1
ABM2
ABM1
ABM1


Hv 26
ABM2
ABM1
ABM1
ABM3
ABM1
ABM1


Hv 27
ABM3
ABM1
ABM2
ABM1
ABM1
ABM1


Hv 28
ABM2
ABM1
ABM3
ABM1
ABM1
ABM1


Hv 29
ABM3
ABM2
ABM1
ABM1
ABM1
ABM1


Hv 30
ABM2
ABM3
ABM1
ABM1
ABM1
ABM1


Hv 31
ABM1
ABM1
ABM1
ABM3
ABM3
ABM2


Hv 32
ABM1
ABM1
ABM1
ABM3
ABM2
ABM3


Hv 33
ABM1
ABM1
ABM1
ABM2
ABM3
ABM3


Hv 34
ABM1
ABM1
ABM3
ABM1
ABM3
ABM2


Hv 35
ABM1
ABM1
ABM3
ABM1
ABM2
ABM3


Hv 36
ABM1
ABM1
ABM2
ABM1
ABM3
ABM3


Hv 37
ABM1
ABM1
ABM3
ABM3
ABM1
ABM2


Hv 38
ABM1
ABM1
ABM3
ABM2
ABM1
ABM3


Hv 39
ABM1
ABM1
ABM2
ABM3
ABM1
ABM3


Hv 40
ABM1
ABM1
ABM3
ABM3
ABM2
ABM1


Hv 41
ABM1
ABM1
ABM3
ABM2
ABM3
ABM1


Hv 42
ABM1
ABM1
ABM2
ABM3
ABM3
ABM1


Hv 43
ABM1
ABM3
ABM1
ABM1
ABM3
ABM2


Hv 44
ABM1
ABM3
ABM1
ABM1
ABM2
ABM3


Hv 45
ABM1
ABM2
ABM1
ABM1
ABM3
ABM3


Hv 46
ABM1
ABM3
ABM1
ABM3
ABM1
ABM2


Hv 47
ABM1
ABM3
ABM1
ABM2
ABM1
ABM3


Hv 48
ABM1
ABM2
ABM1
ABM3
ABM1
ABM3


Hv 49
ABM1
ABM3
ABM1
ABM3
ABM2
ABM1


Hv 50
ABM1
ABM3
ABM1
ABM2
ABM3
ABM1


Hv 51
ABM1
ABM2
ABM1
ABM3
ABM3
ABM1


Hv 52
ABM1
ABM3
ABM3
ABM1
ABM1
ABM2


Hv 53
ABM1
ABM3
ABM2
ABM1
ABM1
ABM3


Hv 54
ABM1
ABM2
ABM3
ABM1
ABM1
ABM3


Hv 55
ABM1
ABM3
ABM3
ABM1
ABM2
ABM1


Hv 56
ABM1
ABM3
ABM2
ABM1
ABM3
ABM1


Hv 57
ABM1
ABM2
ABM3
ABM1
ABM3
ABM1


Hv 58
ABM1
ABM3
ABM3
ABM2
ABM1
ABM1


Hv 59
ABM1
ABM3
ABM2
ABM3
ABM1
ABM1


Hv 60
ABM1
ABM2
ABM3
ABM3
ABM1
ABM1


Hv 61
ABM3
ABM1
ABM1
ABM1
ABM3
ABM2


Hv 62
ABM3
ABM1
ABM1
ABM1
ABM2
ABM3


Hv 63
ABM2
ABM1
ABM1
ABM1
ABM3
ABM3


Hv 64
ABM3
ABM1
ABM1
ABM3
ABM1
ABM2


Hv 65
ABM3
ABM1
ABM1
ABM2
ABM1
ABM3


Hv 66
ABM2
ABM1
ABM1
ABM3
ABM1
ABM3


Hv 67
ABM3
ABM1
ABM1
ABM3
ABM2
ABM1


Hv 68
ABM3
ABM1
ABM1
ABM2
ABM3
ABM1


Hv 69
ABM2
ABM1
ABM1
ABM3
ABM3
ABM1


Hv 70
ABM3
ABM1
ABM3
ABM1
ABM1
ABM2


Hv 71
ABM3
ABM1
ABM2
ABM1
ABM1
ABM3


Hv 72
ABM2
ABM1
ABM3
ABM1
ABM1
ABM3


Hv 73
ABM3
ABM1
ABM3
ABM1
ABM2
ABM1


Hv 74
ABM3
ABM1
ABM2
ABM1
ABM3
ABM1


Hv 75
ABM2
ABM1
ABM3
ABM1
ABM3
ABM1


Hv 76
ABM3
ABM1
ABM3
ABM2
ABM1
ABM1


Hv 77
ABM3
ABM1
ABM2
ABM3
ABM1
ABM1


Hv 78
ABM2
ABM1
ABM3
ABM3
ABM1
ABM1


Hv 79
ABM3
ABM3
ABM1
ABM1
ABM1
ABM2


Hv 80
ABM3
ABM2
ABM1
ABM1
ABM1
ABM3


Hv 81
ABM2
ABM3
ABM1
ABM1
ABM1
ABM3


Hv 82
ABM3
ABM3
ABM1
ABM1
ABM2
ABM1


Hv 83
ABM3
ABM2
ABM1
ABM1
ABM3
ABM1


Hv 84
ABM2
ABM3
ABM1
ABM1
ABM3
ABM1


Hv 85
ABM3
ABM3
ABM1
ABM2
ABM1
ABM1


Hv 86
ABM3
ABM2
ABM1
ABM3
ABM1
ABM1


Hv 87
ABM2
ABM3
ABM1
ABM3
ABM1
ABM1


Hv 88
ABM3
ABM3
ABM2
ABM1
ABM1
ABM1


Hv 89
ABM3
ABM2
ABM3
ABM1
ABM1
ABM1


Hv 90
ABM2
ABM3
ABM3
ABM1
ABM1
ABM1


Hv 91
ABM1
ABM1
ABM1
ABM3
ABM2
ABM2


Hv 92
ABM1
ABM1
ABM1
ABM2
ABM3
ABM2


Hv 93
ABM1
ABM1
ABM1
ABM2
ABM2
ABM3


Hv 94
ABM1
ABM1
ABM3
ABM1
ABM2
ABM2


Hv 95
ABM1
ABM1
ABM2
ABM1
ABM3
ABM2


Hv 96
ABM1
ABM1
ABM2
ABM1
ABM2
ABM3


Hv 97
ABM1
ABM1
ABM3
ABM2
ABM1
ABM2


Hv 98
ABM1
ABM1
ABM2
ABM3
ABM1
ABM2


Hv 99
ABM1
ABM1
ABM2
ABM2
ABM1
ABM3


Hv 100
ABM1
ABM1
ABM3
ABM2
ABM2
ABM1


Hv 101
ABM1
ABM1
ABM2
ABM3
ABM2
ABM1


Hv 102
ABM1
ABM1
ABM2
ABM2
ABM3
ABM1


Hv 103
ABM1
ABM3
ABM1
ABM1
ABM2
ABM2


Hv 104
ABM1
ABM2
ABM1
ABM1
ABM3
ABM2


Hv 105
ABM1
ABM2
ABM1
ABM1
ABM2
ABM3


Hv 106
ABM1
ABM3
ABM1
ABM2
ABM1
ABM2


Hv 107
ABM1
ABM2
ABM1
ABM3
ABM1
ABM2


Hv 108
ABM1
ABM2
ABM1
ABM2
ABM1
ABM3


Hv 109
ABM1
ABM3
ABM1
ABM2
ABM2
ABM1


Hv 110
ABM1
ABM2
ABM1
ABM3
ABM2
ABM1


Hv 111
ABM1
ABM2
ABM1
ABM2
ABM3
ABM1


Hv 112
ABM1
ABM3
ABM2
ABM1
ABM1
ABM2


Hv 113
ABM1
ABM2
ABM3
ABM1
ABM1
ABM2


Hv 114
ABM1
ABM2
ABM2
ABM1
ABM1
ABM3


Hv 115
ABM1
ABM3
ABM2
ABM1
ABM2
ABM1


Hv 116
ABM1
ABM2
ABM3
ABM1
ABM2
ABM1


Hv 117
ABM1
ABM2
ABM2
ABM1
ABM3
ABM1


Hv 118
ABM1
ABM3
ABM2
ABM2
ABM1
ABM1


Hv 119
ABM1
ABM2
ABM3
ABM2
ABM1
ABM1


Hv 120
ABM1
ABM2
ABM2
ABM3
ABM1
ABM1


Hv 121
ABM3
ABM1
ABM1
ABM1
ABM2
ABM2


Hv 122
ABM2
ABM1
ABM1
ABM1
ABM3
ABM2


Hv 123
ABM2
ABM1
ABM1
ABM1
ABM2
ABM3


Hv 124
ABM3
ABM1
ABM1
ABM2
ABM1
ABM2


Hv 125
ABM2
ABM1
ABM1
ABM3
ABM1
ABM2


Hv 126
ABM2
ABM1
ABM1
ABM2
ABM1
ABM3


Hv 127
ABM3
ABM1
ABM1
ABM2
ABM2
ABM1


Hv 128
ABM2
ABM1
ABM1
ABM3
ABM2
ABM1


Hv 129
ABM2
ABM1
ABM1
ABM2
ABM3
ABM1


Hv 130
ABM3
ABM1
ABM2
ABM1
ABM1
ABM2


Hv 131
ABM2
ABM1
ABM3
ABM1
ABM1
ABM2


Hv 132
ABM2
ABM1
ABM2
ABM1
ABM1
ABM3


Hv 133
ABM3
ABM1
ABM2
ABM1
ABM2
ABM1


Hv 134
ABM2
ABM1
ABM3
ABM1
ABM2
ABM1


Hv 135
ABM2
ABM1
ABM2
ABM1
ABM3
ABM1


Hv 136
ABM3
ABM1
ABM2
ABM2
ABM1
ABM1


Hv 137
ABM2
ABM1
ABM3
ABM2
ABM1
ABM1


Hv 138
ABM2
ABM1
ABM2
ABM3
ABM1
ABM1


Hv 139
ABM3
ABM2
ABM1
ABM1
ABM1
ABM2


Hv 140
ABM2
ABM3
ABM1
ABM1
ABM1
ABM2


Hv 141
ABM2
ABM2
ABM1
ABM1
ABM1
ABM3


Hv 142
ABM3
ABM2
ABM1
ABM1
ABM2
ABM1


Hv 143
ABM2
ABM3
ABM1
ABM1
ABM2
ABM1


Hv 144
ABM2
ABM2
ABM1
ABM1
ABM3
ABM1


Hv 145
ABM3
ABM2
ABM1
ABM2
ABM1
ABM1


Hv 146
ABM2
ABM3
ABM1
ABM2
ABM1
ABM1


Hv 147
ABM2
ABM2
ABM1
ABM3
ABM1
ABM1


Hv 148
ABM3
ABM2
ABM2
ABM1
ABM1
ABM1


Hv 149
ABM2
ABM3
ABM2
ABM1
ABM1
ABM1


Hv 150
ABM2
ABM2
ABM3
ABM1
ABM1
ABM1


Hv 151
ABM1
ABM1
ABM3
ABM3
ABM2
ABM2


Hv 152
ABM1
ABM1
ABM3
ABM2
ABM3
ABM2


Hv 153
ABM1
ABM1
ABM3
ABM2
ABM2
ABM3


Hv 154
ABM1
ABM1
ABM2
ABM3
ABM3
ABM2


Hv 155
ABM1
ABM1
ABM2
ABM3
ABM2
ABM3


Hv 156
ABM1
ABM1
ABM2
ABM2
ABM3
ABM3


Hv 157
ABM1
ABM3
ABM1
ABM3
ABM2
ABM2


Hv 158
ABM1
ABM3
ABM1
ABM2
ABM3
ABM2


Hv 159
ABM1
ABM3
ABM1
ABM2
ABM2
ABM3


Hv 160
ABM1
ABM2
ABM1
ABM3
ABM3
ABM2


Hv 161
ABM1
ABM2
ABM1
ABM3
ABM2
ABM3


Hv 162
ABM1
ABM2
ABM1
ABM2
ABM3
ABM3


Hv 163
ABM1
ABM3
ABM3
ABM1
ABM2
ABM2


Hv 164
ABM1
ABM3
ABM2
ABM1
ABM3
ABM2


Hv 165
ABM1
ABM3
ABM2
ABM1
ABM2
ABM3


Hv 166
ABM1
ABM2
ABM3
ABM1
ABM3
ABM2


Hv 167
ABM1
ABM2
ABM3
ABM1
ABM2
ABM3


Hv 168
ABM1
ABM2
ABM2
ABM1
ABM3
ABM3


Hv 169
ABM1
ABM3
ABM3
ABM2
ABM1
ABM2


Hv 170
ABM1
ABM3
ABM2
ABM3
ABM1
ABM2


Hv 171
ABM1
ABM3
ABM2
ABM2
ABM1
ABM3


Hv 172
ABM1
ABM2
ABM3
ABM3
ABM1
ABM2


Hv 173
ABM1
ABM2
ABM3
ABM2
ABM1
ABM3


Hv 174
ABM1
ABM2
ABM2
ABM3
ABM1
ABM3


Hv 175
ABM1
ABM3
ABM3
ABM2
ABM2
ABM1


Hv 176
ABM1
ABM3
ABM2
ABM3
ABM2
ABM1


Hv 177
ABM1
ABM3
ABM2
ABM2
ABM3
ABM1


Hv 178
ABM1
ABM2
ABM3
ABM3
ABM2
ABM1


Hv 179
ABM1
ABM2
ABM3
ABM2
ABM3
ABM1


Hv 180
ABM1
ABM2
ABM2
ABM3
ABM3
ABM1


Hv 181
ABM3
ABM1
ABM1
ABM3
ABM2
ABM2


Hv 182
ABM3
ABM1
ABM1
ABM2
ABM3
ABM2


Hv 183
ABM3
ABM1
ABM1
ABM2
ABM2
ABM3


Hv 184
ABM2
ABM1
ABM1
ABM3
ABM3
ABM2


Hv 185
ABM2
ABM1
ABM1
ABM3
ABM2
ABM3


Hv 186
ABM2
ABM1
ABM1
ABM2
ABM3
ABM3


Hv 187
ABM3
ABM1
ABM3
ABM1
ABM2
ABM2


Hv 188
ABM3
ABM1
ABM2
ABM1
ABM3
ABM2


Hv 189
ABM3
ABM1
ABM2
ABM1
ABM2
ABM3


Hv 190
ABM2
ABM1
ABM3
ABM1
ABM3
ABM2


Hv 191
ABM2
ABM1
ABM3
ABM1
ABM2
ABM3


Hv 192
ABM2
ABM1
ABM2
ABM1
ABM3
ABM3


Hv 193
ABM3
ABM1
ABM3
ABM2
ABM1
ABM2


Hv 194
ABM3
ABM1
ABM2
ABM3
ABM1
ABM2


Hv 195
ABM3
ABM1
ABM2
ABM2
ABM1
ABM3


Hv 196
ABM2
ABM1
ABM3
ABM3
ABM1
ABM2


Hv 197
ABM2
ABM1
ABM3
ABM2
ABM1
ABM3


Hv 198
ABM2
ABM1
ABM2
ABM3
ABM1
ABM3


Hv 199
ABM3
ABM1
ABM3
ABM2
ABM2
ABM1


Hv 200
ABM3
ABM1
ABM2
ABM3
ABM2
ABM1


Hv 201
ABM3
ABM1
ABM2
ABM2
ABM3
ABM1


Hv 202
ABM2
ABM1
ABM3
ABM3
ABM2
ABM1


Hv 203
ABM2
ABM1
ABM3
ABM2
ABM3
ABM1


Hv 204
ABM2
ABM1
ABM2
ABM3
ABM3
ABM1


Hv 205
ABM3
ABM3
ABM1
ABM1
ABM2
ABM2


Hv 206
ABM3
ABM2
ABM1
ABM1
ABM3
ABM2


Hv 207
ABM3
ABM2
ABM1
ABM1
ABM2
ABM3


Hv 208
ABM2
ABM3
ABM1
ABM1
ABM3
ABM2


Hv 209
ABM2
ABM3
ABM1
ABM1
ABM2
ABM3


Hv 210
ABM2
ABM2
ABM1
ABM1
ABM3
ABM3


Hv 211
ABM3
ABM3
ABM1
ABM2
ABM1
ABM2


Hv 212
ABM3
ABM2
ABM1
ABM3
ABM1
ABM2


Hv 213
ABM3
ABM2
ABM1
ABM2
ABM1
ABM3


Hv 214
ABM2
ABM3
ABM1
ABM3
ABM1
ABM2


Hv 215
ABM2
ABM3
ABM1
ABM2
ABM1
ABM3


Hv 216
ABM2
ABM2
ABM1
ABM3
ABM1
ABM3


Hv 217
ABM3
ABM3
ABM1
ABM2
ABM2
ABM1


Hv 218
ABM3
ABM2
ABM1
ABM3
ABM2
ABM1


Hv 219
ABM3
ABM2
ABM1
ABM2
ABM3
ABM1


Hv 220
ABM2
ABM3
ABM1
ABM3
ABM2
ABM1


Hv 221
ABM2
ABM3
ABM1
ABM2
ABM3
ABM1


Hv 222
ABM2
ABM2
ABM1
ABM3
ABM3
ABM1


Hv 223
ABM3
ABM3
ABM2
ABM1
ABM1
ABM2


Hv 224
ABM3
ABM2
ABM3
ABM1
ABM1
ABM2


Hv 225
ABM3
ABM2
ABM2
ABM1
ABM1
ABM3


Hv 226
ABM2
ABM3
ABM3
ABM1
ABM1
ABM2


Hv 227
ABM2
ABM3
ABM2
ABM1
ABM1
ABM3


Hv 228
ABM2
ABM2
ABM3
ABM1
ABM1
ABM3


Hv 229
ABM3
ABM3
ABM2
ABM1
ABM2
ABM1


Hv 230
ABM3
ABM2
ABM3
ABM1
ABM2
ABM1


Hv 231
ABM3
ABM2
ABM2
ABM1
ABM3
ABM1


Hv 232
ABM2
ABM3
ABM3
ABM1
ABM2
ABM1


Hv 233
ABM2
ABM3
ABM2
ABM1
ABM3
ABM1


Hv 234
ABM2
ABM2
ABM3
ABM1
ABM3
ABM1


Hv 235
ABM3
ABM3
ABM2
ABM2
ABM1
ABM1


Hv 236
ABM3
ABM2
ABM3
ABM2
ABM1
ABM1


Hv 237
ABM3
ABM2
ABM2
ABM3
ABM1
ABM1


Hv 238
ABM2
ABM3
ABM3
ABM2
ABM1
ABM1


Hv 239
ABM2
ABM3
ABM2
ABM3
ABM1
ABM1


Hv 240
ABM2
ABM2
ABM3
ABM3
ABM1
ABM1


Hv 241
ABM1
ABM1
ABM3
ABM2
ABM2
ABM2


Hv 242
ABM1
ABM1
ABM2
ABM3
ABM2
ABM2


Hv 243
ABM1
ABM1
ABM2
ABM2
ABM3
ABM2


Hv 244
ABM1
ABM1
ABM2
ABM2
ABM2
ABM3


Hv 245
ABM1
ABM3
ABM1
ABM2
ABM2
ABM2


Hv 246
ABM1
ABM2
ABM1
ABM3
ABM2
ABM2


Hv 247
ABM1
ABM2
ABM1
ABM2
ABM3
ABM2


Hv 248
ABM1
ABM2
ABM1
ABM2
ABM2
ABM3


Hv 249
ABM1
ABM3
ABM2
ABM1
ABM2
ABM2


Hv 250
ABM1
ABM2
ABM3
ABM1
ABM2
ABM2


Hv 251
ABM1
ABM2
ABM2
ABM1
ABM3
ABM2


Hv 252
ABM1
ABM2
ABM2
ABM1
ABM2
ABM3


Hv 253
ABM1
ABM3
ABM2
ABM2
ABM1
ABM2


Hv 254
ABM1
ABM2
ABM3
ABM2
ABM1
ABM2


Hv 255
ABM1
ABM2
ABM2
ABM3
ABM1
ABM2


Hv 256
ABM1
ABM2
ABM2
ABM2
ABM1
ABM3


Hv 257
ABM1
ABM3
ABM2
ABM2
ABM2
ABM1


Hv 258
ABM1
ABM2
ABM3
ABM2
ABM2
ABM1


Hv 259
ABM1
ABM2
ABM2
ABM3
ABM2
ABM1


Hv 260
ABM1
ABM2
ABM2
ABM2
ABM3
ABM1


Hv 261
ABM3
ABM1
ABM1
ABM2
ABM2
ABM2


Hv 262
ABM2
ABM1
ABM1
ABM3
ABM2
ABM2


Hv 263
ABM2
ABM1
ABM1
ABM2
ABM3
ABM2


Hv 264
ABM2
ABM1
ABM1
ABM2
ABM2
ABM3


Hv 265
ABM3
ABM1
ABM2
ABM1
ABM2
ABM2


Hv 266
ABM2
ABM1
ABM3
ABM1
ABM2
ABM2


Hv 267
ABM2
ABM1
ABM2
ABM1
ABM3
ABM2


Hv 268
ABM2
ABM1
ABM2
ABM1
ABM2
ABM3


Hv 269
ABM3
ABM1
ABM2
ABM2
ABM1
ABM2


Hv 270
ABM2
ABM1
ABM3
ABM2
ABM1
ABM2


Hv 271
ABM2
ABM1
ABM2
ABM3
ABM1
ABM2


Hv 272
ABM2
ABM1
ABM2
ABM2
ABM1
ABM3


Hv 273
ABM3
ABM1
ABM2
ABM2
ABM2
ABM1


Hv 274
ABM2
ABM1
ABM3
ABM2
ABM2
ABM1


Hv 275
ABM2
ABM1
ABM2
ABM3
ABM2
ABM1


Hv 276
ABM2
ABM1
ABM2
ABM2
ABM3
ABM1


Hv 277
ABM3
ABM2
ABM1
ABM1
ABM2
ABM2


Hv 278
ABM2
ABM3
ABM1
ABM1
ABM2
ABM2


Hv 279
ABM2
ABM2
ABM1
ABM1
ABM3
ABM2


Hv 280
ABM2
ABM2
ABM1
ABM1
ABM2
ABM3


Hv 281
ABM3
ABM2
ABM1
ABM2
ABM1
ABM2


Hv 282
ABM2
ABM3
ABM1
ABM2
ABM1
ABM2


Hv 283
ABM2
ABM2
ABM1
ABM3
ABM1
ABM2


Hv 284
ABM2
ABM2
ABM1
ABM2
ABM1
ABM3


Hv 285
ABM3
ABM2
ABM1
ABM2
ABM2
ABM1


Hv 286
ABM2
ABM3
ABM1
ABM2
ABM2
ABM1


Hv 287
ABM2
ABM2
ABM1
ABM3
ABM2
ABM1


Hv 288
ABM2
ABM2
ABM1
ABM2
ABM3
ABM1


Hv 289
ABM3
ABM2
ABM2
ABM1
ABM1
ABM2


Hv 290
ABM2
ABM3
ABM2
ABM1
ABM1
ABM2


Hv 291
ABM2
ABM2
ABM3
ABM1
ABM1
ABM2


Hv 292
ABM2
ABM2
ABM2
ABM1
ABM1
ABM3


Hv 293
ABM3
ABM2
ABM2
ABM1
ABM2
ABM1


Hv 294
ABM2
ABM3
ABM2
ABM1
ABM2
ABM1


Hv 295
ABM2
ABM2
ABM3
ABM1
ABM2
ABM1


Hv 296
ABM2
ABM2
ABM2
ABM1
ABM3
ABM1


Hv 297
ABM3
ABM2
ABM2
ABM2
ABM1
ABM1


Hv 298
ABM2
ABM3
ABM2
ABM2
ABM1
ABM1


Hv 299
ABM2
ABM2
ABM3
ABM2
ABM1
ABM1


Hv 300
ABM2
ABM2
ABM2
ABM3
ABM1
ABM1


Hv 301
ABM1
ABM3
ABM2
ABM2
ABM2
ABM2


Hv 302
ABM1
ABM2
ABM3
ABM2
ABM2
ABM2


Hv 303
ABM1
ABM2
ABM2
ABM3
ABM2
ABM2


Hv 304
ABM1
ABM2
ABM2
ABM2
ABM3
ABM2


Hv 305
ABM1
ABM2
ABM2
ABM2
ABM2
ABM3


Hv 306
ABM3
ABM1
ABM2
ABM2
ABM2
ABM2


Hv 307
ABM2
ABM1
ABM3
ABM2
ABM2
ABM2


Hv 308
ABM2
ABM1
ABM2
ABM3
ABM2
ABM2


Hv 309
ABM2
ABM1
ABM2
ABM2
ABM3
ABM2


Hv 310
ABM2
ABM1
ABM2
ABM2
ABM2
ABM3


Hv 311
ABM3
ABM2
ABM1
ABM2
ABM2
ABM2


Hv 312
ABM2
ABM3
ABM1
ABM2
ABM2
ABM2


Hv 313
ABM2
ABM2
ABM1
ABM3
ABM2
ABM2


Hv 314
ABM2
ABM2
ABM1
ABM2
ABM3
ABM2


Hv 315
ABM2
ABM2
ABM1
ABM2
ABM2
ABM3


Hv 316
ABM3
ABM2
ABM2
ABM1
ABM2
ABM2


Hv 317
ABM2
ABM3
ABM2
ABM1
ABM2
ABM2


Hv 318
ABM2
ABM2
ABM3
ABM1
ABM2
ABM2


Hv 319
ABM2
ABM2
ABM2
ABM1
ABM3
ABM2


Hv 320
ABM2
ABM2
ABM2
ABM1
ABM2
ABM3


Hv 321
ABM3
ABM2
ABM2
ABM2
ABM1
ABM2


Hv 322
ABM2
ABM3
ABM2
ABM2
ABM1
ABM2


Hv 323
ABM2
ABM2
ABM3
ABM2
ABM1
ABM2


Hv 324
ABM2
ABM2
ABM2
ABM3
ABM1
ABM2


Hv 325
ABM2
ABM2
ABM2
ABM2
ABM1
ABM3


Hv 326
ABM3
ABM2
ABM2
ABM2
ABM2
ABM1


Hv 327
ABM2
ABM3
ABM2
ABM2
ABM2
ABM1


Hv 328
ABM2
ABM2
ABM3
ABM2
ABM2
ABM1


Hv 329
ABM2
ABM2
ABM2
ABM3
ABM2
ABM1


Hv 330
ABM2
ABM2
ABM2
ABM2
ABM3
ABM1









7.9. TCR ABMs

The MBMs of the disclosure contain an ABM1 comprising a variant CD58 domain that specifically binds to CD2 and an ABM2 which is specific for a different antigen. In the BBMs and TBMs of the disclosure, ABM2 can bind to, for example, a component of a TCR complex. The TCR is a disulfide-linked membrane-anchored heterodimeric protein normally consisting of the highly variable alpha (α) and beta (β) chains expressed as part of a complex with the invariant CD3 chain molecules. T cells expressing this receptor are referred to as α:β(or αβ) T cells, though a minority of T cells express an alternate receptor, formed by variable gamma (γ) and delta (δ) chains, referred as γδ T cells.


In an embodiment, MBMs contain an ABM that specifically binds to CD3.


7.9.1. CD3 ABMs


The MBMs can contain an ABM that specifically binds to CD3. The term “CD3” refers to the cluster of differentiation 3 co-receptor (or co-receptor complex, or polypeptide chain of the co-receptor complex) of the T cell receptor. The amino acid sequence of the polypeptide chains of human CD3 are provided in NCBI Accession P04234, P07766 and P09693. CD3 proteins can also include variants. CD3 proteins can also include fragments. CD3 proteins also include post-translational modifications of the CD3 amino acid sequences. Post-translational modifications include, but are not limited to, N- and O-linked glycosylation.


In some embodiments, a MBM can comprise an ABM which is an anti-CD3 antibody (e.g., as described in US 2016/0355600, WO 2014/110601, and WO 2014/145806) or an antigen-binding domain thereof. Exemplary anti-CD3 VH, VL, and scFV sequences that can be used in a MBM are provided in Table 12A.









TABLE 12A







CD3 Binders - Variable domain sequences













SEQ


Binding


ID


Domain
Chain
Sequence
NO:





CD3-1
VH
QVQLQQSGAELARPGASVKMSCKASGYTFTRYTMHWVKQRPGQG
799




LEWIGYINPSRGYTNYNQKFKDKATLTTDKSSSTAYMQLSSLTSEDS





AVYYCARYYDDHYCLDYWGQGTTLTVSS




VL
QIVLTQSPAIMSASPGEKVTMTCSASSSVSYMNWYQQKSGTSPKR
800




WIYDTSKLASGVPAHFRGSGSGTSYSLTISGMEAEDAATYYCQQWS





SNPFTFGSGTKLEIN






CD3-2
VH
EVQLVESGGGLVQPKGSLKLSCAASGFTFNTYAMNWVRQAPGKGL
801




EWVARIRSKYNNYATYYADSVKDRFTISRDDSQSILYLQMNNLKTED





TAMYYCVRHGNFGNSYVSWFAYWGQGTLVTVSA




VL
QAVVTQESALTTSPGETVTLTCRSSTGAVTTSNYANWVQEKPDHLF
802




TGLIGGTNKRAPGVPARFSGSLIGDKAALTITGAQTEDEAIYFCALWY





SNLWVFGGGTKLTVL






CD3-3
VH
QVQLQQSGAELARPGASVKMSCKASGYTFTSYTMHWVKQRPGQG
803




LEWIGYINPSSGYTKYNQKFKDKATLTADKSSSTAYMQLSSLTSEDS





AVYYCARWQDYDVYFDYWGQGTTLTVSS




VL
QIVLSQSPAILSASPGEKVTMTCRASSSVSYMHWYQQKPGSSPKPW
804




IYATSNLASGVPARFSGSGSGTSYSLTISRVEAEDAATYYCQQWSSN





PPTFGGGTKLETK






CD3-4
VH
QVQLQQSGAELARPGASVKMSCKASGYTFTRYTMHWVKQRPGQG
799




LEWIGYINPSRGYTNYNQKFKDKATLTTDKSSSTAYMQLSSLTSEDS





AVYYCARYYDDHYCLDYWGQGTTLTVSS




VL
QIVLTQSPAIMSASPGEKVTMTCRASSSVSYMNWYQQKSGTSPKR
805




WIYDTSKVASGVPYRFSGSGSGTSYSLTISSMEAEDAATYYCQQWS





SNPLTFGSGTKLEIN






CD3-5
VH
QVQLVQSGGGVVQPGRSLRLSCKASGYTFTRYTMHWVRQAPGKG
806




LEWIGYINPSRGYTNYNQKVKDRFTISRDNSKNTAFLQMDSLRPEDT





GVYFCARYYDDHYCLDYWGQGTPVTVSS




VL
DIQMTQSPSSLSASVGDRVTITCSASSSVSYMNWYQQTPGKAPKR
807




WIYDTSKLASGVPSRFSGSGSGTDYTFTISSLQPEDIATYYCQQWSS





NPFTFGQGTKLQIT






CD3-6
VH
QVQLVESGGGVVQPGRSLRLSCAASGFKFSGYGMHWVRQAPGKG
808




LEWVAVIWYDGSKKYYVDSVKGRFTISRDNSKNTLYLQMNSLRAED





TAVYYCARQMGYWHFDLWGRGTLVTVSS




VL
EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPRLL
809




IYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRSNW





PPLTFGGGTKVEIK






CD3-7
VH
EVQLVESGGGLVQPGGSLRLSCAASGFTFSTYAMNWVRQAPGKGL
810




EWVGRIRSKYNNYATYYADSVKDRFISRDDSKNSLYLQMNSLKTED





TAVYYCVRHGNFGNSYVSWFAYWGQGTLVTVSS




VL
QAVVTQEPSLTVSPGGTVTLTCRSSTGAVTTSNYANWVQQKPGQA
811




PRGLIGGTNKRAPWTPARFSGSLLGGKAALIGAQAEDEADYYCALW





YSNLWVFGGGTKLTVL






CD3-8
VH
DIKLQQSGAELARPGASVKMSCKTSGYTFTRYTMHWVKQRPGQGL
812




EWIGYINPSRGYTNYNQKFKDKATLTTDKSSSTAYMQLSSLTSEDSA





VYYCARYYDDHYCLDYWGQGTTLTVSS




VL
DIQLTQSPAIMSASPGEKVTMTCRASSSVSYMNWYQQKSGTSPKR
813




WIYDTSKVASGVPYRFSGSGSGTSYSLISSMEAEDAATYYCQQWSS





NPLTFGAGTKLELK






CD3-9
VH
EVQLVESGGGLVQPGGSLRLSCAASGFTFNTYAMNWVRQAPGKGL
814




EWVARIRSKYNNYATYYADSVKDRFISRDDSKNSLYLQMNSLKTEDT





AVYYCVRHGNFGNSYVSWFAYWGQGTLVTVSS




VL
QAVVTQEPSLTVSPGGTVTLTCRSSTGAVTTSNYANWVQQKPGQA
811




PRGLIGGTNKRAPWTPARFSGSLLGGKAALIGAQAEDEADYYCALW





YSNLWVFGGGTKLTVL






CD3-10
VH
EVKLLESGGGLVQPKGSLKLSCAASGFTFNTYAMNWVRQAPGKGL
815




EWVARIRSKYNNYATYYADSVKDRFTISRDDSQSILYLQMNNLKTED





TAMYYCVRHGNFGNSYVSWFAYWGQGTLVTVSA




VL
QAVVTQESALTTSPGETVTLTCRSSTGAVTTSNYANWVQEKPDHLF
802




TGLIGGTNKRAPGVPARFSGSLIGDKAALTITGAQTEDEAIYFCALWY





SNLWVFGGGTKLTVL






CD3-11
VH
EVQLVESGGGLVQPGGSLKLSCAASGFTFNSYAMNWVRQAPGKGL
816




EWVARIRSKYNNYATYYADSVKGRFTISRDDSKNTAYLQMNNLKTE





DTAVYYCVRHGNFGNSYVSVWVAYWGQGTLVTVSS




VL
QTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQA
817




PRGLIGGTKFLAPGTPQRFSGSLLGGKAALTLSGVQPEDEAEYYCVL





WYSNRWVFGGGTKLTVL






CD3-12
VH
EVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGL
818




EWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTE





DTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSS




VL
QTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQA
819




PRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVL





WYSNRWVFGGGTKLTVL




scFv
EVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGL
820




EWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTE





DTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGS





GGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYP





NWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ





PEDEAEYYCVLWYSNRWVFGGGTKLTVL






CD3-13
VH
QVQLVQSGAEVKKPGASVKVSCKASGYTFTRYTMHWVRQAPGQGL
821




EWMGYINPSRGYTNYNQKFKDRVTMTTDTSISTAYMELSRLRSDDT





AVYYCARYYDDHYCLDYWGQGTLVTVSS




VL
EIVLTQSPATLSLSPGERATLSCSASSSVSYMNWYQQKPGQAPRLLI
822




YDTSKLASGVPAHFRGSGSGTDFTLTISSLEPEDFAVYYCQQWSSN





PFTFGQGTKVEIK






CD3-14
VH
EVQLVESGGGLVQPGGSLRLSCAASGFTFSTYAMNWVRQAPGKGL
823




EWVSRIRSKYNNYATYYADSVKDRFTISRDDSKNTLYLQMNSLRAED





TAVYYCARHGNFGNSYVSWFAYWGQGTMVTVSS




VL
QAVVTQEPSLTVSPGGTVTLTCRSSTGAVTTSNYANWVQQKPGQA
824




PRGLIGGTNKRAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCA





LWYSNLWVFGGGTKLTVL






CD3-15
VH
EVQLVESGGGLVQPGGSLRLSCAASGFTFNTYAMNWVRQAPGKGL
825




EWVGRIRSKYNNYATYYADSVKDRFTISRDDSKNSLYLQMNSLKTE





DTAVYYCVRHGNFGNSYVSWFAYWGQGTLVTVSS




VL
QAVVTQEPSLTVSPGGTVTLTCRSSTGAVTTSNYANWVQEKPGQA
826




PRGLIGGTNKRAPWTPARFSGSLLGGKAALTITGAQAEDEADYYCAL





VVYSNLWVFGGGTKLTVL






CD3-16
VH
EVQLVESGGGLVQPGGSLRLSCAASGFTFNTYAMNWVRQAPGKGL
827




EWVGRIRSKYNNYATYYADSVKGRFTISRDDSKNTLYLQMNSLRAE





DTAVYYCVRHGNFGNSYVSWFAYWGQGTLVTVSS




VL
QAVVTQEPSLTVSPGGTVTLTCGSSTGAVTTSNYANWVQQKPGQA
828




PRGLIGGTNKRAPGVPARFSGSLLGGKAALTLSGAQPEDEAEYYCA





LWYSNLWVFGGGTKLTVL






CD3-17
VH
EVQLVESGGGLVQPGGSLRLSCAASGFTFSTYAMNWVRQAPGKGL
829




EWVGRIRSKYNNYATYYADSVKGRFTISRDDSKNTLYLQMNSLRAE





DTAVYYCVRHGNFGDSYVSWFAYWGQGTLVTVSS




VL
QAVVTQEPSLTVSPGGTVTLTCGSSTGAVTTSNYANWVQQKPGKS
830




PRGLIGGTNKRAPGVPARFSGSLLGGKAALTISGAQPEDEADYYCAL





VVYSNHWVFGGGTKLTVL






CD3-18
VH
QVQLVQSGGGVVQPGRSLRLSCKASGYTFTRYTMHWVRQAPGKG
806




LEWIGYINPSRGYTNYNQKVKDRFTISRDNSKNTAFLQMDSLRPEDT





GVYFCARYYDDHYCLDYWGQGTPVTVSS




VL
DIQMTQSPSSLSASVGDRVTITCSASSSVSYMNWYQQTPGKAPKR
831




WIYDTSKLASGVPSRFSGSGSGTDYTFTISSLQPEDIATYYCQQWSS





NPFTFGQGT






CD3-19
VH
QVQLVQSGGGVVQPGRSLRLSCKASGYTFTRYTMHWVRQAPGKG
832




LEWIGYINPSRGYTNYNQKVKDRFTISRDNSKNTAFLQMDSLRPEDT





GVYFCARYYDDHYSLDYWGQGTPVTVSS




VL
DIQMTQSPSSLSASVGDRVTITCSASSSVSYMNWYQQTPGKAPKR
831




WIYDTSKLASGVPSRFSGSGSGTDYTFTISSLQPEDIATYYCQQWSS





NPFTFGQGT






CD3-20
VH
EVQLQQSGPELVKPGASMKISCKASGYSFTGYTMNWVKQSHGKNL
833




EWMGLINPYKGVSTYNQKFKDKATLTVDKSSSTAYMELLSLTSEDSA





VYYCARSGYYGDSDWYFDVWGQGTTLTVFS




VL
DIQMTQTTSSLSASLGDRVTISCRASQDIRNYLNWYQQKPDGTVKLL
834




IYYTSRLHSGVPSKFSGSGSGTDYSLTISNLEQEDIATYFCQQGNTLP





WTFAGGTKLEIK






CD3-21
VH
EVQLVESGGGLVQPGGSLKLSCAASGFTFNTYAMNWVRQASGKGL
835




EWVGRIRSKYNNYATYYADSVKDRFTISRDDSKSTLYLQMNSLKTED





TAVYYCVRHGNFGNSYVSWFAYWGQGTLVTVSS




VL
QAVVTQEPSLTVSPGGTVTLTCRSSTGAVTTSNYANWVQQKPGQA
836




PRGLIGGTNKRAPWTPARFSGSLLGDKAALTLSGAQPEDEAEYFCA





LWYSNLWVFGGGTKLTVL




scFv
EVQLVESGGGLVQPGGSLKLSCAASGFTFNTYAMNWVRQASGKGL
837




EWVGRIRSKYNNYATYYADSVKDRFTISRDDSKSTLYLQMNSLKTED





TAVYYCVRHGNFGNSYVSWFAYWGQGTLVTVSSGGGGSGGGGSG





GGGSGGGGSQAVVTQEPSLTVSPGGTVTLTCRSSTGAVTTSNYAN





WVQQKPGQAPRGLIGGTNKRAPWTPARFSGSLLGDKAALTLSGAQ





PEDEAEYFCALWYSNLWVFGGGTKLTVL






CD3-22
VH
EVQLVESGGGLVQPGGSLRLSCAASGFTFSTYAMNWVRQAPGKGL
829




EWVGRIRSKYNNYATYYADSVKGRFTISRDDSKNTLYLQMNSLRAE





DTAVYYCVRHGNFGDSYVSWFAYWGQGTLVTVSS




VL
QAVVTQEPSLTVSPGGTVTLTCGSSTGAVTTSNYANWVQQKPGKS
830




PRGLIGGTNKRAPGVPARFSGSLLGGKAALTISGAQPEDEADYYCAL





WYSNHWVFGGGTKLTVL




scFv
EVQLVESGGGLVQPGGSLRLSCAASGFTFSTYAMNWVRQAPGKGL
838




EWVGRIRSKYNNYATYYADSVKGRFTISRDDSKNTLYLQMNSLRAE





DTAVYYCVRHGNFGDSYVSWFAYWGQGTLVTVSSGKPGSGKPGS





GKPGSGKPGSQAVVTQEPSLTVSPGGTVTLTCGSSTGAVTTSNYAN





WVQQKPGKSPRGLIGGTNKRAPGVPARFSGSLLGGKAALTISGAQP





EDEADYYCALWYSNHWVFGGGTKLTVL






CD3-23
VH
EVQLVESGGGLVQPGGSLRLSCAASGFTFSTYAMNWVRQAPGKGL
839




EWVGRIRSKANNYATYYADSVKGRFTISRDDSKNTLYLQMNSLRAE





DTAVYYCVRHGNFGDSYVSWFAYWGQGTLVTVSS




VL
QAVVTQEPSLTVSPGGTVTLTCGSSTGAVTTSNYANWVQQKPGKS
830




PRGLIGGTNKRAPGVPARFSGSLLGGKAALTISGAQPEDEADYYCAL





WYSNHWVFGGGTKLTVL




scFv
EVQLVESGGGLVQPGGSLRLSCAASGFTFSTYAMNWVRQAPGKGL
840




EWVGRIRSKANNYATYYADSVKGRFTISRDDSKNTLYLQMNSLRAE





DTAVYYCVRHGNFGDSYVSWFAYWGQGTLVTVSSGKPGSGKPGS





GKPGSGKPGSQAVVTQEPSLTVSPGGTVTLTCGSSTGAVTTSNYAN





WVQQKPGKSPRGLIGGTNKRAPGVPARFSGSLLGGKAALTISGAQP





EDEADYYCALWYSNHWVFGGGTKLTVL






CD3-24
VH
EVQLVESGGGLVQPGGSLRLSCAASGFTFSTYAMNWVRQAPGKGL
841




EWVGRIRSKYNNYATYYADSVKGRFTISRDDSKNTLYLQMNSLRAE





DTAVYYCVRHGNFGDEYVSWFAYWGQGTLVTVSS




VL
QAVVTQEPSLTVSPGGTVTLTCGSSTGAVTTSNYANWVQQKPGKS
830




PRGLIGGTNKRAPGVPARFSGSLLGGKAALTISGAQPEDEADYYCAL





WYSNHWVFGGGTKLTVL




scFv
EVQLVESGGGLVQPGGSLRLSCAASGFTFSTYAMNWVRQAPGKGL
842




EWVGRIRSKYNNYATYYADSVKGRFTISRDDSKNTLYLQMNSLRAE





DTAVYYCVRHGNFGDEYVSWFAYWGQGTLVTVSSGKPGSGKPGS





GKPGSGKPGSQAVVTQEPSLTVSPGGTVTLTCGSSTGAVTTSNYAN





WVQQKPGKSPRGLIGGTNKRAPGVPARFSGSLLGGKAALTISGAQP





EDEADYYCALWYSNHWVFGGGTKLTVL






CD3-25
VH
EVQLVESGGGLVQPGGSLRLSCAASGFTFSTYAMNWVRQAPGKGL
843




EWVGRIRSKYNNYATYYADSVKGRFTISRDDSKNTLYLQMNSLRAE





DTAVYYCVRHGNFGDPYVSWFAYWGQGTLVTVSS




VL
QAVVTQEPSLTVSPGGTVTLTCGSSTGAVTTSNYANWVQQKPGKS
830




PRGLIGGTNKRAPGVPARFSGSLLGGKAALTISGAQPEDEADYYCAL





WYSNHWVFGGGTKLTVL




scFv
EVQLVESGGGLVQPGGSLRLSCAASGFTFSTYAMNWVRQAPGKGL
844




EWVGRIRSKYNNYATYYADSVKGRFTISRDDSKNTLYLQMNSLRAE





DTAVYYCVRHGNFGDPYVSWFAYWGQGTLVTVSSGKPGSGKPGS





GKPGSGKPGSQAVVTQEPSLTVSPGGTVTLTCGSSTGAVTTSNYAN





WVQQKPGKSPRGLIGGTNKRAPGVPARFSGSLLGGKAALTISGAQP





EDEADYYCALWYSNHWVFGGGTKLTVL






CD3-26
VH
EVQLVESGGGLVQPGGSLRLSCAASGFTFSTYAMNWVRQAPGKGL
845




EWVGRIRSKYNNYATYYADSVKGRFTISRDDSKNTLYLQMNSLRAE





DTAVYYCVRHGNFGDSYVSWFDYWGQGTLVTVSS




VL
QAVVTQEPSLTVSPGGTVTLTCGSSTGAVTTSNYANWVQQKPGKS
830




PRGLIGGTNKRAPGVPARFSGSLLGGKAALTISGAQPEDEADYYCAL





WYSNHWVFGGGTKLTVL




scFv
EVQLVESGGGLVQPGGSLRLSCAASGFTFSTYAMNWVRQAPGKGL
846




EWVGRIRSKYNNYATYYADSVKGRFTISRDDSKNTLYLQMNSLRAE





DTAVYYCVRHGNFGDSYVSWFDYWGQGTLVTVSSGKPGSGKPGS





GKPGSGKPGSQAVVTQEPSLTVSPGGTVTLTCGSSTGAVTTSNYAN





WVQQKPGKSPRGLIGGTNKRAPGVPARFSGSLLGGKAALTISGAQP





EDEADYYCALWYSNHWVFGGGTKLTVL






CD3-27
VH
EVQLVESGGGLVQPGGSLRLSCAASGFTFSTYAMSWVRQAPGKGL
847




EWVGRIRSKYNNYATYYADSVKGRFTISRDDSKNTLYLQMNSLRAE





DTAVYYCVRHGNFGDSYVSWFAYWGQGTLVTVSS




VL
QAVVTQEPSLTVSPGGTVTLTCGSSTGAVTTSNYANWVQQKPGKS
830




PRGLIGGTNKRAPGVPARFSGSLLGGKAALTISGAQPEDEADYYCAL





WYSNHWVFGGGTKLTVL




scFv
EVQLVESGGGLVQPGGSLRLSCAASGFTFSTYAMSWVRQAPGKGL
848




EWVGRIRSKYNNYATYYADSVKGRFTISRDDSKNTLYLQMNSLRAE





DTAVYYCVRHGNFGDSYVSWFAYWGQGTLVTVSSGKPGSGKPGS





GKPGSGKPGSQAVVTQEPSLTVSPGGTVTLTCGSSTGAVTTSNYAN





WVQQKPGKSPRGLIGGTNKRAPGVPARFSGSLLGGKAALTISGAQP





EDEADYYCALWYSNHWVFGGGTKLTVL






CD3-28
VH
EVQLVESGGGLVQPGGSLRLSCAASGFTFNTYAMNWVRQAPGKGL
827




EWVGRIRSKYNNYATYYADSVKGRFTISRDDSKNTLYLQMNSLRAE





DTAVYYCVRHGNFGNSYVSWFAYWGQGTLVTVSS




VL
QAVVTQEPSLTVSPGGTVTLTCGSSTGAVTTSNYANWVQQKPGQA
828




PRGLIGGTNKRAPGVPARFSGSLLGGKAALTLSGAQPEDEAEYYCA





LWYSNLWVFGGGTKLTVL




scFv
EVQLVESGGGLVQPGGSLRLSCAASGFTFNTYAMNWVRQAPGKGL
849




EWVGRIRSKYNNYATYYADSVKGRFTISRDDSKNTLYLQMNSLRAE





DTAVYYCVRHGNFGNSYVSWFAYWGQGTLVTVSSGGGGSGGGGS





GGGGSQAVVTQEPSLTVSPGGTVTLTCGSSTGAVTTSNYANWVQQ





KPGQAPRGLIGGTNKRAPGVPARFSGSLLGGKAALTLSGAQPEDEA





EYYCALWYSNLWVFGGGTKLTVLGSHHHHHH






CD3-129
VH
EVQLVESGGGLVQPGGSLKLSCAASGFTFNTYAMNWVRQASGKGL
850




EWVGRIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNSLKTE





DTAVYYCVRHGNFGNSYVSWFAHWGQGTLVTVSS




VL
QAVVTQEPSLTVSPGGTVTLTCGSSTGAVTSSNYANWVQQKPGQA
851




PRGLIGGTNKRAPWTPARFSGSLLGGKAALTLSGAQPEDEAEYYCA





LWYSNLWVFGGGTKLTVL




scFv
EVQLVESGGGLVQPGGSLKLSCAASGFTFNTYAMNWVRQASGKGL
852




EWVGRIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNSLKTE





DTAVYYCVRHGNFGNSYVSWFAHWGQGTLVTVSSGGGGSGGGGS





GGGGSGGGGSQAVVTQEPSLTVSPGGTVTLTCGSSTGAVTSSNYA





NWVQQKPGQAPRGLIGGTNKRAPWTPARFSGSLLGGKAALTLSGA





QPEDEAEYYCALWYSNLWVFGGGTKLTVL






CD3-130
VH
EVQLVESGGGLVQPGGSLKLSCAASGFTFNTYAMNWVRQASGKGL
853




EWVGRIRSKYNNYATYYADSVKDRFTISRDDSKSTAYLQMNSLKTE





DTAVYYCVRHGNFGNSYVSWFAYWGQGTLVTVSS




VL
QAVVTQEPSLTVSPGGTVTLTCRSSTGAVTTSNYANWVQQKPGQA
836




PRGLIGGTNKRAPWTPARFSGSLLGDKAALTLSGAQPEDEAEYFCA





LWYSNLWVFGGGTKLTVL




scFv
EVQLVESGGGLVQPGGSLKLSCAASGFTFNTYAMNWVRQASGKGL
854




EWVGRIRSKYNNYATYYADSVKDRFTISRDDSKSTAYLQMNSLKTE





DTAVYYCVRHGNFGNSYVSWFAYWGQGTLVTVSSGGGGSGGGGS





GGGGSGGGGSQAVVTQEPSLTVSPGGTVTLTCRSSTGAVTTSNYA





NWVQQKPGQAPRGLIGGTNKRAPWTPARFSGSLLGDKAALTLSGA





QPEDEAEYFCALWYSNLWVFGGGTKLTVL









CDR sequences for a number of CD3 binders as defined by the Kabat numbering scheme (Kabat et al, 1991, Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md.), Chothia numbering scheme (A1-Lazikani et al., 1997, J. Mol. Biol 273:927-948), and a combination of Kabat and Chothia numbering are provided in Tables 12B-12D, respectively.









TABLE 12B







CD3 Binders - CDR sequences according to Kabat numbering scheme














Binding


SEQ ID

SEQ ID

SEQ ID


Domain
Chain
CDR1
NO:
CDR2
NO:
CDR3
NO:





CD3-1
VH
RYTMH
855
YINPSRGYTNYNQK
875
YYDDHYCLDY
898






FKD






VL
SASSSVSYM
856
DTSKLAS
876
QQWSSNPFT
899




N










CD3-2
VH
TYAMN
857
RIRSKYNNYATYYA
877
HGNFGNSYVSW
900






DSVKD

FAY




VL
RSSTGAVTT
858
GTNKRAP
878
ALWYSNLWV
901




SNYAN










CD3-3
VH
SYTMH
859
YINPSSGYTKYNQK
879
WQDYDVYFDY
902






FKD






VL
RASSSVSYM
860
ATSNLAS
880
QQWSSNPPT
903




H










CD3-4
VH
RYTMH
855
YINPSRGYTNYNQK
875
YYDDHYCLDY
898






FKD






VL
RASSSVSYM
861
DTSKVAS
881
QQWSSNPLT
904




N










CD3-5
VH
RYTMH
855
YINPSRGYTNYNQK
882
YYDDHYCLDY
898






VKD






VL
SASSSVSYM
856
DTSKLAS
876
QQWSSNPFT
899




N










CD3-6
VH
GYGMH
862
VIWYDGSKKYYVDS
883
QMGYWHFDL
905






VKG






VL
RASQSVSSY
863
DASNRAT
158
QQRSNWPPLT
906




LA










CD3-7
VH
TYAMN
857
RIRSKYNNYATYYA
884
VRHGNFGNSYV
907






D

SWFAY




VL
RSSTGAVTT
858
GTNKRAP
878
ALWYSNLWV
901




SNYAN










CD3-8
VH
RYTMH
855
YINPSRGYTNYNQK
875
YYDDHYCLDY
898






FKD






VL
RASSSVSYM
861
DTSKVAS
881
QQWSSNPLT
904




N










CD3-9
VH
TYAMN
857
RIRSKYNNYATYYA
884
VRHGNFGNSYV
907






D

SWFAY




VL
RSSTGAVTT
858
GTNKRAP
878
ALWYSNLWV
901




SNYAN










CD3-10
VH
TYAMN
857
RIRSKYNNYATYYA
877
HGNFGNSYVSW
900






DSVKD

FAY




VL
RSSTGAVTT
858
GTNKRAP
878
ALWYSNLWV
901




SNYAN










CD3-11
VH
SYAMN
864
RIRSKYNNYATYYA
885
HGNFGNSYVSW
908






DSVKG

WAY




VL
GSSTGAVTS
865
GTKFLAP
886
VLWYSNRWV
909




GNYPN










CD3-12
VH
KYAMN
866
RIRSKYNNYATYYA
877
HGNFGNSYISY
910






DSVKD

WAY




VL
GSSTGAVTS
865
GTKFLAP
886
VLWYSNRWV
909




GNYPN










CD3-13
VH
RYTMH
855
YINPSRGYTNYNQK
875
YYDDHYCLDY
898






FKD






VL
SASSSVSYM
856
DTSKLAS
876
QQWSSNPFT
899




N










CD3-14
VH
TYAMN
857
RIRSKYNNYATYYA
877
HGNFGNSYVSW
900






DSVKD

FAY




VL
RSSTGAVTT
858
GTNKRAP
878
ALWYSNLWV
901




SNYAN










CD3-15
VH
TYAMN
857
RIRSKYNNYATYYA
877
HGNFGNSYVSW
900






DSVKD

FAY




VL
RSSTGAVTT
858
GTNKRAP
878
ALWYSNLWV
901




SNYAN










CD3-16
VH
TYAMN
857
RIRSKYNNYATYYA
885
HGNFGNSYVSW
900






DSVKG

FAY




VL
GSSTGAVTT
867
GTNKRAP
878
ALWYSNLWV
901




SNYAN










CD3-17
VH
TYAMN
857
RIRSKYNNYATYYA
885
HGNFGDSYVSW
911






DSVKG

FAY




VL
GSSTGAVTT
867
GTNKRAP
878
ALWYSNHWV
912




SNYAN










CD3-18
VH
RYTMH
855
YINPSRGYTNYNQK
882
YYDDHYCLDY
898






VKD






VL
SASSSVSYM
856
DTSKLAS
876
QQWSSNPFT
899




N










CD3-19
VH
RYTMH
855
YINPSRGYTNYNQK
882
YYDDHYSLDY
913





VKD







VL
SASSSVSYM
856
DTSKLAS
876
QQWSSNPFT
899




N










CD3-20
VH
GYTMN
868
LINPYKGVSTYNQKF
887
SGYYGDSDWYF
914






KD

DV




VL
RASQDIRNY
869
YTSRLH
888
QQGNTLPWT
915




LN










CD3-21
VH
TYAMN
857
RIRSKYNNYATYYA
877
HGNFGNSYVSW
900






DSVKD

FAY




VL
RSSTGAVTT
858
GTNKRAP
878
ALWYSNLWV
901




SNYAN










CD3-22
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGDSYVS
911






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNHWV
912




TSNYAN










CD3-23
VH
TYAMN
857
RIRSKANNYATYY
889
HGNFGDSYVS
911






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNHWV
912




TSNYAN










CD3-24
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGDEYVS
916






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNHWV
912




TSNYAN










CD3-25
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGDPYVS
917






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNHWV
912




TSNYAN










CD3-26
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGDSYVS
918






ADSVKG

WFDY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNHWV
912




TSNYAN










CD3-27
VH
TYAMS
870
RIRSKYNNYATYY
885
HGNFGDSYVS
911






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNHWV
912




TSNYAN










CD3-28
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNLWV
901




TSNYAN










CD3-29
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNLWV
901




TSNYAN










CD3-30
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNLWV
901




TSNYAN










CD3-31
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNLWV
901




TSNYAN










CD3-32
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNLWV
901




TSNYAN










CD3-33
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNLWV
901




TSNYAN










CD3-34
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNLWV
901




TSNYAN










CD3-35
VH
TYAMH
871
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNLWV
901




TSNYAN










CD3-36
VH
TYAMS
870
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNLWV
901




TSNYAN










CD3-37
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNLWV
901




TSNYAN










CD3-38
VH
TYAMN
857
RIRSKANNYYATY
890
HGNFGNSYVS
900






YADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNLWV
901




TSNYAN










CD3-39
VH
TYAMN
857
RIRSKANSYATYY
891
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNLWV
901




TSNYAN










CD3-40
VH
TYAMN
857
RIRSKYNNYATAY
892
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNLWV
901




TSNYAN










CD3-41
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNLWV
901




TSNYAN










CD3-42
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNLWV
901




TSNYAN










CD3-43
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNLWV
901




TSNYAN










CD3-44
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNLWV
901




TSNYAN










CD3-45
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNLWV
901




TSNYAN










CD3-46
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNLWV
901




TSNYAN










CD3-47
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNLWV
901




TSNYAN










CD3-48
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNLWV
901




TSNYAN










CD3-49
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNLWV
901




TSNYAN










CD3-50
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGDSYVS
911






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNLWV
901




TSNYAN










CD3-51
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGQSYVS
919






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNLWV
901




TSNYAN










CD3-52
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNLWV
901




TSNYAN










CD3-53
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
920






ADSVKG

WFDY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNLWV
901




TSNYAN










CD3-54
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNLWV
901




TSNYAN










CD3-55
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNLWV
901




TSNYAN










CD3-56
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNLWV
901




TSNYAN










CD3-57
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNLWV
901




TSNYAN










CD3-58
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNLWV
901




TSNYAN










CD3-59
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNLWV
901




TSNYAN










CD3-60
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
872
GTNKRAP
878
ALWYSNLWV
901




SSNYAN










CD3-61
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
873
GTNKRAP
878
ALWYSNLWV
901




SGHYAN










CD3-62
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
DTNKRAP
893
ALWYSNLWV
901




TSNYAN










CD3-63
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNNRAP
894
ALWYSNLWV
901




TSNYAN










CD3-64
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAS
895
ALWYSNLWV
901




TSNYAN










CD3-65
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTSNKHS
896
ALWYSNLWV
901




TSNYAN










CD3-66
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNLWV
901




TSNYAN










CD3-67
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNLWV
901




TSNYAN










CD3-68
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNLWV
901




TSNYAN










CD3-69
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNLWV
901




TSNYAN










CD3-70
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNLWV
901




TSNYAN










CD3-71
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNLWV
901




TSNYAN










CD3-72
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNLWV
901




TSNYAN










CD3-73
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
LLWYSNLWV
921




TSNYAN










CD3-74
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNHWV
912




TSNYAN










CD3-75
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNLWV
901




TSNYAN










CD3-76
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
RSSTGAVT
858
GTNKRAP
878
ALWYSNLWV
901




TSNYAN










CD3-77
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
KSSTGAVT
874
GTNKRAP
878
ALWYSNLWV
901




TSNYAN










CD3-78
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNHWV
912




TSNYAN










CD3-79
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNLWV
901




TSNYAN










CD3-80
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNLWV
901




TSNYAN










CD3-81
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNLWV
901




TSNYAN










CD3-82
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNLWV
901




TSNYAN










CD3-83
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNLWV
901




TSNYAN










CD3-84
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNLWV
901




TSNYAN










CD3-85
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNLWV
901




TSNYAN










CD3-86
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNLWV
901




TSNYAN










CD3-87
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGDSYVS
911






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNLWV
901




TSNYAN










CD3-88
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGDSYVS
911






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNLWV
901




TSNYAN










CD3-89
VH
TYAMN
857
RIRSKANNYATYY
889
HGNFGDSYVS
911






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNLWV
901




TSNYAN










CD3-90
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGDSYVS
918






ADSVKG

WFDY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNLWV
901




TSNYAN










CD3-91
VH
TYAMS
870
RIRSKANNYATYY
889
HGNFGDSYVS
918






ADSVKG

WFDY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNLWV
901




TSNYAN










CD3-92
VH
TYAMN
857
RIRSNGGYSTYYA
897
HGNFGNSYVS
900






DSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNLWV
901




TSNYAN










CD3-93
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNLWV
901




TSNYAN










CD3-94
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNLWV
901




TSNYAN










CD3-95
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNLWV
901




TSNYAN










CD3-96
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNHWV
912




TSNYAN










CD3-97
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGDSYVS
911






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNHWV
912




TSNYAN










CD3-98
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNHWV
912




TSNYAN










CD3-99
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNHWV
912




TSNYAN










CD3-100
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGDSYVS
911






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNHWV
912




TSNYAN










CD3-101
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGDSYVS
911






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNHWV
912




TSNYAN










CD3-102
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNHWV
912




TSNYAN










CD3-103
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNHWV
912




TSNYAN










CD3-104
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGDSYVS
911






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNHWV
912




TSNYAN










CD3-105
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGDSYVS
911






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNHWV
912




TSNYAN










CD3-106
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNHWV
912




TSNYAN










CD3-107
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNHWV
912




TSNYAN










CD3-108
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGDSYVS
911






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNHWV
912




TSNYAN










CD3-109
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGDSYVS
911






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNHWV
912




TSNYAN










CD3-110
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNHWV
912




TSNYAN










CD3-111
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNHWV
912




TSNYAN










CD3-112
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGDSYVS
911






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNHWV
912




TSNYAN










CD3-113
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGDSYVS
911






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNHWV
912




TSNYAN










CD3-114
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNHWV
912




TSNYAN










CD3-115
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNHWV
912




TSNYAN










CD3-116
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGDSYVS
911






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNHWV
912




TSNYAN










CD3-117
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGDSYVS
911






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNHWV
912




TSNYAN










CD3-118
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNHWV
912




TSNYAN










CD3-119
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNHWV
912




TSNYAN










CD3-120
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGDSYVS
911






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNHWV
912




TSNYAN










CD3-121
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGDSYVS
911






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNHWV
912




TSNYAN










CD3-122
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNHWV
912




TSNYAN










CD3-123
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNHWV
912




TSNYAN










CD3-124
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGDSYVS
911






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNHWV
912




TSNYAN










CD3-125
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGDSYVS
911






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNHWV
912




TSNYAN










CD3-126
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNHWV
912




TSNYAN










CD3-127
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGNSYVS
900






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNHWV
912




TSNYAN










CD3-128
VH
TYAMN
857
RIRSKYNNYATYY
885
HGNFGDSYVS
911






ADSVKG

WFAY




VL
GSSTGAVT
867
GTNKRAP
878
ALWYSNHWV
912




TSNYAN










CD3-129
VH
TYAMN
857
RIRSKYNNYATYYA
877
HGNFGNSYVS
922






DSVKD

WFAH




VL
GSSTGAVTS
872
GTNKRAP
878
ALWYSNLWV
901




SNYAN










CD3-130
VH
TYAMN
857
RIRSKYNNYATYYA
877
HGNFGNSYVSW
900






DSVKD

FAY




VL
RSSTGAVTT
858
GTNKRAP
878
ALWYSNLWV
901




SNYAN
















TABLE 12C







CD3 Binders - CDR sequences according to Chothia numbering scheme














Binding


SEQ ID

SEQ ID

SEQ ID


Domain
Chain
CDR1
NO:
CDR2
NO:
CDR3
NO:





CD3-1
VH
GYTFTRY
923
NPSRGY
936
YYDDHYCLDY
898



VL
SSSVSY
924
DTS
937
WSSNPF
946





CD3-2
VH
GFTFNTY
925
RSKYNN
938
HGNFGNSYVS
900






YA

WFAY




VL
STGAVTTSNY
926
GTN
213
WYSNLW
947





CD3-3
VH
GYTFTSY
927
NPSSGY
939
WQDYDVYFDY
902



VL
SSSVSY
924
ATS
940
WSSNPP
948





CD3-4
VH
GYTFTRY
923
NPSRGY
936
YYDDHYCLDY
898



VL
SSSVSY
924
DTS
937
WSSNPL
949





CD3-5
VH
GYTFTRY
923
NPSRGY
936
YYDDHYCLDY
898



VL
SSSVSY
924
DTS
937
WSSNPF
946





CD3-6
VH
GFKFSGY
928
WYDGSK
941
QMGYWHFDL
905



VL
SQSVSSY
929
DAS
217
RSNWPPL
950





CD3-7
VH
GFTFSTY
930
RSKYNN
942
HGNFGNSYVS
951






YAT

WFA




VL
STGAVTTSNY
926
GTN
213
WYSNLW
947





CD3-8
VH
GYTFTRY
923
NPSRGY
936
YYDDHYCLDY
898



VL
SSSVSY
924
DTS
937
WSSNPL
949





CD3-9
VH
GFTFNTY
925
RSKYNN
942
HGNFGNSYVS
951






YAT

WFA




VL
STGAVTTSNY
926
GTN
213
WYSNLW
947





CD3-10
VH
GFTFNTY
925
RSKYNN
938
HGNFGNSYVS
900






YA

WFAY




VL
STGAVTTSNY
926
GTN
213
WYSNLW
947





CD3-11
VH
GFTFNSY
931
RSKYNN
938
HGNFGNSYVS
908






YA

WWAY




VL
STGAVTSGNY
932
GTK
943
WYSNRW
952





CD3-12
VH
GFTFNKY
933
RSKYNN
938
HGNFGNSYISY
910






YA

WAY




VL
STGAVTSGNY
932
GTK
943
WYSNRW
952





CD3-13
VH
GYTFTRY
923
NPSRGY
936
YYDDHYCLDY
898



VL
SSSVSY
924
DTS
937
WSSNPF
946





CD3-14
VH
GFTFSTY
930
RSKYNN
938
HGNFGNSYVS
900






YA

WFAY




VL
STGAVTTSNY
926
GTN
213
WYSNLW
947





CD3-15
VH
GFTFNTY
925
RSKYNN
938
HGNFGNSYVS
900






YA

WFAY




VL
STGAVTTSNY
926
GTN
213
WYSNLW
947





CD3-16
VH
GFTFNTY
925
RSKYNN
938
HGNFGNSYVS
900






YA

WFAY




VL
STGAVTTSNY
926
GTN
213
WYSNLW
947





CD3-17
VH
GFTFSTY
930
RSKYNN
938
HGNFGDSYVS
911






YA

WFAY




VL
STGAVTTSNY
926
GTN
213
WYSNHW
953





CD3-18
VH
GYTFTRY
923
NPSRGY
936
YYDDHYCLDY
898



VL
SSSVSY
924
DTS
937
WSSNPF
946





CD3-19
VH
GYTFTRY
923
NPSRGY
936
YYDDHYSLDY
913



VL
SSSVSY
924
DTS
937
WSSNPF
946





CD3-20
VH
GYSFTGY
934
NPYKGV
944
SGYYGDSDWY
914








FDV




VL
SQDIRNY
935
YTS
945
GNTLPW
954





CD3-21
VH
GFTFNTY
925
RSKYNN
938
HGNFGNSYVS
900






YA

WFAY




VL
RSSTGAVTTSNY
858
GTNKRA
878
ALWYSNLWV
901




AN

P
















TABLE 12D







CD3 Binders - CDR sequences according to combination of Kabat and Chothia


numbering schemes














Binding


SEQ ID

SEQ ID

SEQ ID


Domain
Chain
CDR1
NO:
CDR2
NO:
CDR3
NO:





CD3-1
VH
GYTFTRYTM
955
YINPSRGYTNYN
875
YYDDHYCLDY
898




H

QKFKD






VL
SASSSVSYM
856
DTSKLAS
876
QQWSSNPFT
899




N










CD3-2
VH
GFTFNTYAM
956
RIRSKYNNYATYY
877
HGNFGNSYV
900




N

ADSVKD

SWFAY




VL
RSSTGAVTT
858
GTNKRAP
878
ALWYSNLWV
901




SNYAN










CD3-3
VH
GYTFTSYTM
957
YINPSSGYTKYNQ
879
WQDYDVYFD
902




H

KFKD

Y




VL
RASSSVSYM
860
ATSNLAS
880
QQWSSNPPT
903




H










CD3-4
VH
GYTFTRYTM
955
YINPSRGYTNYN
875
YYDDHYCLDY
898




H

QKFKD






VL
RASSSVSYM
861
DTSKVAS
881
QQWSSNPLT
904




N










CD3-5
VH
GYTFTRYTM
955
YINPSRGYTNYN
882
YYDDHYCLDY
898




H

QKVKD






VL
SASSSVSYM
856
DTSKLAS
876
QQWSSNPFT
899




N










CD3-6
VH
GFKFSGYGM
958
VIWYDGSKKYYV
883
QMGYWHFDL
905




H

DSVKG






VL
RASQSVSSY
863
DASNRAT
158
QQRSNWPPL
906




LA



T






CD3-7
VH
GFTFSTYAM
959
RIRSKYNNYATYY
963
HGNFGNSYV
900




N

ADSVK

SWFAY




VL
RSSTGAVTT
858
GTNKRAP
878
ALWYSNLWV
901




SNYAN










CD3-8
VH
GYTFTRYTM
955
YINPSRGYTNYN
875
YYDDHYCLDY
898




H

QKFKD






VL
RASSSVSYM
861
DTSKVAS
881
QQWSSNPLT
904




N










CD3-9
VH
GFTFNTYAM
956
RIRSKYNNYATYY
963
HGNFGNSYV
900




N

ADSVK

SWFAY




VL
RSSTGAVTT
858
GTNKRAP
878
ALWYSNLWV
901




SNYAN










CD3-10
VH
GFTFNTYAM
956
RIRSKYNNYATYY
877
HGNFGNSYV
900




N

ADSVKD

SWFAY




VL
RSSTGAVTT
858
GTNKRAP
878
ALWYSNLWV
901




SNYAN










CD3-11
VH
GFTFNSYAM
960
RIRSKYNNYATYY
885
HGNFGNSYV
908




N

ADSVKG

SWWVAY




VL
GSSTGAVTS
865
GTKFLAP
886
VLWYSNRWV
909




GNYPN










CD3-12
VH
GFTFNKYAM
961
RIRSKYNNYATYY
877
HGNFGNSYIS
910




N

ADSVKD

YWAY




VL
GSSTGAVTS
865
GTKFLAP
886
VLWYSNRWV
909




GNYPN










CD3-13
VH
GYTFTRYTM
955
YINPSRGYTNYN
875
YYDDHYCLDY
898




H

QKFKD






VL
SASSSVSYM
856
DTSKLAS
876
QQWSSNPFT
899




N










CD3-14
VH
GFTFSTYAM
959
RIRSKYNNYATYY
877
HGNFGNSYV
900




N

ADSVKD

SWFAY




VL
RSSTGAVTT
858
GTNKRAP
878
ALWYSNLWV
901




SNYAN










CD3-15
VH
GFTFNTYAM
956
RIRSKYNNYATYY
877
HGNFGNSYV
900




N

ADSVKD

SWFAY




VL
RSSTGAVTT
858
GTNKRAP
878
ALWYSNLWV
901




SNYAN










CD3-16
VH
GFTFNTYAM
956
RIRSKYNNYATYY
885
HGNFGNSYV
900




N

ADSVKG

SWFAY




VL
GSSTGAVTT
867
GTNKRAP
878
ALWYSNLWV
901




SNYAN










CD3-17
VH
GFTFSTYAM
959
RIRSKYNNYATYY
885
HGNFGDSYV
911




N

ADSVKG

SWFAY




VL
GSSTGAVTT
867
GTNKRAP
878
ALWYSNHWV
912




SNYAN










CD3-18
VH
GYTFTRYTM
955
YINPSRGYTNYN
882
YYDDHYCLDY
898




H

QKVKD






VL
SASSSVSYM
856
DTSKLAS
876
QQWSSNPFT
899




N










CD3-19
VH
GYTFTRYTM
955
YINPSRGYTNYN
882
YYDDHYSLDY
913




H

QKVKD






VL
SASSSVSYM
856
DTSKLAS
876
QQWSSNPFT
899




N










CD3-20
VH
GYSFTGYTM
962
LINPYKGVSTYNQ
887
SGYYGDSDW
914




N

KFKD

YFDV




VL
RASQDIRNYL
869
YTSRLHS
964
QQGNTLPWT
915




N









In some embodiments, a MBM can comprise a CD3 ABM which comprises the CDRs of any of CD3-1 to CD3-130 as defined by Kabat numbering (e.g., as set forth in Table 12B). In other embodiments, a MBM can comprise a CD3 ABM which comprises the CDRs of any of CD3-1 to CD3-130 as defined by Chothia numbering (e.g., as set forth in Table 12C). In yet other embodiments, a MBM can comprise a CD3 ABM which comprises the CDRs of any of CD3-1 to CD3-130 as defined by a combination of Kabat and Chothia numbering (e.g., as set forth in Table 12D).


In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-1. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-2. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-3. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-4. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-5. In some embodiments a CD3 ABM comprises the CDR sequences of CD3-6. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-7. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-8. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-9. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-10. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-11. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-12. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-13. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-14. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-15. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-16. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-17. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-18. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-19. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-20. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-21. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-22. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-23. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-24. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-25. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-26. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-27. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-28. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-29. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-30. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-31. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-32. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-33. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-34. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-35. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-36. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-37. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-38. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-39. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-40. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-41. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-42. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-43. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-44. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-45. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-46. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-47. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-48. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-49. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-50. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-51. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-52. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-53. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-54. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-55. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-56. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-57. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-58. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-59. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-60. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-61. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-62. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-63. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-64. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-65. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-66. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-67. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-68. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-69. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-70. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-71. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-72. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-73. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-74. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-75. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-76. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-77. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-78. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-79. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-80. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-81. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-82. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-83. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-84. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-85. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-86. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-87. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-88. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-89. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-90. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-91. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-92. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-93. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-94. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-95. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-96. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-97. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-98. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-99. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-100. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-101. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-102. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-103. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-104. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-105. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-106. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-107. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-108. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-109. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-110. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-111. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-112. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-113. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-114. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-115. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-116. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-117. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-118. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-119. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-120. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-121. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-122. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-123. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-124. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-125. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-126. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-127. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-126. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-127. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-128. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-129. In some embodiments, a CD3 ABM comprises the CDR sequences of CD3-130.


A MBM can comprise the complete heavy and light variable sequences of any of CD3-1 to CD3-130. In some embodiments, a MBM comprises a CD3 ABM which comprises the VH and VL sequences of CD3-1. In some embodiments, a MBM comprises a CD3 ABM which comprises the VH and VL sequences of CD3-1. In some embodiments, a MBM comprises a CD3 ABM which comprises the VH and VL sequences of CD3-2. In some embodiments, a MBM comprises a CD3 ABM which comprises the VH and VL sequences of CD3-3. In some embodiments, a MBM comprises a CD3 ABM which comprises the VH and VL sequences of CD3-4. In some embodiments, a MBM comprises a CD3 ABM which comprises the VH and VL sequences of CD3-5. In some embodiments, a MBM comprises a CD3 ABM which comprises the VH and VL sequences of CD3-6. In some embodiments, a MBM comprises a CD3 ABM which comprises the VH and VL sequences of CD3-7. In some embodiments, a MBM comprises a CD3 ABM which comprises the VH and VL sequences of CD3-8. In some embodiments, a MBM comprises a CD3 ABM which comprises the VH and VL sequences of CD3-9. In some embodiments, a MBM comprises a CD3 ABM which comprises the VH and VL sequences of CD3-10. In some embodiments, a MBM comprises a CD3 ABM which comprises the VH and VL sequences of CD3-11. In some embodiments, a MBM comprises a CD3 ABM which comprises the VH and VL sequences of CD3-12. In some embodiments, a MBM comprises a CD3 ABM which comprises the VH and VL sequences of CD3-13. In some embodiments, a MBM comprises a CD3 ABM which comprises the VH and VL sequences of CD3-14. In some embodiments, a MBM comprises a CD3 ABM which comprises the VH and VL sequences of CD3-15. In some embodiments, a MBM comprises a CD3 ABM which comprises the VH and VL sequences of CD3-16. In some embodiments, a MBM comprises a CD3 ABM which comprises the VH and VL sequences of CD3-17. In some embodiments, a MBM comprises a CD3 ABM which comprises the VH and VL sequences of CD3-18. In some embodiments, a MBM comprises a CD3 ABM which comprises the VH and VL sequences of CD3-19. In some embodiments, a MBM comprises a CD3 ABM which comprises the VH and VL sequences of CD3-20. In some embodiments, a MBM comprises a CD3 ABM which comprises the VH and VL sequences of CD3-21. In some embodiments, a MBM comprises a CD3 ABM which comprises the VH and VL sequences of CD3-22. In some embodiments, a MBM comprises a CD3 ABM which comprises the VH and VL sequences of CD3-23. In some embodiments, a MBM comprises a CD3 ABM which comprises the VH and VL sequences of CD3-24. In some embodiments, a MBM comprises a CD3 ABM which comprises the VH and VL sequences of CD3-25. In some embodiments, a MBM comprises a CD3 ABM which comprises the VH and VL sequences of CD3-26. In some embodiments, a MBM comprises a CD3 ABM which comprises the VH and VL sequences of CD3-27. In some embodiments, a MBM comprises a CD3 ABM which comprises the VH and VL sequences of CD3-28. In some embodiments, a MBM comprises a CD3 ABM which comprises the VH and VL sequences of CD3-129. In some embodiments, a MBM comprises a CD3 ABM which comprises the VH and VL sequences of CD3-130.


In addition to the CDR sets described in Tables 12B-12D (i.e., the set of six CDRs for each of CD3-1 to CD3-130), the present disclosure provides variant CDR sets. In one embodiment, a set of 6 CDRs can have 1, 2, 3, 4 or 5 amino acid changes from a CDR set described in Tables 12B-12D, as long as the CD3 ABM is still able to bind to the target antigen, as measured by at least one of a Biacore, surface plasmon resonance (SPR) and/or BLI (biolayer interferometry, e.g., Octet assay) assay.


In addition to the variable heavy and variable light domains disclosed in Table 12A that form an ABM to CD3, the present disclosure provides variant VH and VL domains. In one embodiment, the variant VH and VL domains each can have from 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 amino acid changes from the VH and VL domain set forth in Table 12A, as long as the ABM is still able to bind to the target antigen, as measured at least one of a Biacore, surface plasmon resonance (SPR) and/or BLI (biolayer interferometry, e.g., Octet assay) assay. In another embodiment, the variant VH and VL are at least 90, 95, 97, 98 or 99% identical to the respective VH or VL disclosed in Table 12A, as long as the ABM is still able to bind to the target antigen, as measured by at least one of a Biacore, surface plasmon resonance (SPR) and/or BLI (biolayer interferometry, e.g., Octet assay) assay.


In some embodiments, a MBM can comprise an ABM which is a CD3 binding molecule as described in WO 2020/052692 or an antigen-binding domain thereof. Table AA to Table AJ-2 (collectively “Table A”) list sequences of CD3 binding molecules that can be included in CD3 binding ABMs.









TABLE AA







Consensus Group No. C1 Heavy Chain and Light Chain


CDR Consensus Sequences













SEQ ID


CDR
Binder
Sequence
NO:





CDR-H1
C1-1
GFX1FX2KX3GMX4
1032





CDR-H1
C1-2
GFX1FX2KX3G
1033





CDR-H1
C1-3
KX3GMX4
1034





CDR-H1
C1-4
GFX1FX2KX3
1035





CDR-H2
C1-5
X5IYYDSSX6MYYADTVKG
1036





CDR-H2
C1-6
YYDSSX6
1037





CDR-H2
C1-7
IYYDSSX6M
1038





CDR-H3
C1-8
X55X8X9DLDFDX10
1039





CDR-H3
C1-9
AX7X55X8X9DLDFDX10
1040





CDR-H3
C1-10
AALNSEYD
1041





CDR-H3
C1-11
LNSEYD
1042





CDR-L1
C1-12
RX11SQSX12X13X14SX15X16TTYFN
1043





CDR-L1
C1-13
QSX12X13X14SX15TTY
1044





CDR-L1
C1-14
SQSX12X13X14SX15X16TTY
1045





CDR-L1
C1-15
RX11SQSX12X13X14SX15X16
1046





CDR-L1
C1-16
SQSX12X13X14S
1047





CDR-L1
C1-17
QSX12X13X14S
1048





CDR-L2
C1-18
X17X18SX19X20X21X22
1049





CDR-L2
C1-19
X17X18S
1050





CDR-L3
C1-20
LQX23X24X25X26PX27T
1051





CDR-L3
C1-21
X23X24X25X26PX27
1052





CDR-L3
C1-22
LQX23X24X25
1053





CDR-L3
C1-23
LQX23X24X25X26PX27
1054





X1 is T or A; X2 is S or R; X3 is N, Y, or Q; X4 is H or S; X5 is M or L; X6 is K or R; X7 is S or K; X55 is F, Y, or S; X8 is W, Y, S, or T; X9 is W, Y, S, or T; X10 is H or Y; X11 is S or G; X12 is I or L; X13 is V or G; X14 is R or N; X15 is D, E, or L; X16 is G, N, or E; X17 is R or S; X18 is V or T; X19 is N or T; X20 is R or L; X21 is F or E; X22 is S or Y; X23 is S or Y; X24 is S or A; X25 is H or T; X26 is F or Y; X27 is W or Y













TABLE AB







Consensus Group No. C2 Heavy Chain and Light Chain


CDR Consensus Sequences













SEQ ID


CDR
Binder
Sequence
NO:





CDR-H1
C2-1
GFSLTTYNX28H
1055





CDR-H1
C2-2
GFSLTTYN
1056





CDR-H1
C2-3
TYNX28H
1057





CDR-H1
C2-4
GFSLTTY
1058





CDR-H2
C2-5
RMRYSGDTSX29X30X31ALX32S
1059





CDR-H2
C2-6
RYSGD
1060





CDR-H2
C2-7
MRYSGDT
1061





CDR-H3
C2-8
DPMYIPX35YX36YGVMNA
1062





CDR-H3
C2-9
X33X34DPMYIPX35YX36YGVMNA
1063





CDR-L1
C2-10
KX37SQNIX38X39YLN
1064





CDR-L1
C2-11
SQNIX38X39Y
1065





CDR-L1
C2-12
QNIX38X39Y
1066





CDR-L2
C2-13
NTX40X41LX42AGVP
1067





CDR-L2
C2-14
NTX40X41LX42A
1068





CDR-L2
C2-15
NTX40
1069





CDR-L3
C2-16
LQHRSX43YT
1070





CDR-L3
C2-17
HRSX43Y
1071





X28 is V or I; X29 is F or Y; X30 is N or S; X31 is A or S; X32 is T or K; X33 is T or A; X34 is S or R; X35 is N or G; X36 is S or A; X37 is A, T, or S; X38 is N or D; X39 is N or K; X40 is D or N; X41 is H or N; X42 is Q or E; X43 is R, S, or G













TABLE AC







Consensus Group No. C3 Heavy Chain and Light Chain


CDR Consensus Sequences













SEQ ID


CDR
Binder
Sequence
NO:













CDR-H1
C3-1
GYTFTSYYIY
1072





CDR-H1
C3-2
GYTFTSYY
1073





CDR-H1
C3-3
SYYIY
1074





CDR-H1
C3-4
GYTFTSY
927





CDR-H2
C3-5
YIYPX44X45X46X47IYYSEX48FKG
1075





CDR-H2
C3-6
YPX44X45X46X47
1076





CDR-H2
C3-7
IYPX44X45X46X47I
1077





CDR-H3
C3-8
X49RPX50TMMAPLX51X52
1078





CDR-H3
C3-9
PX50TMMAPLX51X52
1079





CDR-L1
C3-10
RSSQSLX53YSX54GNTYLH
1080





CDR-L1
C3-11
SQSLX53YSX54GNTY
1081





CDR-L1
C3-12
QSLX53YSX54GNTY
1082





CDR-L2
C3-13
RVSNRFS
1083





CDR-L2
C3-14
RVS
1084





CDR-L3
C3-15
FQSTHLPYT
1085





CDR-L3
C3-16
STHLPY
1086





X44 is G or A X45 is H or N; X46 is D or G; X47 is A or G; X48 is N or K; X49 is V or A; X50 is N or V; X51 is A or V; X52 is Y or F; X53 is I or V; X54 is I or H













TABLE AD-1







CD3 Binders- Heavy Chain CDR sequences according to Kabat numbering scheme















SEQ ID

SEQ ID

SEQ ID


Binder
CDR-H1
NO:
CDR-H2
NO:
CDR-H3
NO:





NOV292
KNGMH
1087
MIYYDSSKMYY
1093
FWWDLDFDH
1100





ADTVKG








NOV123
SYYIY
1074
YIYPGHDAIYYS
1094
PNTMMAPLA
1101





ENFKG

Y






Sp10b
SYYIY
1074
YIYPGHDAIYYS
1094
PNTMMAPLA
1101





ENFKG

Y






NOV453
TYNVH
1088
RMRYSGDTSF
1095
DPMYIPNYSY
1102





NAALTS

GVMNA






NOV229
TYNVH
1088
RMRYSGDTSF
1095
DPMYIPNYSY
1102





NAALTS

GVMNA






NOV110
SYYIY
1074
YIYPANGGIYYS
1096
PVTMMAPLV
1103





EKFKG

F






NOV832
SYYIY
1074
YIYPANGGIYYS
1096
PVTMMAPLV
1103





EKFKG

F






NOV589
KNGMH
1087
MIYYDSSRMYY
1097
FWWDLDFDY
1104





ADTVKG








NOV580
TYNIH
1089
RMRYSGDTSY
1098
DPMYIPGYSY
1105





SSALKS

GVMNA






NOV567
KYGMS
1090
LIYYDSSKMNY
1099
LNSEYD
1042





ADTVKG








NOV221
TYNIH
1089
RMRYSGDTSY
1098
DPMYIPGYSY
1105





SSALKS

GVMNA






CD3_sp11a_bkm1
KNGMH
1087
MIYYDSSKMYY
1093
FWWDLDFDH
1100





ADTVKG








CD3_SP11a_bkm2
KNGMH
1087
MIYYDSSKMYY
1093
FWWDLDFDH
1100





ADTVKG








CD3_sp11a_hz0
KNGMH
1087
MIYYDSSKMYY
1093
FWWDLDFDH
1100





ADTVKG








CD3_SP11A_HZ1
KNGMH
1087
MIYYDSSKMYY
1093
FWWDLDFDH
1100





ADTVKG








CD3_sp11a_sansPTM
KQGMH
1091
MIYYDSSKMYY
1093
FWWDLDFDH
1100


_hz1


ADTVKG








CD3_sp11a_sansPTM
KQGMH
1091
MIYYDSSKMYY
1093
FWWDLDFDH
1100


_rat


ADTVKG








CD3_sp11a_VHVL_
KNGMH
1087
MIYYDSSKMYY
1093
FYYDLDFDH
1106


YY


ADTVKG








CD3_SP11A_VHVL_
KNGMH
1087
MIYYDSSKMYY
1093
FSSDLDFDH
1107


SS


ADTVKG








CD3_SP11A_VHVL_
KNGMH
1087
MIYYDSSKMYY
1093
FWSDLDFDH
1108


WS


ADTVKG








CD3_sp11a_VHVL_
KNGMH
1087
MIYYDSSKMYY
1093
FSWDLDFDH
1109


SW


ADTVKG








CD3_SP11A_VHVL_
KNGMH
1087
MIYYDSSKMYY
1093
FTTDLDFDH
1110


TT


ADTVKG








CD3_SP11A_VHVL_
KNGMH
1087
MIYYDSSKMYY
1093
FTWDLDFDH
1111


TW


ADTVKG








CD3_SP11A_VHVL_
KNGMH
1087
MIYYDSSKMYY
1093
FWTDLDFDH
1112


WT


ADTVKG








CD3 SP11A
KNGMH
1087
MIYYDSSKMYY
1093
FWWDLDFDH
1100


VH3_VLK_3


ADTVKG








CD3_sp11a_VH1_
KNQMH
1092
MIYYDSSKMYY
1093
FWWDLDFDH
1100


VK2


ADTVKG








CD3_SP11A_VH3_
KNGMH
1087
MIYYDSSKMYY
1093
FWWDLDFDH
1100


VLK1


ADTVKG








CD3_SP11A_VH5_
KQGMH
1091
MIYYDSSKMYY
1093
FWWDLDFDH
1100


VK2


ADTVKG








CD3_sp9aFW1_VL_
TYNVH
1088
RMRYSGDTSF
1095
DPMYIPNYAY
1113


VH_S56G


NAALTS

GVMNA






CD3_SP9AFW4_VL_
TYNVH
1088
RMRYSGDTSF
1095
DPMYIPNYAY
1113


VH_S56G


NAALTS

GVMNA






CD3_sp9aFW1_VLVH
TYNVH
1088
RMRYSGDTSF
1095
DPMYIPNYAY
1113





NAALTS

GVMNA






CD3_sp9aFW4_VLVH
TYNVH
1088
RMRYSGDTSF
1095
DPMYIPNYAY
1113





NAALTS

GVMNA






CD3_sp9arabtor_
TYNVH
1088
RMRYSGDTSF
1095
DPMYIPNYAY
1113


VHVL


NAALTS

GVMNA






CD3_sp9arabtor_
TYNVH
1088
RMRYSGDTSF
1095
DPMYIPNYAY
1113


VLVH


NAALTS

GVMNA






CD3_sp11a_VHVL_
KNGMH
1087
MIYYDSSKMYY
1093
FYYDLDFDH
1106


YY_SANSPTM


ADTVKG








CD3_sp11a_VHVL_
KNGMH
1087
MIYYDSSKMYY
1093
YYYDLDFDH
1114


YY_SANSPTM_Y


ADTVKG








CD3_sp11a_VHVL_
KNGMH
1087
MIYYDSSKMYY
1093
SYYDLDFDH
1115


YY_SANSPTM_S


ADTVKG








CD3_sp11a_VHVL_
KNGMH
1087
MIYYDSSKMYY
1093
YYYDLDFDH
1114


YY_Y


ADTVKG








CD3_sp11a_VHVL_
KNGMH
1087
MIYYDSSKMYY
1093
SYYDLDFDH
1115


YY_s


ADTVKG








CD3_sp11a_VHVL_
KNGMH
1087
MIYYDSSKMYY
1093
FSSDLDFDH
1107


SS_SANSPTM


ADTVKG








CD3_sp11a_VHVL_
KNGMH
1087
MIYYDSSKMYY
1093
YSSDLDFDH
1116


SS_SANSPTM_Y


ADTVKG








CD3_sp11a_VHVL_
KNGMH
1087
MIYYDSSKMYY
1093
SSSDLDFDH
1117


SS_SANSPTM_S


ADTVKG








CD3_sp11a_VHVL_
KNGMH
1087
MIYYDSSKMYY
1093
YSSDLDFDH
1116


SS_Y


ADTVKG








CD3_sp11a_VHVL_
KNGMH
1087
MIYYDSSKMYY
1093
SSSDLDFDH
1117


SS_S


ADTVKG








CD3_sp11a_VHVL_
KNGMH
1087
MIYYDSSKMYY
1093
FSSDLDFDH
1107


SS_SANSPTM


ADTVKG








CD3_sp11a_VHVL_
KNGMH
1087
MIYYDSSKMYY
1093
YWSDLDFDH
1118


WS_SANSPTM_Y


ADTVKG








CD3_sp11a_VHVL_
KNGMH
1087
MIYYDSSKMYY
1093
SWSDLDFDH
1119


WS_SANSPTM_S


ADTVKG








CD3_sp11a_VHVL_
KNGMH
1087
MIYYDSSKMYY
1093
YWSDLDFDH
1118


WS_Y


ADTVKG








CD3_sp11a_VHVL_
KNGMH
1087
MIYYDSSKMYY
1093
SWSDLDFDH
1119


WS_S


ADTVKG








CD3_sp11a_VHVL_
KNGMH
1087
MIYYDSSKMYY
1093
FWSDLDFDH
1108


WS_SANSPTM


ADTVKG








CD3_sp11a_VHVL_
KNGMH
1087
MIYYDSSKMYY
1093
YSWDLDFDH
1120


SW_SANSPTM_Y


ADTVKG








CD3_sp11a_VHVL_
KNGMH
1087
MIYYDSSKMYY
1093
SSWDLDFDH
1121


SW_SANSPTM_S


ADTVKG








CD3_sp11a_VHVL_
KNGMH
1087
MIYYDSSKMYY
1093
YSWDLDFDH
1120


SW_Y


ADTVKG








CD3_sp11a_VHVL_
KNGMH
1087
MIYYDSSKMYY
1093
SSWDLDFDH
1121


SW_S


ADTVKG








CD3_sp11a_VHVL_
KNGMH
1087
MIYYDSSKMYY
1093
FSWDLDFDH
1109


SW_SANSPTM


ADTVKG








CD3_sp11a_VHVL_
KNGMH
1087
MIYYDSSKMYY
1093
YTWDLDFDH
1122


TW_SANSPTM_Y


ADTVKG








CD3_sp11a_VHVL_
KNGMH
1087
MIYYDSSKMYY
1093
STWDLDFDH
1123


TW_SANSPTM_S


ADTVKG








CD3_sp11a_VHVL_
KNGMH
1087
MIYYDSSKMYY
1093
YTWDLDFDH
1122


TW_Y


ADTVKG








CD3_sp11a_VHVL_
KNGMH
1087
MIYYDSSKMYY
1093
STWDLDFDH
1123


TW_S


ADTVKG








CD3_sp11a_VHVL_
KNGMH
1087
MIYYDSSKMYY
1093
FTWDLDFDH
1111


TW_SANSPTM


ADTVKG








CD3_sp11a_VHVL_
KNGMH
1087
MIYYDSSKMYY
1093
YTTDLDFDH
1124


TT_SANSPTM_Y


ADTVKG








CD3_sp11a_VHVL_
KNGMH
1087
MIYYDSSKMYY
1093
STTDLDFDH
1125


TT_SANSPTM_S


ADTVKG








CD3_sp11a_VHVL_
KNGMH
1087
MIYYDSSKMYY
1093
YTTDLDFDH
1124


TT_Y


ADTVKG








CD3_sp11a_VHVL_
KNGMH
1087
MIYYDSSKMYY
1093
STTDLDFDH
1125


TT_S


ADTVKG








CD3_sp11a_VHVL_
KNGMH
1087
MIYYDSSKMYY
1093
FTTDLDFDH
1110


TT_SANSPTM


ADTVKG








CD3_SP11AVH3_VLK
KNGMH
1087
MIYYDSSKMYY
1093
YWWDLDFDH
1126


_3_Y


ADTVKG








CD3_SP11AVH3_VLK
KNGMH
1087
MIYYDSSKMYY
1093
SWWDLDFDH
1127


_3_S


ADTVKG








CD3_SP11AVH3_VLK
KNGMH
1087
MIYYDSSKMYY
1093
YWWDLDFDH
1126


_3_Y_PTM


ADTVKG








CD3_SP11AVH3_VLK
KNGMH
1087
MIYYDSSKMYY
1093
SWWDLDFDH
1127


_3_S_PTM


ADTVKG








CD3_SP11AVH3_VLK
KNGMH
1087
MIYYDSSKMYY
1093
YSWDLDFDH
1120


_3_Y_SW


ADTVKG








CD3_SP11AVH3_VLK
KNGMH
1087
MIYYDSSKMYY
1093
SSWDLDFDH
1121


_3_S_SW


ADTVKG








CD3_SP11AVH3_VLK
KNGMH
1087
MIYYDSSKMYY
1093
YSWDLDFDH
1120


_3_Y_PTM_SW


ADTVKG








CD3_SP11AVH3_VLK
KNGMH
1087
MIYYDSSKMYY
1093
SSWDLDFDH
1121


_3_S_SWPTM


ADTVKG








CD3_SP11AVH3_VLK
NGMH
1087
MIYYDSSKMYY
1093
FSWDLDFDH
1109


_SWPTM


ADTVKG








CD3_SP11AVH3_VLK
KNGMH
1087
MIYYDSSKMYY
1093
FSWDLDFDH
1109


_3_SW


ADTVKG








CD3_sp11a_VH1_
KNQMH
1092
MIYYDSSKMYY
1093
YWWDLDFDH
1126


VK2_Y


ADTVKG








CD3_sp11a_VH1_
KNQMH
1092
MIYYDSSKMYY
1093
SWWDLDFDH
1127


VK2_S


ADTVKG








CD3_sp11a_VH1_
KNQMH
1092
MIYYDSSKMYY
1093
YWWDLDFDH
1126


VK2_Y_PTM


ADTVKG








CD3_sp11a_VH1_VK2
KNQMH
1092
MIYYDSSKMYY
1093
SWWDLDFDH
1127


_S_PTM


ADTVKG








CD3_sp11a_VH1_VK2
KNQMH
1092
MIYYDSSKMYY
1093
YSWDLDFDH
1120


_Y_SW


ADTVKG








CD3_sp11a_VH1_VK2
KNQMH
1092
MIYYDSSKMYY
1093
SSWDLDFDH
1121


_S_SW


ADTVKG








CD3 sp11a_VH1_VK2
KNQMH
1092
MIYYDSSKMYY
1093
YSWDLDFDH
1120


_Y_PTM


ADTVKG








CD3_sp11a_VH1_VK2
KNQMH
1092
MIYYDSSKMYY
1093
SSWDLDFDH
1121


_S_PTM_SW


ADTVKG








CD3_sp11a_VH1_VK2
KNQMH
1092
MIYYDSSKMYY
1093
FSWDLDFDH
1109


_SW


ADTVKG








CD3_sp11a_VH1_VK2
KNQMH
1092
MIYYDSSKMYY
1093
FSWDLDFDH
1109


_SW_PTM


ADTVKG








CD3_SP11A_VH3_VLK1
KNGMH
1087
MIYYDSSKMYY
1093
YWWDLDFDH
1126


_Y


ADTVKG








CD3_SP11A_VH3_VLK1
KNGMH
1087
MIYYDSSKMYY
1093
SWWDLDFDH
1127


_S


ADTVKG








CD3_SP11A_VH3_VLK1
KNGMH
1087
MIYYDSSKMYY
1093
YWWDLDFDH
1126


_Y_PTM


ADTVKG








CD3_SP11A_VH3_VLK1
KNGMH
1087
MIYYDSSKMYY
1093
SWWDLDFDH
1127


_S_PTM


ADTVKG








CD3_SP11A_VH3_VLK1
KNGMH
1087
MIYYDSSKMYY
1093
YSWDLDFDH
1120


_Y_SW


ADTVKG








CD3_SP11A_VH3_VLK1
KNGMH
1087
MIYYDSSKMYY
1093
SSWDLDFDH
1121


_S_SW


ADTVKG








CD3_SP11A_VH3_VLK1
KNGMH
1087
MIYYDSSKMYY
1093
YWWDLDFDH
1126


_Y_PTM


ADTVKG








CD3_SP11A_VH3_VLK1
KNGMH
1087
MIYYDSSKMYY
1093
SSWDLDFDH
1121


_S_PTM_SW


ADTVKG








CD3_SP11A_VH3_
KNGMH
1087
MIYYDSSKMYY
1093
FSWDLDFDH
1109


VLK1PTM_SW


ADTVKG








CD3_SP11A_VH3_VLK1
KNGMH
1087
MIYYDSSKMYY
1093
FSWDLDFDH
1109


_SW


ADTVKG








CD3 SP11A VH5 VK2
KQGMH
1091
MIYYDSSKMYY
1093
YWWDLDFDH
1126


_Y


ADTVKG








CD3_SP11A_VH5_VK2
KQGMH
1091
MIYYDSSKMYY
1093
SWWDLDFDH
1127


_S


ADTVKG








CD3_SP11A_VH5_VK2
KQGMH
1091
MIYYDSSKMYY
1093
YWWDLDFDH
1126


_Y_PTM


ADTVKG








CD3_SP11A_VH5_VK2
KQGMH
1091
MIYYDSSKMYY
1093
SWWDLDFDH
1127


_S_PTM


ADTVKG








CD3_SP11A_VH5_VK2
KQGMH
1091
MIYYDSSKMYY
1093
YSWDLDFDH
1120


_Y_SW


ADTVKG








CD3_SP11A_VH5_VK2
KQGMH
1091
MIYYDSSKMYY
1093
SSWDLDFDH
1121


_S_SW


ADTVKG








CD3_SP11A_VH5_VK2
KQGMH
1091
MIYYDSSKMYY
1093
YSWDLDFDH
1120


_Y_PTM_SW


ADTVKG








CD3_SP11A_VH5_VK2
KQGMH
1091
MIYYDSSKMYY
1093
SSWDLDFDH
1121


_S_PTM_SW


ADTVKG








CD3_SP11A_VH5_VK2
KQGMH
1091
MIYYDSSKMYY
1093
FSWDLDFDH
1109


_PTM_SW


ADTVKG








CD3_SP11A_VH5_VK2
KQGMH
1091
MIYYDSSKMYY
1093
FSWDLDFDH
1109


_SW


ADTVKG
















TABLE AD-2







CD3 Binders- Light Chain CDR sequences according to Kabat numbering scheme















SEQ ID

SEQ ID

SEQ ID


Binder
CDR-L1
NO:
CDR-L2
NO:
CDR-L3
NO:





NOV292
RSSQSLVRSD
1128
RVSNR
1083
LQSSHFP
1139



GTTYFN

FS

WT






NOV123
RSSQSLIYSIGN
1129
RVSNR
1083
FQSTHLP
1085



TYLH

FS

YT






Sp10b
RSSQSLIYSIGN
1129
RVSNR
1083
FQSTHLP
1085



TYLH

FS

YT






NOV453
KASQNINNYLN
1130
NTDHL
1136
LQHRSR
1140





QA

YT






NOV229
KASQNINNYLN
1130
NTDHL
1136
LQHRSR
1140





QA

YT






NOV110
RSSQSLVYSHG
1131
RVSNR
1083
FQSTHLP
1085



NTYLH

FS

YT






NOV832
RSSQSLVYSHG
1131
RVSNR
1083
FQSTHLP
1085



NTYLH

FS

YT






NOV589
RSSQSLVRSD
1128
RVSNR
1083
LQSSHFP
1139



GTTYFN

FS

WT






NOV580
KTSQNIDKYLN
1132
NTNNL
1137
LQHRSSY
1141





EA

T






NOV567
RGSQSIGNSLN
1133
STSTL
1138
LQYATYP
1142





EY

YT






NOV221
KSSQNIDKYLN
1134
NTNNL
1137
LQHRSG
1143





EA

YT






CD3_sp11a_bkm1
RSSQSLVRSD
1128
RVSNR
1083
LQSSHFP
1139



GTTYFN

FS

WT






CD3_SP11a_bkm2
RSSQSLVRSD
1128
RVSNR
1083
LQSSHFP
1139



GTTYFN

FS

WT






CD3_sp11a_hz0
RSSQSLVRSD
1128
RVSNR
1083
LQSSHFP
1139



GTTYFN

FS

WT






CD3_SP11A_HZ1
RSSQSLVRSD
1128
RVSNR
1083
LQSSH
1144



GTTYFN

FS








CD3_sp11a_sansPTM_hz1
RSSQSLVRSEG
1135
RVSNR
1083
LQSSHFP
1139



TTYFN

FS

WT






CD3_sp11a_sansPTM_rat
RSSQSLVRSEG
1135
RVSNR
1083
LQSSHFP
1139



TTYFN

FS

WT






CD3_sp11a_VHVL_YY
RSSQSLVRSD
1128
RVSNR
1083
LQSSHFP
1139



GTTYFN

FS

WT






CD3_SP11A_VHVL_SS
RSSQSLVRSD
1128
RVSNR
1083
LQSSHFP
1139



GTTYFN

FS

WT






CD3_SP11A_VHVL_WS
RSSQSLVRSD
1128
RVSNR
1083
LQSSHFP
1139



GTTYFN

FS

WT






CD3_sp11a_VHVL_SW
RSSQSLVRSD
1128
RVSNR
1083
LQSSHFP
1139



GTTYFN

FS

WT






CD3_SP11A_VHVL_TT
RSSQSLVRSD
1128
RVSNR
1083
LQSSHFP
1139



GTTYFN

FS

WT






CD3_SP11A_VHVL_TW
RSSQSLVRSD
1128
RVSNR
1083
LQSSHFP
1139



GTTYFN

FS

WT






CD3_SP11A_VHVL_WT
RSSQSLVRSD
1128
RVSNR
1083
LQSSHFP
1139



GTTYFN

FS

WT






CD3_SP11A VH3_VLK_3
RSSQSLVRSEG
1135
RVSNR
1083
LQSSHFP
1139



TTYFN

FS

WT






CD3_sp11a_VH1_VK2
RSSQSLVRSD
1128
RVSNR
1083
LQSSHFP
1139



GTTYFN

FS

WT






CD3_SP11A_VH3_VLK1
RSSQSLVRSEG
1135
RVSNR
1083
LQSSHFP
1139



TTYFN

FS

WT






CD3_SP11A_VH5_VK2
RSSQSLVRSD
1128
RVSNR
1083
LQSSHFP
1139



GTTYFN

FS

WT






CD3_sp9aFW1_VL_VH_S5
KASQNINNYLN
1130
NTDHL
1136
LQHRSR
1140


6G


QA

YT






CD3_SP9AFW4_VL_VH_
KASQNINNYLN
1130
NTDHL
1136
LQHRSR
1140


S56G


QA

YT






CD3_sp9aFW1_VLVH
KASQNINNYLN
1130
NTDHL
1136
LQHRSR
1140





QA

YT






CD3_sp9aFW4_VLVH
KASQNINNYLN
1130
NTDHL
1136
LQHRSR
1140





QA

YT






CD3_sp9arabtor_VHVL
KASQNINNYLN
1130
NTDHL
1136
LQHRSR
1140





QA

YT






CD3_sp9arabtor_VLVH
KASQNINNYLN
1130
NTDHL
1136
LQHRSR
1140





QA

YT






CD3_sp11a_VHVL_YY_
RSSQSLVRSEG
1135
RVSNR
1083
LQSSHFP
1139


SANSPTM
TTYFN

FS

WT






CD3_sp11a_VHVL_YY_
RSSQSLVRSEG
1135
RVSNR
1083
LQSSHFP
1139


SANSPTM_Y
TTYFN

FS

WT






CD3_sp11a_VHVL_YY_
RSSQSLVRSEG
1135
RVSNR
1083
LQSSHFP
1139


SANSPTM_S
TTYFN

FS

WT






CD3_sp11a_VHVL_YY_Y
RSSQSLVRSD
1128
RVSNR
1083
LQSSHFP
1139



GTTYFN

FS

WT






CD3_sp11a_VHVL_YY_s
RSSQSLVRSD
1128
RVSNR
1083
LQSSHFP
1139



GTTYFN

FS

WT






CD3_sp11a_VHVL_SS_
RSSQSLVRSEG
1135
RVSNR
1083
LQSSHFP
1139


SANSPTM
TTYFN

FS

WT






CD3_sp11a_VHVL_SS_
RSSQSLVRSEG
1135
RVSNR
1083
LQSSHFP
1139


SANSPTM_Y
TTYFN

FS

WT






CD3_sp11a_VHVL_SS_
RSSQSLVRSEG
1135
RVSNR
1083
LQSSHFP
1139


SANSPTM_S
TTYFN

FS

WT






CD3_sp11a_VHVL_SS_Y
RSSQSLVRSD
1128
RVSNR
1083
LQSSHFP
1139



GTTYFN

FS

WT






CD3_sp11a_VHVL_SS_S
RSSQSLVRSD
1128
RVSNR
1083
LQSSHFP
1139



GTTYFN

FS

WT






CD3_sp11a_VHVL_SS
RSSQSLVRSEG
1135
RVSNR
1083
LQSSHFP
1139


_SANSPTM
TTYFN

FS

WT






CD3_sp11a_VHVL_WS
RSSQSLVRSEG
1135
RVSNR
1083
LQSSHFP
1139


_SANSPTM_Y
TTYFN

FS

WT






CD3_sp11a_VHVL_WS
RSSQSLVRSEG
1135
RVSNR
1083
LQSSHFP
1139


SANSPTM_S
TTYFN

FS

WT






CD3_sp11a_VHVL_WS_Y
RSSQSLVRSD
1128
RVSNR
1083
LQSSHFP
1139



GTTYFN

FS

WT






CD3_sp11a_VHVL_WS_S
RSSQSLVRSD
1128
RVSNR
1083
LQSSHFP
1139



GTTYFN

FS

WT






CD3_sp11a_VHVL_WS
RSSQSLVRSEG
1135
RVSNR
1083
LQSSHFP
1139


_SANSPTM
TTYFN

FS

WT






CD3_sp11a_VHVL_SW
RSSQSLVRSEG
1135
RVSNR
1083
LQSSHFP
1139


_SANSPTM_Y
TTYFN

FS

WT






CD3_sp11a_VHVL_SW
RSSQSLVRSEG
1135
RVSNR
1083
LQSSHFP
1139


_SANSPTM_S
TTYFN

FS

WT






CD3_sp11a_VHVL_SW_Y
RSSQSLVRSD
1128
RVSNR
1083
LQSSHFP
1139



GTTYFN

FS

WT






CD3_sp11a_VHVL_SW_S
RSSQSLVRSD
1128
RVSNR
1083
LQSSHFP
1139



GTTYFN

FS

WT






CD3_sp11a_VHVL_SW
RSSQSLVRSEG
1135
RVSNR
1083
LQSSHFP
1139


_SANSPTM
TTYFN

FS

WT






CD3_sp11a_VHVL_TW
RSSQSLVRSEG
1135
RVSNR
1083
LQSSHFP
1139


_SANSPTM_Y
TTYFN

FS

WT






CD3_sp11a_VHVL_TW
RSSQSLVRSEG
1135
RVSNR
1083
LQSSHFP
1139


_SANSPTM_S
TTYFN

FS

WT






CD3_sp11a_VHVL_TW_Y
RSSQSLVRSD
1128
RVSNR
1083
LQSSHFP
1139



GTTYFN

FS

WT






CD3_sp11a_VHVL_TW_S
RSSQSLVRSD
1128
RVSNR
1083
LQSSHFP
1139



GTTYFN

FS

WT






CD3_sp11a_VHVL_TW
RSSQSLVRSEG
1135
RVSNR
1083
LQSSHFP
1139


_SANSPTM
TTYFN

FS

WT






CD3_sp11a_VHVL_TT
RSSQSLVRSEG
1135
RVSNR
1083
LQSSHFP
1139


_SANSPTM_Y
TTYFN

FS

WT






CD3_sp11a_VHVL_TT_
RSSQSLVRSEG
1135
RVSNR
1083
LQSSHFP
1139


_SANSPTM_S
TTYFN

FS

WT






CD3_sp11a_VHVL_TT_Y
RSSQSLVRSD
1128
RVSNR
1083
LQSSHFP
1139



GTTYFN

FS

WT






CD3_sp11a_VHVL_TT_S
RSSQSLVRSD
1128
RVSNR
1083
LQSSHFP
1139



GTTYFN

FS

WT






CD3_sp11a_VHVL_TT_
RSSQSLVRSEG
1135
RVSNR
1083
LQSSHFP
1139


SANSPTM
TTYFN

FS

WT






CD3_SP11AVH3_VLK_3_Y
RSSQSLVRSEG
1135
RVSNR
1083
LQSSHFP
1139



TTYFN

FS

WT






CD3_SP11AVH3_VLK_3_S
RSSQSLVRSEG
1135
RVSNR
1083
LQSSHFP
1139



TTYFN

FS

WT






CD3_SP11AVH3_VLK_3_Y
RSSQSLVRSD
1128
RVSNR
1083
LQSSHFP
1139


_PTM
GTTYFN

FS

WT






CD3_SP11AVH3_VLK_3_S
RSSQSLVRSD
1128
RVSNR
1083
LQSSHFP
1139


_PTM
GTTYFN

FS

WT






CD3_SP11AVH3_VLK_3_Y
RSSQSLVRSEG
1135
RVSNR
1083
LQSSHFP
1139


_SW
TTYFN

FS

WT






CD3_SP11AVH3_VLK_3_S
RSSQSLVRSEG
1135
RVSNR
1083
LQSSHFP
1139


_SW
TTYFN

FS

WT






CD3_SP11AVH3_VLK_3_Y
RSSQSLVRSD
1128
RVSNR
1083
LQSSHFP
1139


_PTM_SW
GTTYFN

FS

WT






CD3_SP11AVH3_VLK_3_S
RSSQSLVRSD
1128
RVSNR
1083
LQSSHFP
1139


_SWPTM
GTTYFN

FS

WT






CD3_SP11AVH3_VLK_
RSSQSLVRSD
1128
RVSNR
1083
LQSSHFP
1139


SWPTM
GTTYFN

FS

WT






CD3_SP11AVH3_VLK_3_
RSSQSLVRSEG
1135
RVSNR
1083
LQSSHFP
1139


SW
TTYFN

FS

WT






CD3_sp11a_VH1_VK2_Y
RSSQSLVRSD
1128
RVSNR
1083
LQSSHFP
1139



GTTYFN

FS

WT






CD3_sp11a_VH1_VK2_S
RSSQSLVRSD
1128
RVSNR
1083
LQSSHFP
1139



GTTYFN

FS

WT






CD3_sp11a_VH1_VK2_Y_
RSSQSLVRSEG
1135
RVSNR
1083
LQSSHFP
1139


PTM
TTYFN

FS

WT






CD3_sp11a_VH1_VK2_S_
RSSQSLVRSEG
1135
RVSNR
1083
LQSSHFP
1139


PTM
TTYFN

FS

WT






CD3_sp11a_VH1_VK2_Y_
RSSQSLVRSD
1128
RVSNR
1083
LQSSHFP
1139


SW
GTTYFN

FS

WT






CD3 sp11a_VH1_VK2_S_
RSSQSLVRSD
1128
RVSNR
1083
LQSSHFP
1139


SW
GTTYFN

FS

WT






CD3_sp11a_VH1_VK2_Y_
RSSQSLVRSEG
1135
RVSNR
1083
LQSSHFP
1139


PTM
TTYFN

FS

WT






CD3_sp11a_VH1_VK2_S_
RSSQSLVRSEG
1135
RVSNR
1083
LQSSHFP
1139


PTM_SW
TTYFN

FS

WT






CD3_sp11a_VH1_VK2_SW
RSSQSLVRSD
1128
RVSNR
1083
LQSSHFP
1139



GTTYFN

FS

WT






CD3_sp11a_VH1_VK2_SW
RSSQSLVRSEG
1135
RVSNR
1083
LQSSHFP
1139


_PTM
TTYFN

FS

WT






CD3_SP11A_VH3_VLK1_Y
RSSQSLVRSEG
1135
RVSNR
1083
LQSSHFP
1139



TTYFN

FS

WT






CD3_SP11A_VH3_VLK1_S
RSSQSLVRSEG
1135
RVSNR
1083
LQSSHFP
1139



TTYFN

FS

WT






CD3_SP11A_VH3_VLK1_Y
RSSQSLVRSD
1128
RVSNR
1083
LQSSHFP
1139


_PTM
GTTYFN

FS

WT






CD3_SP11A_VH3_VLK1_S
RSSQSLVRSD
1128
RVSNR
1083
LQSSHFP
1139


_PTM
GTTYFN

FS

WT






CD3_SP11A_VH3_VLK1_Y
RSSQSLVRSEG
1135
RVSNR
1083
LQSSHFP
1139


_SW
TTYFN

FS

WT






CD3_SP11A_VH3_VLK1_S
RSSQSLVRSEG
1135
RVSNR
1083
LQSSHFP
1139


_SW
TTYFN

FS

WT






CD3_SP11A_VH3_VLK1_Y
RSSQSLVRSD
1128
RVSNR
1083
LQSSHFP
1139


_PTM
GTTYFN

FS

WT






CD3_SP11A_VH3_VLK1_S
RSSQSLVRSD
1128
RVSNR
1083
LQSSHFP
1139


_PTM_SW
GTTYFN

FS

WT






CD3_SP11A_VH3_VLK1P
RSSQSLVRSD
1128
RVSNR
1083
LQSSHFP
1139


TM_SW
GTTYFN

FS

WT






CD3_SP11A_VH3_VLK1_
RSSQSLVRSEG
1135
RVSNR
1083
LQSSHFP
1139


SW
TTYFN

FS

WT






CD3_SP11A_VH5_VK2_Y
RSSQSLVRSD
1128
RVSNR
1083
LQSSHFP
1139



GTTYFN

FS

WT






CD3_SP11A_VH5_VK2_S
RSSQSLVRSD
1128
RVSNR
1083
LQSSHFP
1139



GTTYFN

FS

WT






CD3_SP11A_VH5_VK2_Y_
RSSQSLVRSD
1128
RVSNR
1083
LQSSHFP
1139


PTM
GTTYFN

FS

WT






CD3_SP11A_VH5_VK2_S_
RSSQSLVRSD
1128
RVSNR
1083
LQSSHFP
1139


PTM
GTTYFN

FS

WT






CD3_SP11A_VH5_VK2_Y_
RSSQSLVRSD
1128
RVSNR
1083
LQSSHFP
1139


SW
GTTYFN

FS

WT






CD3_SP11A_VH5_VK2_S_
RSSQSLVRSD
1128
RVSNR
1083
LQSSHFP
1139


SW
GTTYFN

FS

WT






CD3_SP11A_VH5_VK2_Y_
RSSQSLVRSD
1128
RVSNR
1083
LQSSHFP
1139


PTM_SW
GTTYFN

FS

WT






CD3_SP11A_VH5_VK2_S_
RSSQSLVRSD
1128
RVSNR
1083
LQSSHFP
1139


PTM_SW
GTTYFN

FS

WT






CD3_SP11A_VH5_VK2_
RSSQSLVRSD
1128
RVSNR
1083
LQSSHFP
1139


PTM_SW
GTTYFN

FS

WT






CD3_SP11A_VH5_VK2_
RSSQSLVRSD
1128
RVSNR
1083
LQSSHFP
1139


SW
GTTYFN

FS

WT
















TABLE AE-1







CD3 Binders- Heavy Chain CDR sequences according to Chothia numbering scheme















SEQ

SEQ ID

SEQ ID


Binder
CDR-H1
ID NO:
CDR-H2
NO:
CDR-H3
NO:
















NOV292
GFTFSKN
1145
YYDSSK
1148
FWWDLDFDH
1100





NOV123
GYTFTSY
927
YPGHDA
1149
PNTMMAPLAY
1101





Sp10b
GYTFTSY
927
YPGHDA
1149
PNTMMAPLAY
1101





NOV453
GFSLTTY
1058
RYSGD
1060
DPMYIPNYSYG
1102







VMNA






NOV229
GFSLTTY
1058
RYSGD
1060
DPMYIPNYSYG
1102







VMNA






NOV110
GYTFTSY
927
YPANGG
1150
PVTMMAPLVF
1103





NOV832
GYTFTSY
927
YPANGG
1150
PVTMMAPLVF
1103





NOV589
GFTFSKN
1145
YYDSSR
1151
FWWDLDFDY
1104





NOV580
GFSLTTY
1058
RYSGD
1060
DPMYIPGYSYG
1105







VMNA






NOV567
GFAFRKY
1146
YYDSSK
1148
LNSEYD
1042





NOV221
GFSLTTY
1058
RYSGD
1060
DPMYIPGYSYG
1105







VMNA






CD3_sp11a_bkm1
GFTFSKN
1145
YYDSSK
1148
FWWDLDFDH
1100





CD3_SP11a_bkm2
GFTFSKN
1145
YYDSSK
1148
FWWDLDFDH
1100





CD3_sp11a_hz0
GFTFSKN
1145
YYDSSK
1148
FWWDLDFDH
1100





CD3_SP11A_HZ1
GFTFSKN
1145
YYDSSK
1148
FWWDLDFDH
1100





CD3_sp11a_sansPTM_hz1
GFTFSKQ
1147
YYDSSK
1148
FWWDLDFDH
1100





CD3_sp11a_sansPTM_rat
GFTFSKQ
1147
YYDSSK
1148
FWWDLDFDH
1100





CD3_sp11a_VHVL_YY
GFTFSKN
1145
YYDSSK
1148
FYYDLDFDH
1106





CD3_SP11A_VHVL_SS
GFTFSKN
1145
YYDSSK
1148
FSSDLDFDH
1107





CD3_SP11A_VHVL_WS
GFTFSKN
1145
YYDSSK
1148
FWSDLDFDH
1108





CD3_sp11a_VHVL_SW
GFTFSKN
1145
YYDSSK
1148
FSWDLDFDH
1109





CD3_SP11A_VHVL_TT
GFTFSKN
1145
YYDSSK
1148
FTTDLDFDH
1110





CD3_SP11A_VHVL_TW
GFTFSKN
1145
YYDSSK
1148
FTWDLDFDH
1111





CD3_SP11A_VHVL_WT
GFTFSKN
1145
YYDSSK
1148
FWTDLDFDH
1112





CD3_SP11A_VH3_VLK_3
GFTFSKN
1145
YYDSSK
1148
FWWDLDFDH
1100





CD3_sp11a_VH1_VK2
GFTFSKQ
1147
YYDSSK
1148
FWWDLDFDH
1100





CD3_SP11A_VH3_VLK1
GFTFSKN
1145
YYDSSK
1148
FWWDLDFDH
1100





CD3_SP11A_VH5_VK2
GFTFSKQ
1147
YYDSSK
1148
FWWDLDFDH
1100





CD3_sp9aFW1_VL_VH_
GFSLTTY
1058
RYSGD
1060
DPMYIPNYAYG
1113


S56G




VMNA






CD3_SP9AFW4_VL_VH_
GFSLTTY
1058
RYSGD
1060
DPMYIPNYAYG
1113


S56G




VMNA






CD3_sp9aFW1_VLVH
GFSLTTY
1058
RYSGD
1060
DPMYIPNYAYG
1113







VMNA






CD3_sp9aFW4_VLVH
GFSLTTY
1058
RYSGD
1060
DPMYIPNYAYG
1113







VMNA






CD3_sp9arabtor_VHVL
GFSLTTY
1058
RYSGD
1060
DPMYIPNYAYG
1113







VMNA






CD3_sp9arabtor_VLVH
GFSLTTY
1058
RYSGD
1060
DPMYIPNYAYG
1113







VMNA






CD3_sp11a_VHVL_YY_
GFTFSKQ
1147
YYDSSK
1148
FYYDLDFDH
1106


SANSPTM











CD3_sp11a_VHVL_YY_
GFTFSKQ
1147
YYDSSK
1148
YYYDLDFDH
1114


SANSPTM_Y











CD3_sp11a_VHVL_YY_
GFTFSKQ
1147
YYDSSK
1148
SYYDLDFDH
1115


SANSPTM_S











CD3_sp11a_VHVL_YY_Y
GFTFSKN
1145
YYDSSK
1148
YYYDLDFDH
1114





CD3_sp11a_VHVL_YY_s
GFTFSKN
1145
YYDSSK
1148
SYYDLDFDH
1115





CD3_sp11a_VHVL_SS_
GFTFSKQ
1147
YYDSSK
1148
FSSDLDFDH
1107


SANSPTM











CD3_sp11a_VHVL_SS_
GFTFSKQ
1147
YYDSSK
1148
YSSDLDFDH
1116


SANSPTM_Y











CD3_sp11a_VHVL_SS_
GFTFSKQ
1147
YYDSSK
1148
SSSDLDFDH
1117


SANSPTM_S











CD3_sp11a_VHVL_SS_Y
GFTFSKN
1145
YYDSSK
1148
YSSDLDFDH
1116





CD3_sp11a_VHVL_SS_S
GFTFSKN
1145
YYDSSK
1148
SSSDLDFDH
1117





CD3_sp11a_VHVL_SS
GFTFSKQ
1147
YYDSSK
1148
FSSDLDFDH
1107


_SANSPTM











CD3_sp11a_VHVL_WS
GFTFSKQ
1147
YYDSSK
1148
YWSDLDFDH
1118


_SANSPTM_Y











CD3_sp11a_VHVL_WS
GFTFSKQ
1147
YYDSSK
1148
SWSDLDFDH
1119


_SANSPTM_S











CD3_sp11a_VHVL_WS
GFTFSKN
1145
YYDSSK
1148
YWSDLDFDH
1118


_Y











CD3_sp11a_VHVL_WS
GFTFSKN
1145
YYDSSK
1148
SWSDLDFDH
1119


_S











CD3_sp11a_VHVL_WS
GFTFSKQ
1147
YYDSSK
1148
FWSDLDFDH
1108


_SANSPTM











CD3_sp11a_VHVL_SW
GFTFSKQ
1147
YYDSSK
1148
YSWDLDFDH
1120


_SANSPTM_Y











CD3_sp11a_VHVL_SW
GFTFSKQ
1147
YYDSSK
1148
SSWDLDFDH
1121


_SANSPTM_S











CD3_sp11a_VHVL_SW
GFTFSKN
1145
YYDSSK
1148
YSWDLDFDH
1120


_Y











CD3_sp11a_VHVL_SW
GFTFSKN
1145
YYDSSK
1148
SSWDLDFDH
1121


_S











CD3_sp11a_VHVL_SW
GFTFSKQ
1147
YYDSSK
1148
FSWDLDFDH
1109


_SANSPTM











CD3_sp11a_VHVL_TW
GFTFSKQ
1147
YYDSSK
1148
YTWDLDFDH
1122


_SANSPTM_Y











CD3_sp11a_VHVL_TW
GFTFSKQ
1147
YYDSSK
1148
STWDLDFDH
1123


_SANSPTM_S











CD3_sp11a_VHVL_TW_Y
GFTFSKN
1145
YYDSSK
1148
YTWDLDFDH
1122





CD3_sp11a_VHVL_TW_S
GFTFSKN
1145
YYDSSK
1148
STWDLDFDH
1123





CD3_sp11a_VHVL_TW
GFTFSKQ
1147
YYDSSK
1148
FTWDLDFDH
1111


_SANSPTM











CD3_sp11a_VHVL_TT
GFTFSKQ
1147
YYDSSK
1148
YTTDLDFDH
1124


_SANSPTM_Y











CD3_sp11a_VHVL_TT_
GFTFSKQ
1147
YYDSSK
1148
STTDLDFDH
1125


SANSPTM_S











CD3_sp11a_VHVL_TT_Y
GFTFSKN
1145
YYDSSK
1148
YTTDLDFDH
1124





CD3_sp11a_VHVL_TT_S
GFTFSKN
1145
YYDSSK
1148
STTDLDFDH
1125





CD3_sp11a_VHVL_TT_
GFTFSKQ
1147
YYDSSK
1148
FTTDLDFDH
1110


SANSPTM











CD3_SP11AVH3_VLK_3_
GFTFSKN
1145
YYDSSK
1148
YWWDLDFDH
1126


Y











CD3_SP11AVH3_VLK_3_
GFTFSKN
1145
YYDSSK
1148
SWWDLDFDH
1127


S











CD3_SP11AVH3_VLK_3_
GFTFSKN
1145
YYDSSK
1148
YWWDLDFDH
1126


Y_PTM











CD3_SP11AVH3_VLK_3_
GFTFSKN
1145
YYDSSK
1148
SWWDLDFDH
1127


S_PTM











CD3_SP11AVH3_VLK_3_
GFTFSKN
1145
YYDSSK
1148
YSWDLDFDH
1120


Y_SW











CD3_SP11AVH3_VLK_3_
GFTFSKN
1145
YYDSSK
1148
SSWDLDFDH
1121


S_SW











CD3_SP11AVH3_VLK_3_
GFTFSKN
1145
YYDSSK
1148
YSWDLDFDH
1120


Y_PTM_SW











CD3_SP11AVH3_VLK_3_
GFTFSKN
1145
YYDSSK
1148
SSWDLDFDH
1121


S_SWPTM











CD3_SP11AVH3_VLK_
GFTFSKN
1145
YYDSSK
1148
FSWDLDFDH
1109


SWPTM











CD3_SP11AVH3_VLK_3_
GFTFSKN
1145
YYDSSK
1148
FSWDLDFDH
1109


SW











CD3_sp11a_VH1_VK2_Y
GFTFSKQ
1147
YYDSSK
1148
YWWDLDFDH
1126





CD3_sp11a_VH1_VK2_S
GFTFSKQ
1147
YYDSSK
1148
SWWDLDFDH
1127





CD3_sp11a_VH1_VK2_Y_
GFTFSKN
1145
YYDSSK
1148
YWWDLDFDH
1126


PTM











CD3_sp11a_VH1_VK2_S_
GFTFSKN
1145
YYDSSK
1148
SWWDLDFDH
1127


PTM











CD3_sp11a_VH1_VK2_Y_
GFTFSKQ
1147
YYDSSK
1148
YSWDLDFDH
1120


SW











CD3_sp11a_VH1_VK2_S_
GFTFSKQ
1147
YYDSSK
1148
SSWDLDFDH
1121


SW











CD3_sp11a_VH1_VK2_Y_
GFTFSKN
1145
YYDSSK
1148
YSWDLDFDH
1120


PTM











CD3_sp11a_VH1_VK2_S_
GFTFSKN
1145
YYDSSK
1148
SSWDLDFDH
1121


PTM_SW











CD3_sp11a_VH1_VK2_
GFTFSKQ
1147
YYDSSK
1148
FSWDLDFDH
1109


SW











CD3_sp11a_VH1_VK2_
GFTFSKN
1145
YYDSSK
1148
FSWDLDFDH
1109


SW_PTM











CD3_SP11A_VH3_VLK1_
GFTFSKN
1145
YYDSSK
1148
YWWDLDFDH
1126


Y











CD3_SP11A_VH3_VLK1_
GFTFSKN
1145
YYDSSK
1148
SWWDLDFDH
1127


S











CD3_SP11A_VH3_VLK1_
GFTFSKQ
1147
YYDSSK
1148
YWWDLDFDH
1126


Y_PTM











CD3_SP11A_VH3_VLK1_
GFTFSKN
1145
YYDSSK
1148
SWWDLDFDH
1127


S_PTM











CD3_SP11A_VH3_VLK1_
GFTFSKN
1145
YYDSSK
1148
YSWDLDFDH
1120


Y_SW











CD3_SP11A_VH3_VLK1_
GFTFSKN
1145
YYDSSK
1148
SSWDLDFDH
1121


S_SW











CD3_SP11A_VH3_VLK1_
GFTFSKQ
1147
YYDSSK
1148
YWWDLDFDH
1126


Y_PTM











CD3_SP11A_VH3_VLK1_
GFTFSKN
1145
YYDSSK
1148
SSWDLDFDH
1121


S_PTM_SW











CD3_SP11A_VH3_VLK1PTM
GFTFSKN
1145
YYDSSK
1148
FSWDLDFDH
1109


_SW











CD3_SP11A_VH3_VLK1_
GFTFSKN
1145
YYDSSK
1148
FSWDLDFDH
1109


SW











CD3_SP11A_VH5_VK2_Y
GFTFSKQ
1147
YYDSSK
1148
YWWDLDFDH
1126





CD3_SP11A_VH5_VK2_S
GFTFSKQ
1147
YYDSSK
1148
SWWDLDFDH
1127





CD3_SP11A_VH5_VK2_Y
GFTFSKN
1145
YYDSSK
1148
YWWDLDFDH
1126


_PTM











CD3_SP11A_VH5_VK2_S
GFTFSKN
1145
YYDSSK
1148
SWWDLDFDH
1127


_PTM











CD3_SP11A_VH5_VK2_Y
GFTFSKQ
1147
YYDSSK
1148
YSWDLDFDH
1120


_SW











CD3_SP11A_VH5_VK2_S
GFTFSKQ
1147
YYDSSK
1148
SSWDLDFDH
1121


_SW











CD3_SP11A_VH5_VK2_Y
GFTFSKN
1145
YYDSSK
1148
YSWDLDFDH
1120


_PTM__SW











CD3_SP11A_VH5_VK2_S
GFTFSKN
1145
YYDSSK
1148
SSWDLDFDH
1121


_PTM__SW











CD3_SP11A_VH5_VK2_
GFTFSKN
1145
YYDSSK
1148
FSWDLDFDH
1109


PTM_SW











CD3_SP11A_VH5_VK2_
GFTFSKQ
1147
YYDSSK
1148
FSWDLDFDH
1109


SW
















TABLE AE-2







CD3 Binders- Light Chain CDR sequences according to Chothia numbering scheme















SEQ ID

SEQ ID

SEQ ID


Binder
CDR-L1
NO:
CDR-L2
NO:
CDR-L3
NO:





NOV292
SQSLVRSD
1152
RVS
1084
SSHFPW
1162



GTTY










NOV123
SQSLIYSIGN
1153
RVS
1084
STHLPY
1086



TY










Sp10b
SQSLIYSIGN
1153
RVS
1084
STHLPY
1086



TY










NOV453
SQNINNY
1154
NTD
1159
HRSRY
1163





NOV229
SQNINNY
1154
NTD
1159
HRSRY
1163





NOV110
SQSLVYSH
1155
RVS
1084
STHLPY
1086



GNTY










NOV832
SQSLVYSH
1155
RVS
1084
STHLPY
1086



GNTY










NOV589
SQSLVRSD
1152
RVS
1084
SSHFPW
1162



GTTY










NOV580
SQNIDKY
1156
NTN
1160
HRSSY
1164





NOV567
SQSIGNS
1157
STS
1161
YATYPY
1165





NOV221
SQNIDKY
1156
NTN
1160
HRSGY
1166





CD3_sp11a_bkm1
SQSLVRSD
1152
RVS
1084
SSHFPW
1162



GTTY










CD3_SP11a_bkm2
SQSLVRSD
1152
RVS
1084
SSHFPW
1162



GTTY










CD3_sp11a_hz0
SQSLVRSD
1152
RVS
1084
SSHFPW
1162



GTTY










CD3_SP11A_HZ1
SQSLVRSD
1152
RVS
1084
SSHFPW
1162



GTTY










CD3_sp11a_sansPTM_hz1
SQSLVRSE
1158
RVS
1084
SSHFPW
1162



GTTY










CD3_sp11a_sansPTM_rat
SQSLVRSE
1158
RVS
1084
SSHFPW
1162



GTTY










CD3_sp11a_VHVL_YY
SQSLVRSD
1152
RVS
1084
SSHFPW
1162



GTTY










CD3_SP11A_VHVL_SS
SQSLVRSD
1152
RVS
1084
SSHFPW
1162



GTTY










CD3_SP11A_VHVL_WS
SQSLVRSD
1152
RVS
1084
SSHFPW
1162



GTTY










CD3_sp11a_VHVL_SW
SQSLVRSD
1152
RVS
1084
SSHFPW
1162



GTTY










CD3_SP11A_VHVL_TT
SQSLVRSD
1152
RVS
1084
SSHFPW
1162



GTTY










CD3_SP11A_VHVL_TW
SQSLVRSD
1152
RVS
1084
SSHFPW
1162



GTTY










CD3_SP11A_VHVL_WT
SQSLVRSD
1152
RVS
1084
SSHFPW
1162



GTTY










CD3_SP11A VH3_VLK_3
SQSLVRSE
1158
RVS
1084
SSHFPW
1162



GTTY










CD3_sp11a_VH1_VK2
SQSLVRSD
1152
RVS
1084
SSHFPW
1162



GTTY










CD3_SP11A_VH3_VLK1
SQSLVRSE
1158
RVS
1084
SSHFPW
1162



GTTY










CD3_SP11A_VH5_VK2
SQSLVRSD
1152
RVS
1084
SSHFPW
1162



GTTY










CD3_sp9aFW1_VL_VH_
SQNINNY
1154
NTD
1159
HRSRY
1163


S56G











CD3_SP9AFW4_VL_VH_
SQNINNY
1154
NTD
1159
HRSRY
1163


S56G











CD3_sp9aFW1_VLVH
SQNINNY
1154
NTD
1159
HRSRY
1163





CD3_sp9aFW4_VLVH
SQNINNY
1154
NTD
1159
HRSRY
1163





CD3_sp9arabtor_VHVL
SQNINNY
1154
NTD
1159
HRSRY
1163





CD3_sp9arabtor_VLVH
SQNINNY
1154
NTD
1159
HRSRY
1163





CD3_sp11a_VHVL_YY_
SQSLVRSE
1158
RVS
1084
SSHFPW
1162


SANSPTM
GTTY










CD3_sp11a_VHVL_YY_
SQSLVRSE
1158
RVS
1084
SSHFPW
1162


SANSPTM_Y
GTTY










CD3_sp11a_VHVL_YY_
SQSLVRSE
1158
RVS
1084
SSHFPW
1162


SANSPTM_S
GTTY










CD3_sp11a_VHVL_YY_Y
SQSLVRSD
1152
RVS
1084
SSHFPW
1162



GTTY










CD3_sp11a_VHVL_YY_s
SQSLVRSD
1152
RVS
1084
SSHFPW
1162



GTTY










CD3_sp11a_VHVL_SS_
SQSLVRSE
1158
RVS
1084
SSHFPW
1162


SANSPTM
GTTY










CD3_sp11a_VHVL_SS_
SQSLVRSE
1158
RVS
1084
SSHFPW
1162


SANSPTM_Y
GTTY










CD3_sp11a_VHVL_SS_
SQSLVRSE
1158
RVS
1084
SSHFPW
1162


SANSPTM_S
GTTY










CD3_sp11a_VHVL_SS_Y
SQSLVRSD
1152
RVS
1084
SSHFPW
1162



GTTY










CD3_sp11a_VHVL_SS_S
SQSLVRSD
1152
RVS
1084
SSHFPW
1162



GTTY










CD3_sp11a_VHVL_SS
SQSLVRSE
1158
RVS
1084
SSHFPW
1162


_SANSPTM
GTTY










CD3_sp11a_VHVL_WS
SQSLVRSE
1158
RVS
1084
SSHFPW
1162


_SANSPTM_Y
GTTY










CD3_sp11a_VHVL_WS
SQSLVRSE
1158
RVS
1084
SSHFPW
1162


_SANSPTM_S
GTTY










CD3_sp11a_VHVL_WS
SQSLVRSD
1152
RVS
1084
SSHFPW
1162


_Y
GTTY










CD3_sp11a_VHVL_WS
SQSLVRSD
1152
RVS
1084
SSHFPW
1162


_S
GTTY










CD3_sp11a_VHVL_WS
SQSLVRSE
1158
RVS
1084
SSHFPW
1162


_SANSPTM
GTTY










CD3_sp11a_VHVL_SW
SQSLVRSE
1158
RVS
1084
SSHFPW
1162


_SANSPTM_Y
GTTY










CD3_sp11a_VHVL_SW
SQSLVRSE
1158
RVS
1084
SSHFPW
1162


_SANSPTM_S
GTTY










CD3_sp11a_VHVL_SW
SQSLVRSD
1152
RVS
1084
SSHFPW
1162


_Y
GTTY










CD3_sp11a_VHVL_SW
SQSLVRSD
1152
RVS
1084
SSHFPW
1162


_S
GTTY










CD3_sp11a_VHVL_SW
SQSLVRSE
1158
RVS
1084
SSHFPW
1162


_SANSPTM
GTTY










CD3_sp11a_VHVL_TW
SQSLVRSE
1158
RVS
1084
SSHFPW
1162


_SANSPTM_Y
GTTY










CD3_sp11a_VHVL_TW
SQSLVRSE
1158
RVS
1084
SSHFPW
1162


_SANSPTM_S
GTTY










CD3_sp11a_VHVL_TW_Y
SQSLVRSD
1152
RVS
1084
SSHFPW
1162



GTTY










CD3_sp11a_VHVL_TW_S
SQSLVRSD
1152
RVS
1084
SSHFPW
1162



GTTY










CD3_sp11a_VHVL_TW
SQSLVRSE
1158
RVS
1084
SSHFPW
1162


_SANSPTM
GTTY










CD3_sp11a_VHVL_TT
SQSLVRSE
1158
RVS
1084
SSHFPW
1162


_SANSPTM_Y
GTTY










CD3_sp11a_VHVL_TT_
SQSLVRSE
1158
RVS
1084
SSHFPW
1162


SANSPTM_S
GTTY










CD3_sp11a_VHVL_TT_Y
SQSLVRSD
1152
RVS
1084
SSHFPW
1162



GTTY










CD3_sp11a_VHVL_TT_S
SQSLVRSD
1152
RVS
1084
SSHFPW
1162



GTTY










CD3_sp11a_VHVL_TT_
SQSLVRSE
1158
RVS
1084
SSHFPW
1162


SANSPTM
GTTY










CD3_SP11AVH3_VLK_3_
SQSLVRSE
1158
RVS
1084
SSHFPW
1162


Y
GTTY










CD3_SP11AVH3_VLK_3_
SQSLVRSE
1158
RVS
1084
SSHFPW
1162


S
GTTY










CD3_SP11AVH3_VLK_3_
SQSLVRSD
1152
RVS
1084
SSHFPW
1162


Y_PTM
GTTY










CD3_SP11AVH3_VLK_3_
SQSLVRSD
1152
RVS
1084
SSHFPW
1162


S_PTM
GTTY










CD3_SP11AVH3_VLK_3_
SQSLVRSE
1158
RVS
1084
SSHFPW
1162


Y_SW
GTTY










CD3_SP11AVH3_VLK_3_
SQSLVRSE
1158
RVS
1084
SSHFPW
1162


S_SW
GTTY










CD3_SP11AVH3_VLK_3_
SQSLVRSD
1152
RVS
1084
SSHFPW
1162


Y_PTM_SW
GTTY










CD3_SP11AVH3_VLK_3_
SQSLVRSD
1152
RVS
1084
SSHFPW
1162


S_SWPTM
GTTY










CD3_SP11AVH3_VLK_
SQSLVRSD
1152
RVS
1084
SSHFPW
1162


SWPTM
GTTY










CD3_SP11AVH3_VLK_3_
SQSLVRSE
1158
RVS
1084
SSHFPW
1162


SW
GTTY










CD3_sp11a_VH1_VK2_Y
SQSLVRSD
1152
RVS
1084
SSHFPW
1162



GTTY










CD3_sp11a_VH1_VK2_S
SQSLVRSD
1152
RVS
1084
SSHFPW
1162



GTTY










CD3_sp11a_VH1_VK2_Y_
SQSLVRSE
1158
RVS
1084
SSHFPW
1162


PTM
GTTY










CD3_sp11a_VH1_VK2_S_
SQSLVRSD
1152
RVS
1084
SSHFPW
1162


PTM
GTTY










CD3_sp11a_VH1_VK2_Y_
SQSLVRSD
1152
RVS
1084
SSHFPW
1162


SW
GTTY










CD3_sp11a_VH1_VK2_S_
SQSLVRSD
1152
RVS
1084
SSHFPW
1162


SW
GTTY










CD3_sp11a_VH1_VK2_Y_
SQSLVRSE
1158
RVS
1084
SSHFPW
1162


PTM
GTTY










CD3_sp11a_VH1_VK2_S_
SQSLVRSD
1152
RVS
1084
SSHFPW
1162


PTM_SW
GTTY










CD3_sp11a_VH1_VK2_SW
SQSLVRSD
1152
RVS
1084
SSHFPW
1162



GTTY










CD3_sp11a_VH1_VK2_SW
SQSLVRSE
1158
RVS
1084
SSHFPW
1162


_PTM
GTTY










CD3_SP11A_VH3_VLK1_
SQSLVRSE
1158
RVS
1084
SSHFPW
1162


Y
GTTY










CD3_SP11A_VH3_VLK1_
SQSLVRSE
1158
RVS
1084
SSHFPW
1162


S
GTTY










CD3_SP11A_VH3_VLK1_
SQSLVRSD
1152
RVS
1084
SSHFPW
1162


Y_PTM
GTTY










CD3_SP11A_VH3_VLK1_
SQSLVRSD
1152
RVS
1084
SSHFPW
1162


S_PTM
GTTY










CD3_SP11A_VH3_VLK1_
SQSLVRSE
1158
RVS
1084
SSHFPW
1162


Y_SW
GTTY










CD3_SP11A_VH3_VLK1_
SQSLVRSE
1158
RVS
1084
SSHFPW
1162


S_SW
GTTY










CD3_SP11A_VH3_VLK1_
SQSLVRSD
1152
RVS
1084
SSHFPW
1162


Y_PTM
GTTY










CD3_SP11A_VH3_VLK1_
SQSLVRSD
1152
RVS
1084
SSHFPW
1162


S_PTM_SW
GTTY










CD3_SP11A_VH3_VLK1P
SQSLVRSD
1152
RVS
1084
SSHFPW
1162


TM_SW
GTTY










CD3_SP11A_VH3_VLK1__
SQSLVRSE
1158
RVS
1084
SSHFPW
1162


SW
GTTY










CD3_SP11A_VH5_VK2_Y
SQSLVRSD
1152
RVS
1084
SSHFPW
1162



GTTY










CD3_SP11A_VH5_VK2_S
SQSLVRSD
1152
RVS
1084
SSHFPW
1162



GTTY










CD3_SP11A_VH5_VK2_Y
SQSLVRSD
1152
RVS
1084
SSHFPW
1162


_PTM
GTTY










CD3_SP11A_VH5_VK2_S
SQSLVRSD
1152
RVS
1084
SSHFPW
1162


_PTM
GTTY










CD3_SP11A_VH5_VK2_Y
SQSLVRSD
1152
RVS
1084
SSHFPW
1162


_SW
GTTY










CD3_SP11A_VH5_VK2_S
SQSLVRSD
1152
RVS
1084
SSHFPW
1162


_SW
GTTY










CD3_SP11A_VH5_VK2_Y
SQSLVRSD
1152
RVS
1084
SSHFPW
1162


_PTM_SW
GTTY










CD3_SP11A_VH5_VK2_S
SQSLVRSD
1152
RVS
1084
SSHFPW
1162


_PTM_SW
GTTY










CD3_SP11A_VH5_VK2_
SQSLVRSD
1152
RVS
1084
SSHFPW
1162


PTM_SW
GTTY










CD3_SP11A_VH5_VK2_
SQSLVRSD
1152
RVS
1084
SSHFPW
1162


SW
GTTY
















TABLE AF-1







CD3 Binders- Heavy Chain CDR sequences according to IMGT numbering scheme















SEQ ID
CDR-H2
SEQ ID

SEQ ID


Binder
CDR-H1
NO:

NO:
CDR-H3
NO:





NOV292
GFTFSKN
1167
IYYDSSKM
1170
ASFWWNDLDF
1174



G



DH






NOV123
GYTFTSY
1073
IYPGHDAI
1171
VRPNTMMAP
1175



Y



LAY






Sp10b
GYTFTSY
1073
IYPGHDAI
1171
VRPNTMMAP
1175



Y



LAY






NOV453
GFSLTTY
1056
MRYSGDT
1061
TSDPMYIPNY
1176



N



SYGVMNA






NOV229
GFSLTTY
1056
MRYSGDT
1061
ARDPMYIPN
1177



N



YSYGVMNA






NOV110
GYTFTSY
1073
IYPANGGI
1172
ARPVTMMAP
1178



Y



LVF






NOV832
GYTFTSY
1073
IYPANGGI
1172
ARPVTMMAP
1178



Y



LVF






NOV589
GFTFSKN
1167
IYYDSSR
1173
ASFWWDLDF
1179



G

M

DY






NOV580
GFSLTTY
1056
MRYSGDT
1061
TRDPMYIPG
1180



N



YSYGVMNA






NOV567
GFAFRKY
1168
IYYDSSKM
1170
AALNSEYD
1041



G










NOV221
GFSLTTY
1056
MRYSGDT
1061
TRDPMYIPG
1180



N



YSYGVMNA






CD3_sp11a_bkm1
GFTFSKN
1167
IYYDSSKM
1170
ASFWWDLDF
1174



G



DH






CD3_SP11a_bkm2
GFTFSKN
1167
IYYDSSKM
1170
AKFWWDLDF
1181



G



DH






CD3_sp11a_hz0
GFTFSKN
1167
IYYDSSKM
1170
AKFWWDLDF
1181



G



DH






CD3_SP11A_HZ1
GFTFSKN
1167
IYYDSSKM
1170
ASFWWDLDF
1174



G



DH






CD3_sp11a_sansPTM_hz1
GFTFSKQ
1169
IYYDSSKM
1170
ASFWWDLDF
1174



G



DH






CD3_sp11a_sansPTM_rat
GFTFSKQ
1169
IYYDSSKM
1170
ASFWWDLDF
1174



G



DH






CD3_sp11a_VHVL_YY
GFTFSKN
1167
IYYDSSKM
1170
ASFYYDLDF
1182



G



DH






CD3_SP11A_VHVL_SS
GFTFSKN
1167
IYYDSSKM
1170
ASFSSDLDF
1183



G



DH






CD3_SP11A_VHVL_WS
GFTFSKN
1167
IYYDSSKM
1170
ASFWSDLDF
1184



G



DH






CD3_sp11a_VHVL_SW
GFTFSKN
1167
IYYDSSKM
1170
ASFSWDLDF
1185



G



DH






CD3_SP11A_VHVL_TT
GFTFSKN
1167
IYYDSSKM
1170
ASFTTDLDFD
1186



G



H






CD3_SP11A_VHVL_TW
GFTFSKN
1167
IYYDSSKM
1170
ASFTWDLDF
1187



G



DH






CD3_SP11A_VHVL_WT
GFTFSKN
1167
IYYDSSKM
1170
ASFWTDLDF
1188



G



DH






CD3_SP11A VH3_VLK_3
GFTFSKN
1167
IYYDSSKM
1170
ASFWWDLDF
1174



G



DH






CD3_sp11a_VH1_VK2
GFTFSKQ
1169
IYYDSSKM
1170
ASFWWDLDF
1174



G



DH






CD3_SP11A_VH3_VLK1
GFTFSKN
1167
IYYDSSKM
1170
ASFWWDLDF
1174



G



DH






CD3 SP11A_VH5_VK2
GFTFSKQ
1169
IYYDSSKM
1170
ASFWWDLDF
1174



G



DH






CD3 sp9aFW1_VL_VH_
GFSLTTY
1056
MRYSGDT
1061
ASDPMYIPNY
1189


S56G
N



AYGVMNA






CD3_SP9AFW4_VL_VH_
GFSLTTY
1056
MRYSGDT
1061
ASDPMYIPNY
1189


S56G
N



AYGVMNA






CD3_sp9aFW1_VLVH
GFSLTTY
1056
MRYSGDT
1061
ASDPMYIPNY
1189



N



AYGVMNA






CD3_sp9aFW4_VLVH
GFSLTTY
1056
MRYSGDT
1061
ASDPMYIPNY
1189



N



AYGVMNA






CD3_sp9arabtor_VHVL
GFSLTTY
1056
MRYSGDT
1061
ASDPMYIPNY
1189



N



AYGVMNA






CD3_sp9arabtor_VLVH
GFSLTTY
1056
MRYSGDT
1061
ASDPMYIPNY
1189



N



AYGVMNA






CD3_sp11a_VHVL_YY_
GFTFSKQ
1169
IYYDSSKM
1170
ASFYYDLDF
1182


SANSPTM
G



DH






CD3_sp11a_VHVL_YY_
GFTFSKQ
1169
IYYDSSKM
1170
ASYYYDLDF
1190


SANSPTM_Y
G



DH






CD3_sp11a_VHVL_YY_
GFTFSKQ
1169
IYYDSSKM
1170
ASSYYDLDF
1191


SANSPTM_S
G



DH






CD3_sp11a_VHVL_YY_Y
GFTFSKN
1167
IYYDSSKM
1170
ASYYYDLDF
1190



G



DH






CD3_sp11a_VHVL_YY_s
GFTFSKN
1167
IYYDSSKM
1170
ASSYYDLDF
1191



G



DH






CD3_sp11a_VHVL_SS_
GFTFSKQ
1169
IYYDSSKM
1170
ASFSSDLDF
1183


SANSPTM
G



DH






CD3_sp11a_VHVL_SS_
GFTFSKQ
1169
IYYDSSKM
1170
ASYSSDLDF
1192


SANSPTM_Y
G



DH






CD3_sp11a_VHVL_SS_
GFTFSKQ
1169
IYYDSSKM
1170
ASSSSDLDF
1193


SANSPTM_S
G



DH






CD3_sp11a_VHVL_SS_Y
GFTFSKN
1167
IYYDSSKM
1170
ASYSSDLDF
1192



G



DH






CD3_sp11a_VHVL_SS_S
GFTFSKN
1167
IYYDSSKM
1170
ASSSSDLDF
1193



G



DH






CD3_sp11a_VHVL_SS
GFTFSKQ
1169
IYYDSSKM
1170
ASFSSDLDF
1183


_SANSPTM
G



DH






CD3_sp11a_VHVL_WS
GFTFSKQ
1169
IYYDSSKM
1170
ASYWSDLDF
1194


SANSPTM_Y
G



DH






CD3_sp11a_VHVL_WS
GFTFSKQ
1169
IYYDSSKM
1170
ASSWSDLDF
1195


SANSPTM_S
G



DH






CD3_sp11a_VHVL_WS
GFTFSKN
1167
IYYDSSKM
1170
ASYWSDLDF
1194


_Y
G



DH






CD3_sp11a_VHVL_WS
GFTFSKN
1167
IYYDSSKM
1170
ASSWSDLDF
1195


_S
G



DH






CD3_sp11a_VHVL_WS
GFTFSKQ
1169
IYYDSSKM
1170
ASFWSDLDF
1184


_SANSPTM
G



DH






CD3_sp11a_VHVL_SW
GFTFSKQ
1169
IYYDSSKM
1170
ASYSWDLDF
1196


SANSPTM_Y
G



DH






CD3_sp11a_VHVL_SW
GFTFSKQ
1169
IYYDSSKM
1170
ASSSWDLDF
1197


SANSPTM_S
G



DH






CD3_sp11a_VHVL_SW
GFTFSKN
1167
IYYDSSKM
1170
ASYSWDLDF
1196


_Y
G



DH






CD3_sp11a_VHVL_SW
GFTFSKN
1167
IYYDSSKM
1170
ASSSWDLDF
1197


_S
G



DH






CD3_sp11a_VHVL_SW
GFTFSKQ
1169
IYYDSSKM
1170
ASFSWDLDF
1185


_SANSPTM
G



DH






CD3_sp11a_VHVL_TW
GFTFSKQ
1169
IYYDSSKM
1170
ASYTWDLDF
1198


_SANSPTM_Y
G



DH






CD3_sp11a_VHVL_TW
GFTFSKQ
1169
IYYDSSKM
1170
ASSTWDLDF
1199


_SANSPTM_S
G



DH






CD3_sp11a_VHVL_TW
GFTFSKN
1167
IYYDSSKM
1170
ASYTWDLDF
1198


_Y
G



DH






CD3_sp11a_VHVL_TW
GFTFSKN
1167
IYYDSSKM
1170
ASSTWDLDF
1199


_S
G



DH






CD3_sp11a_VHVL_TW
GFTFSKQ
1169
IYYDSSKM
1170
ASFTWDLDF
1187


_SANSPTM
G



DH






CD3_sp11a_VHVL_TT
GFTFSKQ
1169
IYYDSSKM
1170
ASYTTDLDFD
1200


_SANSPTM_Y
G



H






CD3_sp11a_VHVL_TT_
GFTFSKQ
1169
IYYDSSKM
1170
ASSTTDLDFD
1201


SANSPTM_S
G



H






CD3_sp11a_VHVL_TT_Y
GFTFSKN
1167
IYYDSSKM
1170
ASYTTDLDFD
1200



G



H






CD3_sp11a_VHVL_TT_S
GFTFSKN
1167
IYYDSSKM
1170
ASSTTDLDFD
1201



G



H






CD3_sp11a_VHVL_TT_A
GFTFSKQ
1169
IYYDSSKM
1170
ASFTTDLDFD
1186


SANSPTM
G



H






CD3_SP11AVH3_VLK_3_
GFTFSKN
1167
IYYDSSKM
1170
ASYWWDLDF
1202


Y
G



DH






CD3_SP11AVH3_VLK_3_
GFTFSKN
1167
IYYDSSKM
1170
ASSWWDLDF
1203


S
G



DH






CD3_SP11AVH3_VLK_3_
GFTFSKN
1167
IYYDSSKM
1170
ASYWWDLDF
1202


Y_PTM
G



DH






CD3_SP11AVH3_VLK_3_
GFTFSKN
1167
IYYDSSKM
1170
ASSWWDLDF
1203


S_PTM
G



DH






CD3_SP11AVH3_VLK_3_
GFTFSKN
1167
IYYDSSKM
1170
ASYSWDLDF
1196


Y_SW
G



DH






CD3_SP11AVH3_VLK_3_
GFTFSKN
1167
IYYDSSKM
1170
ASSSWDLDF
1197


S_SW
G



DH






CD3_SP11AVH3_VLK_3_
GFTFSKN
1167
IYYDSSKM
1170
ASYSWDLDF
1196


Y_PTM_SW
G



DH






CD3_SP11AVH3_VLK_3_
GFTFSKN
1167
IYYDSSKM
1170
ASSSWDLDF
1197


S_SWPTM
G



DH






CD3_SP11AVH3_VLK_
GFTFSKN
1167
IYYDSSKM
1170
ASFSWDLDF
1185


SWPTM
G



DH






CD3_SP11AVH3_VLK_3_
GFTFSKN
1167
IYYDSSKM
1170
ASFSWDLDF
1185


SW
G



DH






CD3_sp11a_VH1_VK2_Y
GFTFSKQ
1169
IYYDSSKM
1170
ASYWWDLDF
1202



G



DH






CD3_sp11a_VH1_VK2_S
GFTFSKQ
1169
IYYDSSKM
1170
ASSWWDLDF
1203



G



DH






CD3_sp11a_VH1_VK2_Y_
GFTFSKN
1167
IYYDSSKM
1170
ASYWWDLDF
1202


PTM
G



DH






CD3_sp11a_VH1_VK2_S_
GFTFSKN
1167
IYYDSSKM
1170
ASSWWDLDF
1203


PTM
G



DH






CD3_sp11a_VH1_VK2_Y_
GFTFSKQ
1169
IYYDSSKM
1170
ASYSWDLDF
1196


SW
G



DH






CD3_sp11a_VH1_VK2_S_
GFTFSKQ
1169
IYYDSSKM
1170
ASSSWDLDF
1197


SW
G



DH






CD3_sp11a_VH1_VK2_Y_
GFTFSKN
1167
IYYDSSKM
1170
ASYSWDLDF
1196


PTM
G



DH






CD3_sp11a_VH1_VK2_S_
GFTFSKN
1167
IYYDSSKM
1170
ASSSWDLDF
1197


PTM_SW
G



DH






CD3_sp11a_VH1_VK2_
GFTFSKQ
1169
IYYDSSKM
1170
ASFSWDLDF
1185


SW
G



DH






CD3_sp11a_VH1_VK2_
GFTFSKN
1167
IYYDSSKM
1170
ASFSWDLDF
1185


SW_PTM
G



DH






CD3_SP11A_VH3_VLK1_
GFTFSKN
1167
IYYDSSKM
1170
ASYWWDLDF
1202


Y
G



DH






CD3_SP11A_VH3_VLK1_
GFTFSKN
1167
IYYDSSKM
1170
ASSWWDLDF
1203


S
G



DH






CD3_SP11A_VH3_VLK1_
GFTFSKQ
1169
IYYDSSKM
1170
ASYWWDLDF
1202


Y_PTM
G



DH






CD3_SP11A_VH3_VLK1_
GFTFSKQ
1169
IYYDSSKM
1170
ASSWWDLDF
1203


S_PTM
G



DH






CD3_SP11A_VH3_VLK1_
GFTFSKN
1167
IYYDSSKM
1170
ASYSWDLDF
1196


Y_SW
G



DH






CD3_SP11A_VH3_VLK1_
GFTFSKN
1167
IYYDSSKM
1170
ASSSWDLDF
1197


S_SW
G



DH






CD3_SP11A_VH3_VLK1_
GFTFSKQ
1169
IYYDSSKM
1170
ASYWWDLDF
1202


Y_PTM
G



DH






CD3_SP11A_VH3_VLK1_
GFTFSKQ
1169
IYYDSSKM
1170
ASSSWDLDF
1197


S_PTM_SW
G



DH






CD3_SP11A_VH3_VLK1P
GFTFSKQ
1169
IYYDSSKM
1170
ASFSWDLDF
1185


TM_SW
G



DH






CD3_SP11A_VH3_VLK1_
GFTFSKN
1167
IYYDSSKM
1170
ASFSWDLDF
1185


SW
G



DH






CD3_SP11A_VH5_VK2_Y
GFTFSKQ
1169
IYYDSSKM
1170
ASYWWDLDF
1202



G



DH






CD3_SP11A_VI-15_VK2_S
GFTFSKQ
1169
IYYDSSKM
1170
ASSWWDLDF
1203



G



DH






CD3_SP11A_VH5_VK2_Y
GFTFSKN
1167
IYYDSSKM
1170
ASYWWDLDF
1202


_PTM
G



DH






CD3_SP11A_VH5_VK2_S
GFTFSKN
1167
IYYDSSKM
1170
ASSWWDLDF
1203


_PTM
G



DH






CD3_SP11A_VH5_VK2_Y
GFTFSKQ
1169
IYYDSSKM
1170
ASYSWDLDF
1196


_SW
G



DH






CD3_SP11A_VH5_VK2_S
GFTFSKQ
1169
IYYDSSKM
1170
ASSSWDLDF
1197


_SW
G



DH






CD3_SP11A_VH5_VK2_Y
GFTFSKN
1167
IYYDSSKM
1170
ASYSWDLDF
1196


_PTM_SW
G



DH






CD3_SP11A_VH5_VK2_S
GFTFSKN
1167
IYYDSSKM
1170
ASSSWDLDF
1197


_PTM_SW
G



DH






CD3_SP11A_VH5_VK2_
GFTFSKN
1167
IYYDSSKM
1170
ASFSWDLDF
1185


PTM_SW
G



DH






CD3_SP11A_VH5_VK2_
GFTFSKQ
1169
IYYDSSKM
1170
ASFSWDLDF
1185


SW
G



DH
















TABLE AF-2







CD3 Binders- Chain CDR sequences according to IMGT numbering scheme















SEQ ID

SEQ ID

SEQ ID


Binder
CDR-L1
NO:
CDR-L2
NO:
CDR-L3
NO:





NOV292
QSLVRSD
1204
RVS
1084
LQSSHF
1139



GTTY



PWT






NOV123
QSLIYSIGN
1205
RVS
1084
FQSTHL
1085



TY



PYT






Sp10b
QSLIYSIGN
1205
RVS
1084
FQSTHL
1085



TY



PYT






NOV453
QNINNY
1206
NTDHLQA
1212
LQHRSR
1140





GVP

YT






NOV229
QNINNY
1206
NTDHLQA
1212
LQHRSR
1140





GVP

YT






NOV110
QSLVYSHG
1207
RVS
1084
FQSTHL
1085



NTY



PYT






NOV832
QSLVYSHG
1207
RVS
1084
FQSTHL
1085



NTY



PYT






NOV589
QSLVRSD
1204
RVS
1084
LQSSHF
1139



GTTY



PWT






NOV580
QNIDKY
1208
NTNNLEA
1213
LQHRSS
1141





GVP

YT






NOV567
QSIGNS
1209
STSTLEY
1214
LQYATY
1142





GVP

PYT






NOV221
QNIDKY
1208
NTNNLEA
1213
LQHRSG
1143





GVP

YT






CD3_sp11a_bkm1
QSLVRSD
1204
RVS
1084
LQSSHF
1139



GTTY



PWT






CD3_SP11a_bkm2
QSLVRSD
1204
RVS
1084
LQSSHF
1139



GTTY



PWT






CD3_sp11a_hz0
QSLVRSD
1204
RVS
1084
LQSSHF
1139



GTTY



PWT






CD3_SP11A_HZ1
QSLVRSD
1204
RVS
1084
LQSSH
1144



GTTY










CD3_sp11a_sansPTM_hz1
QSLVRSEG
1210
RVS
1084
LQSSHF
1139



TTY



PWT






CD3_sp11a_sansPTM_rat
QSLVRSEG
1210
RVS
1084
LQSSHF
1139



TTY



PWT






CD3_sp11a_VHVL_YY
QSLVRSD
1204
RVS
1084
LQSSHF
1139



GTTY



PWT






CD3_SP11A_VHVL_SS
QSLVRSD
1204
RVS
1084
LQSSHF
1139



GTTY



PWT






CD3_SP11A_VHVL_WS
QSLVRSD
1204
RVS
1084
LQSSHF
1139



GTTY



PWT






CD3_sp11a_VHVL_SW
QSLVRSD
1204
RVS
1084
LQSSHF
1139



GTTY



PWT






CD3_SP11A_VHVL_TT
QSLVRSD
1204
RVS
1084
LQSSHF
1139



GTTY



PWT






CD3_SP11A_VHVL_TW
QSLVRSD
1204
RVS
1084
LQSSHF
1139



GTTY



PWT






CD3_SP11A_VHVL_WT
QSLVRSD
1204
RVS
1084
LQSSHF
1139



GTTY



PWT






CD3_SP11A VH3_VLK_3
QSLVRSEG
1210
RVS
1084
LQSSHF
1139



TTY



PWT






CD3_sp11a_VH1_VK2
QSLVRSD
1204
RVS
1084
LQSSHF
1139



GTTY



PWT






CD3_SP11A_VH3_VLK1
QSLVRSEG
1210
RVS
1084
LQSSHF
1139



TTY



PWT






CD3_SP11A_VH5_VK2
QSLVRSD
1204
RVS
1084
LQSSHF
1139



GTTY



PWT






CD3_sp9aFW1_VL_VH_
QNINNY
1206
NTDHLQA
1212
LQHRSR
1140


S56G


GVP

YT






CD3_SP9AFW4_VL_VH_
QNINNY
1206
NTDHLQA
1212
LQHRSR
1140


S56G


GVP

YT






CD3_sp9aFW1_VLVH
QNINNY
1206
NTDHLQA
1212
LQHRSR
1140





GVP

YT






CD3_sp9aFW4_VLVH
QNINNY
1206
NTDHLQA
1212
LQHRSR
1140





GVP

YT






CD3_sp9arabtor_VHVL
QNINNY
1206
NTDHLQA
1212
LQHRSR
1140





GVP

YT






CD3_sp9arabtor_VLVH
QNINNY
1206
NTDHLQA
1212
LQHRSR
1140





GVP

YT






CD3_sp11a_VHVL_YY_
QSLVRSEG
1210
RVS
1084
LQSSHF
1139


SANSPTM
TTY



PWT






CD3_sp11a_VHVL_YY_
QSLVRSEG
1210
RVS
1084
LQSSHF
1139


SANSPTM_Y
TTY



PWT






CD3_sp11a_VHVL_YY_
QSLVRSEG
1210
RVS
1084
LQSSHF
1139


SANSPTM_S
TTY



PWT






CD3_sp11a_VHVL_YY_Y
QSLVRSD
1204
RVS
1084
LQSSHF
1139



GTTY



PWT






CD3_sp11a_VHVL_YY_s
QSLVRSD
1204
RVS
1084
LQSSHF
1139



GTTY



PWT






CD3_sp11a_VHVL_SS_
QSLVRSEG
1210
RVS
1084
LQSSHF
1139


SANSPTM
TTY



PWT






CD3_sp11a_VHVL_SS_
QSLVRSEG
1210
RVS
1084
LQSSHF
1139


SANSPTM_Y
TTY



PWT






CD3_sp11a_VHVL_SS_
QSLVRSEG
1210
RVS
1084
LQSSHF
1139


SANSPTM_S
TTY



PWT






CD3_sp11a_VHVL_SS_Y
QSLVRSD
1204
RVS
1084
LQSSHF
1139



GTTY



PWT






CD3_sp11a_VHVL_SS_S
QSLVRSD
1204
RVS
1084
LQSSHF
1139



GTTY



PWT






CD3_sp11a_VHVL_SS
QSLVRSEG
1210
RVS
1084
LQSSHF
1139


_SANSPTM
TTY



PWT






CD3_sp11a_VHVL_WS
QSLVRSEG
1210
RVS
1084
LQSSHF
1139


_SANSPTM_Y
TTY



PWT






CD3_sp11a_VHVL_WS
QSLVRSEG
1210
RVS
1084
LQSSHF
1139


_SANSPTM_S
TTY



PWT






CD3_sp11a_VHVL_WS_Y
QSLVRSD
1204
RVS
1084
LQSSHF
1139



GTTY



PWT






CD3_sp11a_VHVL_WS_S
QSLVRSD
1204
RVS
1084
LQSSHF
1139



GTTY



PWT






CD3_sp11a_VHVL_WS
QSLVRSEG
1210
RVS
1084
LQSSHF
1139


_SANSPTM
TTY



PWT






CD3_sp11a_VHVL_SW
QSLVRSEG
1210
RVS
1084
LQSSHF
1139


_SANSPTM_Y
TTY



PWT






CD3_sp11a_VHVL_SW
QSLVRSEG
1210
RVS
1084
LQSSHF
1139


_SANSPTM_S
TTY



PWT






CD3_sp11a_VHVL_SW_Y
QSLVRSD
1204
RVS
1084
LQSSHF
1139



GTTY



PWT






CD3_sp11a_VHVL_SW_S
QSLVRSD
1204
RVS
1084
LQSSHF
1139



GTTY



PWT






CD3_sp11a_VHVL_SW
QSLVRSEG
1210
RVS
1084
LQSSHF
1139


_SANSPTM
TTY



PWT






CD3_sp11a_VHVL_TW
QSLVRSEG
1210
RVS
1084
LQSSHF
1139


_SANSPTM_Y
TTY



PWT






CD3_sp11a_VHVL_TW
QSLVRSEG
1210
RVS
1084
LQSSHF
1139


_SANSPTM_S
TTY



PWT






CD3_sp11a_VHVL_TW_Y
QSLVRSD
1204
RVS
1084
LQSSHF
1139



GTTY



PWT






CD3_sp11a_VHVL_TW_S
QSLVRSD
1204
RVS
1084
LQSSHF
1139



GTTY



PWT






CD3_sp11a_VHVL_TW
QSLVRSEG
1210
RVS
1084
LQSSHF
1139


_SANSPTM
TTY



PWT






CD3_sp11a_VHVL_TT
QSLVRSEG
1210
RVS
1084
LQSSHF
1139


_SANSPTM_Y
TTY



PWT






CD3_sp11a_VHVL_TT_
QSLVRSEG
1210
RVS
1084
LQSSHF
1139


SANSPTM_S
TTY



PWT






CD3_sp11a_VHVL_TT_Y
QSLVRSD
1204
RVS
1084
LQSSHF
1139



GTTY



PWT






CD3_sp11a_VHVL_TT_S
QSLVRSD
1204
RVS
1084
LQSSHF
1139



GTTY



PWT






CD3_sp11a_VHVL_TT_
QSLVRSEG
1210
RVS
1084
LQSSHF
1139


SANSPTM
TTY



PWT






CD3_SP11AVH3_VLK_3_Y
QSLVRSEG
1210
RVS
1084
LQSSHF
1139



TTY



PWT






CD3_SP11AVH3_VLK_3_S
QSLVRSEG
1210
RVS
1084
LQSSHF
1139



TTY



PWT






CD3_SP11AVH3_VLK_3_Y
QSLVRSD
1204
RVS
1084
LQSSHF
1139


_PTM
GTTY



PWT






CD3_SP11AVH3_VLK_3_S
QSLVRSD
1204
RVS
1084
LQSSHF
1139


_PTM
GTTY



PWT






CD3_SP11AVH3_VLK_3_Y
QSLVRSEG
1210
RVS
1084
LQSSHF
1139


_SW
TTY



PWT






CD3_SP11AVH3_VLK_3_S
QSLVRSEG
1210
RVS
1084
LQSSHF
1139


_SW
TTY



PWT






CD3_SP11AVH3_VLK_3_Y
QSLVRSD
1204
RVS
1084
LQSSHF
1139


_PTM_SW
GTTY



PWT






CD3_SP11AVH3_VLK_3_S
QSLVRSD
1204
RVS
1084
LQSSHF
1139


_SWPTM
GTTY



PWT






CD3_SP11AVH3_VLK_SW
QSLVRSD
1204
RVS
1084
LQSSHF
1139


PTM
GTTY



PWT






CD3_SP11AVH3_VLK_3_SW
QSLVRSEG
1210
RVS
1084
LQSSHF
1139



TTY



PWT






CD3_sp11a_VH1_VK2_Y
QSLVRSD
1204
RVS
1084
LQSSHF
1139



GTTY



PWT






CD3_sp11a_VH1_VK2_S
QSLVRSD
1204
RVS
1084
LQSSHF
1139



GTTY



PWT






CD3_sp11a_VH1_VK2_Y_
QSLVRSEG
1210
RVS
1084
LQSSHF
1139


PTM
TTY



PWT






CD3_sp11a_VH1_VK2_S_
QSLVRSEG
1210
RVS
1084
LQSSHF
1139


PTM
TTY



PWT






CD3_sp11a_VH1_VK2_Y_SW
QSLVRSD
1204
RVS
1084
LQSSHF
1139



GTTY



PWT






CD3_sp11a_VH1_VK2_S_SW
QSLVRSD
1204
RVS
1084
LQSSHF
1139



GTTY



PWT






CD3_sp11a_VH1_VK2_Y_
QSLVRSEG
1210
RVS
1084
LQSSHF
1139


PTM
TTY



PWT






CD3_sp11a_VH1_VK2_S_
QSLVRSEG
1210
RVS
1084
LQSSHF
1139


PTM_SW
TTY



PWT






CD3_sp11a_VH1_VK2_SW
QSLVRSD
1204
RVS
1084
LQSSHF
1139



GTTY



PWT






CD3_sp11a_VH1_VK2_SW
QSLVRSDE
1211
RVS
1084
LQSSHF
1139


_PTM
TTY



PWT






CD3_SP11A_VH3_VLK1_Y
QSLVRSEG
1210
RVS
1084
LQSSHF
1139



TTY



PWT






CD3_SP11A_VH3_VLK1_S
QSLVRSEG
1210
RVS
1084
LQSSHF
1139



TTY



PWT






CD3_SP11A_VH3_VLK1_Y
QSLVRSD
1204
RVS
1084
LQSSHF
1139


_PTM
GTTY



PWT






CD3_SP11A_VH3_VLK1_S
QSLVRSD
1204
RVS
1084
LQSSHF
1139


_PTM
GTTY



PWT






CD3_SP11A_VH3_VLK1_Y
QSLVRSEG
1210
RVS
1084
LQSSHF
1139


_SW
TTY



PWT






CD3_SP11A_VH3_VLK1_S
QSLVRSEG
1210
RVS
1084
LQSSHF
1139


_SW
TTY



PWT






CD3_SP11A_VH3_VLK1_Y
QSLVRSD
1204
RVS
1084
LQSSHF
1139


_PTM
GTTY



PWT






CD3_SP11A_VH3_VLK1_S
QSLVRSD
1204
RVS
1084
LQSSHF
1139


_PTM_SW
GTTY



PWT






CD3_SP11A_VH3_VLK1PTM
QSLVRSD
1204
RVS
1084
LQSSHF
1139


_SW
GTTY



PWT






CD3_SP11A_VH3_VLK1_SW
QSLVRSEG
1210
RVS
1084
LQSSHF
1139



TTY



PWT






CD3_SP11A_VH5_VK2_Y
QSLVRSD
1204
RVS
1084
LQSSHF
1139



GTTY



PWT






CD3_SP11A_VH5_VK2_S
QSLVRSD
1204
RVS
1084
LQSSHF
1139



GTTY



PWT






CD3_SP11A_VH5_VK2_Y_
QSLVRSD
1204
RVS
1084
LQSSHF
1139


PTM
GTTY



PWT






CD3_SP11A_VH5_VK2_S_
QSLVRSD
1204
RVS
1084
LQSSHF
1139


PTM
GTTY



PWT






CD3_SP11A_VH5_VK2_Y_
QSLVRSD
1204
RVS
1084
LQSSHF
1139


SW
GTTY



PWT






CD3_SP11A_VH5_VK2_S_
QSLVRSD
1204
RVS
1084
LQSSHF
1139


SW
GTTY



PWT






CD3_SP11A_VH5_VK2_Y_
QSLVRSD
1204
RVS
1084
LQSSHF
1139


PTM_SW
GTTY



PWT






CD3_SP11A_VH5_VK2_S_
QSLVRSD
1204
RVS
1084
LQSSHF
1139


PTM_SW
GTTY



PWT






CD3_SP11A_VH5_VK2_PTM
QSLVRSD
1204
RVS
1084
LQSSHF
1139


_SW
GTTY



PWT






CD3_SP11A_VH5_VK2_SW
QSLVRSD
1204
RVS
1084
LQSSHF
1139



GTTY



PWT
















TABLE AG-1







CD3 Binders- Heavy Chain CDR sequences according to combination of Kabat and Chothia


numbering schemes















SEQ ID

SEQ ID

SEQ ID


Binder
CDR-H1
NO:
CDR-H2
NO:
CDR-H3
NO:





NOV292
GFTFSK
1215
MIYYDSSKMY
1093
FWWDLDFD
1100



NGMH

YADTVKG

H






NOV123
GYTFTS
1072
YIYPGHDAIYY
1094
PNTMMAPLA
1101



YYIY

SENFKG

Y






Sp10b
GYTFTS
1072
YIYPGHDAIYY
1094
PNTMMAPLA
1101



YYIY

SENFKG

Y






NOV453
GFSLTT
1216
RMRYSGDTSF
1095
DPMYIPNYS
1102



YNVH

NAALTS

YGVMNA






NOV229
GFSLTT
1216
RMRYSGDTSF
1095
DPMYIPNYS
1102



YNVH

NAALTS

YGVMNA






NOV110
GYTFTS
1072
YIYPANGGIYY
1096
PVTMMAPLV
1103



YYIY

SEKFKG

F






NOV832
GYTFTS
1072
YIYPANGGIYY
1096
PVTMMAPLV
1103



YYIY

SEKFKG

F






NOV589
GFTFSK
1215
MIYYDSSRMY
1097
FWWDLDFDY
1104



NGMH

YADTVKG








NOV580
GFSLTT
1217
RMRYSGDTSY
1098
DPMYIPGYS
1105



YNIH

SSALKS

YGVMNA






NOV567
GFAFRK
1218
LIYYDSSKMNY
1099
LNSEYD
1042



YGMS

ADTVKG








NOV221
GFSLTT
1217
RMRYSGDTSY
1098
DPMYIPGYS
1105



YNIH

SSALKS

YGVMNA






CD3_sp11a_bkm1
GFTFSK
1215
MIYYDSSKMY
1093
FWWDLDFD
1100



NGMH

YADTVKG

H






CD3_SP11a_bkm2
GFTFSK
1215
MIYYDSSKMY
1093
FWWDLDFD
1100



NGMH

YADTVKG

H






CD3_sp11a_hz0
GFTFSK
1215
MIYYDSSKMY
1093
FWWDLDFD
1100



NGMH

YADTVKG

H






CD3_SP11A_HZ1
GFTFSK
1215
MIYYDSSKMY
1093
FWWDLDFD
1100



NGMH

YADTVKG

H






CD3_sp11a_sansPTM_
GFTFSK
1219
MIYYDSSKMY
1093
FWWDLDFD
1100


hz1
QGMH

YADTVKG

H






CD3_sp11a_sansPTM_
GFTFSK
1219
MIYYDSSKMY
1093
FWWDLDFD
1100


rat
QGMH

YADTVKG

H






CD3_sp11a_VHVL_YY
GFTFSK
1215
MIYYDSSKMY
1093
FYYDLDFDH
1106



NGMH

YADTVKG








CD3_SP11A_VHVL_SS
GFTFSK
1215
MIYYDSSKMY
1093
FSSDLDFDH
1107



NGMH

YADTVKG








CD3_SP11A_VHVL_WS
GFTFSK
1215
MIYYDSSKMY
1093
FWSDLDFDH
1108



NGMH

YADTVKG








CD3_sp11a_VHVL_SW
GFTFSK
1215
MIYYDSSKMY
1093
FSWDLDFDH
1109



NGMH

YADTVKG








CD3_SP11A_VHVL_TT
GFTFSK
1215
MIYYDSSKMY
1093
FTTDLDFDH
1110



NGMH

YADTVKG








CD3_SP11A_VHVL_TW
GFTFSK
1215
MIYYDSSKMY
1093
FTWDLDFDH
1111



NGMH

YADTVKG








CD3_SP11A_VHVL_WT
GFTFSK
1215
MIYYDSSKMY
1093
FWTDLDFDH
1112



NGMH

YADTVKG








CD3_SP11A
GFTFSK
1215
MIYYDSSKMY
1093
FWWDLDFD
1100


VH3_VLK_3
NGMH

YADTVKG

H






CD3_sp11a_VH1_VK2
GFTFSK
1219
MIYYDSSKMY
1093
FWWDLDFD
1100



QGMH

YADTVKG

H






CD3_SP11A_VH3_VLK1
GFTFSK
1215
MIYYDSSKMY
1093
FWWDLDFD
1100



NGMH

YADTVKG

H






CD3_SP11A_VH5_VK2
GFTFSK
1219
MIYYDSSKMY
1093
FWWDLDFD
1100



QGMH

YADTVKG

H






CD3_sp9aFW1_VL_VH_
GFSLTT
1216
RMRYSGDTSF
1095
DPMYIPNYA
1113


S56G
YNVH

NAALTS

YGVMNA






CD3_SP9AFW4_VL_VH
GFSLTT
1216
RMRYSGDTSF
1095
DPMYIPNYA
1113


_S56G
YNVH

NAALTS

YGVMNA






CD3_sp9aFW1_VLVH
GFSLTT
1216
RMRYSGDTSF
1095
DPMYIPNYA
1113



YNVH

NAALTS

YGVMNA






CD3_sp9aFW4_VLVH
GFSLTT
1216
RMRYSGDTSF
1095
DPMYIPNYA
1113



YNVH

NAALTS

YGVMNA






CD3_sp9arabtor_VHVL
GFSLTT
1216
RMRYSGDTSF
1095
DPMYIPNYA
1113



YNVH

NAALTS

YGVMNA






CD3_sp9arabtor_VLVH
GFSLTT
1216
RMRYSGDTSF
1095
DPMYIPNYA
1113



YNVH

NAALTS

YGVMNA






CD3_sp11a_VHVL_YY_
GFTFSK
1219
MIYYDSSKMY
1093
FWWDLDFD
1100


SANSPTM
QGMH

YADTVKG

H 






CD3_sp11a_VHVL_YY_
GFTFSK
1219
MIYYDSSKMY
1093
FWWDLDFD
1100


SANSPTM_Y
QGMH

YADTVKG

H 






CD3_sp11a_VHVL_YY_
GFTFSK
1219
MIYYDSSKMY
1093
FWWDLDFD
1100


SANSPTM_S
QGMH

YADTVKG

H 






CD3_sp11a_VHVL_YY_
GFTFSK
1215
MIYYDSSKMY
1093
FWWDLDFD
1100


Y
NGMH

YADTVKG

H






CD3_sp11a_VHVL_YY_
GFTFSK
1215
MIYYDSSKMY
1093
FWWDLDFD
1100


s
NGMH

YADTVKG

H






CD3_sp11a_VHVL_SS_
GFTFSK
1219
MIYYDSSKMY
1093
FWWDLDFD
1100


SANSPTM
QGMH

YADTVKG

H






CD3_sp11a_VHVL_SS_
GFTFSK
1219
MIYYDSSKMY
1093
FWWDLDFD
1100


SANSPTM_Y
QGMH

YADTVKG

H






CD3_sp11a_VHVL_SS_
GFTFSK
1219
MIYYDSSKMY
1093
FWWDLDFD
1100


SANSPTM_S
QGMH

YADTVKG

H






CD3_sp11a_VHVL_SS_
GFTFSK
1215
MIYYDSSKMY
1093
FWWDLDFD
1100


Y
NGMH

YADTVKG

H






CD3_sp11a_VHVL_SS_
GFTFSK
1215
MIYYDSSKMY
1093
FWWDLDFD
1100


S
NGMH

YADTVKG

H






CD3_sp11a_VHVL_SS
GFTFSK
1219
MIYYDSSKMY
1093
FWWDLDFD
1100


_SANSPTM
QGMH

YADTVKG

H






CD3_sp11a_VHVL_WS
GFTFSK
1219
MIYYDSSKMY
1093
FWWDLDFD
1100


_SANSPTM_Y
QGMH

YADTVKG

H






CD3_sp11a_VHVL_WS
GFTFSK
1219
MIYYDSSKMY
1093
FWWDLDFD
1100


_SANSPTM_S
QGMH

YADTVKG

H 






CD3_sp11a_VHVL_WS
GFTFSK
1215
MIYYDSSKMY
1093
FWWDLDFD
1100


_Y
NGMH

YADTVKG

H






CD3_sp11a_VHVL_WS
GFTFSK
1215
MIYYDSSKMY
1093
FWWDLDFD
1100


_S
NGMH

YADTVKG

H






CD3_sp11a_VHVL_WS
GFTFSK
1219
MIYYDSSKMY
1093
FWWDLDFD
1100


_SANSPTM
QGMH

YADTVKG

H






CD3_sp11a_VHVL_SW
GFTFSK
1219
MIYYDSSKMY
1093
FWWDLDFD
1100


_SANSPTM_Y
QGMH

YADTVKG

H






CD3_sp11a_VHVL_SW
GFTFSK
1219
MIYYDSSKMY
1093
FWWDLDFD
1100


_SANSPTM_S
QGMH

YADTVKG

H






CD3_sp11a_VHVL_SW
GFTFSK
1215
MIYYDSSKMY
1093
FWWDLDFD
1100


_Y
NGMH

YADTVKG

H






CD3_sp11a_VHVL_SW
GFTFSK
1215
MIYYDSSKMY
1093
FWWDLDFD
1100


_S
NGMH

YADTVKG

H






CD3_sp11a_VHVL_SW
GFTFSK
1219
MIYYDSSKMY
1093
FWWDLDFD
1100


_SANSPTM
QGMH

YADTVKG

H






CD3_sp11a_VHVL_TW
GFTFSK
1219
MIYYDSSKMY
1093
FWWDLDFD
1100


_SANSPTM_Y
QGMH

YADTVKG

H






CD3_sp11a_VHVL_TW
GFTFSK
1219
MIYYDSSKMY
1093
FWWDLDFD
1100


_SANSPTM_S
QGMH

YADTVKG

H






CD3_sp11a_VHVL_TW
GFTFSK
1215
MIYYDSSKMY
1093
FWWDLDFD
1100


_Y
NGMH

YADTVKG

H






CD3_sp11a_VHVL_TW
GFTFSK
1215
MIYYDSSKMY
1093
FWWDLDFD
1100


_S
NGMH

YADTVKG

H






CD3_sp11a_VHVL_TW
GFTFSK
1219
MIYYDSSKMY
1093
FWWDLDFD
1100


_SANSPTM
QGMH

YADTVKG

H






CD3_sp11a_VHVL_TT
GFTFSK
1219
MIYYDSSKMY
1093
FWWDLDFD
1100


_SANSPTM_Y
QGMH

YADTVKG

H






CD3_sp11a_VHVL_TT_
GFTFSK
1219
MIYYDSSKMY
1093
FWWDLDFD
1100


SANSPTM_S
QGMH

YADTVKG

H






CD3_sp11a_VHVL_TT_
GFTFSK
1215
MIYYDSSKMY
1093
FWWDLDFD
1100


Y
NGMH

YADTVKG

H






CD3_sp11a_VHVL_TT_
GFTFSK
1215
MIYYDSSKMY
1093
FWWDLDFD
1100


S
NGMH

YADTVKG

H






CD3_sp11a_VHVL_TT_
GFTFSK
1219
MIYYDSSKMY
1093
FWWDLDFD
1100


SANSPTM
QGMH

YADTVKG

H






CD3_SP11AVH3_VLK_3
GFTFSK
1215
MIYYDSSKMY
1093
YWWDLDFD
1126


_Y
NGMH

YADTVKG

H






CD3_SP11AVH3_VLK_3
GFTFSK
1215
MIYYDSSKMY
1093
SWWDLDFD
1127


_S
NGMH

YADTVKG

H






CD3_SP11AVH3_VLK_3
GFTFSK
1215
MIYYDSSKMY
1093
YWWDLDFD
1126


_Y_PTM
NGMH

YADTVKG

H






CD3_SP11AVH3_VLK_3
GFTFSK
1215
MIYYDSSKMY
1093
SWWDLDFD
1127


_S_PTM
NGMH

YADTVKG

H






CD3_SP11AVH3_VLK_3
GFTFSK
1215
MIYYDSSKMY
1093
YSWDLDFDH
1120


_Y_SW
NGMH

YADTVKG 








CD3_SP11AVH3_VLK_3
GFTFSK
1215
MIYYDSSKMY
1093
SSWDLDFDH
1121


_S_SW
NGMH

YADTVKG








CD3_SP11AVH3_VLK_3
GFTFSK
1215
MIYYDSSKMY
1093
YSWDLDFDH
1120


_Y_PTM_SW
NGMH

YADTVKG








CD3_SP11AVH3_VLK_3
GFTFSK
1215
MIYYDSSKMY
1093
SSWDLDFDH
1121


_S_SWPTM
NGMH

YADTVKG








CD3_SP11AVH3_VLK_
GFTFSK
1215
MIYYDSSKMY
1093
FSWDLDFDH
1109


SWPTM
NGMH

YADTVKG








CD3_SP11AVH3_VLK_3
GFTFSK
1215
MIYYDSSKMY
1093
FSWDLDFDH
1109


_SW
NGMH

YADTVKG








CD3_sp11a_VH1_VK2_
GFTFSK
1219
MIYYDSSKMY
1093
YWWDLDFD
1126


Y
QGMH

YADTVKG

H






CD3_sp11a_VH1_VK2_
GFTFSK
1219
MIYYDSSKMY
1093
SWWDLDFD
1127


S
QGMH

YADTVKG

H






CD3_sp11a_VH1_VK2_
GFTFSK
1215
MIYYDSSKMY
1093
YWWDLDFD
1126


Y_PTM
NGMH

YADTVKG

H






CD3_sp11a_VH1_VK2_
GFTFSK
1215
MIYYDSSKMY
1093
SWWDLDFD
1127


S_PTM
NGMH

YADTVKG

H






CD3_sp11a_VH1_VK2_
GFTFSK
1219
MIYYDSSKMY
1093
YSWDLDFDH
1120


Y_SW
QGMH

YADTVKG








CD3_sp11a_VH1_VK2_
GFTFSK
1219
MIYYDSSKMY
1093
SSWDLDFDH
1121


S_SW
QGMH

YADTVKG








CD3_sp11a_VH1_VK2_
GFTFSK
1215
MIYYDSSKMY
1093
YSWDLDFDH
1120


Y_PTM
NGMH

YADTVKG








CD3_sp11a_VH1_VK2_
GFTFSK
1215
MIYYDSSKMY
1093
SSWDLDFDH
1121


S_PTM_SW
NGMH

YADTVKG








CD3_sp11a_VH1_VK2_
GFTFSK
1219
MIYYDSSKMY
1093
FSWDLDFDH
1109


SW
QGMH

YADTVKG








CD3 sp11a_VH1_VK2_
GFTFSK
1215
MIYYDSSKMY
1093
FSWDLDFDH
1109


SW_PTM
NGMH

YADTVKG








CD3_SP11A_VH3_VLK1
GFTFSK
1215
MIYYDSSKMY
1093
YWWDLDFD
1126


_Y
NGMH

YADTVKG

H






CD3_SP11A_VH3_VLK1
GFTFSK
1215
MIYYDSSKMY
1093
SWWDLDFD
1127


_S
NGMH

YADTVKG

H






CD3_SP11A_VH3_VLK1
GFTFSK
1219
MIYYDSSKMY
1093
YWWDLDFD
1126


_Y_PTM
QGMH

YADTVKG

H






CD3_SP11A_VH3_VLK1
GFTFSK
1219
MIYYDSSKMY
1093
SWWDLDFD
1127


_S_PTM
QGMH

YADTVKG

H






CD3_SP11A_VH3_VLK1
GFTFSK
1215
MIYYDSSKMY
1093
YSWDLDFDH
1120


_Y_SW
NGMH

YADTVKG 








CD3_SP11A_VH3_VLK1
GFTFSK
1215
MIYYDSSKMY
1093
SSWDLDFDH
1121


_S_SW
NGMH

YADTVKG








CD3_SP11A_VH3_VLK1
GFTFSK
1219
MIYYDSSKMY
1093
YWWDLDFD
1126


_Y_PTM
QGMH

YADTVKG

H






CD3_SP11A_VH3_VLK1
GFTFSK
1219
MIYYDSSKMY
1093
SSWDLDFDH
1121


_S_PTM_SW
QGMH

YADTVKG








CD3_SP11A_VH3_VLK1
GFTFSK
1219
MIYYDSSKMY
1093
FSWDLDFDH
1109


PTM_SW
QGMH

YADTVKG








CD3_SP11A_VH3_VLK1
GFTFSK
1215
MIYYDSSKMY
1093
FSWDLDFDH
1109


_SW
NGMH

YADTVKG








CD3_SP11A_VH5_VK2_
GFTFSK
1219
MIYYDSSKMY
1093
YWWDLDFD
1126


Y
QGMH

YADTVKG

H






CD3_SP11A_VH5_VK2
GFTFSK
1219
MIYYDSSKMY
1093
SWWDLDFD
1127


S
QGMH

YADTVKG

H






CD3_SP11A_VH5_VK2_
GFTFSK
1215
MIYYDSSKMY
1093
YWWDLDFD
1126


Y_PTM
NGMH

YADTVKG

H






CD3_SP11A_VH5_VK2_
GFTFSK
1215
MIYYDSSKMY
1093
SWWDLDFD
1127


S_PTM
NGMH

YADTVKG

H






CD3_SP11A_VH5_VK2_
GFTFSK
1219
MIYYDSSKMY
1093
YSWDLDFDH
1120


Y_SW
QGMH

YADTVKG








CD3_SP11A_VH5_VK2_
GFTFSK
1219
MIYYDSSKMY
1093
SSWDLDFDH
1121


S_SW
QGMH

YADTVKG








CD3_SP11A_VH5_VK2_
GFTFSK
1215
MIYYDSSKMY
1093
YSWDLDFDH
1120


Y_PTM_SW
NGMH

YADTVKG








CD3_SP11A_VH5_VK2_
GFTFSK
1215
MIYYDSSKMY
1093
SSWDLDFDH
1121


S_PTM_SW
NGMH

YADTVKG








CD3_SP11A_VH5_VK2_
GFTFSK
1215
MIYYDSSKMY
1093
FSWDLDFDH
1109


PTM_SW
NGMH

YADTVKG








CD3_SP11A_VH5_VK2_
GFTFSK
1219
MIYYDSSKMY
1093
FSWDLDFDH
1109


SW
QGMH

YADTVKG
















TABLE AG-2







CD3 Binders- Light Chain CDR sequences according to combination of Kabat and Chothia


numbering schemes















SEQ ID
CDR-
SEQ ID

SEQ ID


Binder
CDR-L1
NO:
L2
NO:
CDR-L3
NO:





NOV292
RSSQSLVRSDG
1128
RVSN
1083
LQSSHFP
1139



TTYFN

RFS

WT






NOV123
RSSQSLIYSIGN
1129
RVSN
1083
FQSTHLP
1085



TYLH

RFS

YT






Sp10b
RSSQSLIYSIGN
1129
RVSN
1083
FQSTHLP
1085



TYLH

RFS

YT






NOV453
KASQNINNYLN
1130
NTDHL
1136
LQHRSRY
1140





QA

T






NOV229
KASQNINNYLN
1130
NTDHL
1136
LQHRSRY
1140





QA

T






NOV110
RSSQSLVYSHG
1131
RVSN
1083
FQSTHLP
1085



NTYLH

RFS

YT






NOV832
RSSQSLVYSHG
1131
RVSN
1083
FQSTHLP
1085



NTYLH

RFS

YT






NOV589
RSSQSLVRSDG
1128
RVSN
1083
LQSSHFP
1139



TTYFN

RFS

WT






NOV580
KTSQNIDKYLN
1132
NTNNL
1137
LQHRSSY
1141





EA

T






NOV567
RGSQSIGNSLN
1133
STSTL
1138
LQYATYP
1142





EY

YT






NOV221
KSSQNIDKYLN
1134
NTNNL
1137
LQHRSGY
1143





EA

T






CD3_sp11a_bkm1
RSSQSLVRSDG
1128
RVSN
1083
LQSSHFP
1139



TTYFN

RFS

WT






CD3_SP11a_bkm2
RSSQSLVRSDG
1128
RVSN
1083
LQSSHFP
1139



TTYFN

RFS

WT






CD3_sp11a_hz0
RSSQSLVRSDG
1128
RVSN
1083
LQSSHFP
1139



TTYFN

RFS

WT






CD3_SP11A_HZ1
RSSQSLVRSDG
1128
RVSN
1083
LQSSH
1144



TTYFN

RFS








CD3_sp11a_sansPTM_hz1
RSSQSLVRSEG
1135
RVSN
1083
LQSSHFP
1139



TTYFN

RFS

WT






CD3_sp11a_sansPTM_rat
RSSQSLVRSEG
1135
RVSN
1083
LQSSHFP
1139



TTYFN

RFS

WT






CD3_sp11a_VHVL_YY
RSSQSLVRSDG
1128
RVSN
1083
LQSSHFP
1139



TTYFN

RFS

WT






CD3_SP11A_VHVL_SS
RSSQSLVRSDG
1128
RVSN
1083
LQSSHFP
1139



TTYFN

RFS

WT






CD3_SP11A_VHVL_WS
RSSQSLVRSDG
1128
RVSN
1083
LQSSHFP
1139



TTYFN

RFS

WT






CD3_sp11a_VHVL_SW
RSSQSLVRSDG
1128
RVSN
1083
LQSSHFP
1139



TTYFN

RFS

WT






CD3_SP11A_VHVL_TT
RSSQSLVRSDG
1128
RVSN
1083
LQSSHFP
1139



TTYFN

RFS

WT






CD3_SP11A_VHVL_TW
RSSQSLVRSDG
1128
RVSN
1083
LQSSHFP
1139



TTYFN

RFS

WT






CD3_SP11A_VHVL_WT
RSSQSLVRSDG
1128
RVSN
1083
LQSSHFP
1139



TTYFN

RFS

WT






CD3_SP11A VH3_VLK_3
RSSQSLVRSEG
1135
RVSN
1083
LQSSHFP
1139



TTYFN

RFS

WT






CD3_sp11a_VH1_VK2
RSSQSLVRSDG
1128
RVSN
1083
LQSSHFP
1139



TTYFN

RFS

WT






CD3_SP11A_VH3_VLK1
RSSQSLVRSEG
1135
RVSN
1083
LQSSHFP
1139



TTYFN

RFS

WT






CD3_SP11A_VH5_VK2
RSSQSLVRSDG
1128
RVSN
1083
LQSSHFP
1139



TTYFN

RFS

WT






CD3_sp9aFW1_VL_VH_
KASQNINNYLN
1130
NTDHL
1136
LQHRSRY
1140


S56G


QA

T






CD3_SP9AFW4_VL_VH_
KASQNINNYLN
1130
NTDHL
1136
LQHRSRY
1140


S56G


QA

T






CD3_sp9aFW1_VLVH
KASQNINNYLN
1130
NTDHL
1136
LQHRSRY
1140





QA

T






CD3_sp9aFW4_VLVH
KASQNINNYLN
1130
NTDHL
1136
LQHRSRY
1140





QA

T






CD3_sp9arabtor_VHVL
KASQNINNYLN
1130
NTDHL
1136
LQHRSRY
1140





QA

T






CD3_sp9arabtor_VLVH
KASQNINNYLN
1130
NTDHL
1136
LQHRSRY
1140





QA

T






CD3_sp11a_VHVL_YY_
RSSQSLVRSEG
1135
RVSN
1083
LQSSHFP
1139


SANSPTM
TTYFN

RFS

WT






CD3_sp11a_VHVL_YY_
RSSQSLVRSEG
1135
RVSN
1083
LQSSHFP
1139


SANSPTM_Y
TTYFN

RFS

WT






CD3_sp11a_VHVL_YY_
RSSQSLVRSEG
1135
RVSN
1083
LQSSHFP
1139


SANSPTM_S
TTYFN

RFS

WT






CD3_sp11a_VHVL_YY_Y
RSSQSLVRSDG
1128
RVSN
1083
LQSSHFP
1139



TTYFN

RFS

WT






CD3_sp11a_VHVL_YY_s
RSSQSLVRSDG
1128
RVSN
1083
LQSSHFP
1139



TTYFN

RFS

WT






CD3_sp11a_VHVL_SS_
RSSQSLVRSEG
1135
RVSN
1083
LQSSHFP
1139


SANSPTM
TTYFN

RFS

WT






CD3_sp11a_VHVL_SS_
RSSQSLVRSEG
1135
RVSN
1083
LQSSHFP
1139


SANSPTM_Y
TTYFN

RFS

WT






CD3_sp11a_VHVL_SS_
RSSQSLVRSEG
1135
RVSN
1083
LQSSHFP
1139


SANSPTM_S
TTYFN

RFS

WT






CD3_sp11a_VHVL_SS_Y
RSSQSLVRSDG
1128
RVSN
1083
LQSSHFP
1139



TTYFN

RFS

WT






CD3_sp11a_VHVL_SS_S
RSSQSLVRSDG
1128
RVSN
1083
LQSSHFP
1139



TTYFN

RFS

WT






CD3_sp11a_VHVL_SS
RSSQSLVRSEG
1135
RVSN
1083
LQSSHFP
1139


_SANSPTM
TTYFN

RFS

WT






CD3_sp11a_VHVL_WS
RSSQSLVRSEG
1135
RVSN
1083
LQSSHFP
1139


_SANSPTM_Y
TTYFN

RFS

WT






CD3_sp11a_VHVL_WS
RSSQSLVRSEG
1135
RVSN
1083
LQSSHFP
1139


_SANSPTM_S
TTYFN

RFS

WT






CD3_sp11a_VHVL_WS_Y
RSSQSLVRSDG
1128
RVSN
1083
LQSSHFP
1139



TTYFN

RFS

WT






CD3_sp11a_VHVL_WS_S
RSSQSLVRSDG
1128
RVSN
1083
LQSSHFP
1139



TTYFN

RFS

WT






CD3_sp11a_VHVL_WS
RSSQSLVRSEG
1135
RVSN
1083
LQSSHFP
1139


_SANSPTM
TTYFN

RFS

WT






CD3_sp11a_VHVL_SW
RSSQSLVRSEG
1135
RVSN
1083
LQSSHFP
1139


_SANSPTM_Y
TTYFN

RFS

WT






CD3_sp11a_VHVL_SW
RSSQSLVRSEG
1135
RVSN
1083
LQSSHFP
1139


_SANSPTM_S
TTYFN

RFS

WT






CD3_sp11a_VHVL_SW_Y
RSSQSLVRSDG
1128
RVSN
1083
LQSSHFP
1139



TTYFN

RFS

WT






CD3_sp11a_VHVL_SW_S
RSSQSLVRSDG
1128
RVSN
1083
LQSSHFP
1139



TTYFN

RFS

WT






CD3_sp11a_VHVL_SW
RSSQSLVRSEG
1135
RVSN
1083
LQSSHFP
1139


_SANSPTM
TTYFN

RFS

WT






CD3_sp11a_VHVL_TW
RSSQSLVRSEG
1135
RVSN
1083
LQSSHFP
1139


_SANSPTM_Y
TTYFN

RFS

WT






CD3_sp11a_VHVL_TW
RSSQSLVRSEG
1135
RVSN
1083
LQSSHFP
1139


_SANSPTM_S
TTYFN

RFS

WT






CD3_sp11a_VHVL_TW_Y
RSSQSLVRSDG
1128
RVSN
1083
LQSSHFP
1139



TTYFN

RFS

WT






CD3_sp11a_VHVL_TW_S
RSSQSLVRSDG
1128
RVSN
1083
LQSSHFP
1139



TTYFN

RFS

WT






CD3_sp11a_VHVL_TW
RSSQSLVRSEG
1135
RVSN
1083
LQSSHFP
1139


_SANSPTM
TTYFN

RFS

WT






CD3_sp11a_VHVL_TT
RSSQSLVRSEG
1135
RVSN
1083
LQSSHFP
1139


_SANSPTM_Y
TTYFN

RFS

WT






CD3_sp11a_VHVL_TT_
RSSQSLVRSEG
1135
RVSN
1083
LQSSHFP
1139


SANSPTM_S
TTYFN

RFS

WT






CD3_sp11a_VHVL_TT_Y
RSSQSLVRSDG
1128
RVSN
1083
LQSSHFP
1139



TTYFN

RFS

WT






CD3_sp11a_VHVL_TT_S
RSSQSLVRSDG
1128
RVSN
1083
LQSSHFP
1139



TTYFN

RFS

WT






CD3_sp11a_VHVL_TT_
RSSQSLVRSEG
1135
RVSN
1083
LQSSHFP
1139


SANSPTM
TTYFN

RFS

WT






CD3_SP11AVH3_VLK_3_Y
RSSQSLVRSEG
1135
RVSN
1083
LQSSHFP
1139



TTYFN

RFS

WT






CD3_SP11AVH3_VLK_3_S
RSSQSLVRSEG
1135
RVSN
1083
LQSSHFP
1139



TTYFN

RFS

WT






CD3_SP11AVH3_VLK_3_Y
RSSQSLVRSDG
1128
RVSN
1083
LQSSHFP
1139


_PTM
TTYFN

RFS

WT






CD3_SP11AVH3_VLK_3_S
RSSQSLVRSDG
1128
RVSN
1083
LQSSHFP
1139


_PTM
TTYFN

RFS

WT






CD3_SP11AVH3_VLK_3_Y
RSSQSLVRSEG
1135
RVSN
1083
LQSSHFP
1139


_SW
TTYFN

RFS

WT






CD3_SP11AVH3_VLK_3_S
RSSQSLVRSEG
1135
RVSN
1083
LQSSHFP
1139


_SW
TTYFN

RFS

WT






CD3_SP11AVH3_VLK_3_Y
RSSQSLVRSDG
1128
RVSN
1083
LQSSHFP
1139


_PTM_SW
TTYFN

RFS

WT






CD3_SP11AVH3_VLK_3_S
RSSQSLVRSDG
1128
RVSN
1083
LQSSHFP
1139


_SWPTM
TTYFN

RFS

WT






CD3_SP11AVH3_VLK_
RSSQSLVRSDG
1128
RVSN
1083
LQSSHFP
1139


SWPTM
TTYFN

RFS

WT






CD3_SP11AVH3_VLK_3_
RSSQSLVRSEG
1135
RVSN
1083
LQSSHFP
1139


SW
TTYFN

RFS

WT






CD3_sp11a_VH1_VK2_Y
RSSQSLVRSDG
1128
RVSN
1083
LQSSHFP
1139



TTYFN

RFS

WT






CD3_sp11a_VH1_VK2_S
RSSQSLVRSDG
1128
RVSN
1083
LQSSHFP
1139



TTYFN

RFS

WT






CD3_sp11a_VH1_VK2_Y_
RSSQSLVRSEG
1135
RVSN
1083
LQSSHFP
1139


PTM
TTYFN

RFS

WT






CD3_sp11a_VH1_VK2_S_
RSSQSLVRSEG
1135
RVSN
1083
LQSSHFP
1139


PTM
TTYFN

RFS

WT






CD3_sp11a_VH1_VK2_Y_
RSSQSLVRSDG
1128
RVSN
1083
LQSSHFP
1139


SW
TTYFN

RFS

WT






CD3_sp11a_VH1_VK2_S_
RSSQSLVRSDG
1128
RVSN
1083
LQSSHFP
1139


SW
TTYFN

RFS

WT






CD3_sp11a_VH1_VK2_Y_
RSSQSLVRSEG
1135
RVSN
1083
LQSSHFP
1139


PTM
TTYFN

RFS

WT






CD3_sp11a_VH1_VK2_S_
RSSQSLVRSEG
1135
RVSN
1083
LQSSHFP
1139


PTM_SW
TTYFN

RFS

WT






CD3_sp11a_VH1_VK2_SW
RSSQSLVRSDG
1128
RVSN
1083
LQSSHFP
1139



TTYFN

RFS

WT






CD3_sp11a_VH1_VK2_SW
RSSQSLVRSEG
1135
RVSN
1083
LQSSHFP
1139


_PTM
TTYFN

RFS

WT






CD3_SP11A_VH3_VLK1_Y
RSSQSLVRSEG
1135
RVSN
1083
LQSSHFP
1139



TTYFN

RFS

WT






CD3_SP11A_VH3_VLK1_S
RSSQSLVRSEG
1135
RVSN
1083
LQSSHFP
1139



TTYFN

RFS

WT






CD3_SP11A_VH3_VLK1_Y
RSSQSLVRSEG
1135
RVSN
1083
LQSSHFP
1139


_PTM
TTYFN

RFS

WT






CD3_SP11A_VH3_VLK1_S
RSSQSLVRSDG
1128
RVSN
1083
LQSSHFP
1139


_PTM
TTYFN

RFS

WT






CD3_SP11A_VH3_VLK1_Y
RSSQSLVRSEG
1135
RVSN
1083
LQSSHFP
1139


_SW
TTYFN

RFS

WT






CD3_SP11A_VH3_VLK1_S
RSSQSLVRSEG
1135
RVSN
1083
LQSSHFP
1139


_SW
TTYFN

RFS

WT






CD3_SP11A_VH3_VLK1_Y
RSSQSLVRSEG
1135
RVSN
1083
LQSSHFP
1139


_PTM
TTYFN

RFS

WT






CD3_SP11A_VH3_VLK1_S
RSSQSLVRSDG
1128
RVSN
1083
LQSSHFP
1139


_PTM_SW
TTYFN

RFS

WT






CD3_SP11A_VH3_VLK1PTM
RSSQSLVRSDG
1128
RVSN
1083
LQSSHFP
1139


_SW
TTYFN

RFS

WT






CD3_SP11A_VH3_VLK1_SW
RSSQSLVRSEG
1135
RVSN
1083
LQSSHFP
1139



TTYFN

RFS

WT






CD3_SP11A_VH5_VK2_Y
RSSQSLVRSDG
1128
RVSN
1083
LQSSHFP
1139



TTYFN

RFS

WT






CD3_SP11A_VH5_VK2_S
RSSQSLVRSDG
1128
RVSN
1083
LQSSHFP
1139



TTYFN

RFS

WT






CD3_SP11A_VH5_VK2_Y_
RSSQSLVRSDG
1128
RVSN
1083
LQSSHFP
1139


PTM
TTYFN

RFS

WT






CD3_SP11A_VH5_VK2_S_
RSSQSLVRSDG
1128
RVSN
1083
LQSSHFP
1139


PTM
TTYFN

RFS

WT






CD3_SP11A_VH5_VK2_Y_
RSSQSLVRSDG
1128
RVSN
1083
LQSSHFP
1139


SW
TTYFN

RFS

WT






CD3_SP11A_VH5_VK2_S_
RSSQSLVRSDG
1128
RVSN
1083
LQSSHFP
1139


SW
TTYFN

RFS

WT






CD3_SP11A_VH5_VK2_Y_
RSSQSLVRSDG
1128
RVSN
1083
LQSSHFP
1139


PTM_SW
TTYFN

RFS

WT






CD3_SP11A_VH5_VK2_S_
RSSQSLVRSDG
1128
RVSN
1083
LQSSHFP
1139


PTM_SW
TTYFN

RFS

WT






CD3_SP11A_VH5_VK2_PTM
RSSQSLVRSDG
1128
RVSN
1083
LQSSHFP
1139


_SW
TTYFN

RFS

WT






CD3_SP11A_VH5_VK2_SW
RSSQSLVRSDG
1128
RVSN
1083
LQSSHFP
1139



TTYFN

RFS

WT
















TABLE AH-1







CD3 Binders- Heavy Chain CDR sequences according to combination of Kabat and IMGT


numbering schemes















SEQ ID

SEQ ID

SEQ ID


Binder
CDR-H1
NO:
CDR-H2
NO:
CDR-H3
NO:





NOV292
GFTFSK
1215
MIYYDSSKMY
1093
ASFWWNDLDFD
1174



NGMH

YADTVKG

H






NOV123
GYTFTS
1072
YIYPGHDAIYY
1094
VRPNTMMAPL
1175



YYIY

SENFKG

AY






Sp10b
GYTFTS
1072
YIYPGHDAIYY
1094
VRPNTMMAPL
1175



YYIY

SENFKG

AY






NOV453
GFSLTT
1216
RMRYSGDTSF
1095
TSDPMYIPNYS
1176



YNVH

NAALTS

YGVMNA






NOV229
GFSLTT
1216
RMRYSGDTSF
1095
ARDPMYIPNYS
1177



YNVH

NAALTS

YGVMNA






NOV110
GYTFTS
1072
YIYPANGGIYY
1096
ARPVTMMAPL
1178



YYIY

SEKFKG

VF






NOV832
GYTFTS
1072
YIYPANGGIYY
1096
ARPVTMMAPL
1178



YYIY

SEKFKG

VF






NOV589
GFTFSK
1215
MIYYDSSRMY
1097
ASFWWDLDFD
1179



NGMH

YADTVKG

Y






NOV580
GFSLTT
1217
RMRYSGDTSY
1098
TRDPMYIPGYS
1180



YNIH

SSALKS

YGVMNA






NOV567
GFAFRK
1218
LIYYDSSKMNY
1099
AALNSEYD
1041



YGMS

ADTVKG








NOV221
GFSLTT
1217
RMRYSGDTSY
1098
TRDPMYIPGYS
1180



YNIH

SSALKS

YGVMNA






CD3_sp11a_bkm1
GFTFSK
1215
MIYYDSSKMY
1093
ASFWWDLDFD
1174



NGMH

YADTVKG

H






CD3_SP11a_bkm2
GFTFSK
1215
MIYYDSSKMY
1093
AKFWWDLDFD
1181



NGMH

YADTVKG

H






CD3_sp11a_hz0
GFTFSK
1215
MIYYDSSKMY
1093
AKFWWDLDFD
1181



NGMH

YADTVKG

H






CD3_SP11A_HZ1
GFTFSK
1215
MIYYDSSKMY
1093
ASFWWDLDFD
1174



NGMH

YADTVKG

H






CD3_sp11a_sansPTM_
GFTFSK
1219
MIYYDSSKMY
1093
ASFWWDLDFD
1174


hz1
QGMH

YADTVKG

H






CD3_sp11a_sansPTM_
GFTFSK
1219
MIYYDSSKMY
1093
ASFWWDLDFD
1174


rat
QGMH

YADTVKG

H






CD3_sp11a_VHVL_YY
GFTFSK
1215
MIYYDSSKMY
1093
ASFYYDLDFD
1182



NGMH

YADTVKG

H






CD3_SP11A_VHVL_SS
GFTFSK
1215
MIYYDSSKMY
1093
ASFSSDLDFD
1183



NGMH

YADTVKG

H






CD3_SP11A_VHVL_WS
GFTFSK
1215
MIYYDSSKMY
1093
ASFWSDLDFD
1184



NGMH

YADTVKG

H






CD3_sp11a_VHVL_SW
GFTFSK
1215
MIYYDSSKMY
1093
ASFSWDLDFD
1185



NGMH

YADTVKG

H






CD3_SP11A_VHVL_TT
GFTFSK
1215
MIYYDSSKMY
1093
ASFTTDLDFDH
1186



NGMH

YADTVKG








CD3_SP11A_VHVL_TW
GFTFSK
1215
MIYYDSSKMY
1093
ASFTWDLDFD
1187



NGMH

YADTVKG

H






CD3_SP11A_VHVL_WT
GFTFSK
1215
MIYYDSSKMY
1093
ASFWTDLDFD
1188



NGMH

YADTVKG

H






CD3_SP11A
GFTFSK
1215
MIYYDSSKMY
1093
ASFWWDLDFD
1174


VH3_VLK_3
NGMH

YADTVKG

H






CD3_sp11a_VH1_VK2
GFTFSK
1219
MIYYDSSKMY
1093
ASFWWDLDFD
1174



QGMH

YADTVKG

H






CD3_SP11A_VH3_VLK
GFTFSK
1215
MIYYDSSKMY
1093
ASFWWDLDFD
1174


1
NGMH

YADTVKG

H






CD3_SP11A_VH5_VK2
GFTFSK
1219
MIYYDSSKMY
1093
ASFWWDLDFD
1174



QGMH

YADTVKG

H






CD3_sp9aFW1_VL_VH
GFSLTT
1216
RMRYSGDTSF
1095
ASDPMYIPNYA
1189


_S56G
YNVH

NAALTS

YGVMNA






CD3_SP9AFW4_VL_
GFSLTT
1216
RMRYSGDTSF
1095
ASDPMYIPNYA
1189


VH_S56G
YNVH

NAALTS

YGVMNA






CD3_sp9aFW1_VLVH
GFSLTT
1216
RMRYSGDTSF
1095
ASDPMYIPNYA
1189



YNVH

NAALTS

YGVMNA






CD3_sp9aFW4_VLVH
GFSLTT
1216
RMRYSGDTSF
1095
ASDPMYIPNYA
1189



YNVH

NAALTS

YGVMNA






CD3_sp9arabtor_VHVL
GFSLTT
1216
RMRYSGDTSF
1095
ASDPMYIPNYA
1189



YNVH

NAALTS

YGVMNA






CD3_sp9arabtor_VLVH
GFSLTT
1216
RMRYSGDTSF
1095
ASDPMYIPNYA
1189



YNVH

NAALTS

YGVMNA






CD3_SP11AVH3_VLK_
GFTFSK
1215
MIYYDSSKMY
1093
ASYWWDLDFD
1202


3_Y
NGMH

YADTVKG

H






CD3_SP11AVH3_VLK_
GFTFSK
1215
MIYYDSSKMY
1093
ASSWWDLDFD
1203


3_S
NGMH

YADTVKG

H






CD3_SP11AVH3_VLK_
GFTFSK
1215
MIYYDSSKMY
1093
ASYWWWDLDFD
1202


3_Y_PTM
NGMH

YADTVKG

H






CD3_SP11AVH3_VLK_
GFTFSK
1215
MIYYDSSKMY
1093
ASSWWDLDFD
1203


3_S_PTM
NGMH

YADTVKG

H






CD3_SP11AVH3_VLK_
GFTFSK
1215
MIYYDSSKMY
1093
ASYSWDLDFD
1196


3_Y_SW
NGMH

YADTVKG

H






CD3_SP11AVH3_VLK_
GFTFSK
1215
MIYYDSSKMY
1093
ASSSWDLDFD
1197


3_S_SW
NGMH

YADTVKG

H






CD3_SP11AVH3_VLK_
GFTFSK
1215
MIYYDSSKMY
1093
ASYSWDLDFD
1196


3_Y_PTM_SW
NGMH

YADTVKG

H






CD3_SP11AVH3_VLK_
GFTFSK
1215
MIYYDSSKMY
1093
ASSSWDLDFD
1197


3_S_SWPTM
NGMH

YADTVKG

H






CD3_SP11AVH3_VLK_
GFTFSK
1215
MIYYDSSKMY
1093
ASFSWDLDFD
1185


SWPTM
NGMH

YADTVKG

H






CD3_SP11AVH3_VLK_
GFTFSK
1215
MIYYDSSKMY
1093
ASFSWDLDFD
1185


3_SW
NGMH

YADTVKG

H






CD3_sp11a_VH1_VK2_
GFTFSK
1219
MIYYDSSKMY
1093
ASYWWDLDFD
1202


Y
QGMH

YADTVKG

H






CD3_sp11a_VH1_VK2_
GFTFSK
1219
MIYYDSSKMY
1093
ASSWWDLDFD
1203


S
QGMH

YADTVKG

H






CD3_sp11a_VH1_VK2_
GFTFSK
1215
MIYYDSSKMY
1093
ASYWWDLDFD
1202


Y_PTM
NGMH

YADTVKG

H






CD3_sp11a_VH1_VK2_
GFTFSK
1215
MIYYDSSKMY
1093
ASSWWDLDFD
1203


S_PTM
NGMH

YADTVKG

H






CD3_sp11a_VH1_VK2_
GFTFSK
1219
MIYYDSSKMY
1093
ASYSWDLDFD
1196


Y_SW
QGMH

YADTVKG

H






CD3_sp11a_VH1_VK2_
GFTFSK
1219
MIYYDSSKMY
1093
ASSSWDLDFD
1197


S_SW
QGMH

YADTVKG

H






CD3_sp11a_VH1_VK2_
GFTFSK
1215
MIYYDSSKMY
1093
ASYSWDLDFD
1196


Y_PTM
NGMH

YADTVKG

H






CD3_sp11a_VH1_VK2_
GFTFSK
1215
MIYYDSSKMY
1093
ASSSWDLDFD
1197


S_PTM_SW
NGMH

YADTVKG

H






CD3_sp11a_VH1_VK2_
GFTFSK
1219
MIYYDSSKMY
1093
ASFSWDLDFD
1185


SW
QGMH

YADTVKG

H






CD3_sp11a_VH1_VK2_
GFTFSK
1215
MIYYDSSKMY
1093
ASFSWDLDFD
1185


SW_PTM
NGMH

YADTVKG

H






CD3_SP11A_VH3_VLK1
GFTFSK
1215
MIYYDSSKMY
1093
ASYWWDLDFD
1202


_Y
NGMH

YADTVKG

H






CD3_SP11A_VH3_VLK1
GFTFSK
1215
MIYYDSSKMY
1093
ASSWWDLDFD
1203


_S
NGMH

YADTVKG

H






CD3_SP11A_VH3_VLK1
GFTFSK
1219
MIYYDSSKMY
1093
ASYWWDLDFD
1202


_Y_PTM
QGMH

YADTVKG

H






CD3_SP11A_VH3_VLK1
GFTFSK
1219
MIYYDSSKMY
1093
ASSWWDLDFD
1203


_S_PTM
QGMH

YADTVKG

H






CD3_SP11A_VH3_VLK1
GFTFSK
1215
MIYYDSSKMY
1093
ASYSWDLDFD
1196


_Y_SW
NGMH

YADTVKG

H






CD3_SP11A_VH3_VLK1
GFTFSK
1215
MIYYDSSKMY
1093
ASSSWDLDFD
1197


_S_SW
NGMH

YADTVKG

H






CD3_SP11A_VH3_VLK1
GFTFSK
1219
MIYYDSSKMY
1093
ASYWWDLDFD
1202


_Y_PTM
QGMH

YADTVKG

H






CD3_SP11A_VH3_VLK1
GFTFSK
1219
MIYYDSSKMY
1093
ASSSWDLDFD
1197


_S_PTM_SW
QGMH

YADTVKG

H






CD3_SP11A_VH3_VLK1
GFTFSK
1219
MIYYDSSKMY
1093
ASFSWDLDFD
1185


_PTM_SW
QGMH

YADTVKG

H






CD3_SP11A_VH3_VLK1
GFTFSK
1215
MIYYDSSKMY
1093
ASFSWDLDFD
1185


_SW
NGMH

YADTVKG

H






CD3_SP11A_VH5_VK2
GFTFSK
1219
MIYYDSSKMY
1093
ASYWWDLDFD
1202


_Y
QGMH

YADTVKG

H






CD3_SP11A_VH5_VK2
GFTFSK
1219
MIYYDSSKMY
1093
ASSWWDLDFD
1203


_S
QGMH

YADTVKG

H






CD3_SP11A_VH5_VK2
GFTFSK
1215
MIYYDSSKMY
1093
ASYWWDLDFD
1202


_Y_PTM
NGMH

YADTVKG

H






CD3_SP11A_VH5_VK2
GFTFSK
1215
MIYYDSSKMY
1093
ASSWWDLDFD
1203


_S_PTM
NGMH

YADTVKG

H






CD3_SP11A_VH5_VK2
GFTFSK
1219
MIYYDSSKMY
1093
ASYSWDLDFD
1196


_Y_SW
QGMH

YADTVKG

H






CD3_SP11A_VH5_VK2
GFTFSK
1219
MIYYDSSKMY
1093
ASSSWDLDFD
1197


_S_SW
QGMH

YADTVKG

H






CD3_SP11A_VH5_VK2
GFTFSK
1215
MIYYDSSKMY
1093
ASYSWDLDFD
1196


_Y_PTM_SW
NGMH

YADTVKG

H






CD3_SP11A_VH5_VK2
GFTFSK
1215
MIYYDSSKMY
1093
ASSSWDLDFD
1197


_S_PTM_SW
NGMH

YADTVKG

H






CD3_SP11A_VH5_VK2
GFTFSK
1215
MIYYDSSKMY
1093
ASFSWDLDFD
1185


_PTM_SW
NGMH

YADTVKG

H






CD3_SP11A_VH5_VK2
GFTFSK
1219
MIYYDSSKMY
1093
ASFSWDLDFD
1185


_SW
QGMH

YADTVKG

H
















TABLE AH-2







CD3 Binders- Light Chain CDR sequences according to combination of Kabat and IMGT


numbering schemes















SEQ ID

SEQ ID

SEQ ID


Binder
CDR-L1
NO:
CDR-L2
NO:
CDR-L3
NO:





NOV292
RSSQSLVRSD
1128
RVSNRFS
1083
LQSSHF
1139



GTTYFN



PWT






NOV123
RSSQSLIYSIGN
1129
RVSNRFS
1083
FQSTHL
1085



TYLH



PYT






Sp10b
RSSQSLIYSIGN
1129
RVSNRFS
1083
FQSTHL
1085



TYLH



PYT






NOV453
KASQNINNYLN
1130
NTDHLQA
1212
LQHRSR
1140





GVP

YT






NOV229
KASQNINNYLN
1130
NTDHLQA
1212
LQHRSR
1140





GVP

YT






NOV110
RSSQSLVYSH
1131
RVSNRFS
1083
FQSTHL
1085



GNTYLH



PYT






NOV832
RSSQSLVYSH
1131
RVSNRFS
1083
FQSTHL
1085



GNTYLH



PYT






NOV589
RSSQSLVRSD
1128
RVSNRFS
1083
LQSSHF
1139



GTTYFN



PWT






NOV580
KTSQNIDKYLN
1132
NTNNLEA
1213
LQHRSS
1141





GVP

YT






NOV567
RGSQSIGNSLN
1133
STSTLEY
1214
LQYATY
1142





GVP

PYT






NOV221
KSSQNIDKYLN
1134
NTNNLEA
1213
LQHRSG
1143





GVP

YT






CD3_sp11a_bkm1
RSSQSLVRSD
1128
RVSNRFS
1083
LQSSHF
1139



GTTYFN



PWT






CD3_SP11a_bkm2
RSSQSLVRSD
1128
RVSNRFS
1083
LQSSHF
1139



GTTYFN



PWT






CD3_sp11a_hz0
RSSQSLVRSD
1128
RVSNRFS
1083
LQSSHF
1139



GTTYFN



PWT






CD3_SP11A_HZ1
RSSQSLVRSD
1128
RVSNRFS
1083
LQSSH
1144



GTTYFN










CD3_sp11a_sansPTM_hz1
RSSQSLVRSE
1135
RVSNRFS
1083
LQSSHF
1139



GTTYFN



PWT






CD3_sp11a_sansPTM_rat
RSSQSLVRSE
1135
RVSNRFS
1083
LQSSHF
1139



GTTYFN



PWT






CD3_sp11a_VHVL_YY
RSSQSLVRSD
1128
RVSNRFS
1083
LQSSHF
1139



GTTYFN



PWT






CD3_SP11A_VHVL_SS
RSSQSLVRSD
1128
RVSNRFS
1083
LQSSHF
1139



GTTYFN



PWT






CD3_SP11A_VHVL_WS
RSSQSLVRSD
1128
RVSNRFS
1083
LQSSHF
1139



GTTYFN



PWT






CD3_sp11a_VHVL_SW
RSSQSLVRSD
1128
RVSNRFS
1083
LQSSHF
1139



GTTYFN



PWT






CD3_SP11A_VHVL_TT
RSSQSLVRSD
1128
RVSNRFS
1083
LQSSHF
1139



GTTYFN



PWT






CD3_SP11A_VHVL_TW
RSSQSLVRSD
1128
RVSNRFS
1083
LQSSHF
1139



GTTYFN



PWT






CD3_SP11A_VHVL_WT
RSSQSLVRSD
1128
RVSNRFS
1083
LQSSHF
1139



GTTYFN



PWT






CD3_SP11A VH3_VLK_3
RSSQSLVRSE
1135
RVSNRFS
1083
LQSSHF
1139



GTTYFN



PWT






CD3_sp11a_VH1_VK2
RSSQSLVRSD
1128
RVSNRFS
1083
LQSSHF
1139



GTTYFN



PWT






CD3_SP11A_VH3_VLK1
RSSQSLVRSE
1135
RVSNRFS
1083
LQSSHF
1139



GTTYFN



PWT






CD3_SP11A_VH5_VK2
RSSQSLVRSD
1128
RVSNRFS
1083
LQSSHF
1139



GTTYFN



PWT






CD3_sp9aFW1_VL_VH_
KASQNINNYLN
1130
NTDHLQA
1212
LQHRSR
1140


S56G


GVP

YT






CD3_SP9AFW4_VL_VH_
KASQNINNYLN
1130
NTDHLQA
1212
LQHRSR
1140


S56G


GVP

YT






CD3_sp9aFW1_VLVH
KASQNINNYLN
1130
NTDHLQA
1212
LQHRSR
1140





GVP

YT






CD3_sp9aFW4_VLVH
KASQNINNYLN
1130
NTDHLQA
1212
LQHRSR
1140





GVP

YT






CD3_sp9arabtor_VHVL
KASQNINNYLN
1130
NTDHLQA
1212
LQHRSR
1140





GVP

YT






CD3_sp9arabtor_VLVH
KASQNINNYLN
1130
NTDHLQA
1212
LQHRSR
1140





GVP

YT






CD3_SP11AVH3_VLK_3_
RSSQSLVRSE
1135
RVSNRFS
1083
LQSSHF
1139


Y
GTTYFN



PWT






CD3_SP11AVH3_VLK_3_
RSSQSLVRSE
1135
RVSNRFS
1083
LQSSHF
1139


S
GTTYFN



PWT






CD3_SP11AVH3_VLK_3_
RSSQSLVRSD
1128
RVSNRFS
1083
LQSSHF
1139


Y_PTM
GTTYFN



PWT






CD3_SP11AVH3_VLK_3_
RSSQSLVRSD
1128
RVSNRFS
1083
LQSSHF
1139


S_PTM
GTTYFN



PWT






CD3_SP11AVH3_VLK_3_
RSSQSLVRSE
1135
RVSNRFS
1083
LQSSHF
1139


Y_SW
GTTYFN



PWT






CD3_SP11AVH3_VLK_3_
RSSQSLVRSE
1135
RVSNRFS
1083
LQSSHF
1139


S_SW
GTTYFN



PWT






CD3_SP11AVH3_VLK_3_
RSSQSLVRSD
1128
RVSNRFS
1083
LQSSHF
1139


Y_PTM_SW
GTTYFN



PWT






CD3_SP11AVH3_VLK_3_
RSSQSLVRSD
1128
RVSNRFS
1083
LQSSHF
1139


S_SWPTM
GTTYFN



PWT






CD3_SP11AVH3_VLK_S
RSSQSLVRSD
1128
RVSNRFS
1083
LQSSHF
1139


WPTM
GTTYFN



PWT






CD3_SP11AVH3_VLK_3_
RSSQSLVRSE
1135
RVSNRFS
1083
LQSSHF
1139


SW
GTTYFN



PWT






CD3_sp11a_VH1_VK2_Y
RSSQSLVRSD
1128
RVSNRFS
1083
LQSSHF
1139



GTTYFN



PWT






CD3_sp11a_VH1_VK2_S
RSSQSLVRSD
1128
RVSNRFS
1083
LQSSHF
1139



GTTYFN



PWT






CD3_sp11a_VH1_VK2_Y
RSSQSLVRSE
1135
RVSNRFS
1083
LQSSHF
1139


_PTM
GTTYFN



PWT






CD3_sp11a_VH1_VK2_S
RSSQSLVRSE
1135
RVSNRFS
1083
LQSSHF
1139


_PTM
GTTYFN



PWT






CD3_sp11a_VH1_VK2_Y
RSSQSLVRSD
1128
RVSNRFS
1083
LQSSHF
1139


_SW
GTTYFN



PWT






CD3_sp11a_VH1_VK2_S
RSSQSLVRSD
1128
RVSNRFS
1083
LQSSHF
1139


_SW
GTTYFN



PWT






CD3_sp11a_VH1_VK2_Y
RSSQSLVRSE
1135
RVSNRFS
1083
LQSSHF
1139


_PTM
GTTYFN



PWT






CD3_sp11a_VH1_VK2_S
RSSQSLVRSE
1135
RVSNRFS
1083
LQSSHF
1139


_PTM_SW
GTTYFN



PWT






CD3_sp11a_VH1_VK2_SW
RSSQSLVRSD
1128
RVSNRFS
1083
LQSSHF
1139



GTTYFN



PWT






CD3_sp11a_VH1_VK2_SW
RSSQSLVRSE
1135
RVSNRFS
1083
LQSSHF
1139


_PTM
GTTYFN



PWT






CD3_SP11A_VH3_VLK1_
RSSQSLVRSE
1135
RVSNRFS
1083
LQSSHF
1139


Y
GTTYFN



PWT






CD3_SP11A_VH3_VLK1_
RSSQSLVRSE
1135
RVSNRFS
1083
LQSSHF
1139


S
GTTYFN



PWT






CD3_SP11A_VH3_VLK1_
RSSQSLVRSD
1128
RVSNRFS
1083
LQSSHF
1139


Y_PTM
GTTYFN



PWT






CD3_SP11A_VH3_VLK1_
RSSQSLVRSD
1128
RVSNRFS
1083
LQSSHF
1139


S_PTM
GTTYFN



PWT






CD3_SP11A_VH3_VLK1_
RSSQSLVRSE
1135
RVSNRFS
1083
LQSSHF
1139


Y_SW
GTTYFN



PWT






CD3_SP11A_VH3_VLK1_
RSSQSLVRSE
1135
RVSNRFS
1083
LQSSHF
1139


S_SW
GTTYFN



PWT






CD3_SP11A_VH3_VLK1_
RSSQSLVRSD
1128
RVSNRFS
1083
LQSSHF
1139


Y_PTM
GTTYFN



PWT






CD3_SP11A_VH3_VLK1_
RSSQSLVRSD
1128
RVSNRFS
1083
LQSSHF
1139


S_PTM_SW
GTTYFN



PWT






CD3_SP11A_VH3_VLK1_
RSSQSLVRSD
1128
RVSNRFS
1083
LQSSHF
1139


PTM_SW
GTTYFN



PWT






CD3_SP11A_VH3_VLK1_
RSSQSLVRSE
1135
RVSNRFS
1083
LQSSHF
1139


SW
GTTYFN



PWT






CD3_SP11A_VH5_VK2_Y
RSSQSLVRSD
1128
RVSNRFS
1083
LQSSHF
1139



GTTYFN



PWT






CD3_SP11A_VH5_VK2_S
RSSQSLVRSD
1128
RVSNRFS
1083
LQSSHF
1139



GTTYFN



PWT






CD3_SP11A_VH5_VK2_Y
RSSQSLVRSD
1128
RVSNRFS
1083
LQSSHF
1139


_PTM
GTTYFN



PWT






CD3_SP11A_VH5_VK2_S
RSSQSLVRSD
1128
RVSNRFS
1083
LQSSHF
1139


_PTM
GTTYFN



PWT






CD3_SP11A_VH5_VK2_Y
RSSQSLVRSD
1128
RVSNRFS
1083
LQSSHF
1139


_SW
GTTYFN



PWT






CD3_SP11A_VH5_VK2_S
RSSQSLVRSD
1128
RVSNRFS
1083
LQSSHF
1139


_SW
GTTYFN



PWT






CD3_SP11A_VH5_VK2_Y
RSSQSLVRSD
1128
RVSNRFS
1083
LQSSHF
1139


_PTM_SW
GTTYFN



PWT






CD3_SP11A_VH5_VK2_S
RSSQSLVRSD
1128
RVSNRFS
1083
LQSSHF
1139


_PTM_SW
GTTYFN



PWT






CD3_SP11A_VH5_VK2_
RSSQSLVRSD
1128
RVSNRFS
1083
LQSSHF
1139


PTM_SW
GTTYFN



PWT






CD3_SP11A_VH5_VK2_SW
RSSQSLVRSD
1128
RVSNRFS
1083
LQSSHF
1139



GTTYFN



PWT
















TABLE AI-1







CD3 Binders- Heavy Chain CDR sequences according to combination of Chothia and IMGT


numbering schemes















SEQ ID
CDR-
SEQ ID

SEQ ID


Binder
CDR-H1
NO:
H2
NO:
CDR-H3
NO:





NOV292
GFTFSK
1167
YYDS
1148
ASFWWDLDFDH
1174



NG

SK








NOV123
GYTFTS
1073
YPGH
1149
VRPNTMMAPLAY
1175



YY

DA








Sp10b
GYTFTS
1073
YPGH
1149
VRPNTMMAPLAY
1175



YY

DA








NOV453
GFSLTT
1056
RYSG
1060
TSDPMYIPNYSY
1176



YN

D

GVMNA






NOV229
GFSLTT
1056
RYSG
1060
ARDPMYIPNYSY
1177



YN

D

GVMNA






NOV110
GYTFTS
1073
YPAN
1150
ARPVTMMAPLVF
1178



YY

GG








NOV832
GYTFTS
1073
YPAN
1150
ARPVTMMAPLVF
1178



YY

GG








NOV589
GFTFSK
1167
YYDS
1151
ASFWWDLDFDY
1179



NG

SR








NOV580
GFSLTT
1056
RYSG
1060
TRDPMYIPGYSY
1180



YN

D

GVMNA






NOV567
GFAFR
1168
YYDS
1148
AALNSEYD
1041



KYG

SK








NOV221
GFSLTT
1056
RYSG
1060
TRDPMYIPGYSY
1180



YN

D

GVMNA






CD3_sp11a_bkm1
GFTFSK
1167
YYDS
1148
ASFWWDLDFDH
1174



NG

SK








CD3_SP11a_bkm2
GFTFSK
1167
YYDS
1148
AKFWWDLDFDH
1181



NG

SK








CD3_sp11a_hz0
GFTFSK
1167
YYDS
1148
AKFWWDLDFDH
1181



NG

SK








CD3_SP11A_HZ1
GFTFSK
1167
YYDS
1148
ASFWWDLDFDH
1174



NG

SK








CD3_sp11a_sansPTM_hz1
GFTFSK
1169
YYDS
1148
ASFWWDLDFDH
1174



QG

SK








CD3_sp11a_sansPTM_rat
GFTFSK
1169
YYDS
1148
ASFWWDLDFDH
1174



QG

SK








CD3_sp11a_VHVL_YY
GFTFSK
1167
YYDS
1148
ASFYYDLDFDH
1182



NG

SK








CD3_SP11A_VHVL_SS
GFTFSK
1167
YYDS
1148
ASFSSDLDFDH
1183



NG

SK








CD3_SP11A_VHVL_WS
GFTFSK
1167
YYDS
1148
ASFWSDLDFDH
1184



NG

SK








CD3_sp11a_VHVL_SW
GFTFSK
1167
YYDS
1148
ASFSWDLDFDH
1185



NG

SK








CD3_SP11A_VHVL_TT
GFTFSK
1167
YYDS
1148
ASFTTDLDFDH
1186



NG

SK








CD3_SP11A_VHVL_TW
GFTFSK
1167
YYDS
1148
ASFTWDLDFDH
1187



NG

SK








CD3_SP11A_VHVL_WT
GFTFSK
1167
YYDS
1148
ASFWTDLDFDH
1188



NG

SK








CD3_SP11A VH3_VLK_3
GFTFSK
1167
YYDS
1148
ASFWWDLDFDH
1174



NG

SK








CD3_sp11a_VH1_VK2
GFTFSK
1169
YYDS
1148
ASFWWDLDFDH
1174



QG

SK








CD3_SP11A_VH3_VLK1
GFTFSK
1167
YYDS
1148
ASFWWDLDFDH
1174



NG

SK








CD3_SP11A_VH5_VK2
GFTFSK
1169
YYDS
1148
ASFWWDLDFDH
1174



QG

SK








CD3_sp9aFW1_VL_VH_
GFSLTT
1056
RYSG
1060
ASDPMYIPNYAY
1189


S56G
YN

D

GVMNA






CD3_SP9AFW4_VL_VH_
GFSLTT
1056
RYSG
1060
ASDPMYIPNYAY
1189


S56G
YN

D

GVMNA






CD3_sp9aFW1_VLVH
GFSLTT
1056
RYSG
1060
ASDPMYIPNYAY
1189



YN

D

GVMNA






CD3_sp9aFW4_VLVH
GFSLTT
1056
RYSG
1060
ASDPMYIPNYAY
1189



YN

D

GVMNA






CD3_sp9arabtor_VHVL
GFSLTT
1056
RYSG
1060
ASDPMYIPNYAY
1189



YN

D

GVMNA






CD3_sp9arabtor_VLVH
GFSLTT
1056
RYSG
1060
ASDPMYIPNYAY
1189



YN

D

GVMNA






CD3_SP11AVH3_VLK_3_Y
GFTFSK
1167
YYDS
1148
ASYWWDLDFDH
1202



NG

SK








CD3_SP11AVH3_VLK_3_S
GFTFSK
1167
YYDS
1148
ASSWWDLDFDH
1203



NG

SK








CD3_SP11AVH3_VLK_3_Y
GFTFSK
1167
YYDS
1148
ASYWWDLDFDH
1202


_PTM
NG

SK








CD3_SP11AVH3_VLK_3_S
GFTFSK
1167
YYDS
1148
ASSWWDLDFDH
1203


_PTM
NG

SK








CD3_SP11AVH3_VLK_3_Y
GFTFSK
1167
YYDS
1148
ASYSWDLDFDH
1196


_SW
NG

SK








CD3_SP11AVH3_VLK_3_S
GFTFSK
1167
YYDS
1148
ASSSWDLDFDH
1197


_SW
NG

SK








CD3_SP11AVH3_VLK_3_Y
GFTFSK
1167
YYDS
1148
ASYSWDLDFDH
1196


_PTM_SW
NG

SK








CD3_SP11AVH3_VLK_3_S
GFTFSK
1167
YYDS
1148
ASSSWDLDFDH
1197


_SWPTM
NG

SK








CD3_SP11AVH3_VLK_
GFTFSK
1167
YYDS
1148
ASFSWDLDFDH
1185


SWPTM
NG

SK








CD3_SP11AVH3_VLK_3_SW
GFTFSK
1167
YYDS
1148
ASFSWDLDFDH
1185



NG

SK








CD3_sp11a_VH1_VK2_Y
GFTFSK
1169
YYDS
1148
ASYWWDLDFDH
1202



QG

SK








CD3_sp11a_VH1_VK2_S
GFTFSK
1169
YYDS
1148
ASSWWDLDFDH
1203



QG

SK








CD3_sp11a_VH1_VK2_Y_
GFTFSK
1167
YYDS
1148
ASYWWDLDFDH
1202


PTM
NG

SK








CD3_sp11a_VH1_VK2_S_
GFTFSK
1167
YYDS
1148
ASSWWDLDFDH
1203


PTM
NG

SK








CD3_sp11a_VH1_VK2_Y_
GFTFSK
1169
YYDS
1148
ASYSWDLDFDH
1196


SW
QG

SK








CD3_sp11a_VH1_VK2_S_
GFTFSK
1169
YYDS
1148
ASSSWDLDFDH
1197


SW
QG

SK








CD3_sp11a_VH1_VK2_Y_
GFTFSK
1167
YYDS
1148
ASYSWDLDFDH
1196


PTM
NG

SK








CD3_sp11a_VH1_VK2_S_
GFTFSK
1167
YYDS
1148
ASSSWDLDFDH
1197


PTM_SW
NG

SK








CD3_sp11a_VH1_VK2_SW
GFTFSK
1169
YYDS
1148
ASFSWDLDFDH
1185



QG

SK








CD3_sp11a_VH1_VK2_SW
GFTFSK
1167
YYDS
1148
ASFSWDLDFDH
1185


_PTM
NG

SK








CD3_SP11A_VH3_VLK1_Y
GFTFSK
1167
YYDS
1148
ASYWWDLDFDH
1202



NG

SK








CD3_SP11A_VH3_VLK1_S
GFTFSK
1167
YYDS
1148
ASSWWDLDFDH
1203



NG

SK








CD3_SP11A_VH3_VLK1_Y
GFTFSK
1169
YYDS
1148
ASYWWDLDFDH
1202


_PTM
QG

SK








CD3_SP11A_VH3_VLK1_S
GFTFSK
1169
YYDS
1148
ASSWWDLDFDH
1203


_PTM
QG

SK








CD3_SP11A_VH3_VLK1_Y
GFTFSK
1167
YYDS
1148
ASYSWDLDFDH
1196


_SW
NG

SK








CD3_SP11A_VH3_VLK1_S
GFTFSK
1167
YYDS
1148
ASSSWDLDFDH
1197


_SW
NG

SK








CD3_SP11A_VH3_VLK1_Y
GFTFSK
1169
YYDS
1148
ASYWWDLDFDH
1202


_PTM
QG

SK








CD3_SP11A_VH3_VLK1_S
GFTFSK
1169
YYDS
1148
ASSSWDLDFDH
1197


_PTM_SW
QG

SK








CD3_SP11A_VH3_VLK1PTM_
GFTFSK
1169
YYDS
1148
ASFSWDLDFDH
1185


SW
QG

SK








CD3_SP11A_VH3_VLK1_SW
GFTFSK
1167
YYDS
1148
ASFSWDLDFDH
1185



NG

SK








CD3_SP11A_VH5_VK2_Y
GFTFSK
1169
YYDS
1148
ASYWWDLDFDH
1202



QG

SK








CD3_SP11A_VH5_VK2_S
GFTFSK
1169
YYDS
1148
ASSWWDLDFDH
1203



QG

SK








CD3_SP11A_VH5_VK2_Y_
GFTFSK
1167
YYDS
1148
ASYWWDLDFDH
1202


PTM
NG

SK








CD3_SP11A_VH5_VK2_S_
GFTFSK
1167
YYDS
1148
ASSWWDLDFDH
1203


PTM
NG

SK








CD3_SP11A_VH5_VK2_Y_
GFTFSK
1169
YYDS
1148
ASYSWDLDFDH
1196


SW
QG

SK








CD3_SP11A_VH5_VK2_S_
GFTFSK
1169
YYDS
1148
ASSSWDLDFDH
1197


SW
QG

SK








CD3_SP11A_VH5_VK2_Y_
GFTFSK
1167
YYDS
1148
ASYSWDLDFDH
1196


PTM_SW
NG

SK








CD3_SP11A_VH5_VK2_S_
GFTFSK
1167
YYDS
1148
ASSSWDLDFDH
1197


PTM_SW
NG

SK








CD3_SP11A_VH5_VK2_PTM_
GFTFSK
1167
YYDS
1148
ASFSWDLDFDH
1185


SW
NG

SK








CD3_SP11A_VH5_VK2_SW
GFTFSK
1169
YYDS
1148
ASFSWDLDFDH
1185



QG

SK
















TABLE AI-2







CD3 Binders- Light Chain CDR sequences according to combination of Chothia and IMGT


numbering schemes















SEQ ID

SEQ ID

SEQ ID


Binder
CDR-L1
NO:
CDR-L2
NO:
CDR-L3
NO:





NOV292
SQSLVRSD
1152
RVS
1084
LQSSHF
1139



GTTY



PWT






NOV123
SQSLIYSIG
1153
RVS
1084
FQSTHL
1085



NTY



PYT






Sp10b
SQSLIYSIG
1153
RVS
1084
FQSTHL
1085



NTY



PYT






NOV453
SQNINNY
1154
NTDHLQA
1212
LQHRSR
1140





GVP

YT






NOV229
SQNINNY
1154
NTDHLQA
1212
LQHRSR
1140





GVP

YT






NOV110
SQSLVYSH
1155
RVS
1084
FQSTHL
1085



GNTY



PYT






NOV832
SQSLVYSH
1155
RVS
1084
FQSTHL
1085



GNTY



PYT






NOV589
SQSLVRSD
1152
RVS
1084
LQSSHF
1139



GTTY



PWT






NOV580
SQNIDKY
1156
NTNNLEA
1213
LQHRSS
1141





GVP

YT






NOV567
SQSIGNS
1157
STSTLEY
1214
LQYATY
1142





GVP

PYT






NOV221
SQNIDKY
1156
NTNNLEA
1213
LQHRSG
1143





GVP

YT






CD3_sp11a_bkm1
SQSLVRSD
1152
RVS
1084
LQSSHF
1139



GTTY



PWT






CD3_SP11a_bkm2
SQSLVRSD
1152
RVS
1084
LQSSHF
1139



GTTY



PWT






CD3_sp11a_hz0
SQSLVRSD
1152
RVS
1084
LQSSHF
1139



GTTY



PWT






CD3_SP11A_HZ1
SQSLVRSD
1152
RVS
1084
LQSSHF
1220



GTTY



PW






CD3_sp11a_sansPTM_hz1
SQSLVRSE
1158
RVS
1084
LQSSHF
1139



GTTY



PWT






CD3_sp11a_sansPTM_rat
SQSLVRSE
1158
RVS
1084
LQSSHF
1139



GTTY



PWT






CD3_sp11a_VHVL_YY
SQSLVRSD
1152
RVS
1084
LQSSHF
1139



GTTY



PWT






CD3_SP11A_VHVL_SS
SQSLVRSD
1152
RVS
1084
LQSSHF
1139



GTTY



PWT






CD3_SP11A_VHVL_WS
SQSLVRSD
1152
RVS
1084
LQSSHF
1139



GTTY



PWT






CD3_sp11a_VHVL_SW
SQSLVRSD
1152
RVS
1084
LQSSHF
1139



GTTY



PWT






CD3_SP11A_VHVL_TT
SQSLVRSD
1152
RVS
1084
LQSSHF
1139



GTTY



PWT






CD3_SP11A_VHVL_TW
SQSLVRSD
1152
RVS
1084
LQSSHF
1139



GTTY



PWT






CD3_SP11A_VHVL_WT
SQSLVRSD
1152
RVS
1084
LQSSHF
1139



GTTY



PWT






CD3_SP11A VH3_VLK_3
SQSLVRSE
1158
RVS
1084
LQSSHF
1139



GTTY



PWT






CD3_sp11a_VH1_VK2
SQSLVRSD
1152
RVS
1084
LQSSHF
1139



GTTY



PWT






CD3_SP11A_VH3_VLK1
SQSLVRSE
1158
RVS
1084
LQSSHF
1139



GTTY



PWT






CD3_SP11A_VH5_VK2
SQSLVRSD
1152
RVS
1084
LQSSHF
1139



GTTY



PWT






CD3_sp9aFW1_VL_VH_
SQNINNY
1154
NTDHLQA
1212
LQHRSR
1140


S56G


GVP

YT






CD3_SP9AFW4_VL_VH_
SQNINNY
1154
NTDHLQA
1212
LQHRSR
1140


S56G


GVP

YT






CD3_sp9aFW1_VLVH
SQNINNY
1154
NTDHLQA
1212
LQHRSR
1140





GVP

YT






CD3_sp9aFW4_VLVH
SQNINNY
1154
NTDHLQA
1212
LQHRSR
1140





GVP

YT






CD3_sp9arabtor_VHVL
SQNINNY
1154
NTDHLQA
1212
LQHRSR
1140





GVP

YT






CD3_sp9arabtor_VLVH
SQNINNY
1154
NTDHLQA
1212
LQHRSR
1140





GVP

YT






CD3_SP11AVH3_VLK_3_Y
SQSLVRSE
1158
RVS
1084
LQSSHF
1139



GTTY



PWT






CD3_SP11AVH3_VLK_3_S
SQSLVRSE
1158
RVS
1084
LQSSHF
1139



GTTY



PWT






CD3_SP11AVH3_VLK_3_Y
SQSLVRSD
1152
RVS
1084
LQSSHF
1139


_PTM
GTTY



PWT






CD3_SP11AVH3_VLK_3_S
SQSLVRSD
1152
RVS
1084
LQSSHF
1139


_PTM
GTTY



PWT






CD3_SP11AVH3_VLK_3_Y
SQSLVRSE
1158
RVS
1084
LQSSHF
1139


_SW
GTTY



PWT






CD3_SP11AVH3_VLK_3_S
SQSLVRSE
1158
RVS
1084
LQSSHF
1139


_SW
GTTY



PWT






CD3_SP11AVH3_VLK_3_Y
SQSLVRSD
1152
RVS
1084
LQSSHF
1139


_PTM_SW
GTTY



PWT






CD3_SP11AVH3_VLK_3_S
SQSLVRSD
1152
RVS
1084
LQSSHF
1139


_SWPTM
GTTY



PWT






CD3_SP11AVH3_VLK_
SQSLVRSD
1152
RVS
1084
LQSSHF
1139


SWPTM
GTTY



PWT






CD3_SP11AVH3_VLK_3_SW
SQSLVRSE
1158
RVS
1084
LQSSHF
1139



GTTY



PWT






CD3_sp11a_VH1_VK2_Y
SQSLVRSD
1152
RVS
1084
LQSSHF
1139



GTTY



PWT






CD3_sp11a_VH1_VK2_S
SQSLVRSD
1152
RVS
1084
LQSSHF
1139



GTTY



PWT






CD3_sp11a_VH1_VK2_Y_
SQSLVRSE
1158
RVS
1084
LQSSHF
1139


PTM
GTTY



PWT






CD3_sp11a_VH1_VK2_S_
SQSLVRSE
1158
RVS
1084
LQSSHF
1139


PTM
GTTY



PWT






CD3_sp11a_VH1_VK2_Y_
SQSLVRSD
1152
RVS
1084
LQSSHF
1139


SW
GTTY



PWT






CD3_sp11a_VH1_VK2_S_
SQSLVRSD
1152
RVS
1084
LQSSHF
1139


SW
GTTY



PWT






CD3_sp11a_VH1_VK2_Y_
SQSLVRSE
1158
RVS
1084
LQSSHF
1139


PTM
GTTY



PWT






CD3_sp11a_VH1_VK2_S_
SQSLVRSE
1158
RVS
1084
LQSSHF
1139


PTM_SW
GTTY



PWT






CD3_sp11a_VH1_VK2_SW
SQSLVRSD
1152
RVS
1084
LQSSHF
1139



GTTY



PWT






CD3_sp11a_VH1_VK2_SW
SQSLVRSE
1158
RVS
1084
LQSSHF
1139


_PTM
GTTY



PWT






CD3_SP11A_VH3_VLK1_Y
SQSLVRSE
1158
RVS
1084
LQSSHF
1139



GTTY



PWT






CD3_SP11A_VH3_VLK1_S
SQSLVRSE
1158
RVS
1084
LQSSHF
1139



GTTY



PWT






CD3_SP11A_VH3_VLK1_Y
SQSLVRSD
1152
RVS
1084
LQSSHF
1139


_PTM
GTTY



PWT






CD3_SP11A_VH3_VLK1_S
SQSLVRSD
1152
RVS
1084
LQSSHF
1139


_PTM
GTTY



PWT






CD3_SP11A_VH3_VLK1_Y
SQSLVRSE
1158
RVS
1084
LQSSHF
1139


_SW
GTTY



PWT






CD3_SP11A_VH3_VLK1_S
SQSLVRSE
1158
RVS
1084
LQSSHF
1139


_SW
GTTY



PWT






CD3_SP11A_VH3_VLK1_Y
SQSLVRSD
1152
RVS
1084
LQSSHF
1139


_PTM
GTTY



PWT






CD3_SP11A_VH3_VLK1_S
SQSLVRSD
1152
RVS
1084
LQSSHF
1139


_PTM_SW
GTTY



PWT






CD3_SP11A_VH3_VLK1PTM_
SQSLVRSD
1152
RVS
1084
LQSSHF
1139


SW
GTTY



PWT






CD3_SP11A_VH3_VLK1_SW
SQSLVRSE
1158
RVS
1084
LQSSHF
1139



GTTY



PWT






CD3_SP11A_VH5_VK2_Y
SQSLVRSD
1152
RVS
1084
LQSSHF
1139



GTTY



PWT






CD3_SP11A_VH5_VK2_S
SQSLVRSD
1152
RVS
1084
LQSSHF
1139



GTTY



PWT






CD3_SP11A_VH5_VK2_Y_
SQSLVRSD
1152
RVS
1084
LQSSHF
1139


PTM
GTTY



PWT






CD3_SP11A_VH5_VK2_S_
SQSLVRSD
1152
RVS
1084
LQSSHF
1139


PTM
GTTY



PWT






CD3_SP11A_VH5_VK2_Y_
SQSLVRSD
1152
RVS
1084
LQSSHF
1139


SW
GTTY



PWT






CD3_SP11A_VH5_VK2_S_
SQSLVRSD
1152
RVS
1084
LQSSHF
1139


SW
GTTY



PWT






CD3_SP11A_VH5_VK2_Y_
SQSLVRSD
1152
RVS
1084
LQSSHF
1139


PTM_SW
GTTY



PWT






CD3_SP11A_VH5_VK2_S_
SQSLVRSD
1152
RVS
1084
LQSSHF
1139


PTM_SW
GTTY



PWT






CD3_SP11A_VH5_VK2_PTM_
SQSLVRSD
1152
RVS
1084
LQSSHF
1139


SW
GTTY



PWT






CD3_SP11A_VH5_VK2_SW
SQSLVRSD
1152
RVS
1084
LQSSHF
1139



GTTY



PWT
















TABLE AJ-1







CD3 Binders - Heavy chain variable sequences











SEQ ID


Binder
Sequence
NO:





NOV292
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKNGMHWVRQA
1221



PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCASFWWDLDFDHWGQGTMVTVSS






NOV123
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYIYWVRQAPG
1222



QRLEWMGYIYPGHDAIYYSENFKGRVTITADTSASTAYMELSS




LRSEDTAVYYCVRPNTMMAPLAYWGQGTLVTVSS






Sp10b
QVQLHQSGAELAKPGTSVNLSCKASGYTFTSYYIYWIKRRPG
1223



QGLEWIGYIYPGHDAIYYSENFKGKATFTADTSSSTAYMLLGS




LTPEDSAYYFCVRPNTMMAPLAYWGQGTLVTVSS






NOV453
QVQLQESGPGLVKPSETLSLTCTVSGFSLTTYNVHWIRQPPG
1224



KGLEWIGRMRYSGDTSFNAALTSRVTISRDTSKNQVSLKLSSV




TAADTAVYYCTSDPMYIPNYSYGVMNAWGQGTTVTVSS






NOV229
QVQLQESGPGLVKPSETLSLTCTVSGFSLTTYNVHWIRQPPG
1225



KGLEWIGRMRYSGDTSFNAALTSRVTISVDTSKNQFSLKLSSV




TAADTAVYYCARDPMYIPNYSYGVMNAWGQGTTVTVSS






NOV110
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYIYWVRQAPG
1226



QRLEWMGYIYPANGGIYYSEKFKGRVTITADTSAGTAYMELSS




LRSEDTAVYYCARPVTMMAPLVFWGQGTLVTVSS






NOV832
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYIYWVRQAPG
1227



QRLEWMGYIYPANGGIYYSEKFKGRVTITRDTSASTAYMELSS




LRSEDTAVYYCARPVTMMAPLVFWGQGTLVTVSS






NOV589
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKNGMHWVRQA
1228



PGKGLEWVAMIYYDSSRMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCASFWWDLDFDYWGQGTMVTVSS






NOV580
QVQLQESGPGLVKPSETLSLTCTVSGFSLTTYNIHWIRQPPGK
1229



GLEWIGRMRYSGDTSYSSALKSRVTISRDTSKNQVSLKLSSVT




AADTAVYYCTRDPMYIPGYSYGVMNAWGQGTTVTVSS






NOV567
QVQLVESGGGVVQPGRSLRLSCAASGFAFRKYGMSWVRQA
1230



PGKGLEWVALIYYDSSKMNYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCAALNSEYDWGQGTMVTVSS






NOV221
QVQLQESGPGLVKPSETLSLTCTVSGFSLTTYNIHWIRQPPGK
1229



GLEWIGRMRYSGDTSYSSALKSRVTISRDTSKNQVSLKLSSVT




AADTAVYYCTRDPMYIPGYSYGVMNAWGQGTTVTVSS






CD3_sp11a_bkm1
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKNGMHWVRQA
1221



PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCASFWWDLDFDHWGQGTMVTVSS






CD3_SP11a_bkm2
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKNGMHWVRQA
1231



PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCAKFWWDLDFDHWGQGTMVTVSS






CD3_sp11a_hz0
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKNGMHWVRQA
1231



PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCAKFWWDLDFDHWGQGTMVTVSS









CD3_SP11A_HZ1
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKNGMHWVRQA
1221



PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCASFWWDLDFDHWGQGTMVTVSS






CD3_sp11a_sansPTM_
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKQGMHWVRQA
1232


hz1
PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCASFWWDLDFDHWGQGTMVTVSS






CD3_sp11a_sansPTM_
EVKLVESGGDLVQPGDSLTLSCVASGFTFSKQGMHWIRQAPK
1233


rat
KGLEWIAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLEMNS




LRSEDTAMYYCASFWWDLDFDHWGQGVMVTVSS






CD3_sp11a_VHVL_YY
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKNGMHWVRQA
1234



PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCASFYYDLDFDHWGQGTMVTVSS






CD3_SP11A_VHVL_SS
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKNGMHWVRQA
1235



PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCASFSSDLDFDHWGQGTMVTVSS






CD3_SP11A_VHVL_WS
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKNGMHWVRQA
1236



PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCASFWSDLDFDHWGQGTMVTVSS






CD3_sp11a_VHVL_SW
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKNGMHWVRQA
1237



PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCASFSWDLDFDHWGQGTMVTVSS






CD3_SP11A_VHVL_TT
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKNGMHWVRQA
1238



PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCASFTTDLDFDHWGQGTMVTVSS






CD3_SP11A_VHVL_TW
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKNGMHWVRQA
1239



PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCASFTWDLDFDHWGQGTMVTVSS






CD3_SP11A_VHVL_WT
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKNGMHWVRQA
1240



PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCASFWTDLDFDHWGQGTMVTVSS






CD3_SP11A VH3_VLK_3
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKNGMHWVRQA
1221



PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCASFWWDLDFDHWGQGTMVTVSS






CD3_sp11a_VH1_VK2
QVQLVQSGAEVKKPGASVKVSCKASGFTFSKQGMHWVRQA
1241



PGQGLEWMGMIYYDSSKMYYADTVKGRVTMTRDTSTNTLYM




ELSSLRSEDTAVYYCASFWWDLDFDHWGQGTMVTVSS






CD3_SP11A_VH3_VLK1
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKNGMHWVRQA
1221



PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCASFWWDLDFDHWGQGTMVTVSS






CD3_SP11A_VH5_VK2
EVQLVQSGAEVKKPGESLKISCKGSGFTFSKQGMHWVRQMP
1242



GKGLEWMGMIYYDSSKMYYADTVKGQVTISRDNSINTLYLQW




SSLKASDTAMYYCASFWWDLDFDHWGQGTMVTVSS






CD3_sp9aFW1_VL_VH_
EVQLVESGGGLVQPGGSLRLSCAASGFSLTTYNVHWVRQAP
1243


S56G
GKGLEWVGRMRYSGDTSFNAALTSRFTISRDNSKNTLYLQMN




SLRAEDTAVYYCASDPMYIPNYAYGVMNAWGQGTLVTVSS






CD3_SP9AFW4_VL_VH
EVQLVETGGGLVQPGGSRRLSCAASGFSLTTYNVHWVRQAP
1244


_S56G
GKGLEWVGRMRYSGDTSFNAALTSRFTISRDTSKNTVYLQMN




SLRAEDTGVYYCASDPMYIPNYAYGVMNAWGQGTLVTVSS






CD3_sp9aFW1_VLVH
EVQLVETGGGLVQPGGSRRLSCAASGFSLTTYNVHWVRQAP
1245



GKGLEWVSRMRYSGDTSFNAALTSRFTISRDTSKNTVYLQMN




SLRAEDTGVYYCASDPMYIPNYAYGVMNAWGQGTLVTVSS






CD3_sp9aFW4_VLVH
VQLVESGGGLVQPGGSLRLSCAASGFSLTTYNVHWVRQAPG
1246



KGLEWVSRMRYSGDTSFNAALTSRFTISRDNSKNTLYLQMNS




LRAEDTAVYYCASDPMYIPNYAYGVMNAWGQGTLVTVSS






CD3_sp9arabtor_VHVL
EVQLVESGGGSVQPGGSLRLSCTASGFSLTTYNVHWVRQAP
1247



GKGLEWVGRMRYSGDTSFNAALTSRFTISRDTSKNTVYLQMN




SLRAEDTATYYCASDPMYIPNYAYGVMNAWGQGTTVTVSS






CD3_sp9arabtor_VLVH
EVQLVESGGGSVQPGGSLRLSCTASGFSLTTYNVHWVRQAP
1247



GKGLEWVGRMRYSGDTSFNAALTSRFTISRDTSKNTVYLQMN




SLRAEDTATYYCASDPMYIPNYAYGVMNAWGQGTTVTVSS






CD3_sp11a_VHVL_YY_
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKQGMHWVRQA
1248


SANSPTM
PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCASFYYDLDFDHWGQGTMVTVSS






CD3_sp11a_VHVL_YY_
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKQGMHWVRQA
1249


SANSPTM_Y
PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCASYYYDLDFDHWGQGTMVTVSS






CD3_sp11a_VHVL_YY_
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKQGMHWVRQA
1250


SANSPTM_S
PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCASSYYDLDFDHWGQGTMVTVSS






CD3_sp11a_VHVL_YY_
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKNGMHWVRQA
1251


Y
PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCAS Y YYDLDFDHWGQGTMVTVSS






CD3_sp11a_VHVL_YY_s
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKNGMHWVRQA
1252



PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCASSYYDLDFDHWGQGTMVTVSS






CD3_sp11a_VHVL_SS_
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKQGMHWVRQA
1253


SANSPTM
PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCASFSSDLDFDHWGQGTMVTVSS






CD3_sp11a_VHVL_SS_
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKQGMHWVRQA
1254


SANSPTM_Y
PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCASYSSDLDFDHWGQGTMVTVSS






CD3_sp11a_VHVL_SS_
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKQGMHWVRQA
1255


SANSPTM_S
PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCASSSSDLDFDHWGQGTMVTVSS






CD3_sp11a_VHVL_SS_
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKNGMHWVRQA
1256


Y
PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCAS Y SSDLDFDHWGQGTMVTVSS






CD3_sp11a_VHVL_SS_
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKNGMHWVRQA
1257


S
PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCASSSSDLDFDHWGQGTMVTVSS






CD3_sp11a_VHVL_SS
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKQGMHWVRQA
1253


_SANSPTM
PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCASFSSDLDFDHWGQGTMVTVSS






CD3_sp11a_VHVL_WS
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKQGMHWVRQA
1258


_SANSPTM_Y
PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCASYWSDLDFDHWGQGTMVTVSS






CD3_sp11a_VHVL_WS
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKQGMHWVRQA
1259


_SANSPTM_S
PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCASSWSDLDFDHWGQGTMVTVSS






CD3_sp11a_VHVL_WS
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKNGMHWVRQA
1260


_Y
PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCASYWSDLDFDHWGQGTMVTVSS






CD3_sp11a_VHVL_WS
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKNGMHWVRQA
1261


_S
PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCAS S WS DLDFDHWGQGTMVTVSS






CD3_sp11a_VHVL_WS
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKQGMHWVRQA
1262


_SANSPTM
PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCASFWSDLDFDHWGQGTMVTVSS






CD3_sp11a_VHVL_SW
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKQGMHWVRQA
1263


_SANSPTM_Y
PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCASYSWDLDFDHWGQGTMVTVSS






CD3_sp11a_VHVL_SW
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKQGMHWVRQA
1264


_SANSPTM_S
PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCASSSWDLDFDHWGQGTMVTVSS






CD3_sp11a_VHVL_SW
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKNGMHWVRQA
1265


_Y
PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCASYSWDLDFDHWGQGTMVTVSS






CD3_sp11a_VHVL_SW
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKNGMHWVRQA
1266


_S
PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCASSSWDLDFDHWGQGTMVTVSS






CD3_sp11a_VHVL_SW
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKQGMHWVRQA
1267


_SANSPTM
PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCASFSWDLDFDHWGQGTMVTVSS






CD3_sp11a_VHVL_TW
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKQGMHWVRQA
1268


_SANSPTM_Y
PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCASYTWDLDFDHWGQGTMVTVSS






CD3_sp11a_VHVL_TW
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKQGMHWVRQA
1269


_SANSPTM_S
PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCASSTWDLDFDHWGQGTMVTVSS






CD3_sp11a_VHVL_TW
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKNGMHWVRQA
1270


_Y
PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCASYTWDLDFDHWGQGTMVTVSS






CD3_sp11a_VHVL_TW
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKNGMHWVRQA
1271


_S
PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCASSTWDLDFDHWGQGTMVTVSS






CD3_sp11a_VHVL_W
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKQGMHWVRQA
1272


_SANSPTM
PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCASFTWDLDFDHWGQGTMVTVSS






CD3_sp11a_VHVL_TT
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKQGMHWVRQA
1273


_SANSPTM_Y
PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCASYTTDLDFDHWGQGTMVTVSS






CD3_sp11a_VHVL_TT_
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKQGMHWVRQA
1274


SANSPTM_S
PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCASSTTDLDFDHWGQGTMVTVSS






CD3_sp11a_VHVL_TT_Y
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKNGMHWVRQA
1275



PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCASYTTDLDFDHWGQGTMVTVSS






CD3_sp11a_VHVL_TT_S
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKNGMHWVRQA
1276



PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCASSTTDLDFDHWGQGTMVTVSS






CD3_sp11a_VHVL_TT_
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKQGMHWVRQA
1277


SANSPTM
PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCASFTTDLDFDHWGQGTMVTVSS






CD3_SP11AVH3_VLK_3
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKNGMHWVRQA
1278


_Y
PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCASYWWDLDFDHWGQGTMVTVSS






CD3_SP11AVH3_VLK_3
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKNGMHWVRQA
1279


_S
PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCASSWWDLDFDHWGQGTMVTVSS






CD3_SP11AVH3_VLK_3
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKNGMHWVRQA
1278


_Y_PTM
PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCASYWWDLDFDHWGQGTMVTVSS






CD3_SP11AVH3_VLK_3
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKNGMHWVRQA
1279


_S_PTM
PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCASSWWDLDFDHWGQGTMVTVSS






CD3_SP11AVH3_VLK_3
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKNGMHWVRQA
1265


_Y_SW
PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCASYSWDLDFDHWGQGTMVTVSS






CD3_SP11AVH3_VLK_3
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKNGMHWVRQA
1266


_S_SW
PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCASSSWDLDFDHWGQGTMVTVSS






CD3_SP11AVH3_VLK_3
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKNGMHWVRQA
1265


_Y_PTM_SW
PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCASYSWDLDFDHWGQGTMVTVSS






CD3_SP11AVH3_VLK_3
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKNGMHWVRQA
1266


_S_SWPTM
PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCASSSWDLDFDHWGQGTMVTVSS






CD3_SP11AVH3_VLK_
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKNGMHWVRQA
1237


SWPTM
PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCASFSWDLDFDHWGQGTMVTVSS






CD3_SP11AVH3_VLK_3
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKNGMHWVRQA
1237


_SW
PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCASFSWDLDFDHWGQGTMVTVSS






CD3_sp11a_VH1_VK2_Y
QVQLVQSGAEVKKPGASVKVSCKASGFTFSKQGMHWVRQA
1280



PGQGLEWMGMIYYDSSKMYYADTVKGRVTMTRDTSTNTLYM




ELSSLRSEDTAVYYCASYWWDLDFDHWGQGTMVTVSS






CD3_sp11a_VH1_VK2_S
QVQLVQSGAEVKKPGASVKVSCKASGFTFSKQGMHWVRQA
1281



PGQGLEWMGMIYYDSSKMYYADTVKGRVTMTRDTSTNTLYM




ELSSLRSEDTAVYYCASSWWDLDFDHWGQGTMVTVSS






CD3_sp11a_VH1_VK2_Y
QVQLVQSGAEVKKPGASVKVSCKASGFTFSKNGMHWVRQAP
1282


_PTM
GQGLEWMGMIYYDSSKMYYADTVKGRVTMTRDTSTNTLYME




LSSLRSEDTAVYYCASYWWDLDFDHWGQGTMVTVSS






CD3_sp11a_VH1_VK2_S
QVQLVQSGAEVKKPGASVKVSCKASGFTFSKQGMHWVRQA
1283


_PTM
PGNGLEWMGMIYYDSSKMYYADTVKGRVTMTRDTSTNTLYM




ELSSLRSEDTAVYYCASSWWDLDFDHWGQGTMVTVSS






CD3_sp11a_VH1_VK2_Y
QVQLVQSGAEVKKPGASVKVSCKASGFTFSKQGMHWVRQA
1284


_SW
PGQGLEWMGMIYYDSSKMYYADTVKGRVTMTRDTSTNTLYM




ELSSLRSEDTAVYYCASYSWDLDFDHWGQGTMVTVSS






CD3_sp11a_VH1_VK2_S
QVQLVQSGAEVKKPGASVKVSCKASGFTFSKQGMHWVRQA
1285


_SW
PGQGLEWMGMIYYDSSKMYYADTVKGRVTMTRDTSTNTLYM




ELSSLRSEDTAVYYCASSSWDLDFDHWGQGTMVTVSS






CD3_sp11a_VH1_VK2_Y
QVQLVQSGAEVKKPGASVKVSCKASGFTFSKNGMHWVRQAP
1286


_PTM
GQGLEWMGMIYYDSSKMYYADTVKGRVTMTRDTSTNTLYME




LSSLRSEDTAVYYCASYSWDLDFDHWGQGTMVTVSS






CD3_sp11a_VH1_VK2_S
QVQLVQSGAEVKKPGASVKVSCKASGFTFSKQGMHWVRQA
1287


_PTM_SW
PGNGLEWMGMIYYDSSKMYYADTVKGRVTMTRDTSTNTLYM




ELSSLRSEDTAVYYCASSSWDLDFDHWGQGTMVTVSS






CD3_sp11a_VH1_VK2_
QVQLVQSGAEVKKPGASVKVSCKASGFTFSKQGMHWVRQA
1288


SW
PGQGLEWMGMIYYDSSKMYYADTVKGRVTMTRDTSTNTLYM




ELSSLRSEDTAVYYCASFSWDLDFDHWGQGTMVTVSS






CD3_sp11a_VH1_VK2_
QVQLVQSGAEVKKPGASVKVSCKASGFTFSKQGMHWVRQA
1289


SW_PTM
PGNGLEWMGMIYYDSSKMYYADTVKGRVTMTRDTSTNTLYM




ELSSLRSEDTAVYYCASFSWDLDFDHWGQGTMVTVSS






CD3_SP11A_VH3_VLK1
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKNGMHWVRQA
1278


_Y
PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCASYWWDLDFDHWGQGTMVTVSS






CD3_SP11A_VH3_VLK1
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKNGMHWVRQA
1279


_S
PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCASSWWDLDFDHWGQGTMVTVSS






CD3_SP11A_VH3_VLK1
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKQGMHWVRQA
1290


_Y_PTM
PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCASYWWDLDFDHWGQGTMVTVSS






CD3_SP11A_VH3_VLK1
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKQGMHWVRQA
1291


_S_PTM
PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCASSWWDLDFDHWGQGTMVTVSS






CD3_SP11A_VH3_VLK1
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKNGMHWVRQA
1265


_Y_SW
PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCASYSWDLDFDHWGQGTMVTVSS






CD3_SP11A_VH3_VLK1
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKNGMHWVRQA
1279


_S_SW
PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCASSWWDLDFDHWGQGTMVTVSS






CD3_SP11A_VH3_VLK1
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKQGMHWVRQA
1290


_Y_PTM
PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCASYWWDLDFDHWGQGTMVTVSS






CD3_SP11A_VH3_VLK1
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKQGMHWVRQA
1264


_S_PTM_SW
PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCASSSWDLDFDHWGQGTMVTVSS






CD3_SP11A_VH3_VLK1
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKQGMHWVRQA
1267


PTM_SW
PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCASFSWDLDFDHWGQGTMVTVSS






CD3_SP11A_VH3_VLK1
QVQLVESGGGVVQPGRSLRLSCAASGFTFSKNGMHWVRQA
1237


_SW
PGKGLEWVAMIYYDSSKMYYADTVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCASFSWDLDFDHWGQGTMVTVSS






CD3_SP11A_VH5_VK2_
EVQLVQSGAEVKKPGESLKISCKGSGFTFSKQGMHWVRQMP
1292


Y
GKGLEWMGMIYYDSSKMYYADTVKGQVTISRDNSINTLYLQW




SSLKASDTAMYYCASYWWDLDFDHWGQGTMVTVSS






CD3_SP11A_VH5_VK2_
EVQLVQSGAEVKKPGESLKISCKGSGFTFSKQGMHWVRQMP
1293


S
GKGLEWMGMIYYDSSKMYYADTVKGQVTISRDNSINTLYLQW




SSLKASDTAMYYCASSWWDLDFDHWGQGTMVTVSS






CD3_SP11A_VH5_VK2_
EVQLVQSGAEVKKPGESLKISCKGSGFTFSKNGMHWVRQMP
1294


Y_PTM
GKGLEWMGMIYYDSSKMYYADTVKGQVTISRDNSINTLYLQW




SSLKASDTAMYYCASYWWDLDFDHWGQGTMVTVSS






CD3_SP11A_VH5_VK2_
EVQLVQSGAEVKKPGESLKISCKGSGFTFSKNGMHWVRQMP
1295


S_PTM
GKGLEWMGMIYYDSSKMYYADTVKGQVTISRDNSINTLYLQW




SSLKASDTAMYYCASSWWDLDFDHWGQGTMVTVSS






CD3_SP11A_VH5_VK2_
EVQLVQSGAEVKKPGESLKISCKGSGFTFSKQGMHWVRQMP
1296


Y_SW
GKGLEWMGMIYYDSSKMYYADTVKGQVTISRDNSINTLYLQW




SSLKASDTAMYYCASYSWDLDFDHWGQGTMVTVSS






CD3_SP11A_VH5_VK2_
EVQLVQSGAEVKKPGESLKISCKGSGFTFSKQGMHWVRQMP
1297


S_SW
GKGLEWMGMIYYDSSKMYYADTVKGQVTISRDNSINTLYLQW




SSLKASDTAMYYCASSSWDLDFDHWGQGTMVTVSS






CD3_SP11A_VH5_VK2_
EVQLVQSGAEVKKPGESLKISCKGSGFTFSKNGMHWVRQMP
1298


Y_PTM_SW
GKGLEWMGMIYYDSSKMYYADTVKGQVTISRDNSINTLYLQW




SSLKASDTAMYYCASYSWDLDFDHWGQGTMVTVSS






CD3_SP11A_VH5_VK2_
EVQLVQSGAEVKKPGESLKISCKGSGFTFSKNGMHWVRQMP
1299


S_PTM_SW
GKGLEWMGMIYYDSSKMYYADTVKGQVTISRDNSINTLYLQW




SSLKASDTAMYYCASSSWDLDFDHWGQGTMVTVSS






CD3_SP11A_VH5_VK2_
EVQLVQSGAEVKKPGESLKISCKGSGFTFSKNGMHWVRQMP
1300


PTM_SW
GKGLEWMGMIYYDSSKMYYADTVKGQVTISRDNSINTLYLQW




SSLKASDTAMYYCASFSWDLDFDHWGQGTMVTVSS






CD3_SP11A_VH5_VK2_
EVQLVQSGAEVKKPGESLKISCKGSGFTFSKQGMHWVRQMP
1301


SW
GKGLEWMGMIYYDSSKMYYADTVKGQVTISRDNSINTLYLQW




SSLKASDTAMYYCASFSWDLDFDHWGQGTMVTVSS






NOV292
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSDGTTYFNWYQ
1302



QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






NOV123
DVVMTQSPLSLPVTLGQPASISCRSSQSLIYSIGNTYLHWYQQ
1303



RPGQSPRLLIYRVSNRFSGVPDRFSGSGSGTDFTLKISRVEAE




DVGVYYCFQSTHLPYTFGQGTKLEIK






Sp10b
VVVLTQTPVSLPVSLGGQASISCRSSQSLIYSIGNTYLHWYLQ
1304



KPGQSPQLLIYRVSNRFSGVPDRFSGSGSGTDFTLKISRVEPE




DLGDYYCFQSTHLPYTFGAGTKLELK






NOV453
DIQMTQSPSSLSASVGDRVTITCKASQNINNYLNWYQQKPGK
1305



APKLLIYNTDHLQAGVPSRFSGSGSGTDYTLTISSLQPEDFATY




FCLQHRSRYTFGPGTKVDIK






NOV229
DIQMTQSPSSLSASVGDRVTITCKASQNINNYLNWYQQKPGK
1306



APKLLIYNTDHLQAGVPSRFSGSGSGTDFTLTISSLQPEDFATY




YCLQHRSRYTFGPGTKVDIK






NOV110
DVVMTQSPLSLPVTLGQPASISCRSSQSLVYSHGNTYLHWYQ
1307



QRPGQSPRLLIYRVSNRFSGVPDRFSGSGSGTDFTLKISRVEA




EDVGVYYCFQSTHLPYTFGQGTKLEIK






NOV832
DVVMTQSPLSLPVTLGQPASISCRSSQSLVYSHGNTYLHWFQ
1308



QRPGQSPRRLIYRVSNRFSGVPDRFSGSGSGTDFTLKISRVE




AEDVGVYYCFQSTHLPYTFGQGTKLEIK






NOV589
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSDGTTYFNWYQ
1302



QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






NOV580
DIQMTQSPSSLSASVGDRVTITCKTSQNIDKYLNWYQQKPGK
1309



APKLLIYNTNNLEAGVPSRFSGSGSGTDYTFTISSLQPEDIATY




FCLQHRSSYTFGQGTKLEIK






NOV567
DIQMTQSPSSLSASVGDRVTITCRGSQSIGNSLNWYQQKPGK
1310



APKRLIYSTSTLEYGVPSRFSGSGSGTEYTLTISSLQPEDFATY




YCLQYATYPYTFGQGTKLEIK






NOV221
DIQMTQSPSSLSASVGDRVTITCKSSQNIDKYLNWYQQKPGK
1311



APKLLIYNTNNLEAGVPSRFSGSGSGTDYTFTISSLQPEDIATY




FCLQHRSGYTFGQGTKLEIK






CD3_sp11a_bkm1
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSDGTTYFNWLQ
1312



QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






CD3_SP11a_bkm2
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSDGTTYFNWYQ
1302



QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






CD3_sp11a_hz0
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSDGTTYFNWLQ
1312



QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






CD3_SP11A_HZ1
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSDGTTYFNWYQ
1313



QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSH






CD3_sp11a_sansPTM_
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSEGTTYFNWYQ
1314


hz1
QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






CD3_sp11a_sansPTM_
DILVTQTPVSLPVSLGGHVSISCRSSQSLVRSEGTTYFNWYLQ
1315


rat
KPGQSPQLLIYRVSNRFSGVPDRFSGSGSGTDFTLKISRVEPE




DLGVYYCLQSSHFPWTFGGGTKLELK






CD3_sp11a_VHVL_YY
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSDGTTYFNWYQ
1302



QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






CD3_SP11A_VHVL_SS
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSDGTTYFNWYQ
1302



QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






CD3_SP11A_VHVL_WS
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSDGTTYFNWYQ
1302



QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






CD3_sp11a_VHVL_SW
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSDGTTYFNWYQ
1302



QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






CD3_SP11A_VHVL_TT
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSDGTTYFNWYQ
1302



QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






CD3_SP11A_VHVL_TW
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSDGTTYFNWYQ
1302



QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






CD3_SP11A_VHVL_WT
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSDGTTYFNWYQ
1302



QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






CD3_SP11A VH3_VLK_3
EIVLTQSPGTLSLSPGERATLSCRSSQSLVRSEGTTYFNWYQ
1316



QKPGQAPRLLIYRVSNRFSGIPDRFSGSGSGTDFTLTISRLEPE




DLAVYYCLQSSHFPWTFGGGTKVEIK






CD3_sp11a_VH1_VK2
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSDGTTYFNWYQ
1302



QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






CD3_SP11A_VH3_VLK1
DIQMTQSPSSLSASVGDRVTITCRSSQSLVRSEGTTYFNWYQ
1317



QKPGKAPKLLIYRVSNRFSGVPSRFSGSGSGTDFTLTISSLQP




EDFATYYCLQSSHFPWTFGGGTKVEIK






CD3_SP11A_VH5_VK2
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSDGTTYFNWYQ
1302



QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






CD3_sp9aFW1_VL_VH_
EIVMTQSPSTLSASVGDRVIITCKASQNINNYLNWYQQKPGKA
1318


S56G
PKLLIYNTDHLQAGVPSRFSGSGSGAEFTLTISSLQPDDFATYY




CLQHRSRYTFGQGTKLTVL






CD3_SP9AFW4_VL_VH
EIVMTQSPSTLSASVGDRVIITCKASQNINNYLNWYQQKPGKA
1318


_S56G
PKLLIYNTDHLQAGVPSRFSGSGSGAEFTLTISSLQPDDFATYY




CLQHRSRYTFGQGTKLTVL






CD3_sp9aFW1_VLVH
EIVMTQSPSTLSASVGDRVIITCKASQNINNYLNWYQQKPGKA
1318



PKLLIYNTDHLQAGVPSRFSGSGSGAEFTLTISSLQPDDFATYY




CLQHRSRYTFGQGTKLTVL






CD3_sp9aFW4_VLVH
EIVMTQSPSTLSASVGDRVIITCKASQNINNYLNWYQQKPGKA
1318



PKLLIYNTDHLQAGVPSRFSGSGSGAEFTLTISSLQPDDFATYY




CLQHRSRYTFGQGTKLTVL






CD3_sp9arabtor_VHVL
EIVMTQSPSTLSASVGDRVIITCKASQNINNYLNWYQQKPGKA
1318



PKLLIYNTDHLQAGVPSRFSGSGSGAEFTLTISSLQPDDFATYY




CLQHRSRYTFGQGTKLTVL






CD3_sp9arabtor_VLVH
EIVMTQSPSTLSASVGDRVIITCKASQNINNYLNWYQQKPGKA
1318



PKLLIYNTDHLQAGVPSRFSGSGSGAEFTLTISSLQPDDFATYY




CLQHRSRYTFGQGTKLTVL






CD3_sp11a_VHVL_YY_
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSEGTTYFNWYQ
1314


SANSPTM
QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






CD3_sp11a_VHVL_YY_
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSEGTTYFNWYQ
1314


SANSPTM_Y
QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






CD3_sp11a_VHVL_YY_
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSEGTTYFNWYQ
1314


SANSPTM_S
QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






CD3_sp11a_VHVL_YY_
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSDGTTYFNWYQ
1302


Y
QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






CD3_sp11a_VHVL_YY_s
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSDGTTYFNWYQ
1302



QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






CD3_sp11a_VHVL_SS_
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSEGTTYFNWYQ
1314


SANSPTM
QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






CD3_sp11a_VHVL_SS_
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSEGTTYFNWYQ
1314


SANSPTM_Y
QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






CD3_sp11a_VHVL_SS_
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSEGTTYFNWYQ
1314


SANSPTM_S
QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






CD3_sp11a_VHVL_SS_
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSDGTTYFNWYQ
1302


Y
QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






CD3_sp11a_VHVL_SS_
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSDGTTYFNWYQ
1302


S
QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






CD3_sp11a_VHVL_SS
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSEGTTYFNWYQ
1314


_SANSPTM
QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






CD3_sp11a_VHVL_WS
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSEGTTYFNWYQ
1314


_SANSPTM_Y
QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






CD3_sp11a_VHVL_WS
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSEGTTYFNWYQ
1314


_SANSPTM_S
QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






CD3_sp11a_VHVL_WS
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSDGTTYFNWYQ
1302


_Y
QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






CD3_sp11a_VHVL_WS
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSDGTTYFNWYQ
1302


_S
QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






CD3_sp11a_VHVL_WS
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSEGTTYFNWYQ
1314


_SANSPTM
QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






CD3_sp11a_VHVL_SW
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSEGTTYFNWYQ
1314


_SANSPTM_Y
QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






CD3_sp11a_VHVL_SW
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSEGTTYFNWYQ
1314


_SANSPTM_S
QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






CD3_sp11a_VHVL_SW
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSDGTTYFNWYQ
1302


_Y
QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






CD3_sp11a_VHVL_SW
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSDGTTYFNWYQ
1302


_S
QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






CD3_sp11a_VHVL_SW
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSEGTTYFNWYQ
1314


_SANSPTM
QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






CD3_sp11a_VHVL_TW
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSEGTTYFNWYQ
1314


_SANSPTM_Y
QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






CD3_sp11a_VHVL_TW
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSEGTTYFNWYQ
1314


_SANSPTM_S
QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






CD3_sp11a_VHVL_TW
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSDGTTYFNWYQ
1302


_Y
QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






CD3_sp11a_VHVL_TW
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSDGTTYFNWYQ
1302


_S
QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






CD3_sp11a_VHVL_TW
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSEGTTYFNWYQ
1314


_SANSPTM
QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






CD3_sp11a_VHVL_TT
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSEGTTYFNWYQ
1314


_SANSPTM_Y
QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






CD3_sp11a_VHVL_TT_
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSEGTTYFNWYQ
1314


SANSPTM_S
QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






CD3_sp11a_VHVL_TT_Y
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSDGTTYFNWYQ
1302



QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






CD3_sp11a_VHVL_TT_S
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSDGTTYFNWYQ
1302



QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






CD3_sp11a_VHVL_TT_
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSEGTTYFNWYQ
1314


SANSPTM
QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






CD3_SP11AVH3_VLK_3
EIVLTQSPGTLSLSPGERATLSCRSSQSLVRSEGTTYFNWYQ
1316


_Y
QKPGQAPRLLIYRVSNRFSGIPDRFSGSGSGTDFTLTISRLEPE




DLAVYYCLQSSHFPWTFGGGTKVEIK






CD3_SP11AVH3_VLK_3
EIVLTQSPGTLSLSPGERATLSCRSSQSLVRSEGTTYFNWYQ
1316


_S
QKPGQAPRLLIYRVSNRFSGIPDRFSGSGSGTDFTLTISRLEPE




DLAVYYCLQSSHFPWTFGGGTKVEIK






CD3_SP11AVH3_VLK_3
EIVLTQSPGTLSLSPGERATLSCRSSQSLVRSDGTTYFNWYQ
1319


_Y_PTM
QKPGQAPRLLIYRVSNRFSGIPDRFSGSGSGTDFTLTISRLEPE




DLAVYYCLQSSHFPWTFGGGTKVEIK






CD3_SP11AVH3_VLK_3
EIVLTQSPGTLSLSPGERATLSCRSSQSLVRSDGTTYFNWYQ
1319


_S_PTM
QKPGQAPRLLIYRVSNRFSGIPDRFSGSGSGTDFTLTISRLEPE




DLAVYYCLQSSHFPWTFGGGTKVEIK






CD3_SP11AVH3_VLK_3
EIVLTQSPGTLSLSPGERATLSCRSSQSLVRSEGTTYFNWYQ
1316


_Y_SW
QKPGQAPRLLIYRVSNRFSGIPDRFSGSGSGTDFTLTISRLEPE




DLAVYYCLQSSHFPWTFGGGTKVEIK






CD3_SP11AVH3_VLK_3
EIVLTQSPGTLSLSPGERATLSCRSSQSLVRSEGTTYFNWYQ
1316


_S_SW
QKPGQAPRLLIYRVSNRFSGIPDRFSGSGSGTDFTLTISRLEPE




DLAVYYCLQSSHFPWTFGGGTKVEIK






CD3_SP11AVH3_VLK_3
EIVLTQSPGTLSLSPGERATLSCRSSQSLVRSDGTTYFNWYQ
1319


_Y_PTM_SW_
QKPGQAPRLLIYRVSNRFSGIPDRFSGSGSGTDFTLTISRLEPE




DLAVYYCLQSSHFPWTFGGGTKVEIK






CD3_SP11AVH3_VLK_3
EIVLTQSPGTLSLSPGERATLSCRSSQSLVRSDGTTYFNWYQ
1319


_S_SWPTM
QKPGQAPRLLIYRVSNRFSGIPDRFSGSGSGTDFTLTISRLEPE




DLAVYYCLQSSHFPWTFGGGTKVEIK






CD3_SP11AVH3_VLK_
EIVLTQSPGTLSLSPGERATLSCRSSQSLVRSDGTTYFNWYQ
1319


SWPTM
QKPGQAPRLLIYRVSNRFSGIPDRFSGSGSGTDFTLTISRLEPE




DLAVYYCLQSSHFPWTFGGGTKVEIK






CD3_SP11AVH3_VLK_3
EIVLTQSPGTLSLSPGERATLSCRSSQSLVRSEGTTYFNWYQ
1316


_SW
QKPGQAPRLLIYRVSNRFSGIPDRFSGSGSGTDFTLTISRLEPE




DLAVYYCLQSSHFPWTFGGGTKVEIK






CD3_sp11a_VH1_VK2_Y
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSDGTTYFNWYQ
1302



QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






CD3_sp11a_VH1_VK2_S
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSDGTTYFNWYQ
1302



QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






CD3_sp11a_VH1_VK2_Y
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSEGTTYFNWYQ
1314


_PTM
QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






CD3_sp11a_VH1_VK2_S
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSEGTTYFNWYQ
1314


_PTM
QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






CD3_sp11a_VH1_VK2_Y
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSDGTTYFNWYQ
1302


_SW
QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






CD3_sp11a_VH1_VK2_S
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSDGTTYFNWYQ
1302


_SW
QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






CD3_sp11a_VH1_VK2_Y
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSEGTTYFNWYQ
1314


_PTM
QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






CD3_sp11a_VH1_VK2_S
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSEGTTYFNWYQ
1314


_PTM_SW
QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






CD3_sp11a_VH1_VK2_
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSDGTTYFNWYQ
1302


SW
QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






CD3_sp11a_VH1_VK2_
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSEGTTYFNWYQ
1314


SW_PTM
QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






CD3_SP11A_VH3_VLK1
DIQMTQSPSSLSASVGDRVTITCRSSQSLVRSEGTTYFNWYQ
1317


_Y
QKPGKAPKLLIYRVSNRFSGVPSRFSGSGSGTDFTLTISSLQP




EDFATYYCLQSSHFPWTFGGGTKVEIK






CD3_SP11A_VH3_VLK1
DIQMTQSPSSLSASVGDRVTITCRSSQSLVRSEGTTYFNWYQ
1317


_S
QKPGKAPKLLIYRVSNRFSGVPSRFSGSGSGTDFTLTISSLQP




EDFATYYCLQSSHFPWTFGGGTKVEIK






CD3_SP11A_VH3_VLK1
DIQMTQSPSSLSASVGDRVTITCRSSQSLVRSDGTTYFNWYQ
1320


_Y_PTM
QKPGKAPKLLIYRVSNRFSGVPSRFSGSGSGTDFTLTISSLQP




EDFATYYCLQSSHFPWTFGGGTKVEIK






CD3_SP11A_VH3_VLK1
DIQMTQSPSSLSASVGDRVTITCRSSQSLVRSDGTTYFNWYQ
1320


_S_PTM
QKPGKAPKLLIYRVSNRFSGVPSRFSGSGSGTDFTLTISSLQP




EDFATYYCLQSSHFPWTFGGGTKVEIK






CD3_SP11A_VH3_VLK1
DIQMTQSPSSLSASVGDRVTITCRSSQSLVRSEGTTYFNWYQ
1317


_Y_SW
QKPGKAPKLLIYRVSNRFSGVPSRFSGSGSGTDFTLTISSLQP




EDFATYYCLQSSHFPWTFGGGTKVEIK






CD3_SP11A_VH3_VLK1
DIQMTQSPSSLSASVGDRVTITCRSSQSLVRSEGTTYFNWYQ
1317


_S_SW
QKPGKAPKLLIYRVSNRFSGVPSRFSGSGSGTDFTLTISSLQP




EDFATYYCLQSSHFPWTFGGGTKVEIK






CD3_SP11A_VH3_VLK1
DIQMTQSPSSLSASVGDRVTITCRSSQSLVRSDGTTYFNWYQ
1320


_Y_PTM
QKPGKAPKLLIYRVSNRFSGVPSRFSGSGSGTDFTLTISSLQP




EDFATYYCLQSSHFPWTFGGGTKVEIK






CD3_SP11A_VH3_VLK1
DIQMTQSPSSLSASVGDRVTITCRSSQSLVRSDGTTYFNWYQ
1320


_S_PTM_SW
QKPGKAPKLLIYRVSNRFSGVPSRFSGSGSGTDFTLTISSLQP




EDFATYYCLQSSHFPWTFGGGTKVEIK






CD3_SP11A_VH3_VLK1
DIQMTQSPSSLSASVGDRVTITCRSSQSLVRSDGTTYFNWYQ
1320


PTM_SW
QKPGKAPKLLIYRVSNRFSGVPSRFSGSGSGTDFTLTISSLQP




EDFATYYCLQSSHFPWTFGGGTKVEIK






CD3_SP11A_VH3_VLK1
DIQMTQSPSSLSASVGDRVTITCRSSQSLVRSEGTTYFNWYQ
1317


_SW
QKPGKAPKLLIYRVSNRFSGVPSRFSGSGSGTDFTLTISSLQP




EDFATYYCLQSSHFPWTFGGGTKVEIK






CD3_SP11A_VH5_VK2_
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSDGTTYFNWYQ
1302


Y
QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






CD3_SP11A_VH5_VK2_
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSDGTTYFNWYQ
1302


S
QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






CD3_SP11A_VH5_VK2_
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSDGTTYFNWYQ
1302


Y_PTM
QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






CD3_SP11A_VH5_VK2_
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSDGTTYFNWYQ
1302


S_PTM
QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






CD3_SP11A_VH5_VK2_
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSDGTTYFNWYQ
1302


Y_SW
QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






CD3_SP11A_VH5_VK2_
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSDGTTYFNWYQ
1302


S_SW
QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






CD3_SP11A_VH5_VK2_
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSDGTTYFNWYQ
1302


Y_PTM_SW
QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






CD3_SP11A_VH5_VK2_
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSDGTTYFNWYQ
1302


S_PTM_SW
QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






CD3_SP11A_VH5_VK2_
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSDGTTYFNWYQ
1302


PTM_SW
QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK






CD3_SP11A_VH5_VK2_
DIVMTQTPLSSPVTLGQPASISCRSSQSLVRSDGTTYFNWYQ
1302


SW
QRPGQPPRLLIYRVSNRFSGVPDRFSGSGAGTDFTLKISRVEA




EDVGVYYCLQSSHFPWTFGGGTKVEIK









The group C1 CDR sequences in Table AA are based upon the Kabat CDR sequences, Chothia CDR sequences, IMGT CDR sequences, and combinations thereof, of the CD3 binding molecules NOV292, NOV589, NOV567, and the CD3 binding molecules which include “sp11a” in the binder name. The group C2 CDR sequences in Table AB are based upon the Kabat CDR sequences, Chothia CDR sequences, IMGT CDR sequences, and combinations thereof, of the CD3 binding molecules NOV453, NOV229, NOV580, NOV221, and the CD3 binding molecules which include “sp9a” in the binder name. The group C3 CDR sequences in Table AC are based upon the Kabat CDR sequences, Chothia CDR sequences, IMGT CDR sequences, and combinations thereof, of the CD3 binding molecules NOV123, sp10b, NOV110, and NOV832.


The specific CDR sequences of the CD3 binding molecules described in the Examples of WO 2020/052692 are listed in Table AB-1 to Table AH-2. VH and VL sequences described in WO 2020/052692 are listed in Table AJ-1 and Table AJ-2, respectively.


In some embodiments, a CD3 ABM can comprise a heavy chain CDR having an amino acid sequence of any one of the CDR consensus sequences listed in Table AA, Table AB, or Table AC. In particular embodiments, a CD3 ABM can comprise (or alternatively, consist of) one, two, three, or more heavy chain CDRs selected from the heavy chain CDRs described in Table AA, Table AB, or Table AC.


In some embodiments, a CD3 ABM can comprise a light chain CDR having an amino acid sequence of any one of the CDR consensus sequences listed in Table AA, Table AB, or Table AC. In particular embodiments, a CD3 ABM can comprise (or alternatively, consist of) one, two, three, or more light chain CDRs selected from the light chain CDRs described in Table AA, Table AB, or Table AC.


In some embodiments, a CD3 ABM can comprise a CDR-H1 sequence, a CDR-H2 sequence a CDR-H3 sequence, a CDR-L1 sequence, a CDR-L2 sequence, and a CDR-L3 sequence set forth in Table AA.


In some embodiments, the amino acid designated X1 in Table AA is T. In some embodiments, the amino acid designated X1 in Table AA is A. In some embodiments, the amino acid designated X2 in Table AA is S. In some embodiments, the amino acid designated X2 in Table AA is R. In some embodiments, the amino acid designated X3 in Table AA is N. In some embodiments, the amino acid designated X3 in Table AA is Y. In some embodiments, the amino acid designated X3 in Table AA is Q. In some embodiments, the amino acid designated X4 in Table AA is H. In some embodiments, the amino acid designated X4 in Table AA is S. In some embodiments, the amino acid designated X5 in Table AA is M. In some embodiments, the amino acid designated X5 in Table AA is L. In some embodiments, the amino acid designated X6 in Table AA is K. In some embodiments, the amino acid designated X6 in Table AA is R. In some embodiments, the amino acid designated X7 in Table AA is S. In some embodiments, the amino acid designated X7 in Table AA is K. In some embodiments, the amino acid designated X55 in Table AA is F. In some embodiments, the amino acid designated X55 in Table AA is Y. In some embodiments, the amino acid designated X55 in Table AA is S. In some embodiments, the amino acid designated X8 in Table AA is W. In some embodiments, the amino acid designated X8 in Table AA is Y. In some embodiments, the amino acid designated X8 in Table AA is S. In some embodiments, the amino acid designated X8 in Table AA is T. In some embodiments, the amino acid designated X9 in Table AA is W. In some embodiments, the amino acid designated X9 in Table AA is Y. In some embodiments, the amino acid designated X9 in Table AA is S. In some embodiments, the amino acid designated X9 in Table AA is T. In some embodiments, the amino acid designated X10 in Table AA is H. In some embodiments, the amino acid designated X10 in Table AA is Y. In some embodiments, the amino acid designated X11 in Table AA is S. In some embodiments, the amino acid designated X11 in Table AA is G. In some embodiments, the amino acid designated X12 in Table AA is I. In some embodiments, the amino acid designated X12 in Table AA is L. In some embodiments, the amino acid designated X13 in Table AA is V. In some embodiments, the amino acid designated X13 in Table AA is G. In some embodiments, the amino acid designated X14 in Table AA is R. In some embodiments, the amino acid designated X14 in Table AA is N. In some embodiments, the amino acid designated X15 in Table AA is D. In some embodiments, the amino acid designated X15 in Table AA is E. In some embodiments, the amino acid designated X15 in Table AA is L. In some embodiments, the amino acid designated X16 in Table AA is G. In some embodiments, the amino acid designated X16 in Table AA is N. In some embodiments, the amino acid designated X16 in Table AA is E. In some embodiments, the amino acid designated X17 in Table AA is R. In some embodiments, the amino acid designated X17 in Table AA is S. In some embodiments, the amino acid designated X18 in Table AA is V. In some embodiments, the amino acid designated X18 in Table AA is T. In some embodiments, the amino acid designated X19 in Table AA is N. In some embodiments, the amino acid designated X19 in Table AA is T. In some embodiments, the amino acid designated X20 in Table AA is R. In some embodiments, the amino acid designated X20 in Table AA is L. In some embodiments, the amino acid designated X21 in Table AA is F. In some embodiments, the amino acid designated X21 in Table AA is E. In some embodiments, the amino acid designated X22 in Table AA is S. In some embodiments, the amino acid designated X22 in Table AA is Y. In some embodiments, the amino acid designated X23 in Table AA is S. In some embodiments, the amino acid designated X23 in Table AA is Y. In some embodiments, the amino acid designated X24 in Table AA is S. In some embodiments, the amino acid designated X24 in Table AA is A. In some embodiments, the amino acid designated X25 in Table AA is H. In some embodiments, the amino acid designated X25 in Table AA is T. In some embodiments, the amino acid designated X26 in Table AA is F. In some embodiments, the amino acid designated X26 in Table AA is Y. In some embodiments, the amino acid designated X27 in Table AA is W. In some embodiments, the amino acid designated X27 in Table AA is Y.


In some embodiments, a CD3 ABM can comprise the CDR-H1 sequence C1-1. In some embodiments, a CD3 ABM can comprise the CDR-H1 sequence C1-2. In some embodiments, a CD3 ABM can comprise the CDR-H1 sequence C1-3. In some embodiments, a CD3 ABM can comprise the CDR-H1 sequence C1-4.


In some embodiments, a CD3 ABM can comprise the CDR-H2 sequence C1-5. In some embodiments, a CD3 ABM can comprise the CDR-H2 sequence C1-6. In some embodiments, a CD3 ABM can comprise the CDR-H2 sequence C1-7.


In some embodiments, a CD3 ABM can comprise the CDR-H3 sequence C1-8. In some embodiments, a CD3 ABM can comprise the CDR-H3 sequence C1-9. In some embodiments, a CD3 ABM can comprise the CDR-H3 sequence C1-10. In some embodiments, a CD3 ABM can comprise the CDR-H3 sequence C1-11.


In some embodiments, a CD3 ABM can comprise the CDR-L1 sequence C1-12. In some embodiments, a CD3 ABM can comprise the CDR-L1 sequence C1-13. In some embodiments, a CD3 ABM can comprise the CDR-L1 sequence C1-14. In some embodiments, a CD3 ABM can comprise the CDR-L1 sequence C1-15. In some embodiments, a CD3 ABM can comprise the CDR-L1 sequence C1-16. In some embodiments, a CD3 ABM can comprise the CDR-L1 sequence C1-17.


In some embodiments, a CD3 ABM can comprise the CDR-L2 sequence C1-18. In some embodiments, a CD3 ABM can comprise the CDR-L2 sequence C1-19.


In some embodiments, a CD3 ABM can comprise the CDR-L3 sequence C1-20. In some embodiments, a CD3 ABM can comprise the CDR-L3 sequence C1-21. In some embodiments, a CD3 ABM can comprise the CDR-L3 sequence C1-22. In some embodiments, a CD3 ABM can comprise the CDR-L3 sequence C1-23.


In some embodiments, a CD3 ABM can comprise a CDR-H1 sequence, a CDR-H2 sequence a CDR-H3 sequence, a CDR-L1 sequence, a CDR-L2 sequence, and a CDR-L3 sequence set forth in Table AB.


In some embodiments, the amino acid designated X28 in Table AB is V. In some embodiments, the amino acid designated X28 in Table AB is I. In some embodiments, the amino acid designated X29 in Table AB is F. In some embodiments, the amino acid designated X29 in Table AB is Y. In some embodiments, the amino acid designated X30 in Table AB is N. In some embodiments, the amino acid designated X30 in Table AB is S. In some embodiments, the amino acid designated X31 in Table AB is A. In some embodiments, the amino acid designated X31 in Table AB is S. In some embodiments, the amino acid designated X32 in Table AB is T. In some embodiments, the amino acid designated X32 in Table AB is K. In some embodiments, the amino acid designated X33 in Table AB is T. In some embodiments, the amino acid designated X33 in Table AB is A. In some embodiments, the amino acid designated X34 in Table AB is S. In some embodiments, the amino acid designated X34 in Table AB is R. In some embodiments, the amino acid designated X35 in Table AB is N. In some embodiments, the amino acid designated X35 in Table AB is G. In some embodiments, the amino acid designated X36 in Table AB is S. In some embodiments, n the amino acid designated X36 in Table AB is A. In some embodiments, the amino acid designated X37 in Table AB is A. In some embodiments, the amino acid designated X37 in Table AB is T. In some embodiments, the amino acid designated X37 in Table AB is S. In some embodiments, the amino acid designated X38 in Table AB is N. In some embodiments, the amino acid designated X38 in Table AB is D. In some embodiments, the amino acid designated X39 in Table AB is N. In some embodiments, the amino acid designated X39 in Table AB is K. In some embodiments, the amino acid designated X40 in Table AB is D. In some embodiments, the amino acid designated X40 in Table AB is N. In some embodiments, the amino acid designated X41 in Table AB is H. In some embodiments, the amino acid designated X41 in Table AB is N. In some embodiments, the amino acid designated X42 in Table AB is Q. In some embodiments, the amino acid designated X42 in Table AB is E. In some embodiments, the amino acid designated X43 in Table AB is R. In some embodiments, the amino acid designated X43 in Table AB is S. In some embodiments, the amino acid designated X43 in Table AB is G.


In some embodiments, a CD3 ABM can comprise the CDR-H1 sequence C2-1. In some embodiments, a CD3 ABM can comprise the CDR-H1 sequence C2-2. In some embodiments, a CD3 ABM can comprise the CDR-H1 sequence C2-3. In some embodiments, a CD3 ABM can comprise the CDR-H1 sequence C2-4.


In some embodiments, a CD3 ABM can comprise the CDR-H2 sequence C2-5. In some embodiments, a CD3 ABM can comprise the CDR-H2 sequence C2-6. In some embodiments, a CD3 ABM can comprise the CDR-H2 sequence C2-7.


In some embodiments, a CD3 ABM can comprise the CDR-H3 sequence C2-8. In some embodiments, a CD3 ABM can comprise the CDR-H3 sequence C2-9.


In some embodiments, a CD3 ABM can comprise the CDR-L1 sequence C2-10. In some embodiments, a CD3 ABM can comprise the CDR-L1 sequence C2-11. In some embodiments, a CD3 ABM can comprise the CDR-L1 sequence C2-12.


In some embodiments, a CD3 ABM can comprise the CDR-L2 sequence C2-13. In some embodiments, a CD3 ABM can comprise the CDR-L2 sequence C2-14. In some embodiments, a CD3 ABM can comprise the CDR-L2 sequence C2-15.


In some embodiments, a CD3 ABM can comprise the CDR-L3 sequence C2-16. In some embodiments, a CD3 ABM can comprise the CDR-L3 sequence C2-17.


In some embodiments, a CD3 ABM can comprise a CDR-H1 sequence, a CDR-H2 sequence a CDR-H3 sequence, a CDR-L1 sequence, a CDR-L2 sequence, and a CDR-L3 sequence set forth in Table AC.


In some embodiments, the amino acid designated X44 in Table AC is G. In some embodiments, the amino acid designated X44 in Table AC is A. In some embodiments, the amino acid designated X45 in Table AC is H. In some embodiments, the amino acid designated X45 in Table AC is N. In some embodiments, the amino acid designated X46 in Table AC is D. In some embodiments, the amino acid designated X46 in Table AC is G. In some embodiments, the amino acid designated X47 in Table AC is A. In some embodiments, the amino acid designated X47 in Table AC is G. In some embodiments, the amino acid designated X48 in Table AC is N. In some embodiments, the amino acid designated X48 in Table AC is K. In some embodiments, the amino acid designated X49 in Table AC is V. In some embodiments, the amino acid designated X49 in Table AC is A. In some embodiments, the amino acid designated X50 in Table AC is N. In some embodiments, the amino acid designated X50 in Table AC is V. In some embodiments, the amino acid designated X51 in Table AC is A. In some embodiments, the amino acid designated X51 in Table AC is V. In some embodiments, the amino acid designated X52 in Table AC is Y. In some embodiments, the amino acid designated X52 in Table AC is F. In some embodiments, the amino acid designated X53 in Table AC is I. In some embodiments, the amino acid designated X53 in Table AC is V. In some embodiments, the amino acid designated X54 in Table AC is I. In some embodiments, the amino acid designated X54 in Table AC is H.


In some embodiments, a CD3 ABM can comprise the CDR-H1 sequence C3-1. In some embodiments, a CD3 ABM can comprise the CDR-H1 sequence C3-2. In some embodiments, a CD3 ABM can comprise the CDR-H1 sequence C3-3. In some embodiments, a CD3 ABM can comprise the CDR-H1 sequence C3-4.


In some embodiments, a CD3 ABM can comprise the CDR-H2 sequence C3-5. In some embodiments, a CD3 ABM can comprise the CDR-H2 sequence C3-6. In some embodiments, a CD3 ABM can comprise the CDR-H2 sequence C3-7.


In some embodiments, a CD3 ABM can comprise the CDR-H3 sequence C3-8. In some embodiments, a CD3 ABM can comprise the CDR-H3 sequence C3-9.


In some embodiments, a CD3 ABM can comprise the CDR-L1 sequence C3-10. In some embodiments, a CD3 ABM can comprise the CDR-L1 sequence C3-11. In some embodiments, a CD3 ABM can comprise the CDR-L1 sequence C3-12.


In some embodiments, a CD3 ABM can comprise the CDR-L2 sequence C3-13. In some embodiments, a CD3 ABM can comprise the CDR-L2 sequence C3-14.


In some embodiments, a CD3 ABM can comprise the CDR-L3 sequence C3-15. In some embodiments, a CD3 ABM can comprise the CDR-L3 sequence C3-16.


In some embodiments, a CD3 ABM can comprise CDR-H1, CDR-H2, and CDR-H3 sequences set forth in Table AD-1 and the corresponding CDR-L1, CDR-L2, and CDR-L3 sequences set forth in Table AD-2.


In some embodiments, a CD3 ABM can comprise CDR-H1, CDR-H2, and CDR-H3 sequences set forth in Table AE-1 and the corresponding CDR-L1, CDR-L2, and CDR-L3 sequences set forth in Table AE-2.


In some embodiments, a CD3 ABM can comprise CDR-H1, CDR-H2, and CDR-H3 sequences set forth in Table AF-1 and the corresponding CDR-L1, CDR-L2, and CDR-L3 sequences set forth in Table AF-2.


In some embodiments, a CD3 ABM can comprise CDR-H1, CDR-H2, and CDR-H3 sequences set forth in Table AG-1 and the corresponding CDR-L1, CDR-L2, and CDR-L3 sequences set forth in Table AG-2.


In some embodiments, a CD3 ABM can comprise CDR-H1, CDR-H2, and CDR-H3 sequences set forth in Table AH-1 and the corresponding CDR-L1, CDR-L2, and CDR-L3 sequences set forth in Table AH-2.


In some embodiments, a CD3 ABM can comprise CDR-H1, CDR-H2, and CDR-H3 sequences set forth in Table AI-1 and the corresponding CDR-L1, CDR-L2, and CDR-L3 sequences set forth in Table AI-2.


In some embodiments, a CD3 ABM can comprise a heavy chain CDR having an amino acid sequence of any one of the CDRs listed in Table AB-1, Table AC-1, Table AD-1, Table AE-1, Table AF-1, Table AG-1, Table AH-1, or Table AI-1. In particular embodiments, a CD3 ABM can comprise (or alternatively, consist of) one, two, three, or more heavy chain CDRs selected the heavy chain CDRs described in Table AB-1, Table AC-1, Table AD-1, Table AE-1, Table AF-1, Table AG-1, Table AH-1, and Table AI-1.


In some embodiments, a CD3 ABM can comprise a light chain CDR having an amino acid sequence of any one of the CDRs listed in Table AB-2, Table AC-2, Table AD-2, Table AE-2, Table AF-2, Table AG-2, Table AH-2, or Table AI-2. In particular embodiments, a CD3 ABM can comprise (or alternatively, consist of) one, two, three, or more light chain CDRs selected the light chain CDRs described in Table AB-2, Table AC-2, Table AD-2, Table AE-2, Table AF-2, Table AG-2, Table AH-2, and Table AI-2.


Other CD3 ABMs include amino acids that have been mutated, yet have at least 80, 85, 90, 95, 96, 97, 98, or 99 percent identity in the CDR regions with the CDR sequences described in Table A. In some embodiments, such CD3 ABMs include mutant amino acid sequences where no more than 1, 2, 3, 4 or 5 amino acids have been mutated in the CDR regions when compared with the CDR sequences described in Table A.


In some embodiments, a CD3 ABM can comprise a VH and/or VL domain having an amino acid sequence of any VH and/or VL domain described in Table A. Other CD3 ABMs include VH and/or VL domains comprising amino acid sequences having at least 80, 85, 90, 95, 96, 97, 98, or 99 percent identity to the VH and/or VL sequences described in Table A. In some embodiments, CD3 ABMs include VH and/or VL domains where no more than 1, 2, 3, 4 or 5 amino acids have been mutated when compared with the VH and/or VL domains depicted in the sequences described in Table A, while retaining substantially the same therapeutic activity.


VH and VL sequences (amino acid sequences and the nucleotide sequences encoding the amino acid sequences) can be “mixed and matched” to create other CD3 ABMs. Such “mixed and matched” CD3 ABMs can be tested using binding assays known in the art (e.g., FACS assays). When chains are mixed and matched, a VH sequence from a particular VH/VL pairing should be replaced with a structurally similar VH sequence. A VL sequence from a particular VH/VL pairing should be replaced with a structurally similar VL sequence.


Accordingly, in one embodiment, a CD3 ABM comprises: a heavy chain variable region (VH) comprising an amino acid sequence selected from any one of the VH sequences described in Table A-J1; and a light chain variable region (VL) comprising an amino acid sequence described in Table A-J2.


In some embodiments, the antigen-binding domain that specifically binds to human CD3 is non-immunoglobulin based and is instead derived from a non-antibody scaffold protein, for example one of the non-antibody scaffold proteins described in Section 7.5.2. In an embodiment, the antigen-binding domain that specifically binds to human CD3 comprises Affilin-144160, which is described in WO 2017/013136. Affilin-144160 has the following amino acid sequence:









(SEQ ID NO: 965)


MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQWLWFAGKQL





EDGRTLSDYNIQKESTLKLWLVDKAAMQIFVYTRTGKTITLEVEPSDTIE





NVKAKIQDKEGIPPDQQRLIWAGKQLEDGRTLSDYNIALESGLHLVLRLR





AA






7.9.2. TCR-α/β ABMs


The MBMs can contain an ABM that specifically binds to the TCR-α chain, the TCR-β chain, or the TCR-αβ dimer. Exemplary anti-TCR-α/β antibodies are known (see, e.g., US 2012/0034221; Borst et al., 1990, Hum Immunol. 29(3):175-88 (describing antibody BMA031)). The VH, VL, and Kabat CDR sequences of antibody BMA031 are provided in Table 13.









TABLE 13







BMA031 sequences











SEQ




ID


Domain
Sequence
NO:





BMA031
KASGYKFTSYVMH
966


CDR-H1







BMA031
YINPYNDVTKYNEKFK
967


CDR-H2







BMA031
GSYYDYDGFVY
968


CDR-H3







BMA031
SATSSVSYMH
969


CDR-L1







BMA031
DTSKLAS
876


CDR-L2







BMA031
QQWSSNPLT
904


CDR-L3







BMA031
EVQLQQSGPELVKPGASVKMSCKASGYKFTSYVMHWVKQ
970


VH
KPGQGLEWIGYINPYNDVTKYNEKFKGKATLTSDKSSST




AYMELSSLTSEDSAVHYCARGSYYDYDGFVYWGQGTLVT




VSA






BMA031
QIVLTQSPAIMSASPGEKVTMTCSATSSVSYMHWYQQKS
971


VL
GTSPKRWIYDTSKLASGVPARFSGSGSGTSYSLTISSME




AEDAATYYCQQWSSNPLTFGAGTKLELK









In an embodiment, a TCR ABM can comprise the CDR sequences of antibody BMA031. In other embodiments, a TCR ABM can comprise the VH and VL sequences of antibody BMA031.


7.9.3. TCR-γ/δ ABMs


The MBMs can contain an ABM that specifically binds to the TCR-γ chain, the TCR-δ chain, or the TCR-γδ dimer. Exemplary anti-TCR-γ/δ antibodies are known (see, e.g., U.S. Pat. No. 5,980,892 (describing δTCS1, produced by the hybridoma deposited with the ATCC as accession number HB 9578)).


7.10. Tumor-Associated Antigen ABMs

The MBMs can comprise an ABM that binds specifically to a tumor-associated antigen (TAA). For example, a BBM can comprise an ABM2 that specifically binds a TAA and a TBM can comprise an ABM3 that specifically binds a TAA or can comprise an ABM2 that specifically binds to a first TAA (“TAA 1”) and an AMB3 that specifically binds different TAA (“TAA 2”). In some embodiments, the TAA (or each TAA, in the case of TAA 1 and TAA 2) is a human TAA. A TAA may or may not be present on normal cells. In certain embodiments, a TAA is preferentially expressed or upregulated on tumor cells as compared to normal cells. In other embodiments, a TAA is a lineage marker.


Exemplary TAAs that can be targeted by the MBMs (e.g., targeted by ABM2 and/or ABM3) include ABCF1; ACVR1; ACVR1B; ACVR2; ACVR2B; ACVRL1; ADORA2A; ADRB3; Aggrecan; AGR2; AICDA; AIF1; AIG1; AKAP1; AKAP2; ALK; AMH; AMHR2; ANGPT1; ANGPT2; ANGPTL3; ANGPTL4; ANPEP; APC; APOC1; AR; AZGP1 (zinc-a-glycoprotein); B7.1; B7.2; BAD; BAFF; BAG1; BAI1; BCL2; BCL6; BDNF; BLNK; BLR1 (MDR15); BlyS; BMP1; BMP2; BMP3B (GDF10); BMP4; BMP6; BMP8; BMPR1A; BMPR1B; BMPR2; BPAG1 (plectin); BRCA1; C19orf10 (IL27w); C3; C4A; C5; C5R1; Cadherin 17; CANT1; CASP1; CASP4; CAV1; CCBP2 (D6/JAB61); CCL1 (1-309); CCL11 (eotaxin); CCL13 (MCP-4); CCL15 (MIP-1d); CCL16 (HCC-4); CCL17 (TARC); CCL18 (PARC); CCL19 (MIP-3b); CCL2 (MCP-1); MCAF; CCL20 (MIP-3a); CCL21 (MIP-2); SLC; exodus-2; CCL22 (MDC/STC-1); CCL23 (MPIF-1); CCL24 (MPIF-2/eotaxin-2); CCL25 (TECK); CCL26 (eotaxin-3); CCL27 (CTACK/ILC); CCL28; CCL3 (MIP-1a); CCL4 (MIP-1b); CCL5 (RANTES); CCL7 (MCP-3); CCL8 (mcp-2); CCNA1; CCNA2; CCND1; CCNE1; CCNE2; CCR1 (CKR1/HM145); CCR2 (mcp-1RB/RA); CCR3 (CKR3/CMKBR3); CCR4; CCR5 (CMKBR5/ChemR13); CCR6 (CMKBR6/CKR-L3/STRL22/DRY6); CCR7 (CKR7/EBI1); CCR8 (CMKBR8/TER1/CKR-L1); CCR9 (GPR-9-6); CCRL1 (VSHK1); CCRL2 (L-CCR); CD164; CD19; CD1C; CD20; CD200; CD22; CD24; CD28; CD3; CD37; CD38; CD3E; CD3G; CD3Z; CD4; CD32b; CD40; CD40L; CD44; CD45RB; CD52; CD69; CD72; CD74; CD79A; CD79B; CD8; CD80; CD81; CD83; CD86; CD97; CD123; CD179a; CDH1 (E-cadherin); CDH10; CDH12; CDH13; CDH18; CDH19; CDH20; CDH5; CDH7; CDH8; CDH9; CDK2; CDK3; CDK4; CDK5; CDK6; CDK7; CDK9; CDKN1A (p21Wap1/Cip1); CDKN1B (p27Kip1); CDKN1C; CDKN2A (p16INK4a); CDKN2B; CDKN2C; CDKN3; CEBPB; CER1; CHGA; CHGB; Chitinase; CHST10; CKLFSF2; CKLFSF3; CKLFSF4; CKLFSF5; CKLFSF6; CKLFSF7; CKLFSF8; CLDN3; CLDN6; CLDN7 (claudin-7); CLN3; CLU (clusterin); CMKLR1; CMKOR1 (RDC1); CNR1; COL18A1; COL1A1; COL4A3; COL6A1; CR2; CRP; CSF1 (M-CSF); CSF2 (GM-CSF); CSF3 (GCSF); CTLA4; CTNNB1 (b-catenin); CTSB (cathepsin B); CX3CL1 (SCYD1); CX3CR1 (V28); CXCL1 (GRO1); CXCL10(IP-10); CXCL11 (1-TAC/IP-9); CXCL12 (SDF1); CXCL13; CXCL14; CXCL16; CXCL2 (GRO2); CXCL3 (GRO3); CXCL5 (ENA-78/LIX); CXCL6 (GCP-2); CXCL9 (MIG); CXCR3 (GPR9/CKR-L2); CXCR4; CXCR6 (TYMSTR/STRL33/Bonzo); CYB5; CYC1; CYSLTR1; CGRP; C1q; C1r; C1; C4a; C4b; C2a; C2b; C3a; C3b; DAB21P; DES; DKFZp451J0118; DNCL1; DPP4; E-selectin; E2F1; ECGF1; EDG1; EFNA1; EFNA3; EFNB2; EGF; EGFR; EGFRvIII; ELAC2; ENG; ENO1; ENO2; ENO3; EPHB4; EPO; ERBB2 (Her-2); EREG; ERK8; ESR1; ESR2; F3 (TF); Factor VII; Factor IX; Factor V; Factor Vila; Factor Factor X; Factor XII; Factor XIII; FADD; FasL; FASN; FCER1A; FCER2; Fc gamma receptor; FCGR3A; FCRL5; FGF; FGF1 (aFGF); FGF10; FGF11; FGF12; FGF12B; FGF13; FGF14; FGF16; FGF17; FGF18; FGF19; FGF2 (bFGF); FGF20; FGF21; FGF22; FGF23; FGF3 (int-2); FGF4 (HST); FGF5; FGF6 (HST-2); FGF7 (KGF); FGF8; FGF9; FGFR3; FIGF (VEGFD); FIL1 (EPSILON); FIL1 (ZETA); FLJ12584; FLJ25530; FLRT1 (fibronectin); FLT1; Folate receptor alpha; Folate receptor beta; FOS; FOSL1 (FRA-1); Fucosyl GM1; FY (DARC); GABRP (GABAa); GAGEB1; GAGEC1; GALNAC4S-65T; GATA3; GDF5; GFI1; GGT1; GM-CSF; GloboH; GNAS1; GNRH1; GPNMB; GPR2 (CCR10); GPR20; GPR31; GPR44; GPR64; GPR81 (FKSG80); GPRC5D; GRCC10 (C10); GRP; GSN (Gelsolin); GSTP1; glycoprotein (gP)IIb/IIIa; HAVCR1; HAVCR2; HDAC4; HDAC5; HDAC7A; HDAC9; Her2; HER3; HGF; HIF1A; HIP1; histamine and histamine receptors; HLA-A; HLA-DRA; HM74; HMGB1; HMOX1; HMWMAA; HUMCYT2A; ICEBERG; ICOSL; ID2; IFN-α; IFNA1; IFNA2; IFNA4; IFNA5; IFNA6; IFNA7; IFNB1; IFN-γ; IFNW1; IGBP1; IGF1; IGF1R; IGF2; IGFBP2; IGFBP3; IGFBP6; IL-1; IL-α; IL-1-β; IL10; IL10RA; IL10RB; IL11; IL11RA; IL-12; IL12A; IL12B; IL12RB1; IL12RB2; IL13; IL13RA1; IL13RA2; IL14; IL15; IL15RA; IL16; IL17; IL17B; IL17C; IL17R; IL18; IL18BP; IL18R1; IL18RAP; IL19; IL1A; IL1B; IL1F10; IL1F5; IL1F6; IL1F7; IL1F8; IL1F9; IL1HY1; ILR1; IL1R2; IL1RAP; IL1RAPL1; IL1RAPL2; IL1RL1; IL1RL2; IL1RN; IL2; IL20; IL20RA; IL21R; IL22; IL22R; IL22RA2; IL23; IL24; IL25; IL26; IL27; IL28A; IL28B; IL29; IL2RA; IL2RB; IL2RG; IL3; IL30; IL3RA; IL4; IL4R; IL5; IL5RA; IL6; IL6R; IL6ST (glycoprotein 130); IL7; IL7R; IL8; IL8RA; IL8RB; IL8RB; IL9; IL9R; ILK; INHA; INHBA; INSL3; INSL4; IRAK1; IRAK2; ITGA1; ITGA2; ITGA3; ITGA6 (a6 integrin); ITGAV; ITGB3; ITGB4 (b 4 integrin); JAG1; JAK1; JAK3; JUN; K6HF; KAI1; KDR; KITLG; KLF5 (GC Box BP); KLF6; KLK10; KLK12; KLK13; KLK14; KLK15; KLK3; KLK4; KLK5; KLK6; KLK9; KRT1; KRT19 (Keratin 19); KRT2A; KRTHB6 (hair-specific type II keratin); L-selectin; LAMAS; LEP (leptin); Lingo-p75; Lingo-Troy; LRP6; LPS; LTA (TNF-b); LTB; LTB4R (GPR16); LTB4R2; LTBR; LY6K; LYPD8; MACMARCKS; MAG or Omgp; MAP2K7 (c-Jun); MDK; mesothelin; MIB1; midkine; MIF; MIP-2; MKI67 (Ki-67); MMP2; MMP9; MS4A1; MSMB; MT3 (metallothionectin-III); MTSS1; MUC1 (mucin); MYC; MYD88; NCK2; neurocan; NKG2D; NFKB1; NFKB2; NGF; NGFB (NGF); NGFR; NgR-Lingo; NgR-Nogo66 (Nogo); NgR-p75; NgR-Troy; NME1 (NM23A); NOX5; NPPB; NR0B1; NROB2; NR1D1; NR1D2; NR1H2; NR1H3; NR1H4; NRI12; NRI13; NR2C1; NR2C2; NR2E1; NR2E3; NR2F1; NR2F2; NR2F6; NR3C1; NR3C2; NR4A1; NR4A2; NR4A3; NR5A1; NR5A2; NR6A1; NRP1; NRP2; NT5E; NTN4; NY-BR-1; o-acetyl-GD2; ODZ1; OPRD1; OR51E2; P2RX7; PANX3; PAP; PART1; PATE; PAWR; PCA3; PCNA; PDGFA; PDGFB; PECAM1; PF4 (CXCL4); PGE2; PGF; PGR; phosphacan; PIAS2; PIK3CG; PLAC1; plasminogen activator; PLAU (uPA); PLG; PLXDC1; polysialic acid; PPBP (CXCL7); PPID; PR1; PRKCQ; PRKD1; PRL; PROC; Protein C; PROK2; PSAP; PSCA; PTAFR; PTEN; PTGS2 (COX-2); PTN; RAC2 (p21Rac2); RAGE; RARB; RGS1; RGS13; RGS3; RNF110 (ZNF144); ROBO2; SIO0A2; SCGB1D2 (lipophilin B); SCGB2A1 (mammaglobin 2); SCGB2A2 (mammaglobin 1); SCYE1 (endothelial Monocyte-activating cytokine); SDF2; SERPINA1; SERPINA3; SERPINB5 (maspin); SERPINE1 (PAI-1); SERPINF1; SHBG; SLA2; SLC2A2; SLC33A1; SLC34A2; SLC39A6; SLC43A1; SLIT2; SLITRK6; SPP1; SPRR1B (Spr1); ST6GAL1; STAB1; STATE; STEAP; STEAP2; substance P; TACSTD2; TB4R2; TBX21; TCP10; TDGF1; TEK; TEM1/CD248; TEM7R; TGFA; TGFB1; TGFB111; TGFB2; TGFB3; TGFBI; TGFBR1; TGFBR2; TGFBR3; TH1L; THBS1 (thrombospondin-1); THBS2; THBS4; THPO; TIE (Tie-1); TIMP3; tissue factor; TLR10; TLR2; TLR3; TLR4; TLR5; TLR6; TLR7; TLR8; TLR9; TNF; TNF-α; TNFAIP2 (B94); TNFAIP3; TNFRSF11A; TNFRSF1A; TNFRSF1B; TNFRSF21; TNFRSF5; TNFRSF6 (Fas); TNFRSF7; TNFRSF8; TNFRSF9; TNFSF10 (TRAIL); TNFSF11 (TRANCE); TNFSF12 (APO3L); TNFSF13 (April); TNFSF13B; TNFSF14 (HVEM-L); TNFSF15 (VEGI); TNFSF18; TNFSF4 (OX40 ligand); TNFSF5 (CD40 ligand); TNFSF6 (FasL); TNFSF7 (CD27 ligand); TNFSF8 (CD30 ligand); TNFSF9 (4-1BB ligand); TOLLIP; Toll-like receptors; TOP2A (topoisomerase ha); TP53; TPM1; TPM2; TRADD; TRAF1; TRAF2; TRAF3; TRAF4; TRAF5; TRAF6; TREM1; TREM2; TRPC6; TSHR; TSLP; TWEAK; thrombomodulin; thrombin; UPK2; VEGF; VEGFB; VEGFC; versican; VHL C5; VLA-4; XCL1 (lymphotactin); XCL2 (SCM-1b); XCR1 (GPRS/CCXCR1); YY1; and ZFPM2.


In some embodiments, a TAA targeted by a MBM is ADRB3. In some embodiments, a TAA targeted by a MBM is AKAP-4. In some embodiments, a TAA targeted by a MBM is ALK. In some embodiments, a TAA targeted by a MBM is androgen receptor. In some embodiments, a TAA targeted by a MBM is B7H3. In some embodiments, a TAA targeted by a MBM is BCMA. In some embodiments, a TAA targeted by a MBM is BORIS. In some embodiments, a TAA targeted by a MBM is BST2. In some embodiments, a TAA targeted by a MBM is Cadherin17. In some embodiments, a TAA targeted by a MBM is CAIX. In some embodiments, a TAA targeted by a MBM is CD171. In some embodiments, a TAA targeted by a MBM is CD179a. In some embodiments, a TAA targeted by a MBM is CD19. In some embodiments, a TAA targeted by a MBM is CD20. In some embodiments, a TAA targeted by a MBM is CD22. In some embodiments, a TAA targeted by a MBM is CD24. In some embodiments, a TAA targeted by a MBM is CD30. In some embodiments, a TAA targeted by a MBM is CD300LF. In some embodiments, a TAA targeted by a MBM is CD32b. In some embodiments, a TAA targeted by a MBM is CD33. In some embodiments, a TAA targeted by a MBM is CD38. In some embodiments, a TAA targeted by a MBM is CD44v6. In some embodiments, a TAA targeted by a MBM is CD72. In some embodiments, a TAA targeted by a MBM is CD79a. In some embodiments, a TAA targeted by a MBM is CD79b. In some embodiments, a TAA targeted by a MBM is CD97. In some embodiments, a TAA targeted by a MBM is CEA. In some embodiments, a TAA targeted by a MBM is CLDN6. In some embodiments, a TAA targeted by a MBM is CLEC12A. In some embodiments, a TAA targeted by a MBM is CLL-1. In some embodiments, a TAA targeted by a MBM is CS-1. In some embodiments, a TAA targeted by a MBM is CXORF61. In some embodiments, a TAA targeted by a MBM is Cyclin B1. In some embodiments, a TAA targeted by a MBM is CYP1B1. In some embodiments, a TAA targeted by a MBM is EGFR. In some embodiments, a TAA targeted by a MBM is EGFRvIII. In some embodiments, a TAA targeted by a MBM is EMR2. In some embodiments, a TAA targeted by a MBM is EPCAM. In some embodiments, a TAA targeted by a MBM is EphA2. In some embodiments, a TAA targeted by a MBM is EphB2. In some embodiments, a TAA targeted by a MBM is ERBB2. In some embodiments, a TAA targeted by a MBM is ERG (TMPRSS2 ETS fusion gene). In some embodiments, a TAA targeted by a MBM is ETV6-AML. In some embodiments, a TAA targeted by a MBM is FAP. In some embodiments, a TAA targeted by a MBM is FCAR. In some embodiments, a TAA targeted by a MBM is FCRL5. In some embodiments, a TAA targeted by a MBM is FLT3. In some embodiments, a TAA targeted by a MBM is FLT3. In some embodiments, a TAA targeted by a MBM is folate receptor alpha. In some embodiments, a TAA targeted by a MBM is folate receptor beta. In some embodiments, a TAA targeted by a MBM is Fos-related antigen 1. In some embodiments, a TAA targeted by a MBM is fucosyl GM1. In some embodiments, a TAA targeted by a MBM is GD2. In some embodiments, a TAA targeted by a MBM is GD2. In some embodiments, a TAA targeted by a MBM is GD3. In some embodiments, a TAA targeted by a MBM is GloboH. In some embodiments, a TAA targeted by a MBM is GM3. In some embodiments, a TAA targeted by a MBM is gp100Tn. In some embodiments, a TAA targeted by a MBM is GPC3. In some embodiments, a TAA targeted by a MBM is GPNMB. In some embodiments, a TAA targeted by a MBM is GPR20. In some embodiments, a TAA targeted by a MBM is GPRC5D. In some embodiments, a TAA targeted by a MBM is GPR64. In some embodiments, a TAA targeted by a MBM is HAVCR1. In some embodiments, a TAA targeted by a MBM is HER3. In some embodiments, a TAA targeted by a MBM is HMWMAA. In some embodiments, a TAA targeted by a MBM is hTERT. In some embodiments, a TAA targeted by a MBM is Igf-I receptor. In some embodiments, a TAA targeted by a MBM is IGLL1. In some embodiments, a TAA targeted by a MBM is IL-11Ra. In some embodiments, a TAA targeted by a MBM is IL-13Ra2. In some embodiments, a TAA targeted by a MBM is KIT. In some embodiments, a TAA targeted by a MBM is LAIR1. In some embodiments, a TAA targeted by a MBM is LCK. In some embodiments, a TAA targeted by a MBM is LewisY. In some embodiments, a TAA targeted by a MBM is LILRA2. In some embodiments, a TAA targeted by a MBM is LMP2. In some embodiments, a TAA targeted by a MBM is LRP6. In some embodiments, a TAA targeted by a MBM is LY6K. In some embodiments, a TAA targeted by a MBM is LY75. In some embodiments, a TAA targeted by a MBM is LYPD8. In some embodiments, a TAA targeted by a MBM is MAD-CT-1. In some embodiments, a TAA targeted by a MBM is MAD-CT-2. In some embodiments, a TAA targeted by a MBM is mesothelin. In some embodiments, a TAA targeted by a MBM is ML-IAP. In some embodiments, a TAA targeted by a MBM is MUC1. In some embodiments, a TAA targeted by a MBM is MYCN. In some embodiments, a TAA targeted by a MBM is NA17. In some embodiments, a TAA targeted by a MBM is NCAM. In some embodiments, a TAA targeted by a MBM is NKG2D. In some embodiments, a TAA targeted by a MBM is NY-BR-1. In some embodiments, a TAA targeted by a MBM is o-acetyl-GD2. In some embodiments, a TAA targeted by a MBM is OR51E2. In some embodiments, a TAA targeted by a MBM is OY-TES1. In some embodiments, a TAA targeted by a MBM is a p53 mutant. In some embodiments, a TAA targeted by a MBM is PANX3. In some embodiments, a TAA targeted by a MBM is PAX3. In some embodiments, a TAA targeted by a MBM is PAX5. In some embodiments, a TAA targeted by a MBM is PDGFR-beta. In some embodiments, a TAA targeted by a MBM is PLAC1. In some embodiments, a TAA targeted by a MBM is polysialic acid. In some embodiments, a TAA targeted by a MBM is PRSS21. In some embodiments, a TAA targeted by a MBM is PSCA. In some embodiments, a TAA targeted by a MBM is RhoC. In some embodiments, a TAA targeted by a MBM is ROR1. In some embodiments, a TAA targeted by a MBM is a sarcoma translocation breakpoint protein. In some embodiments, a TAA targeted by a MBM is SART3. In some embodiments, a TAA targeted by a MBM is SLC34A2. In some embodiments, a TAA targeted by a MBM is SLC39A6. In some embodiments, a TAA targeted by a MBM is sLe. In some embodiments, a TAA targeted by a MBM is SLITRK6. In some embodiments, a TAA targeted by a MBM is sperm protein 17. In some embodiments, a TAA targeted by a MBM is SSEA-4. In some embodiments, a TAA targeted by a MBM is SSX2. In some embodiments, a TAA targeted by a MBM is TAAG72. In some embodiments, a TAA targeted by a MBM is TAARP. In some embodiments, a TAA targeted by a MBM is TACSTD2. In some embodiments, a TAA targeted by a MBM is TEM1/CD248. In some embodiments, a TAA targeted by a MBM is TEM7R. In some embodiments, a TAA targeted by a MBM is TGS5. In some embodiments, a TAA targeted by a MBM is Tie 2. In some embodiments, a TAA targeted by a MBM is Tn Ag. In some embodiments, a TAA targeted by a MBM is TSHR. In some embodiments, a TAA targeted by a MBM is tyrosinase. In some embodiments, a TAA targeted by a MBM is UPK2. In some embodiments, a TAA targeted by a MBM is VEGFR2. In some embodiments, a TAA targeted by a MBM is WT1. In some embodiments, a TAA targeted by a MBM is XAGE1.


In some embodiments, a TAA targeted by a MBM is selected from BCMA, CD19, CD20, CD22, CD123, CD33, CLL1, CD138 (also known as Syndecan-1, SDC1), CS1, CD38, CD133, FLT3, CD52, TNFRSF13C (TNF Receptor Superfamily Member 13C, also known as BAFFR: B-Cell-Activating Factor Receptor), TNFRSF13B (TNF Receptor Superfamily Member 13B, also known as TACI: Transmembrane Activator And CAML Interactor), CXCR4 (C-X-C Motif Chemokine Receptor 4), PD-L1 (programmed death-ligand 1), LY9 (lymphocyte antigen 9, also known as CD229), CD200, FCGR2B (Fc fragment of IgG receptor IIb, also known as CD32b), CD21, CD23, CD24, CD40L, CD72, CD79a, and CD79b.


In some embodiments a TAA targeted by a MBM is CD19. In some embodiments, a TAA targeted by a MBM is BCMA. In some embodiments, a TAA targeted by a MBM is CD20. In some embodiments, a TAA targeted by a MBM is CD22. In some embodiments, a TAA targeted by a MBM is CD123. In some embodiments, a TAA targeted by a MBM is CD33. In some embodiments, a TAA targeted by a MBM is CLL1. In some embodiments, a TAA targeted by a MBM is CD138. In some embodiments, a TAA targeted by a MBM is CS1. In some embodiments, a TAA targeted by a MBM is CD38. In some embodiments, a TAA targeted by a MBM is CD133. In some embodiments, a TAA targeted by a MBM is FLT3. In some embodiments, a TAA targeted by a MBM is CD52. In some embodiments, a TAA targeted by a MBM is TNFRSF13C. In some embodiments, a TAA targeted by a MBM is TNFRSF13B. In some embodiments, a TAA targeted by a MBM is CXCR4. In some embodiments, a TAA targeted by a MBM is PD-L1. In some embodiments, a TAA targeted by a MBM is LY9. In some embodiments, a TAA targeted by a MBM is CD200. In some embodiments, a TAA targeted by a MBM is CD21. In some embodiments, a TAA targeted by a MBM is CD23. In some embodiments, a TAA targeted by a MBM is CD24. In some embodiments, a TAA targeted by a MBM is CD40L. In some embodiments, a TAA targeted by a MBM is CD72. In some embodiments, a TAA targeted by a MBM is CD79a. In some embodiments, a TAA targeted by a MBM is CD79b.


In some embodiments, a MBM targets two TAAs (TAA 1 and TAA 2) selected from the TAAs described in this Section.


A TAA-binding ABM can comprise, for example, an anti-TAA antibody or an antigen-binding fragment thereof. The anti-TAA antibody or antigen-binding fragment can comprise, for example, the CDR sequences of an antibody set forth in Table 14A or Table 14B. In some embodiments, the anti-TAA antibody or antigen-binding domain thereof has the heavy and light chain variable region sequences of an antibody set forth in Table 14A. In some embodiments, the anti-TAA antibody or antigen-binding domain thereof has the heavy and light chain variable region sequences of an antibody set forth in Table 14B.









TABLE 14A







Exemplary Anti-Tumor-Associated Antigen Antibodies








Target
Examples of Antibody Name and/or Reference(s) and/or Source





ALK
antibodies described in e.g., Mino-Kenudson et al., 2010, Clin Cancer Res



16(5): 1561-1571


B7H3
MGA271 (Macrogenics)


BCMA
Any BCMA antibody described in WO2012163805, WO200112812, or



WO2003062401.


CAIX
Antibody clone 303123 (R&D Systems)


CD123
U.S. Pat. No. 8,852,551; EP2426148; WO2014138819; WO2016028896; WO2014130635


CD171
Hong et al., 2014, J Immunother 37(2): 93-104.


CD19
WO2014031687; WO2012079000; WO2014153270; U.S. Pat. No. 7,741,465; the



CD19 binder of Yescarta or Blinatumomab


CD20
Rituximab, Ofatumumab, Ocrelizumab, Veltuzumab, or GA101


CD22
Haso et al., 2013, Blood, 121(7): 1165-1174; Wayne et al., 2010, Clin Cancer Res



16(6): 1894-1903; Kato et al., 2013, Leuk Res 37(1): 83-88; Creative BioMart



(creativebiomart.net): MOM-18047-S(P).


CD24
Maliar et al., Gastroenterology 143(5): 1375-1384 (2012)


CD30
Any CD30 antibody described in U.S. Pat. No. 7,090,843 B1, or EP0805871


CD33
Bross et al., 2001, Clin Cancer Res 7(6): 1490-1496 (Gemtuzumab Ozogamicin,



hP67.6), Caron et al., 1992, Cancer Res 52(24): 6761-6767 (Lintuzumab, HuM195),



Lapusan et al., 2012, Invest New Drugs 30(3): 1121-1131 (AVE9633), Aigner et al.,



2013, Leukemia 27(5): 1107-1115 (AMG330, CD33 BiTE), Dutour et al., 2012, Adv



Hematol 2012: 683065, or Pizzitola et al., 2014, Leukemia



doi: 10.1038/Lue.2014.62.


CD38
Daratumumab (see, e.g., Groen et al., 2010, Blood 116(21): 1261-1262; MOR202



(see, e.g., U.S. Pat. No. 8,263,746); or any CD38 antibody described in U.S. Pat. No.



8,362,211.


CD44v6
Casucci et al., 2013, Blood 122(20): 3461-3472.


CD97
antibodies described in, e.g., U.S. Pat. No. 6,846,911; de Groot et al., 2009, J



Immunol 183(6): 4127-4134; antibody from R&D: MAB373


CEA
Chmielewski et al., 2012, Gastoenterology 143(4): 1095-1107.


CLDN6
WO2015069794; IMAB027, mAb, Ganymed Pharmaceuticals


CLL-1
PE-CLL1-hu Cat# 353604 (BioLegend); and PE-CLL1 (CLEC12A) Cat# 562566



(BD); WO 2014/051433 A1; US 2016/0368994 A1; US 2013/0295118 A1; U.S. Pat.



No. 8,536,310 B2; Lu et al., 2014, Angewandte Chemie International Edition



53(37): 9841-9845; Leong et al., 2017, Blood 129(5): 609-618


CS1
Elotuzumab (BMS), see e.g., Tai et al., 2008, Blood 112(4): 1329-37; Tai et al.,



2007, Blood. 110(5): 1656-63.


EGFR
Cetuximab, panitumumab, zalutumumab, nimotuzumab, or matuzumab


EGFRvIII
WO2012138475; WO2014130657


EPCAM
MT110, EpCAM-CD3 bispecific Ab (see, e.g.,



clinicaltrials.gov/ct2/show/NCT00635596); Edrecolomab; 3622W94; ING-1; or



adecatumumab (MT201).


EphA2
Yu et al., 2014, Mol Ther22(1): 102-111.


Ephrin B2
Abengozar et al., 2012, Blood 119(19): 4565-4576.


ERBB2
Trastuzumab or pertuzumab.


(Her2/neu)


FAP
Ostermann et al., 2008, Clinical Cancer Research 14: 4584-4592 (FAP5), U.S. Pat.



Publication No. 2009/0304718; sibrotuzumab (see e.g., Hofheinz et al., 2003,



Oncology Research and Treatment 26(1): 44-48); and Tran et al., 2013, J Exp Med



210(6): 1125-1135.


FLT3
Any FLT3 antibody described in WO2011076922, U.S. Pat. No. 5,777,084,



EP0754230, or US20090297529.


Folate
IMGN853, or any folate receptor alpha antibody described in US20120009181; U.S.


receptor
Pat. No. 4,851,332, LK26: U.S. Pat No. 5,952,484.


alpha


Folate
antibodies described in, e.g., US20100297138; WO2007/067992


receptor


beta


GD2
Mujoo et al., Cancer Res. 47(4): 1098-1104 (1987); Cheung et al., Cancer Res



45(6): 2642-2649 (1985), Cheung et al., J Clin Oncol 5(9): 1430-1440 (1987),



Cheung et al., J Clin Oncol 16(9): 3053-3060 (1998), Handgretinger et al., Cancer



Immunol Immunother 35(3): 199-204 (1992);



mAb 14.18, 14G2a, ch14.18, hu14.18, 3F8, hu3F8, 3G6, 8B6, 60C3, 10B8,



ME36.1, or 8H9 (see e.g., WO2012033885, WO2013040371, WO2013192294,



WO2013061273, WO2013123061, WO2013074916, and WO201385552).



Any GD2 antibody described in US Publication No.: 20100150910 or PCT



Publication No.: WO 2011160119.


GD3
Any GD3 antibody described in U.S. Pat. No. 7,253,263; U.S. Pat. No. 8,207,308; US



20120276046; EP1013761; WO2005035577; or U.S. Pat. No. 6,437,098.


GloboH
VK9; Kudryashov et al., 1998, Glycoconj J.15(3): 243-9; Lou et al., 2014, Proc Natl



Acad Sci USA 111(7): 2482-2487; MBr1: Bremer et al., 1984, J Biol Chem



259: 14773-14777.


gp100
HMB45, NKIbetaB, or any anti-gp100 antibody described in WO2013165940, or



US20130295007


GPRC5D
R&Dsystems: FAB6300A; Lifespan Biosciences: LS-A4180


HMWMAA
antibodies described in, e.g., Kmiecik et al., 2014, Oncoimmunology 3(1): e27185



(PMID: 24575382) (mAb9.2.27); U.S. Pat. No. 6,528,481; WO2010033866; US



20140004124


IGF-I
Any IGF-I receptor antibody described in US8344112 B2; EP2322550 A1; WO


receptor
2006/138315, or PCT/US2006/022995.


IL-11Ra
Abcam (cat# ab55262) or Novus Biologicals (cat# EPR5446)


IL-13Ra2
Any IL-13Ra2 antibody described in WO2008/146911, WO2004087758, or



WO2004087758


KIT
Any KIT antibody described in U.S. Pat. No. 7,915,391, US20120288506


KLRG2
ab121563 (Abcam); B-12 or sc-514346 (Santa Cruz); HPA018199 (Sigma Aldrich)


LewisY
Kelly et al., Cancer Biother Radiopharm 23(4): 411-423 (2008) (hu3S193 Ab



(scFvs)); Dolezal et al., Protein Engineering 16(1): 47-56 (2003) (NC10 scFv)


LMP2
Any LMP2 antibody described in U.S. Pat. No. 7,410,640 or US 2005/0129701


LRP6
WO2009064944, WO2009056634, WO2011119661, WO2011138392,



WO2011138391, WO2013067355, WO2014029752, WO2017093478


Mesothelin
Any mesothelin antibody described in US 20110262448, US 2012/0107933 or U.S.



Pat. No. 9,719,996


MUC1
SAR566658


NCAM
2-2B: MAB5324 (EMD Millipore)


NY-BR-1
antibodies described in, e.g., Jager et al., 2007, Appl Immunohitochem Mol



Morphol 15(1): 77-83


o-acetyl-
8B6


GD2


PDGFR-
Abcam ab32570


beta


PLAC1
antibodies described in, e.g., Ghods et al., 2013, Biotechnol Appl Biochem



doi: 10.1002/bab.1177


Polysialic
antibodies described in e.g., Nagae et al., 2013, J Biol Chem 288(47): 33784-


acid
33796


PRSS21
Any PRSS21 antibody described in U.S. Pat. No.: 8,080,650.


PSCA
Morgenroth et al., Prostate 67(10): 1121-1131 (2007) (scFv 7F5); Nejatollahi et al.,



J of Oncology 2013(2013), article ID 839831 (scFv C5-II); or any PSCA antibody



described in US Pat Publication No. 20090311181.


PSMA
Parker et al., Protein Expr Purif 89(2): 136-145 (2013), US 20110268656 (J591



ScFv); Frigerio et al, European J Cancer49(9): 2223-2232 (2013) (scFvD2B); WO



2006125481 (mAbs 3/A12, 3/E7 and 3/F11) or single chain antibody fragments



(scFv A5 and D7).


ROR1
Hudecek et al., Clin Cancer Res 19(12): 3153-3164 (2013); or any ROR1 antibody



described in WO 2011159847 or US20130101607.


SSEA-4
MC813 (Cell Signaling)


TAG72
Hornbach et al., Gastroenterology 113(4): 1163-1170 (1997) or Abcam ab691.


TEM1/CD248
antibodies described in, e.g., Marty et al., 2006, Cancer Lett235(2): 298-308; Zhao



et al., 2011, J Immunol Methods 363(2): 221-232


Tn
Brooks et al., PNAS 107(22): 10056-10061 (2010); Stone et al., OncoImmunology



1(6): 863-873(2012); any Tn antibody described in U.S. Pat. No. 8,440,798


TSHR
antibodies described in, e.g., Marty et al., 2006, Cancer Lett 235(2): 298-308; Zhao



et al., 2011, J Immunol Methods 363(2): 221-232


Tyrosinase
Any tyrosinase antibody described in U.S. Pat. No. 5,843,674 or U.S. Pat. No. 19,950,504,048.


VEGFR2
Chinnasamy et al., J Clin Invest 120(11): 3953-3968 (2010).
















TABLE 14B







Exemplary Anti-Tumor-Associated Antigen Antibodies








Target
Examples of Antibody Name and/or Reference(s) and/or Source





CD123
Any CD123 antibody described in U.S. Pat. No. 8,852,551, EP2426148, WO



2014/138819, WO 2016/028896, or WO 2014/130635


BCMA
Any BCMA antibody described in WO2012163805, WO200112812, or



WO2003062401.


CD20
Rituximab, Ofatumumab, Ocrelizumab, Veltuzumab, or GA101


CD22
Any CD22 antibody described in Haso et al., 2013, Blood, 121(7): 1165-1174,



Wayne et al., 2010, Clin Cancer Res 16(6): 1894-1903, Kato et al., 2013, Leuk



Res 37(1): 83-88, or Creative BioMart (creativebiomart.net): MOM-18047-S(P).


CD33
Any CD33 antibody described in Bross et al., 2001, Clin Cancer Res 7(6): 1490-



1496 (Gemtuzumab Ozogamicin, hP67.6), Caron et al., 1992, Cancer Res



52(24): 6761-6767 (Lintuzumab, HuM195), Lapusan et al., 2012, Invest New



Drugs 30(3): 1121-1131 (AVE9633), Aigner et al., 2013, Leukemia 27(5): 1107-



1115 (AMG330, CD33 BiTE), Dutour et al., 2012, Adv Hematol 2012: 683065, or



Pizzitola et al., 2014, Leukemia doi: 10.1038/Lue.2014.62.


CD38
Daratumumab (see, e.g., Groen et al., 2010, Blood 116(21): 1261-1262; MOR202



(see, e.g., U.S. Pat. No. 8,263,746); or any CD38 antibody described in U.S. Pat.



No. 8,362,211.


CLL-1
PE-CLL1-hu Cat# 353604 (BioLegend); PE-CLL1 (CLEC12A) Cat# 562566 (BD);



Any CLL-1 antibody described in WO 2014/051433 A1, US 2016/0368994 A1,



US 2013/0295118 A1, U.S. Pat. No. 8,536,310 B2, Lu et al., 2014, Angewandte



Chemie International Edition 53(37): 9841-9845, or Leong et al., 2017, Blood



129(5): 609-618


CS1
Elotuzumab (BMS), see e.g., Tai et al., 2008, Blood 112(4): 1329-37; Tai et al.,



2007, Blood. 110(5): 1656-63.


FLT3
Any FLT3 antibody described in WO 2011/076922, U.S. Pat. No. 5,777,084,



EP0754230, or US 2009/0297529.


CD133
Any CD133 antibody described in U.S. Pat. No. 9,624,303, WO 2016/154623, or



WO 2011/089211; 5E3 (ThermoFisher); MAB11331 (R&D Systems); MAB4310



(Millipore Sigma)


CD138
Any CD138 antibody described in WO/2009/080829, WO/2017/014679, or U.S.



Pat. No. 9,289,509; nBT062 (Biotest AG); MI15, B-A38, SP152, DL-101



(ThermoFisher)


CD52
alemtuzumab (Genzyme); ANT1034 (see, Holgate et al., 2015, PLOS ONE 10(9):



e0138123; any CD52 antibody described in WO/2010/132659; any CD52



antibody described in U.S. Pat. No. 9,708,407; any CD52 antibody described in



WO/2010/132659


TNFRSF13C
Any TNFRSF13C antibody described in WO 2010/007082, U.S. Pat. No.



9,382,326


TNFRSF13B
Any TNFRSF13B antibody described in WO 2004/011611; LS-C89973 (Lifespan



Biosciences, Inc.) M02952-1 (Boster Biological Technology); MAB1041,



MAB1741, and MAB174 (R&D Systems)


CXCR4
Any CXCR4 antibody described in U.S. Pat. Nos. 7,138,496, 8,329,178,



8,450,464, 9,249,223, or 9,260,527


PD-L1
Any PD-L1 antibody described in US 2015/0203580, US 2017/0058033, US



2017/0204184, U.S. Pat. No. 8,741,295, U.S. Pat. No. 9,789,183, or U.S. Pat. No.



9,637,546


LY9
HLy9.25 (e.g., Lifespan Biosciences, Inc. cat. no. LS-C112605); MAB1898 (R&D



Systems)


CD200
Any CD200 antibody described in U.S. Pat. No. 7,887,798; ab23552 (Abcam);



Ox104 (ThermoFisher)


FCGR2B
Any FCGR2B antibody described in U.S. Pat. No. 8,802,089 or WO 2017/103895;



ab45143 (Abcam); AT130-2 (ThermoFisher); 2E10 (Millipore Sigma)


CD21
ab75985 (Abcam); ab9492 (Abcam); 2G9 (ThermoFisher); HB5 (ThermoFisher);



MAB4909 (R&D Systems)


CD23
Any CD23 antibody described in U.S. Pat. No. 7,008,623 or U.S. Pat. No.



6,011,138; lumiliximab (Biogen); ab16702 (Abcam); SP23 (ThermoFisher)


CD24
Any CD24 antibody described in U.S. Pat. No. 8,614,301; SN3 (ThermoFisher);



SN3b (ThermoFisher); 2Q1282 (Santa Cruz Biotechnology); 3H1143 (Santa Cruz



Biotechnology); ALB9 (Santa Cruz Biotechnology); MAB5248 (R&D Systems)


CD40L
Any CD40L antibody described in U.S. Pat. No. 9,228,018 or US 2003/0099642;



24-31 (Biolegend); ab52750 (Abcam); ab47204 (Abcam); CDP7657 (UCB



Pharma); 5c8 (Biogen)


CD72
3F3 (Biolegend); Bu40 (ThermoFisher); H-7 (Santa Cruz Biotechnology); H-96



(Santa Cruz Biotechnology); G-5 (Santa Cruz Biotechnology); ab92509 (Abcam)


CD79a
ab62650 (Abcam); ab79414 (Abcam); MAB69201 (R&D Systems); HM57 (Bio-



Rad)


CD79b
Any CD79b antibody described in WO 2014/011521; ab130422 (Abcam);



ab134147 (Abcam); polatuzumab (Genentech)









In certain embodiments, a TAA targeted by a MBM is expressed or upregulated on cancerous B cells as compared to normal B cells. In other embodiments, a TAA targeted by a MBM is a B cell lineage marker.


It is anticipated that any type of B cell malignancy can be targeted by the MBMs of the disclosure in which ABM3 binds to TAA that is expressed on cancerous B cells, for example BCMA, CD19 or CD20. Exemplary types of B cell malignancies that can be targeted include Hodgkin's lymphomas, non-Hodgkin's lymphomas (NHLs), and multiple myeloma. Examples of NHLs include diffuse large B-cell lymphoma (DLBCL), follicular lymphoma, chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL), mantle cell lymphoma (MCL), marginal zone lymphomas, Burkitt lymphoma, lymphoplasmacytic lymphoma (Waldenstrom macroglobulinemia), hairy cell leukemia, primary central nervous system (CNS) lymphoma, primary mediastinal large B-cell lymphoma, mediastinal grey-zone lymphoma (MGZL), splenic marginal zone B-cell lymphoma, extranodal marginal zone B-cell lymphoma of MALT, nodal marginal zone B-cell lymphoma, and primary effusion lymphoma.


7.10.1. BCMA


In certain aspects, the present disclosure provides a MBM in which ABM2 or ABM3 is BCMA. BCMA is a tumor necrosis family receptor (TNFR) member expressed on cells of the B-cell lineage. BCMA expression is the highest on terminally differentiated B cells that assume the long lived plasma cell fate, including plasma cells, plasmablasts and a subpopulation of activated B cells and memory B cells. BCMA is involved in mediating the survival of plasma cells for maintaining long-term humoral immunity. The expression of BCMA has been recently linked to a number of cancers, autoimmune disorders, and infectious diseases. Cancers with increased expression of BCMA include some hematological cancers, such as multiple myeloma, Hodgkin's and non-Hodgkin's lymphoma, various leukemias, and glioblastoma.


MBMs comprising an ABM that binds to BCMA can comprise, for example, an anti-BCMA antibody or an antigen-binding domain thereof. The anti-BCMA antibody or antigen-binding domain thereof can comprise, for example, CDR, VH, VL, or scFV sequences set forth in Tables 15A-15G.









TABLE 15A







BCMA Binders - Variable domain and scFv sequences













SEQ





ID


Antibody
Domain
Sequence
NO.





BCMA-1
VH
EVQLVESGGGLVQPGGSLRLSCAVSGFALSNHGMSWVRRAPGK
263




GLEWVSGIVYSGSTYYAASVKGRFTISRDNSRNTLYLQMNSLRPE





DTAIYYCSAHGGESDVWGQGTTVTVSS




VL
DIQLTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKL
264




LIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSY





STPYTFGQGTKVEIK




scFv
EVQLVESGGGLVQPGGSLRLSCAVSGFALSNHGMSWVRRAPGK
265




GLEWVSGIVYSGSTYYAASVKGRFTISRDNSRNTLYLQMNSLRPE





DTAIYYCSAHGGESDVWGQGTTVTVSSASGGGGSGGRASGGGG





SDIQLTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPK





LLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQS





YSTPYTFGQGTKVEIK






BCMA-2
VH
QVQLVESGGGLVQPGRSLRLSCAASGFTFSNYAMSWVRQAPGK
266




GLGWVSGISRSGENTYYADSVKGRFTISRDNSKNTLYLQMNSLRD





EDTAVYYCARSPAHYYGGMDVWGQGTTVTVSS




VL
DIVLTQSPGTLSLSPGERATLSCRASQSISSSFLAWYQQKPGQAP
267




RLLIYGASRRATGIPDRFSGSGSGTDFTLTISRLEPEDSAVYYCQQ





YHSSPSWTFGQGTKLEIK




scFv
QVQLVESGGGLVQPGRSLRLSCAASGFTFSNYAMSWVRQAPGK
268




GLGWVSGISRSGENTYYADSVKGRFTISRDNSKNTLYLQMNSLRD





EDTAVYYCARSPAHYYGGMDVWGQGTTVTVSSASGGGGSGGRA





SGGGGSDIVLTQSPGTLSLSPGERATLSCRASQSISSSFLAWYQQ





KPGQAPRLLIYGASRRATGIPDRFSGSGSGTDFTLTISRLEPEDSA





VYYCQQYHSSPSWTFGQGTKLEIK






BCMA-3
VH
QVQLVESGGGLVQPGRSLRLSCAASGFTFDDYAMHWVRQAPGK
269




GLEWVSGISWNSGSIGYADSVKGRFTISRDNAKNSLYLQMNSLRA





EDTALYYCSVHSFLAYWGQGTLVTVSS




VL
DIVMTQTPLSLPVTPGEPASISCRSSQSLLHSNGYNYLDWYLQKP
270




GQSPQLLIYLGSNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGV





YYCMQALQTPYTFGQGTKVEIK




scFv
QVQLVESGGGLVQPGRSLRLSCAASGFTFDDYAMHWVRQAPGK
271




GLEWVSGISWNSGSIGYADSVKGRFTISRDNAKNSLYLQMNSLRA





EDTALYYCSVHSFLAYWGQGTLVTVSSASGGGGSGGRASGGGG





SDIVMTQTPLSLPVTPGEPASISCRSSQSLLHSNGYNYLDWYLQKP





GQSPQLLIYLGSNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGV





YYCMQALQTPYTFGQGTKVEIK






BCMA-4
VH
EVQLLESGGGLVQPGGSLRLSCAVSGFALSNHGMSWVRRAPGK
272




GLEWVSGIVYSGSTYYAASVKGRFTISRDNSRNTLYLQMNSLRPE





DTAIYYCSAHGGESDVWGQGTTVTVSS




VL
DIVMTQTPLSLSVTPGQPASISCKSSQSLLRNDGKTPLYWYLQKA
273




GQPPQLLIYEVSNRFSGVPDRFSGSGSGTDFTLKISRVEAEDVGA





YYCMQNIQFPSFGGGTKLEIK




scFv
EVQLLESGGGLVQPGGSLRLSCAVSGFALSNHGMSWVRRAPGK
274




GLEWVSGIVYSGSTYYAASVKGRFTISRDNSRNTLYLQMNSLRPE





DTAIYYCSAHGGESDVWGQGTTVTVSSASGGGGSGGRASGGGG





SDIVMTQTPLSLSVTPGQPASISCKSSQSLLRNDGKTPLYWYLQKA





GQPPQLLIYEVSNRFSGVPDRFSGSGSGTDFTLKISRVEAEDVGA





YYCMQNIQFPSFGGGTKLEIK






BCMA-5
VH
QVQLVQSGAEVRKTGASVKVSCKASGYIFDNFGINWVRQAPGQG
275




LEWMGWINPKNNNTNYAQKFQGRVTITADESTNTAYMEVSSLRS





EDTAVYYCARGPYYYQSYMDVWGQGTMVTVSS




VL
DIVMTQTPLSLPVTPGEPASISCRSSQSLLHSNGYNYLNWYLQKP
276




GQSPQLLIYLGSKRASGVPDRFSGSGSGTDFTLHITRVGAEDVGV





YYCMQALQTPYTFGQGTKLEIK




scFv
QVQLVQSGAEVRKTGASVKVSCKASGYIFDNFGINWVRQAPGQG
277




LEWMGWINPKNNNTNYAQKFQGRVTITADESTNTAYMEVSSLRS





EDTAVYYCARGPYYYQSYMDVWGQGTMVTVSSASGGGGSGGR





ASGGGGSDIVMTQTPLSLPVTPGEPASISCRSSQSLLHSNGYNYL





NWYLQKPGQSPQLLIYLGSKRASGVPDRFSGSGSGTDFTLHITRV





GAEDVGVYYCMQALQTPYTFGQGTKLEIK






BCMA-6
VH
QVQLQESGGGLVQPGGSLRLSCAASGFTFSSDAMTWVRQAPGK
278




GLEWVSVISGSGGTTYYADSVKGRFTISRDNSKNTLYLQMNSLRA





EDTAVYYCAKLDSSGYYYARGPRYWGQGTLVTVSS




VL
DIQLTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKL
279




LIYGASTLASGVPARFSGSGSGTHFTLTINSLQSEDSATYYCQQSY





KRASFGQGTKVEIK




scFv
QVQLQESGGGLVQPGGSLRLSCAASGFTFSSDAMTWVRQAPGK
280




GLEWVSVISGSGGTTYYADSVKGRFTISRDNSKNTLYLQMNSLRA





EDTAVYYCAKLDSSGYYYARGPRYWGQGTLVTVSSASGGGGSG





GRASGGGGSDIQLTQSPSSLSASVGDRVTITCRASQSISSYLNWY





QQKPGKAPKLLIYGASTLASGVPARFSGSGSGTHFTLTINSLQSED





SATYYCQQSYKRASFGQGTKVEIK






BCMA-7
VH
QVQLVQSGAEVKKPGASVKVSCKASGYTFSNYGITWVRQAPGQG
281




LEWMGWISAYNGNTNYAQKFQGRVTMTRNTSISTAYMELSSLRS





EDTAVYYCARGPYYYYMDVWGKGTMVTVSS




VL
EIVMTQSPLSLPVTPGEPASISCRSSQSLLYSNGYNYVDWYLQKP
282




GQSPQLLIYLGSNRASGVPDRFSGSGSGTDFKLQISRVEAEDVGIY





YCMQGRQFPYSFGQGTKVEIK




scFv
QVQLVQSGAEVKKPGASVKVSCKASGYTFSNYGITWVRQAPGQG
283




LEWMGWISAYNGNTNYAQKFQGRVTMTRNTSISTAYMELSSLRS





EDTAVYYCARGPYYYYMDVWGKGTMVTVSSASGGGGSGGRAS





GGGGSEIVMTQSPLSLPVTPGEPASISCRSSQSLLYSNGYNYVDW





YLQKPGQSPQLLIYLGSNRASGVPDRFSGSGSGTDFKLQISRVEA





EDVGIYYCMQGRQFPYSFGQGTKVEIK






BCMA-8
VH
EVQLLETGGGLVQPGGSLRLSCAVSGFALSNHGMSWVRRAPGK
284




GLEWVSGIVYSGSTYYAASVKGRFTISRDNSRNTLYLQMNSLRPE





DTAIYYCSAHGGESDVWGQGTTVTVSS




VL
EIVLTQSPATLSVSPGESATLSCRASQSVSSNLAWYQQKPGQAPR
285




LLIYGASTRASGIPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQY





GSSLTFGGGTKVEIK




scFv
EVQLLETGGGLVQPGGSLRLSCAVSGFALSNHGMSWVRRAPGK
286




GLEWVSGIVYSGSTYYAASVKGRFTISRDNSRNTLYLQMNSLRPE





DTAIYYCSAHGGESDVWGQGTTVTVSSASGGGGSGGRASGGGG





SEIVLTQSPATLSVSPGESATLSCRASQSVSSNLAWYQQKPGQAP





RLLIYGASTRASGIPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQ





YGSSLTFGGGTKVEIK






BCMA-9
VH
EVQLVETGGGLVQPGGSLRLSCAVSGFALSNHGMSWVRRAPGK
287




GLEWVSGIVYSGSTYYAASVKGRFTISRDNSRNTLYLQMNSLRPE





DTAIYYCSAHGGESDVWGQGTTVTVSS




VL
EIVMTQSPATLSVSPGERATLSCRASQSVSSKLAWYQQKPGQAP
288




RLLMYGASIRATGIPDRFSGSGSGTEFTLTISSLEPEDFAVYYCQQ





YGSSSWTFGQGTKVEIK




scFv
EVQLVETGGGLVQPGGSLRLSCAVSGFALSNHGMSWVRRAPGK
289




GLEWVSGIVYSGSTYYAASVKGRFTISRDNSRNTLYLQMNSLRPE





DTAIYYCSAHGGESDVWGQGTTVTVSSASGGGGSGGRASGGGG





SEIVMTQSPATLSVSPGERATLSCRASQSVSSKLAWYQQKPGQA





PRLLMYGASIRATGIPDRFSGSGSGTEFTLTISSLEPEDFAVYYCQ





QYGSSSWTFGQGTKVEIK






BCMA-10
VH
EVQLVETGGGVVQPGGSLRLSCAVSGFALSNHGMSWVRRAPGK
290




GLEWVSGIVYSGSTYYAASVKGRFTISRDNSRNTLYLQMNSLRPE





DTAIYYCSAHGGESDVWGQGTTVTVSS




VL
EIVLTQSPGTLSLSPGERATLSCRASQSVGSTNLAWYQQKPGQAP
291




RLLIYDASNRATGIPDRFSGGGSGTDFTLTISRLEPEDFAVYYCQQ





YGSSPPWTFGQGTKVEIK




scFv
EVQLVETGGGVVQPGGSLRLSCAVSGFALSNHGMSWVRRAPGK
292




GLEWVSGIVYSGSTYYAASVKGRFTISRDNSRNTLYLQMNSLRPE





DTAIYYCSAHGGESDVWGQGTTVTVSSASGGGGSGGRASGGGG





SEIVLTQSPGTLSLSPGERATLSCRASQSVGSTNLAWYQQKPGQA





PRLLIYDASNRATGIPDRFSGGGSGTDFTLTISRLEPEDFAVYYCQ





QYGSSPPWTFGQGTKVEIK






BCMA-11
VH
QVQLVESGGGLVKPGGSLRLSCAASGFTFSDYYMSWIRQAPGKG
293




LEWVSYISSSGSTIYYADSVKGRFTISRDNAKNSLYLQMNSLRAED





TAVYYCARESGDGMDVWGQGTTVTVSS




VL
DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPK
294




LLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQS





YTLAFGQGTKVDIK




scFv
QVQLVESGGGLVKPGGSLRLSCAASGFTFSDYYMSWIRQAPGKG
295




LEWVSYISSSGSTIYYADSVKGRFTISRDNAKNSLYLQMNSLRAED





TAVYYCARESGDGMDVWGQGTTVTVSSASGGGGSGGRASGGG





GSDIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKA





PKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQ





QSYTLAFGQGTKVDIK






BCMA-12
VH
QVQLVQSGGGLVKPGGSLRLSCAASGFTFSDYYMSWIRQAPGKG
296




LEWVSYISSSGNTIYYADSVKGRFTISRDNAKNSLYLQMNSLRAED





TAVYYCARSTMVREDYWGQGTLVTVSS




VL
DIVLTQSPLSLPVTLGQPASISCKSSESLVHNSGKTYLNWFHQRPG
297




QSPRRLIYEVSNRDSGVPDRFTGSGSGTDFTLKISRVEAEDVGVY





YCMQGTHWPGTFGQGTKLEIK




scFv
QVQLVQSGGGLVKPGGSLRLSCAASGFTFSDYYMSWIRQAPGKG
298




LEWVSYISSSGNTIYYADSVKGRFTISRDNAKNSLYLQMNSLRAED





TAVYYCARSTMVREDYWGQGTLVTVSSASGGGGSGGRASGGG





GSDIVLTQSPLSLPVTLGQPASISCKSSESLVHNSGKTYLNWFHQR





PGQSPRRLIYEVSNRDSGVPDRFTGSGSGTDFTLKISRVEAEDVG





VYYCMQGTHWPGTFGQGTKLEIK






BCMA-13
VH
QVQLVESGGGLVQPGGSLRLSCAVSGFALSNHGMSWVRRAPGK
299




GLEWVSGIVYSGSTYYAASVKGRFTISRDNSRNTLYLQMNSLRPE





DTAIYYCSAHGGESDVWGQGTTVTVSS




VL
DIRLTQSPSPLSASVGDRVTITCQASEDINKFLNWYHQTPGKAPKL
300




LIYDASTLQTGVPSRFSGSGSGTDFTLTINSLQPEDIGTYYCQQYE





SLPLTFGGGTKVEIK




scFv
QVQLVESGGGLVQPGGSLRLSCAVSGFALSNHGMSWVRRAPGK
301




GLEWVSGIVYSGSTYYAASVKGRFTISRDNSRNTLYLQMNSLRPE





DTAIYYCSAHGGESDVWGQGTTVTVSSASGGGGSGGRASGGGG





SDIRLTQSPSPLSASVGDRVTITCQASEDINKFLNWYHQTPGKAPK





LLIYDASTLQTGVPSRFSGSGSGTDFTLTINSLQPEDIGTYYCQQY





ESLPLTFGGGTKVEIK






BCMA-14
VH
EVQLVETGGGLVQPGGSLRLSCAVSGFALSNHGMSWVRRAPGK
287




GLEWVSGIVYSGSTYYAASVKGRFTISRDNSRNTLYLQMNSLRPE





DTAIYYCSAHGGESDVWGQGTTVTVSS




VL
ETTLTQSPATLSVSPGERATLSCRASQSVGSNLAWYQQKPGQGP
302




RLLIYGASTRATGIPARFSGSGSGTEFTLTISSLQPEDFAVYYCQQY





NDWLPVTFGQGTKVEIK




scFv
EVQLVETGGGLVQPGGSLRLSCAVSGFALSNHGMSWVRRAPGK
303




GLEWVSGIVYSGSTYYAASVKGRFTISRDNSRNTLYLQMNSLRPE





DTAIYYCSAHGGESDVWGQGTTVTVSSASGGGGSGGRASGGGG





SETTLTQSPATLSVSPGERATLSCRASQSVGSNLAWYQQKPGQG





PRLLIYGASTRATGIPARFSGSGSGTEFTLTISSLQPEDFAVYYCQQ





YNDWLPVTFGQGTKVEIK






BCMA-15
VH
EVQLVESGGGLVQPGGSLRLSCAVSGFALSNHGMSWVRRAPGK
263




GLEWVSGIVYSGSTYYAASVKGRFTISRDNSRNTLYLQMNSLRPE





DTAIYYCSAHGGESDVWGQGTTVTVSS




VL
EIVLTQSPGTLSLSPGERATLSCRASQSIGSSSLAWYQQKPGQAP
304




RLLMYGASSRASGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQ





QYAGSPPFTFGQGTKVEIK




scFv
EVQLVESGGGLVQPGGSLRLSCAVSGFALSNHGMSWVRRAPGK
305




GLEWVSGIVYSGSTYYAASVKGRFTISRDNSRNTLYLQMNSLRPE





DTAIYYCSAHGGESDVWGQGTTVTVSSASGGGGSGGRASGGGG





SEIVLTQSPGTLSLSPGERATLSCRASQSIGSSSLAWYQQKPGQA





PRLLMYGASSRASGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQ





QYAGSPPFTFGQGTKVEIK






BCMA-16
VH
QVQLQESGPGLVKPSETLSLTCTVSGGSISSSYYYWGWIRQPPGK
306




GLEWIGSIYYSGSAYYNPSLKSRVTISVDTSKNQFSLRLSSVTAAD





TAVYYCARHWQEWPDAFDIWGQGTMVTVSS




VL
ETTLTQSPAFMSATPGDKVIISCKASQDIDDAMNWYQQKPGEAPL
307




FIIQSATSPVPGIPPRFSGSGFGTDFSLTINNIESEDAAYYFCLQHD





NFPLTFGQGTKLEIK




scFv
QVQLQESGPGLVKPSETLSLTCTVSGGSISSSYYYWGWIRQPPGK
308




GLEWIGSIYYSGSAYYNPSLKSRVTISVDTSKNQFSLRLSSVTAAD





TAVYYCARHWQEWPDAFDIWGQGTMVTVSSGGGGSGGGGSGG





GGSETTLTQSPAFMSATPGDKVIISCKASQDIDDAMNWYQQKPGE





APLFIIQSATSPVPGIPPRFSGSGFGTDFSLTINNIESEDAAYYFCLQ





HDNFPLTFGQGTKLEIK






BCMA-17
VH
QVNLRESGPALVKPTQTLTLTCTFSGFSLRTSGMCVSWIRQPPGK
309




ALEWLARIDWDEDKFYSTSLKTRLTISKDTSDNQVVLRMTNMDPA





DTATYYCARSGAGGTSATAFDIWGPGTMVTVSS




VL
DIQMTQSPSSLSASVGDRVTITCRASQDIYNNLAWFQLKPGSAPR
310




SLMYAANKSQSGVPSRFSGSASGTDFTLTISSLQPEDFATYYCQH





YYRFPYSFGQGTKLEIK




scFv
VNLRESGPALVKPTQTLTLTCTFSGFSLRTSGMCVSWIRQPPGKA
311




LEWLARIDWDEDKFYSTSLKTRLTISKDTSDNQVVLRMTNMDPAD





TATYYCARSGAGGTSATAFDIWGPGTMVTVSSGGGGSGGGGSG





GGGSDIQMTQSPSSLSASVGDRVTITCRASQDIYNNLAWFQLKPG





SAPRSLMYAANKSQSGVPSRFSGSASGTDFTLTISSLQPEDFATY





YCQHYYRFPYSFGQGTKLEIK






BCMA-18
VH
EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYSMNWVRQAPGK
312




GLEWVSSISSSSSYIYYADSVKGRFTISRDNAKNSLYLQMNSLRAE





DTAVYYCAKTIAAVYAFDIWGQGTTVTVSS




VL
EIVLTQSPLSLPVTPEEPASISCRSSQSLLHSNGYNYLDWYLQKPG
313




QSPQLLIYLGSNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVY





YCMQALQTPYTFGQGTKLEIK




scFv
EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYSMNWVRQAPGK
314




GLEWVSSISSSSSYIYYADSVKGRFTISRDNAKNSLYLQMNSLRAE





DTAVYYCAKTIAAVYAFDIWGQGTTVTVSSGGGGSGGGGSGGGG





SEIVLTQSPLSLPVTPEEPASISCRSSQSLLHSNGYNYLDWYLQKP





GQSPQLLIYLGSNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGV





YYCMQALQTPYTFGQGTKLEIK






BCMA-19
VH
EVQLVESGGGLVKPGGSLRLSCAASGFTFSDYYMSWIRQAPGKG
315




LEWVSYISSSGSTIYYADSVKGRFTISRDNAKNSLYLQMNSLRAED





TAVYYCARDLRGAFDIWGQGTMVTVSS




VL
SYVLTQSPSVSAAPGYTATISCGGNNIGTKSVHWYQQKPGQAPLL
316




VIRDDSVRPSKIPGRFSGSNSGNMATLTISGVQAGDEADFYCQVW





DSDSEHVVFGGGTKLTVL




scFv
EVQLVESGGGLVKPGGSLRLSCAASGFTFSDYYMSWIRQAPGKG
317




LEWVSYISSSGSTIYYADSVKGRFTISRDNAKNSLYLQMNSLRAED





TAVYYCARDLRGAFDIWGQGTMVTVSSGGGGSGGGGSGGGGSS





YVLTQSPSVSAAPGYTATISCGGNNIGTKSVHWYQQKPGQAPLLVI





RDDSVRPSKIPGRFSGSNSGNMATLTISGVQAGDEADFYCQVWD





SDSEHVVFGGGTKLTVL






BCMA-20
VH
QVQLVQSGAEVKKPGASVKVSCKPSGYTVTSHYIHWVRRAPGQG
318




LEWMGMINPSGGVTAYSQTLQGRVTMTSDTSSSTVYMELSSLRS





EDTAMYYCAREGSGSGWYFDFWGRGTLVTVSS




VL
SYVLTQPPSVSVSPGQTASITCSGDGLSKKYVSWYQQKAGQSPV
319




VLISRDKERPSGIPDRFSGSNSADTATLTISGTQAMDEADYYCQA





WDDTTVVFGGGTKLTVL




scFv
QVQLVQSGAEVKKPGASVKVSCKPSGYTVTSHYIHWVRRAPGQG
320




LEWMGMINPSGGVTAYSQTLQGRVTMTSDTSSSTVYMELSSLRS





EDTAMYYCAREGSGSGWYFDFWGRGTLVTVSSGGGGSGGGGS





GGGGSSYVLTQPPSVSVSPGQTASITCSGDGLSKKYVSWYQQKA





GQSPVVLISRDKERPSGIPDRFSGSNSADTATLTISGTQAMDEADY





YCQAWDDTTVVFGGGTKLTVL






BCMA-21
VH
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGGYYWSWIRQHPG
321




KGLEWIGYIYYSGSTYYNPSLKSRVTISVDTSKNQFSLKLSSVTAAD





TAVYYCARAGIAARLRGAFDIWGQGTMVTVSS




VL
DIVMTQSPSSVSASVGDRVIITCRASQGIRNWLAWYQQKPGKAPN
322




LLIYAASNLQSGVPSRFSGSGSGADFTLTISSLQPEDVATYYCQKY





NSAPFTFGPGTKVDIK




scFv
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGGYYWSWIRQHPG
323




KGLEWIGYIYYSGSTYYNPSLKSRVTISVDTSKNQFSLKLSSVTAAD





TAVYYCARAGIAARLRGAFDIWGQGTMVTVSSGGGGSGGGGSG





GGGSDIVMTQSPSSVSASVGDRVIITCRASQGIRNWLAWYQQKPG





KAPNLLIYAASNLQSGVPSRFSGSGSGADFTLTISSLQPEDVATYY





CQKYNSAPFTFGPGTKVDIK






BCMA-22
VH
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVRQAPGQG
324




LEWMGGIIPIFGTANYAQKFQGRVTITADESTSTAYMELSSLRSED





TAVYYCARRGGYQLLRWDVGLLRSAFDIWGQGTMVTVSS




VL
SYVLTQPPSVSVAPGQTARITCGGNNIGSKSVHWYQQKPGQAPV
325




LVLYGKNNRPSGVPDRFSGSRSGTTASLTITGAQAEDEADYYCSS





RDSSGDHLRVFGTGTKVTVL




scFv
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVRQAPGQG
326




LEWMGGIIPIFGTANYAQKFQGRVTITADESTSTAYMELSSLRSED





TAVYYCARRGGYQLLRWDVGLLRSAFDIWGQGTMVTVSSGGGG





SGGGGSGGGGSSYVLTQPPSVSVAPGQTARITCGGNNIGSKSVH





WYQQKPGQAPVLVLYGKNNRPSGVPDRFSGSRSGTTASLTITGA





QAEDEADYYCSSRDSSGDHLRVFGTGTKVTVL






BCMA-23
VH
EVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNSAAWNWIRQSPSR
327




GLEWLGRTYYRSKWYSFYAISLKSRIIINPDTSKNQFSLQLKSVTPE





DTAVYYCARSSPEGLFLYWFDPWGQGTLVTVSS




VL
SSELTQDPAVSVALGQTIRITCQGDSLGNYYATWYQQKPGQAPVL
328




VIYGTNNRPSGIPDRFSASSSGNTASLTITGAQAEDEADYYCNSRD





SSGHHLLFGTGTKVTVL




ScFv
EVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNSAAWNWIRQSPSR
329




GLEWLGRTYYRSKWYSFYAISLKSRIIINPDTSKNQFSLQLKSVTPE





DTAVYYCARSSPEGLFLYWFDPWGQGTLVTVSSGGDGSGGGGS





GGGGSSSELTQDPAVSVALGQTIRITCQGDSLGNYYATWYQQKP





GQAPVLVIYGTNNRPSGIPDRFSASSSGNTASLTITGAQAEDEADY





YCNSRDSSGHHLLFGTGTKVTVL






BCMA-24
VH
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGK
330




GLEWVSAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRA





EDTAVYYCAKVEGSGSLDYWGQGTLVTVSS




VL
EIVMTQSPGTLSLSPGERATLSCRASQSVSSAYLAWYQQKPGQP
331




PRLLISGASTRATGIPDRFGGSGSGTDFTLTISRLEPEDFAVYYCQ





HYGSSFNGSSLFTFGQGTRLEIK




scFv
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGK
332




GLEWVSAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRA





EDTAVYYCAKVEGSGSLDYWGQGTLVTVSSGGGGSGGGGSGG





GGSEIVMTQSPGTLSLSPGERATLSCRASQSVSSAYLAWYQQKP





GQPPRLLISGASTRATGIPDRFGGSGSGTDFTLTISRLEPEDFAVY





YCQHYGSSFNGSSLFTFGQGTRLEIK




VH
EVQLVETGGGLVQPGGSLRLSCAASGITFSRYPMSWVRQAPGKG
333




LEWVSGISDSGVSTYYADSAKGRFTISRDNSKNTLFLQMSSLRDE





DTAVYYCVTRAGSEASDIWGQGTMVTVSS






BCMA-25
VL
EIVLTQSPATLSLSPGERATLSCRASQSVSNSLAWYQQKPGQAPR
334




LLIYDASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAIYYCQQFG





TSSGLTFGGGTKLEIK




scFv
EVQLVETGGGLVQPGGSLRLSCAASGITFSRYPMSWVRQAPGKG
335




LEWVSGISDSGVSTYYADSAKGRFTISRDNSKNTLFLQMSSLRDE





DTAVYYCVTRAGSEASDIWGQGTMVTVSSGGGGSGGGGSGGG





GSEIVLTQSPATLSLSPGERATLSCRASQSVSNSLAWYQQKPGQA





PRLLIYDASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAIYYCQQ





FGTSSGLTFGGGTKLEIK






BCMA-26
VH
QVQLVESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGK
336




GLEWVSAISGSGGSTYYADSVKGRFTISRDNAKNSLYLQMNSLRA





EDTAIYYCARATYKRELRYYYGMDVWGQGTMVTVSS




VL
EIVMTQSPGTVSLSPGERATLSCRASQSVSSSFLAWYQQKPGQA
337




PRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDSAVYYCQ





QYHSSPSVVTFGQGTRLEIK




scFv
QVQLVESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGK
338




GLEWVSAISGSGGSTYYADSVKGRFTISRDNAKNSLYLQMNSLRA





EDTAIYYCARATYKRELRYYYGMDVWGQGTMVTVSSGGGGSGG





GGSGGGGSEIVMTQSPGTVSLSPGERATLSCRASQSVSSSFLAW





YQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPE





DSAVYYCQQYHSSPSWTFGQGTRLEIK






BCMA-27
VH
EVQLVETGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGK
339




GLEWVSAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNTLKA





EDTAVYYCARATYKRELRYYYGMDVWGQGTTVTVSS




VL
EIVLTQSPSTLSLSPGESATLSCRASQSVSTTFLAWYQQKPGQAP
340




RLLIYGSSNRATGIPDRFSGSGSGTDFTLTIRRLEPEDFAVYYCQQ





YHSSPSWTFGQGTKVEIK




scFv
EVQLVETGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGK
341




GLEWVSAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNTLKA





EDTAVYYCARATYKRELRYYYGMDVWGQGTTVTVSSGGGGSGG





GGSGGGGSEIVLTQSPSTLSLSPGESATLSCRASQSVSTTFLAWY





QQKPGQAPRLLIYGSSNRATGIPDRFSGSGSGTDFTLTIRRLEPED





FAVYYCQQYHSSPSWTFGQGTKVEIK






BCMA-28
VH
EVQLVETGGGLVQPGRSLRLSCAASGFTFDDYAMHWVRQAPGK
342




GLEWVSGISWNSGSIGYADSVKGRFTISRDNAKNSLYLQMNSLRD





EDTAVYYCARVGKAVPDVWGQGTTVTVSS




VL
DIVMTQTPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKL
343




LIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSY





STPYSFGQGTRLEIK




scFv
EVQLVETGGGLVQPGRSLRLSCAASGFTFDDYAMHWVRQAPGK
344




GLEWVSGISWNSGSIGYADSVKGRFTISRDNAKNSLYLQMNSLRD





EDTAVYYCARVGKAVPDVWGQGTTVTVSSGGGGSGGGGSGGG





GSDIVMTQTPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKA





PKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQ





QSYSTPYSFGQGTRLEIK






BCMA-29
VH
EVQLVESGGGLVQPGRSLRLSCTASGFTFDDYAMHWVRQRPGK
345




GLEWVASINWKGNSLAYGDSVKGRFAISRDNAKNTVFLQMNSLRT





EDTAVYYCASHQGVAYYNYAMDVWGRGTLVTVSS




VL
EIVLTQSPGTLSLSPGERATLSCRATQSIGSSFLAWYQQRPGQAP
346




RLLIYGASQRATGIPDRFSGRGSGTDFTLTISRVEPEDSAVYYCQH





YESSPSWTFGQGTKVEIK




scFv
EVQLVESGGGLVQPGRSLRLSCTASGFTFDDYAMHWVRQRPGK
347




GLEWVASINWKGNSLAYGDSVKGRFAISRDNAKNTVFLQMNSLRT





EDTAVYYCASHQGVAYYNYAMDVWGRGTLVTVSSGGGGSGGG





GSGGGGSEIVLTQSPGTLSLSPGERATLSCRATQSIGSSFLAWYQ





QRPGQAPRLLIYGASQRATGIPDRFSGRGSGTDFTLTISRVEPEDS





AVYYCQHYESSPSWTFGQGTKVEIK






BCMA-30
VH
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGK
348




GLEWVSAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRA





EDTAVYYCAKVVRDGMDVWGQGTTVTVSS




VL
EIVLTQSPATLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAP
349




RLLIYGASSRATGIPDRFSGNGSGTDFTLTISRLEPEDFAVYYCQQ





YGSPPRFTFGPGTKVDIK




scFv
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGK
350




GLEWVSAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRA





EDTAVYYCAKVVRDGMDVWGQGTTVTVSSGGGGSGGGGSGGG





GSEIVLTQSPATLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQ





APRLLIYGASSRATGIPDRFSGNGSGTDFTLTISRLEPEDFAVYYC





QQYGSPPRFTFGPGTKVDIK






BCMA-31
VH
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKG
351




LEWVSAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAE





DTAVYYCAKIPQTGTFDYWGQGTLVTVSS




VL
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQRPGQAP
352




RLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQH





YGSSPSWTFGQGTRLEIK




scFv
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKG
353




LEWVSAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAE





DTAVYYCAKIPQTGTFDYWGQGTLVTVSSGGGGSGGGGSGGGG





SEIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQRPGQA





PRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQ





HYGSSPSWTFGQGTRLEIK






BCMA-32
VH
EVQLVETGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGK
354




GLEWVSAISGSGGSTYYADSVKGRFTMSRENDKNSVFLQMNSLR





VEDTGVYYCARANYKRELRYYYGMDVWGQGTMVTVSS




VL
EIVMTQSPGTLSLSPGESATLSCRASQRVASNYLAWYQHKPGQA
355




PSLLISGASSRATGVPDRFSGSGSGTDFTLAISRLEPEDSAVYYCQ





HYDSSPSWTFGQGTKVEIK




scFv
EVQLVETGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGK
356




GLEWVSAISGSGGSTYYADSVKGRFTMSRENDKNSVFLQMNSLR





VEDTGVYYCARANYKRELRYYYGMDVWGQGTMVTVSSGGGGS





GGGGSGGGGSEIVMTQSPGTLSLSPGESATLSCRASQRVASNYL





AWYQHKPGQAPSLLISGASSRATGVPDRFSGSGSGTDFTLAISRL





EPEDSAVYYCQHYDSSPSWTFGQGTKVEIK






BCMA-33
VH
EVQLLETGGGLVQPGGSLRLSCAASGFSFSSYAMSWVRQAPGKG
357




LEWVSAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAE





DTAVYYCAKALVGATGAFDIWGQGTLVTVSS




VL
EIVLTQSPGTLSLSPGERATLSCRASQSLSSNFLAWYQQKPGQAP
358




GLLIYGASNWATGTPDRFSGSGSGTDFTLTITRLEPEDFAVYYCQY





YGTSPMYTFGQGTKVEIK




scFv
EVQLLETGGGLVQPGGSLRLSCAASGFSFSSYAMSWVRQAPGKG
359




LEWVSAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAE





DTAVYYCAKALVGATGAFDIWGQGTLVTVSSGGGGSGGGGSGG





GGSEIVLTQSPGTLSLSPGERATLSCRASQSLSSNFLAWYQQKPG





QAPGLLIYGASNWATGTPDRFSGSGSGTDFTLTITRLEPEDFAVYY





CQYYGTSPMYTFGQGTKVEIK






BCMA-34
VH
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKG
360




LEWVSAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAE





DTAVYYCVLWFGEGFDPWGQGTLVTVSS




VL
DIVLTQSPLSLPVTPGEPASISCRSSQSLLHSNGYNYLDWYLQKPG
361




QSPQLLIYLGSNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVY





YCMQALQTPLTFGGGTKVDIK




scFv
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKG
362




LEWVSAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAE





DTAVYYCVLWFGEGFDPWGQGTLVTVSSGGGGSGGGGSGGGG





SDIVLTQSPLSLPVTPGEPASISCRSSQSLLHSNGYNYLDWYLQKP





GQSPQLLIYLGSNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGV





YYCMQALQTPLTFGGGTKVDIK






BCMA-35
VH
QVQLVESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGK
363




GLEWVSAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRA





EDTAVYYCAKVGYDSSGYYRDYYGMDVWGQGTTVTVSS




VL
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAP
364




RLLIYGTSSRATGISDRFSGSGSGTDFTLTISRLEPEDFAVYYCQHY





GNSPPKFTFGPGTKLEIK




scFv
QVQLVESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGK
365




GLEWVSAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRA





EDTAVYYCAKVGYDSSGYYRDYYGMDVWGQGTTVTVSSGGGGS





GGGGSGGGGSEIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLA





WYQQKPGQAPRLLIYGTSSRATGISDRFSGSGSGTDFTLTISRLEP





EDFAVYYCQHYGNSPPKFTFGPGTKLEIK






BCMA-36
VH
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGK
366




GLEWVSAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRA





EDTAVYYCAKMGWSSGYLGAFDIWGQGTTVTVSS




VL
EIVLTQSPGTLSLSPGERATLSCRASQSVASSFLAWYQQKPGQAP
367




RLLIYGASGRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQH





YGGSPRLTFGGGTKVDIK




scFv
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGK
368




GLEWVSAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRA





EDTAVYYCAKMGWSSGYLGAFDIWGQGTTVTVSSGGGGSGGGG





SGGGGSEIVLTQSPGTLSLSPGERATLSCRASQSVASSFLAWYQQ





KPGQAPRLLIYGASGRATGIPDRFSGSGSGTDFTLTISRLEPEDFA





VYYCQHYGGSPRLTFGGGTKVDIK






BCMA-37
VH
QIQLVQSGPDLKKPGETVKLSCKASGYTFTNFGMNWVKQAPGKG
369




FKWMAWINTYTGESYFADDFKGRFAFSVETSATTAYLQINNLKTE





DTATYFCARGEIYYGYDGGFAYWGQGTLVTVSA




VL
DVVMTQSHRFMSTSVGDRVSITCRASQDVNTAVSWYQQKPGQS
370




PKLLIFSASYRYTGVPDRFTGSGSGADFTLTISSVQAEDLAVYYCQ





QHYSTPWTFGGGTKLDIK




scFv
QIQLVQSGPDLKKPGETVKLSCKASGYTFTNFGMNWVKQAPGKG
371




FKWMAWINTYTGESYFADDFKGRFAFSVETSATTAYLQINNLKTE





DTATYFCARGEIYYGYDGGFAYWGQGTLVTVSAGGGGSGGGGS





GGGGSDVVMTQSHRFMSTSVGDRVSITCRASQDVNTAVSWYQQ





KPGQSPKLLIFSASYRYTGVPDRFTGSGSGADFTLTISSVQAEDLA





VYYCQQHYSTPWTFGGGTKLDIK






BCMA-38
VH
QIQLVQSGPELKKPGETVKISCKASGYTFTDYSINWVKRAPGKGLK
372




WMGWINTETREPAYAYDFRGRFAFSLETSASTAYLQINNLKYEDT





ATYFCALDYSYAMDYWGQGTSVTVSS




VL
DIVLTQSPASLAMSLGKRATISCRASESVSVIGAHLIHWYQQKPGQ
373




PPKLLIYLASNLETGVPARFSGSGSGTDFTLTIDPVEEDDVAIYSCL





QSRIFPRTFGGGTKLEIK




scFv
QIQLVQSGPELKKPGETVKISCKASGYTFTDYSINWVKRAPGKGLK
374




WMGWINTETREPAYAYDFRGRFAFSLETSASTAYLQINNLKYEDT





ATYFCALDYSYAMDYWGQGTSVTVSSGGGGSGGGGSGGGGSQI





QLVQSGPELKKPGETVKISCKASGYTFTDYSINWVKRAPGKGLKW





MGWINTETREPAYAYDFRGRFAFSLETSASTAYLQINNLKYEDTAT





YFCALDYSYAMDYWGQGTSVTVSS






BCMA-39
VH
QIQLVQSGPELKKPGETVKISCKASGYTFRHYSMNWVKQAPGKGL
375




KWMGRINTESGVPIYADDFKGRFAFSVETSASTAYLVINNLKDEDT





ASYFCSNDYLYSLDFWGQGTALTVSS




VL
DIVLTQSPPSLAMSLGKRATISCRASESVTILGSHLIYWYQQKPGQ
376




PPTLLIQLASNVQTGVPARFSGSGSRTDFTLTIDPVEEDDVAVYYC





LQSRTIPRTFGGGTKLEIK




scFv
QIQLVQSGPELKKPGETVKISCKASGYTFRHYSMNWVKQAPGKGL
377




KWMGRINTESGVPIYADDFKGRFAFSVETSASTAYLVINNLKDEDT





ASYFCSNDYLYSLDFWGQGTALTVSSGGGGSGGGGSGGGGSDI





VLTQSPPSLAMSLGKRATISCRASESVTILGSHLIYWYQQKPGQPP





TLLIQLASNVQTGVPARFSGSGSRTDFTLTIDPVEEDDVAVYYCLQ





SRTIPRTFGGGTKLEIK






BCMA-40
VH
QIQLVQSGPELKKPGETVKISCKASGYTFTHYSMNWVKQAPGKGL
378




KWMGRINTETGEPLYADDFKGRFAFSLETSASTAYLVINNLKNEDT





ATFFCSNDYLYSCDYWGQGTTLTVSS




VL
DIVLTQSPPSLAMSLGKRATISCRASESVTILGSHLIYWYQQKPGQ
376




PPTLLIQLASNVQTGVPARFSGSGSRTDFTLTIDPVEEDDVAVYYC





LQSRTIPRTFGGGTKLEIK




scFv
QIQLVQSGPELKKPGETVKISCKASGYTFTHYSMNWVKQAPGKGL
379




KWMGRINTETGEPLYADDFKGRFAFSLETSASTAYLVINNLKNEDT





ATFFCSNDYLYSCDYWGQGTTLTVSSGGGGSGGGGSGGGGSDI





VLTQSPPSLAMSLGKRATISCRASESVTILGSHLIYWYQQKPGQPP





TLLIQLASNVQTGVPARFSGSGSRTDFTLTIDPVEEDDVAVYYCLQ





SRTIPRTFGGGTKLEIK
















TABLE 15B







BCMA Binders - Light chain CDR sequences according to Kabat numbering scheme















SEQ

SEQ

SEQ




ID

ID

ID


Antibody
CDR-L1
NO:
CDR-L2
NO:
CDR-L3
NO:





BCMA-1
RASQSISSYLN
380
AASSLQS
412
QQSYSTPYT
441





BCMA-2
RASQSISSSFLA
381
GASRRAT
413
QQYHSSPSWT
442





BCMA-3
RSSQSLLHSNGYNYLD
382
LGSNRAS
414
MQALQTPYT
443





BCMA-4
KSSQSLLRNDGKTPLY
383
EVSNRFS
415
MQNIQFPS
444





BCMA-5
RSSQSLLHSNGYNYLN
384
LGSKRAS
416
MQALQTPYT
443





BCMA-6
RASQSISSYLN
380
GASTLAS
417
QQSYKRAS
445





BCMA-7
RSSQSLLYSNGYNYVD
385
LGSNRAS
414
MQGRQFPYS
446





BCMA-8
RASQSVSSNLA
386
GASTRAS
418
QQYGSSLT
447





BCMA-9
RASQSVSSKLA
387
GASIRAT
419
QQYGSSSWT
448





BCMA-10
RASQSVGSTNLA
388
DASNRAT
158
QQYGSSPPWT
449





BCMA-11
RASQSISSYLN
380
AASSLQS
412
QQSYTLA
450





BCMA-12
KSSESLVHNSGKTYLN
389
EVSNRDS
420
MQGTHWPGT
451





BCMA-13
QASEDINKFLN
390
DASTLQT
421
QQYESLPLT
452





BCMA-14
RASQSVGSNLA
391
GASTRAT
422
QQYNDWLPVT
453





BCMA-15
RASQSIGSSSLA
392
GASSRAS
423
QQYAGSPPFT
454





BCMA-16
KASQDIDDAMN
393
SATSPVP
424
LQHDNFPLT
455





BCMA-17
RASQDIYNNLA
394
AANKSQS
425
QHYYRFPYS
456





BCMA-18
RSSQSLLHSNGYNYLD
382
LGSNRAS
414
MQALQTPYT
443





BCMA-19
GGNNIGTKSVH
395
DDSVRPS
426
QVWDSDSEHVV
457





BCMA-20
SGDGLSKKYVS
396
RDKERPS
427
QAWDDTTVV
458





BCMA-21
RASQGIRNWLA
397
AASNLQS
428
QKYNSAPFT
459





BCMA-22
GGNNIGSKSVH
398
GKNNRPS
429
SSRDSSGDHLRV
460





BCMA-23
QGDSLGNYYAT
399
GTNNRPS
430
NSRDSSGHHLL
461





BCMA-24
RASQSVSSAYLA
400
GASTRAT
422
QHYGSSFNGSSLFT
462





BCMA-25
RASQSVSNSLA
401
DASSRAT
431
QQFGTSSGLT
463





BCMA-26
RASQSVSSSFLA
402
GASSRAT
432
QQYHSSPSWT
442





BCMA-27
RASQSVSTTFLA
403
GSSNRAT
433
QQYHSSPSWT
442





BCMA-28
RASQSISSYLN
380
AASSLQS
412
QQSYSTPYS
464





BCMA-29
RATQSIGSSFLA
404
GASQRAT
434
QHYESSPSWT
465





BCMA-30
RASQSVSSSYLA
405
GASSRAT
432
QQYGSPPRFT
466





BCMA-31
RASQSVSSSYLA
405
GASSRAT
432
QHYGSSPSWT
467





BCMA-32
RASQRVASNYLA
406
GASSRAT
432
QHYDSSPSWT
468





BCMA-33
RASQSLSSNFLA
407
GASNWAT
435
QYYGTSPMYT
469





BCMA-34
RSSQSLLHSNGYNYLD
382
LGSNRAS
414
MQALQTPLT
470





BCMA-35
RASQSVSSSYLA
405
GTSSRAT
436
QHYGNSPPKFT
471





BCMA-36
RASQSVASSFLA
408
GASGRAT
437
QHYGGSPRLT
472





BCMA-37
RASQDVNTAVS
409
SASYRYT
438
QQHYSTPWT
473





BCMA-38
RASESVSVIGAHLIH
410
LASNLET
439
LQSRIFPRT
474





BCMA-39
RASESVTILGSHLIY
411
LASNVQT
440
LQSRTIPRT
475





BCMA-40
RASESVTILGSHLIY
411
LASNVQT
440
LQSRTIPRT
475
















TABLE 15C







BCMA Binders - Light chain CDR sequences according


to Chothia numbering scheme















SEQ

SEQ

SEQ




ID

ID

ID


Antibody
CDR-L1
NO:
CDR-L2
NO:
CDR-L3
NO:





BCMA-1
SQSISSY
476
AAS
507
SYSTPY
520





BCMA-2
SQSISSSF
477
GAS
508
YHSSPSW
521





BCMA-3
SQSLLHSNGYNY
478
LGS
509
ALQTPY
522





BCMA-4
SQSLLRNDGKTP
479
EVS
510
NIQFP
523





BCMA-5
SQSLLHSNGYNY
478
LGS
509
ALQTPY
522





BCMA-6
SQSISSY
476
GAS
508
SYKRA
524





BCMA-7
SQSLLYSNGYNY
480
LGS
509
GRQFPY
525





BCMA-8
SQSVSSN
481
GAS
508
YGSSL
526





BCMA-9
SQSVSSK
482
GAS
508
YGSSSW
527





BCMA-10
SQSVGSTN
483
DAS
217
YGSSPPW
528





BCMA-11
SQSISSY
476
AAS
507
SYTL
529





BCMA-12
SESLVHNSGKTY
484
EVS
510
GTHWPG
530





BCMA-13
SEDINKF
485
DAS
217
YESLPL
531





BCMA-14
SQSVGSN
486
GAS
508
YNDWLPV
532





BCMA-15
SQSIGSSS
487
GAS
508
YAGSPPF
533





BCMA-16
SQDIDDA
488
SAT
511
HDNFPL
534





BCMA-17
SQDIYNN
489
AAN
512
YYRFPY
535





BCMA-18
SQSLLHSNGYNY
478
LGS
509
ALQTPY
522





BCMA-19
NNIGTKS
490
DDS
513
WDSDSEHV
536





BCMA-20
DGLSKKY
491
RDK
514
WDDTTV
537





BCMA-21
SQGIRNW
492
AAS
507
YNSAPF
538





BCMA-22
NNIGSKS
493
GKN
515
RDSSGDHLR
539





BCMA-23
DSLGNYY
494
GTN
213
RDSSGHHL
540





BCMA-24
SQSVSSAY
495
GAS
508
YGSSFNGSSLF
541





BCMA-25
SQSVSNS
496
DAS
217
FGTSSGL
542





BCMA-26
SQSVSSSF
497
GAS
508
YHSSPSW
521





BCMA-27
SQSVSTTF
498
GSS
516
YHSSPSW
521





BCMA-28
SQSISSY
476
AAS
507
SYSTPY
520





BCMA-29
TQSIGSSF
499
GAS
508
YESSPSW
543





BCMA-30
SQSVSSSY
500
GAS
508
YGSPPRF
544





BCMA-31
SQSVSSSY
500
GAS
508
YGSSPSW
545





BCMA-32
SQRVASNY
501
GAS
508
YDSSPSW
546





BCMA-33
SQSLSSNF
502
GAS
508
YGTSPMY
547





BCMA-34
SQSLLHSNGYNY
478
LGS
509
ALQTPL
548





BCMA-35
SQSVSSSY
500
GTS
517
YGNSPPKF
549





BCMA-36
SQSVASSF
503
GAS
508
YGGSPRL
550





BCMA-37
SQDVNTA
504
SAS
518
HYSTPW
551





BCMA-38
SESVSVIGAHL
505
LAS
519
SRIFPR
552





BCMA-39
SESVTILGSHL
506
LAS
519
SRTIPR
553





BCMA-40
SESVTILGSHL
506
LAS
519
SRTIPR
553
















TABLE 15D







BCMA Binders - Light chain CDR sequences according to combination of Kabat


and Chothia numbering schemes















SEQ

SEQ




Anti-

ID

ID

SEQ ID


body
CDR-L1
NO:
CDR-L2
NO:
CDR-L3
NO:





BCMA-1
RASQSISSYLN
380
AASSLQS
412
QQSYSTPYT
441





BCMA-2
RASQSISSSFLA
381
GASRRAT
413
QQYHSSPSWT
442





BCMA-3
RSSQSLLHSNGYN
382
LGSNRAS
414
MQALQTPYT
443



YLD










BCMA-4
KSSQSLLRNDGKT
383
EVSNRFS
415
MQNIQFPS
444



PLY










BCMA-5
RSSQSLLHSNGYN
384
LGSKRAS
416
MQALQTPYT
443



YLN










BCMA-6
RASQSISSYLN
380
GASTLAS
417
QQSYKRAS
445





BCMA-7
RSSQSLLYSNGYN
385
LGSNRAS
414
MQGRQFPYS
446



YVD










BCMA-8
RASQSVSSNLA
386
GASTRAS
418
QQYGSSLT
447





BCMA-9
RASQSVSSKLA
387
GASIRAT
419
QQYGSSSWT
448





BCMA-10
RASQSVGSTNLA
388
DASNRAT
158
QQYGSSPPWT
449





BCMA-11
RASQSISSYLN
380
AASSLQS
412
QQSYTLA
450





BCMA-12
KSSESLVHNSGKT
389
EVSNRDS
420
MQGTHWPGT
451



YLN










BCMA-13
QASEDINKFLN
390
DASTLQT
421
QQYESLPLT
452





BCMA-14
RASQSVGSNLA
391
GASTRAT
422
QQYNDWLPVT
453





BCMA-15
RASQSIGSSSLA
392
GASSRAS
423
QQYAGSPPFT
454





BCMA-16
KASQDIDDAMN
393
SATSPVP
424
LQHDNFPLT
455





BCMA-17
RASQDIYNNLA
394
AANKSQS
425
QHYYRFPYS
456





BCMA-18
RSSQSLLHSNGYN
382
LGSNRAS
414
MQALQTPYT
443



YLD










BCMA-19
GGNNIGTKSVH
395
DDSVRPS
426
QVWDSDSEHVV
457





BCMA-20
SGDGLSKKYVS
396
RDKERPS
427
QAWDDTTVV
458





BCMA-21
RASQGIRNWLA
397
AASNLQS
428
QKYNSAPFT
459





BCMA-22
GGNNIGSKSVH
398
GKNNRPS
429
SSRDSSGDHLRV
460





BCMA-23
QGDSLGNYYAT
399
GTNNRPS
430
NSRDSSGHHLL
461





BCMA-24
RASQSVSSAYLA
400
GASTRAT
422
QHYGSSFNGSSL
462







FT






BCMA-25
RASQSVSNSLA
401
DASSRAT
431
QQFGTSSGLT
463





BCMA-26
RASQSVSSSFLA
402
GASSRAT
432
QQYHSSPSWT
442





BCMA-27
RASQSVSTTFLA
403
GSSNRAT
433
QQYHSSPSWT
442





BCMA-28
RASQSISSYLN
380
AASSLQS
412
QQSYSTPYS
464





BCMA-29
RATQSIGSSFLA
404
GASQRAT
434
QHYESSPSWT
465





BCMA-30
RASQSVSSSYLA
405
GASSRAT
432
QQYGSPPRFT
466





BCMA-31
RASQSVSSSYLA
405
GASSRAT
432
QHYGSSPSWT
467





BCMA-32
RASQRVASNYLA
406
GASSRAT
432
QHYDSSPSWT
468





BCMA-33
RASQSLSSNFLA
407
GASNWAT
435
QYYGTSPMYT
469





BCMA-34
RSSQSLLHSNGYN
382
LGSNRAS
414
MQALQTPLT
470



YLD










BCMA-35
RASQSVSSSYLA
405
GTSSRAT
436
QHYGNSPPKFT
471





BCMA-36
RASQSVASSFLA
408
GASGRAT
437
QHYGGSPRLT
472





BCMA-37
RASQDVNTAVS
409
SASYRYT
438
QQHYSTPWT
473





BCMA-38
RASESVSVIGAHLI
410
LASNLET
439
LQSRIFPRT
474



H










BCMA-39
RASESVTILGSHLI
411
LASNVQT
440
LQSRTIPRT
475



Y










BCMA-40
RASESVTILGSHLI
411
LASNVQT
440
LQSRTIPRT
475



Y

















TABLE 15E







BCMA Binders-Heavy chain CDR sequences accord ing to Kabat numbering scheme















SEQ

SEQ

SEQ




ID

ID

ID


Antibody
CDR-H1
NO:
CDR-H2
NO:
CDR-H3
NO:





BCMA-1
NHGMS
554
GIVYSGSTYYAASVK
573
HGGESDV
595





G








BCMA-2
NYAMS
555
GISRSGENTYYADSV
574
SPAHYYGGMDV
596





KG








BCMA-3
DYAMH
556
GISWNSGSIGYADSV
575
HSFLAY
597





KG








BCMA-4
NHGMS
554
GIVYSGSTYYAASVK
573
HGGESDV
595





G








BCMA-5
NFGIN
557
WINPKNNNTNYAQKF
576
GPYYYQSYMDV
598





QG








BCMA-6
SDAMT
558
VISGSGGTTYYADSV
577
LDSSGYYYARGPR
599





KG

Y






BCMA-7
NYGIT
559
WISAYNGNTNYAQKF
578
GPYYYYMDV
600





QG








BCMA-8
NHGMS
554
GIVYSGSTYYAASVK
573
HGGESDV
595





G








BCMA-9
NHGMS
554
GIVYSGSTYYAASVK
573
HGGESDV
595





G








BCMA-10
NHGMS
554
GIVYSGSTYYAASVK
573
HGGESDV
595





G








BCMA-11
DYYMS
560
YISSSGSTIYYADSVK
579
ESGDGMDV
601





G








BCMA-12
DYYMS
560
YISSSGNTIYYADSVK
580
STMVREDY
602





G








BCMA-13
NHGMS
554
GIVYSGSTYYAASVK
573
HGGESDV
595





G








BCMA-14
NHGMS
554
GIVYSGSTYYAASVK
573
HGGESDV
595





G








BCMA-15
NHGMS
554
GIVYSGSTYYAASVK
573
HGGESDV
595





G








BCMA-16
SSYYYW
561
SIYYSGSAYYNPSLKS
581
HWQEWPDAFDI
603



G










BCMA-17
TSGMCV
562
RIDWDEDKFYSTSLK
582
SGAGGTSATAFDI
604



S

T








BCMA-18
SYSMN
563
SISSSSSYIYYADSVK
583
TIAAVYAFDI
605





G








BCMA-19
DYYMS
560
YISSSGSTIYYADSVK
579
DLRGAFDI
606





G








BCMA-20
SHYIH
564
MINPSGGVTAYSQTL
584
EGSGSGWYFDF
607





QG








BCMA-21
SGGYYW
565
YIYYSGSTYYNPSLKS
585
AGIAARLRGAFDI
608



S










BCMA-22
SYAIS
566
GIIPIFGTANYAQKFQ
586
RGGYQLLRWDVG
609





G

LLRSAFDI






BCMA-23
SNSAAW
567
RTYYRSKWYSFYAISL
587
SSPEGLFLYWFDP
610



N

KS








BCMA-24
SYAMS
568
AISGSGGSTYYADSV
588
VEGSGSLDY
611





KG








BCMA-25
RYPMS
569
GISDSGVSTYYADSA
589
RAGSEASDI
612





KG








BCMA-26
SYAMS
568
AISGSGGSTYYADSV
588
ATYKRELRYYYGM
613





KG

DV






BCMA-27
SYAMS
568
AISGSGGSTYYADSV
588
ATYKRELRYYYGM
613





KG

DV






BCMA-28
DYAMH
556
GISWNSGSIGYADSV
575
VGKAVPDV
614





KG








BCMA-29
DYAMH
556
SINWKGNSLAYGDSV
590
HQGVAYYNYAMD
615





KG

V






BCMA-30
SYAMS
568
AISGSGGSTYYADSV
588
VVRDGMDV
616





KG








BCMA-31
SYAMS
568
AISGSGGSTYYADSV
588
IPQTGTFDY
617





KG








BCMA-32
SYAMS
568
AISGSGGSTYYADSV
588
ANYKRELRYYYGM
618





KG

DV






BCMA-33
SYAMS
568
AISGSGGSTYYADSV
588
ALVGATGAFDI
619





KG








BCMA-34
SYAMS
568
AISGSGGSTYYADSV
588
WFGEGFDP
620





KG








BCMA-35
SYAMS
568
AISGSGGSTYYADSV
588
VGYDSSGYYRDYY
621





KG

GMDV






BCMA-36
SYAMS
568
AISGSGGSTYYADSV
588
MGWSSGYLGAFDI
622





KG








BCMA-37
NFGMN
570
WINTYTGESYFADDF
591
GEIYYGYDGGFAY
623





KG








BCMA-38
DYSIN
571
WINTETREPAYAYDF
592
DYSYAMDY
624





RG








BCMA-39
HYSMN
572
RINTESGVPIYADDFK
593
DYLYSLDF
625





G








BCMA-40
HYSMN
572
RINTETGEPLYADDFK
594
DYLYSCDY
626





G
















TABLE 15F







BCMA Binders - Heavy chain CDR sequences according


to Chothia numbering scheme















SEQ

SEQ

SEQ


Anti-

ID

ID

ID


body
CDR-H1
NO:
CDR-H2
NO:
CDR-H3
NO:





BCMA-1
GFALSNH
627
VYSGS
647
HGGESDV
595





BCMA-2
GFTFSNY
628
SRSGEN
648
SPAHYYGGMDV
596





BCMA-3
GFTFDDY
629
SWNSGS
649
HSFLAY
597





BCMA-4
GFALSNH
627
VYSGS
647
HGGESDV
595





BCMA-5
GYIFDNF
630
NPKNNN
650
GPYYYQSYMDV
598





BCMA-6
GFTFSSD
631
SGSGGT
651
LDSSGYYYARGPRY
599





BCMA-7
GYTFSNY
632
SAYNGN
652
GPYYYYMDV
600





BCMA-8
GFALSNH
627
VYSGS
647
HGGESDV
595





BCMA-9
GFALSNH
627
VYSGS
647
HGGESDV
595





BCMA-10
GFALSNH
627
VYSGS
647
HGGESDV
595





BCMA-11
GFTFSDY
633
SSSGST
653
ESGDGMDV
601





BCMA-12
GFTFSDY
633
SSSGNT
654
STMVREDY
602





BCMA-13
GFALSNH
627
VYSGS
647
HGGESDV
595





BCMA-14
GFALSNH
627
VYSGS
647
HGGESDV
595





BCMA-15
GFALSNH
627
VYSGS
647
HGGESDV
595





BCMA-16
GGSISSS
634
YYSGS
655
HWQEWPDAFDI
603



YY










BCMA-17
GFSLRTS
635
DWDED
656
SGAGGTSATAFDI
604



GM










BCMA-18
GFTFSSY
636
SSSSSY
657
TIAAVYAFDI
605





BCMA-19
GFTFSDY
633
SSSGST
653
DLRGAFDI
606





BCMA-20
GYTVTSH
637
NPSGGV
658
EGSGSGWYFDF
607





BCMA-21
GGSISSG
638
YYSGS
655
AGIAARLRGAFDI
608



GY










BCMA-22
GGTFSSY
639
IPIFGT
659
RGGYQLLRWDVGLLR
609







SAFDI






BCMA-23
GDSVSSN
640
YYRSKW
660
SSPEGLFLYWFDP
610



SA

Y








BCMA-24
GFTFSSY
636
SGSGGS
661
VEGSGSLDY
611





BCMA-25
GITFSRY
641
SDSGVS
662
RAGSEASDI
612





BCMA-26
GFTFSSY
636
SGSGGS
661
ATYKRELRYYYGMDV
613





BCMA-27
GFTFSSY
636
SGSGGS
661
ATYKRELRYYYGMDV
613





BCMA-28
GFTFDDY
629
SWNSGS
649
VGKAVPDV
614





BCMA-29
GFTFDDY
629
NWKGNS
663
HQGVAYYNYAMDV
615





BCMA-30
GFTFSSY
636
SGSGGS
661
VVRDGMDV
616





BCMA-31
GFTFSSY
636
SGSGGS
661
IPQTGTFDY
617





BCMA-32
GFTFSSY
636
SGSGGS
661
ANYKRELRYYYGMDV
618





BCMA-33
GFSFSSY
642
SGSGGS
661
ALVGATGAFDI
619





BCMA-34
GFTFSSY
636
SGSGGS
661
WFGEGFDP
620





BCMA-35
GFTFSSY
636
SGSGGS
661
VGYDSSGYYRDYYGM
621







DV






BCMA-36
GFTFSSY
636
SGSGGS
661
MGWSSGYLGAFDI
622





BCMA-37
GYTFTNF
643
NTYTGE
664
GEIYYGYDGGFAY
623





BCMA-38
GYTFTDY
644
NTETRE
665
DYSYAMDY
624





BCMA-39
GYTFRHY
645
NTESGV
666
DYLYSLDF
625





BCMA-40
GYTFTHY
646
NTETGE
667
DYLYSCDY
626
















TABLE 15G







BCMA Binders - Heavy chain CDR sequences according to combination of Kabat and


Chothia numbering schemes















SEQ



SEQ




ID

SEQ

ID


Antibody
CDR-H1
NO:
CDR-H2
ID NO:
CDR-H3
NO:





BCMA-1
GFALSNHG
668
GIVYSGSTYYAAS
573
HGGESDV
595



MS

VKG








BCMA-2
GFTFSNYA
669
GISRSGENTYYAD
574
SPAHYYGGMDV
596



MS

SVKG








BCMA-3
GFTFDDYA
670
GISWNSGSIGYAD
575
HSFLAY
597



MH

SVKG








BCMA-4
GFALSNHG
668
GIVYSGSTYYAAS
573
HGGESDV
595



MS

VKG








BCMA-5
GYIFDNFGI
671
WINPKNNNTNYA
576
GPYYYQSYMDV
598



N

QKFQG








BCMA-6
GFTFSSDA
672
VISGSGGTTYYAD
577
LDSSGYYYARGPR
599



MT

SVKG

Y






BCMA-7
GYTFSNYG
673
WISAYNGNTNYA
578
GPYYYYMDV
600



IT

QKFQG








BCMA-8
GFALSNHG
668
GIVYSGSTYYAAS
573
HGGESDV
595



MS

VKG








BCMA-9
GFALSNHG
668
GIVYSGSTYYAAS
573
HGGESDV
595



MS

VKG








BCMA-10
GFALSNHG
668
GIVYSGSTYYAAS
573
HGGESDV
595



MS

VKG








BCMA-11
GFTFSDYY
674
YISSSGSTIYYADS
579
ESGDGMDV
601



MS

VKG








BCMA-12
GFTFSDYY
674
YISSSGNTIYYAD
580
STMVREDY
602



MS

SVKG








BCMA-13
GFALSNHG
668
GIVYSGSTYYAAS
573
HGGESDV
595



MS

VKG








BCMA-14
GFALSNHG
668
GIVYSGSTYYAAS
573
HGGESDV
595



MS

VKG








BCMA-15
GFALSNHG
668
GIVYSGSTYYAAS
573
HGGESDV
595



MS

VKG








BCMA-16
GGSISSSY
675
SIYYSGSAYYNPS
581
HWQEWPDAFDI
603



YYWG

LKS








BCMA-17
GFSLRTSG
676
RIDWDEDKFYSTS
582
SGAGGTSATAFDI
604



MCVS

LKT








BCMA-18
GFTFSSYS
677
SISSSSSYIYYADS
583
TIAAVYAFDI
605



MN

VKG








BCMA-19
GFTFSDYY
674
YISSSGSTIYYADS
579
DLRGAFDI
606



MS

VKG








BCMA-20
GYTVTSHYI
678
MINPSGGVTAYS
584
EGSGSGWYFDF
607



H

QTLQG








BCMA-21
GGSISSGG
679
YIYYSGSTYYNPS
585
AGIAARLRGAFDI
608



YYWS

LKS








BCMA-22
GGTFSSYAI
680
GIIPIFGTANYAQK
586
RGGYQLLRWDVGL
609



S

FQG

LRSAFDI






BCMA-23
GDSVSSNS
681
RTYYRSKWYSFY
587
SSPEGLFLYWFDP
610



AAWN

AISLKS








BCMA-24
GFTFSSYA
682
AISGSGGSTYYAD
588
VEGSGSLDY
611



MS

SVKG








BCMA-25
GITFSRYP
683
GISDSGVSTYYAD
589
RAGSEASDI
612



MS

SAKG








BCMA-26
GFTFSSYA
682
AISGSGGSTYYAD
588
ATYKRELRYYYGM
613



MS

SVKG

DV






BCMA-27
GFTFSSYA
682
AISGSGGSTYYAD
588
ATYKRELRYYYGM
613



MS

SVKG

DV






BCMA-28
GFTFDDYA
670
GISWNSGSIGYAD
575
VGKAVPDV
614



MH

SVKG








BCMA-29
GFTFDDYA
670
SINWKGNSLAYG
590
HQGVAYYNYAMDV
615



MH

DSVKG








BCMA-30
GFTFSSYA
682
AISGSGGSTYYAD
588
VVRDGMDV
616



MS

SVKG








BCMA-31
GFTFSSYA
682
AISGSGGSTYYAD
588
IPQTGTFDY
617



MS

SVKG








BCMA-32
GFTFSSYA
682
AISGSGGSTYYAD
588
ANYKRELRYYYGM
618



MS

SVKG

DV






BCMA-33
GFSFSSYA
684
AISGSGGSTYYAD
588
ALVGATGAFDI
619



MS

SVKG








BCMA-34
GFTFSSYA
682
AISGSGGSTYYAD
588
WFGEGFDP
620



MS

SVKG








BCMA-35
GFTFSSYA
682
AISGSGGSTYYAD
588
VGYDSSGYYRDYY
621



MS

SVKG

GMDV






BCMA-36
GFTFSSYA
682
AISGSGGSTYYAD
588
MGWSSGYLGAFDI
622



MS

SVKG








BCMA-37
GYTFTNFG
685
WINTYTGESYFAD
591
GEIYYGYDGGFAY
623



MN

DFKG








BCMA-38
GYTFTDYSI
686
WINTETREPAYAY
592
DYSYAMDY
624



N

DFRG








BCMA-39
GYTFRHYS
687
RINTESGVPIYAD
593
DYLYSLDF
625



MN

DFKG








BCMA-40
GYTFTHYS
688
RINTETGEPLYAD
594
DYLYSCDY
626



MN

DFKG









In some embodiments, the ABM comprises the CDR sequences of BCMA-1. In some embodiments, the ABM comprises the CDR sequences of BCMA-2. In some embodiments, the ABM comprises the CDR sequences of BCMA-3. In some embodiments, the ABM comprises the CDR sequences of BCMA-4. In some embodiments, the ABM comprises the CDR sequences of BCMA-5. In some embodiments, the ABM comprises the CDR sequences of BCMA-6. In some embodiments, the ABM comprises the CDR sequences of BCMA-7. In some embodiments, the ABM comprises the CDR sequences of BCMA-8. In some embodiments, the ABM comprises the CDR sequences of BCMA-9. In some embodiments, the ABM comprises the CDR sequences of BCMA-10. In some embodiments, the ABM comprises the CDR sequences of BCMA-11. In some embodiments, the ABM comprises the CDR sequences of BCMA-12. In some embodiments, the ABM comprises the CDR sequences of BCMA-13. In some embodiments, the ABM comprises the CDR sequences of BCMA-14. In some embodiments, the ABM comprises the CDR sequences of BCMA-15. In some embodiments, the ABM comprises the CDR sequences of BCMA-16. In some embodiments, the ABM comprises the CDR sequences of BCMA-17. In some embodiments, the ABM comprises the CDR sequences of BCMA-18. In some embodiments, the ABM comprises the CDR sequences of BCMA-19. In some embodiments, the ABM comprises the CDR sequences of BCMA-20. In some embodiments, the ABM comprises the CDR sequences of BCMA-21. In some embodiments, the ABM comprises the CDR sequences of BCMA-22. In some embodiments, the ABM comprises the CDR sequences of BCMA-23. In some embodiments, the ABM comprises the CDR sequences of BCMA-24. In some embodiments, the ABM comprises the CDR sequences of BCMA-25. In some embodiments, the ABM comprises the CDR sequences of BCMA-26. In some embodiments, the ABM comprises the CDR sequences of BCMA-27. In some embodiments, the ABM comprises the CDR sequences of BCMA-28. In some embodiments, the ABM comprises the CDR sequences of BCMA-29. In some embodiments, the ABM comprises the CDR sequences of BCMA-30. In some embodiments, the ABM comprises the CDR sequences of BCMA-31. In some embodiments, the ABM comprises the CDR sequences of BCMA-32. In some embodiments, the ABM comprises the CDR sequences of BCMA-33. In some embodiments, the ABM comprises the CDR sequences of BCMA-34. In some embodiments, the ABM comprises the CDR sequences of BCMA-35. In some embodiments, the ABM comprises the CDR sequences of BCMA-36. In some embodiments, the ABM comprises the CDR sequences of BCMA-37. In some embodiments, the ABM comprises the CDR sequences of BCMA-38. In some embodiments, the ABM comprises the CDR sequences of BCMA-39. In some embodiments, the ABM comprises the CDR sequences of BCMA-40.


In some embodiments, the CDRs are defined by Kabat numbering, as set forth in Tables 15B and 15E. In other embodiments, the CDRs are defined by Chothia numbering, as set forth in Tables 15C and 15F. In yet other embodiments, the CDRs are defined by a combination of Kabat and Chothia numbering, as set forth in Tables 15D and 15G.


In some embodiments, the TBMs comprising an ABM3 that binds to BCMA can comprise the heavy and light chain variable sequences of any of BCMA-1 to BCMA-40.


In some embodiments, ABM3 comprises the heavy and light chain variable sequences of BCMA-1, as set forth in Table 15A. In some embodiments, the ABM comprises the heavy and light chain variable sequences of BCMA-2, as set forth in Table 15A. In some embodiments, the ABM comprises the heavy and light chain variable sequences of BCMA-3, as set forth in Table 15A. In some embodiments, the ABM comprises the heavy and light chain variable sequences of BCMA-4, as set forth in Table 15A. In some embodiments, the ABM comprises the heavy and light chain variable sequences of BCMA-5, as set forth in Table 15A. In some embodiments, the ABM comprises the heavy and light chain variable sequences of BCMA-6, as set forth in Table 15A. In some embodiments, the ABM comprises the heavy and light chain variable sequences of BCMA-7, as set forth in Table 15A. In some embodiments, the ABM comprises the heavy and light chain variable sequences of BCMA-8, as set forth in Table 15A. In some embodiments, the ABM comprises the heavy and light chain variable sequences of BCMA-9, as set forth in Table 15A. In some embodiments, the ABM comprises the heavy and light chain variable sequences of BCMA-10, as set forth in Table 15A. In some embodiments, the ABM comprises the heavy and light chain variable sequences of BCMA-11, as set forth in Table 15A. In some embodiments, the ABM comprises the heavy and light chain variable sequences of BCMA-12, as set forth in Table 15A. In some embodiments, the ABM comprises the heavy and light chain variable sequences of BCMA-13, as set forth in Table 15A.


In some embodiments, the ABM comprises the heavy and light chain variable sequences of BCMA-14, as set forth in Table 15A. In some embodiments, the ABM comprises the heavy and light chain variable sequences of BCMA-15, as set forth in Table 15A. In some embodiments, the ABM comprises the heavy and light chain variable sequences of BCMA-16, as set forth in Table 15A. In some embodiments, the ABM comprises the heavy and light chain variable sequences of BCMA-17, as set forth in Table 15A. In some embodiments, the ABM comprises the heavy and light chain variable sequences of BCMA-18, as set forth in Table 15A. In some embodiments, the ABM comprises the heavy and light chain variable sequences of BCMA-19, as set forth in Table 15A. In some embodiments, the ABM comprises the heavy and light chain variable sequences of BCMA-20, as set forth in Table 15A. In some embodiments, the ABM comprises the heavy and light chain variable sequences of BCMA-21, as set forth in Table 15A. In some embodiments, the ABM comprises the heavy and light chain variable sequences of BCMA-22, as set forth in Table 15A.


In some embodiments, the ABM comprises the heavy and light chain variable sequences of BCMA-23, as set forth in Table 15A. In some embodiments, the ABM comprises the heavy and light chain variable sequences of BCMA-24, as set forth in Table 15A. In some embodiments, the ABM comprises the heavy and light chain variable sequences of BCMA-25, as set forth in Table 15A. In some embodiments, the ABM comprises the heavy and light chain variable sequences of BCMA-26, as set forth in Table 15A. In some embodiments, the ABM comprises the heavy and light chain variable sequences of BCMA-27, as set forth in Table 15A. In some embodiments, the ABM comprises the heavy and light chain variable sequences of BCMA-28, as set forth in Table 15A. In some embodiments, the ABM comprises the heavy and light chain variable sequences of BCMA-29, as set forth in Table 15A. In some embodiments, the ABM comprises the heavy and light chain variable sequences of BCMA-30, as set forth in Table 15A. In some embodiments, the ABM comprises the heavy and light chain variable sequences of BCMA-31, as set forth in Table 15A. In some embodiments, the ABM comprises the heavy and light chain variable sequences of BCMA-32, as set forth in Table 15A. In some embodiments, the ABM comprises the heavy and light chain variable sequences of BCMA-33, as set forth in Table 15A. In some embodiments, the ABM comprises the heavy and light chain variable sequences of BCMA-34, as set forth in Table 15A. In some embodiments, the ABM comprises the heavy and light chain variable sequences of BCMA-35, as set forth in Table 15A. In some embodiments, the ABM comprises the heavy and light chain variable sequences of BCMA-36, as set forth in Table 15A. In some embodiments, the ABM comprises the heavy and light chain variable sequences of BCMA-37, as set forth in Table 15A. In some embodiments, the ABM comprises the heavy and light chain variable sequences of BCMA-38, as set forth in Table 15A. In some embodiments, the ABM comprises the heavy and light chain variable sequences of BCMA-39, as set forth in Table 15A. In some embodiments, the ABM comprises the heavy and light chain variable sequences of BCMA-40, as set forth in Table 15A.


7.10.2. CD19


B cells express cell surface proteins which can be utilized as markers for differentiation and identification. One such human B-cell marker is a CD19 antigen and is found on mature B cells but not on plasma cells. CD19 is expressed during early pre-B cell development and remains until plasma cell differentiation. CD19 is expressed on both normal B cells and malignant B cells whose abnormal growth can lead to B-cell lymphomas. For example, CD19 is expressed on B-cell lineage malignancies, including, but not limited to non-Hodgkin's lymphoma (B-NHL), chronic lymphocytic leukemia, and acute lymphoblastic leukemia.


In certain aspects, a MBM of the disclosure comprises an ABM2 or ABM3 that specifically binds to CD19. Exemplary CDR and variable domain sequences that can be incorporated into an ABM2 or ABM3 that specifically binds to CD19 are set forth in Table 16 below.









TABLE 16







CD19 Binders













SEQ





ID


Name
Domain
Sequence
NO:





CD19-H1
CDR-H1
DYGVS
689





CD19-H2A
CDR-H2
VIWGSETTYYNSALKS
690





CD19-H2B
CDR-H2
VIWGSETTYYSSSLKS
691





CD19-H2C
CDR-H2
VIWGSETTYYQSSLKS
692





CD19-H2D
CDR-H2
VIWGSETTYYNSSLKS
693





CD19-H3
CDR-H3
HYYYGGSYAMDY
694





CD19-L1
CDR-L1
RASQDISKYLN
695





CD19-L2
CDR-L2
HTSRLHS
696





CD19-L3
CDR-L3
QQGNTLPYT
697





CD19-VHA
VH
EVKLQESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWI
698




RQPPRKGLEWLGVIWGSETTYYNSALKSRLTIIKDNSK





SQVFLKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWG





QGTSVTVSS






CD19-VHB
VH
QVQLQESGPGLVKPSETLSLTCTVSGVSLPDYGVSWIR
699




QPPGKGLEWIGVIWGSETTYYSSSLKSRVTISKDNSKN





QVSLKLSSVTAADTAVYYCAKHYYYGGSYAMDYWGQ





GTLVTVSS






CD 19-VHC
VH
QVQLQESGPGLVKPSETLSLTCTVSGVSLPDYGVSWIR
700




QPPGKGLEWIGVIWGSETTYYQSSLKSRVTISKDNSKN





QVSLKLSSVTAADTAVYYCAKHYYYGGSYAMDYWGQ





GTLVTVSS






CD 19-VHD
VH
QVQLQESGPGLVKPSETLSLTCTVSGVSLPDYGVSWIR
701




QPPGKGLEWIGVIWGSETTYYNSSLKSRVTISKDNSKN





QVSLKLSSVTAADTAVYYCAKHYYYGGSYAMDYWGQ





GTLVTVSS






CD19-VLA
VL
DIQMTQTTSSLSASLGDRVTISCRASQDISKYLNWYQQ
702




KPDGTVKLLIYHTSRLHSGVPSRFSGSGSGTDYSLTISN





LEQEDIATYFCQQGNTLPYTFGGGTKLEIT






CD19-VLB
VL
EIVMTQSPATLSLSPGERATLSCRASQDISKYLNWYQQ
703




KPGQAPRLLIYHTSRLHSGIPARFSGSGSGTDYTLTISS





LQPEDFAVYFCQQGNTLPYTFGQGTKLEIK






CD19-scFv1
scFv
EIVMTQSPATLSLSPGERATLSCRASQDISKYLNWYQQ
704




KPGQAPRLLIYHTSRLHSGIPARFSGSGSGTDYTLTISS





LQPEDFAVYFCQQGNTLPYTFGQGTKLEIKGGGGSGG





GGSGGGGSQVQLQESGPGLVKPSETLSLTCTVSGVSL





PDYGVSWIRQPPGKGLEWIGVIWGSETTYYSSSLKSR





VTISKDNSKNQVSLKLSSVTAADTAVYYCAKHYYYGGS





YAMDYWGQGTLVTVSS






CD19-scFv2
scFv
EIVMTQSPATLSLSPGERATLSCRASQDISKYLNWYQQ
705




KPGQAPRLLIYHTSRLHSGIPARFSGSGSGTDYTLTISS





LQPEDFAVYFCQQGNTLPYTFGQGTKLEIKGGGGSGG





GGSGGGGSQVQLQESGPGLVKPSETLSLTCTVSGVSL





PDYGVSWIRQPPGKGLEWIGVIWGSETTYYQSSLKSR





VTISKDNSKNQVSLKLSSVTAADTAVYYCAKHYYYGGS





YAMDYWGQGTLVTVSS






CD19-scFv3
scFv
QVQLQESGPGLVKPSETLSLTCTVSGVSLPDYGVSWIR
706




QPPGKGLEWIGVIWGSETTYYSSSLKSRVTISKDNSKN





QVSLKLSSVTAADTAVYYCAKHYYYGGSYAMDYWGQ





GTLVTVSSGGGGSGGGGSGGGGSEIVMTQSPATLSLS





PGERATLSCRASQDISKYLNWYQQKPGQAPRLLIYHTS





RLHSGIPARFSGSGSGTDYTLTISSLQPEDFAVYFCQQ





GNTLPYTFGQGTKLEIK






CD19-scFv4
scFv
QVQLQESGPGLVKPSETLSLTCTVSGVSLPDYGVSWIR
707




QPPGKGLEWIGVIWGSETTYYQSSLKSRVTISKDNSKN





QVSLKLSSVTAADTAVYYCAKHYYYGGSYAMDYWGQ





GTLVTVSSGGGGSGGGGSGGGGSEIVMTQSPATLSLS





PGERATLSCRASQDISKYLNWYQQKPGQAPRLLIYHTS





RLHSGIPARFSGSGSGTDYTLTISSLQPEDFAVYFCQQ





GNTLPYTFGQGTKLEIK






CD19-scFv5
scFv
EIVMTQSPATLSLSPGERATLSCRASQDISKYLNWYQQ
708




KPGQAPRLLIYHTSRLHSGIPARFSGSGSGTDYTLTISS





LQPEDFAVYFCQQGNTLPYTFGQGTKLEIKGGGGSGG





GGSGGGGSGGGGSQVQLQESGPGLVKPSETLSLTCT





VSGVSLPDYGVSWIRQPPGKGLEWIGVIWGSETTYYS





SSLKSRVTISKDNSKNQVSLKLSSVTAADTAVYYCAKH





YYYGGSYAMDYWGQGTLVTVSS






CD19-scFv6
scFv
EIVMTQSPATLSLSPGERATLSCRASQDISKYLNWYQQ
709




KPGQAPRLLIYHTSRLHSGIPARFSGSGSGTDYTLTISS





LQPEDFAVYFCQQGNTLPYTFGQGTKLEIKGGGGSGG





GGSGGGGSGGGGSQVQLQESGPGLVKPSETLSLTCT





VSGVSLPDYGVSWIRQPPGKGLEWIGVIWGSETTYYQ





SSLKSRVTISKDNSKNQVSLKLSSVTAADTAVYYCAKH





YYYGGSYAMDYWGQGTLVTVSS






CD19-scFv7
scFv
QVQLQESGPGLVKPSETLSLTCTVSGVSLPDYGVSWIR
710




QPPGKGLEWIGVIWGSETTYYSSSLKSRVTISKDNSKN





QVSLKLSSVTAADTAVYYCAKHYYYGGSYAMDYWGQ





GTLVTVSSGGGGSGGGGSGGGGSGGGGSEIVMTQS





PATLSLSPGERATLSCRASQDISKYLNWYQQKPGQAP





RLLIYHTSRLHSGIPARFSGSGSGTDYTLTISSLQPEDF





AVYFCQQGNTLPYTFGQGTKLEIK






CD19-scFv8
scFv
QVQLQESGPGLVKPSETLSLTCTVSGVSLPDYGVSWIR
711




QPPGKGLEWIGVIWGSETTYYQSSLKSRVTISKDNSKN





QVSLKLSSVTAADTAVYYCAKHYYYGGSYAMDYWGQ





GTLVTVSSGGGGSGGGGSGGGGSGGGGSEIVMTQS





PATLSLSPGERATLSCRASQDISKYLNWYQQKPGQAP





RLLIYHTSRLHSGIPARFSGSGSGTDYTLTISSLQPEDF





AVYFCQQGNTLPYTFGQGTKLEIK






CD19-scFv9
scFv
EIVMTQSPATLSLSPGERATLSCRASQDISKYLNWYQQ
712




KPGQAPRLLIYHTSRLHSGIPARFSGSGSGTDYTLTISS





LQPEDFAVYFCQQGNTLPYTFGQGTKLEIKGGGGSGG





GGSGGGGSGGGGSQVQLQESGPGLVKPSETLSLTCT





VSGVSLPDYGVSWIRQPPGKGLEWIGVIWGSETTYYN





SSLKSRVTISKDNSKNQVSLKLSSVTAADTAVYYCAKH





YYYGGSYAMDYWGQGTLVTVSS






CD19-
scFv
QVQLQESGPGLVKPSETLSLTCTVSGVSLPDYGVSWIR
713


scFv10

QPPGKGLEWIGVIWGSETTYYNSSLKSRVTISKDNSKN





QVSLKLSSVTAADTAVYYCAKHYYYGGSYAMDYWGQ





GTLVTVSSGGGGSGGGGSGGGGSGGGGSEIVMTQS





PATLSLSPGERATLSCRASQDISKYLNWYQQKPGQAP





RLLIYHTSRLHSGIPARFSGSGSGTDYTLTISSLQPEDF





AVYFCQQGNTLPYTFGQGTKLEIK






CD19-
scFv
EIVMTQSPATLSLSPGERATLSCRASQDISKYLNWYQQ
714


scFv11

KPGQAPRLLIYHTSRLHSGIPARFSGSGSGTDYTLTISS





LQPEDFAVYFCQQGNTLPYTFGQGTKLEIKGGGGSGG





GGSGGGGSQVQLQESGPGLVKPSETLSLTCTVSGVSL





PDYGVSWIRQPPGKGLEWIGVIWGSETTYYNSSLKSR





VTISKDNSKNQVSLKLSSVTAADTAVYYCAKHYYYGGS





YAMDYWGQGTLVTVSS






CD19-
scFv
QVQLQESGPGLVKPSETLSLTCTVSGVSLPDYGVSWIR
715


scFv12

QPPGKGLEWIGVIWGSETTYYNSSLKSRVTISKDNSKN





QVSLKLSSVTAADTAVYYCAKHYYYGGSYAMDYWGQ





GTLVTVSSGGGGSGGGGSGGGGSEIVMTQSPATLSLS





PGERATLSCRASQDISKYLNWYQQKPGQAPRLLIYHTS





RLHSGIPARFSGSGSGTDYTLTISSLQPEDFAVYFCQQ





GNTLPYTFGQGTKLEIK









In certain aspects, the ABM3 comprises heavy chain CDRs having the amino acid sequences of CD19-H1, CD19-H2A, and CD19-H3 as set forth in Table 16 and light chain CDRs having the amino acid sequences of CD19-L1, CD19-L2, and CD19-L3 as set forth in Table 16. In a specific embodiment, the ABM3 comprises a heavy chain variable region having the amino acid sequences of VHA as set forth in Table 16 and a light chain variable region having the amino acid sequences of VLA as set forth in Table 16.


In other aspects, the ABM3 comprises heavy chain CDRs having the amino acid sequences of CD19-H1, CD19-H2B, and CD19-H3 as set forth in Table 16 and light chain CDRs having the amino acid sequences of CD19-L1, CD19-L2, and CD19-L3 as set forth in Table 16. In a specific embodiment, the ABM3 comprises a heavy chain variable region having the amino acid sequences of VHB as set forth in Table 16 and a light chain variable region having the amino acid sequences of VLB as set forth in Table 16.


In further aspects, the ABM3 comprises heavy chain CDRs having the amino acid sequences of CD19-H1, CD19-H2C, and CD19-H3 as set forth in Table 16 and light chain CDRs having the amino acid sequences of CD19-L1, CD19-L2, and CD19-L3 as set forth in Table 16. In a specific embodiment, ABM3 comprises a heavy chain variable region having the amino acid sequences of VHC as set forth in Table 16 and a light chain variable region having the amino acid sequences of VLB as set forth in Table 16.


In further aspects, the ABM3 comprises heavy chain CDRs having the amino acid sequences of CD19-H1, CD19-H2D, and CD19-H3 as set forth in Table 16 and light chain CDRs having the amino acid sequences of CD19-L1, CD19-L2, and CD19-L3 as set forth in Table 16. In a specific embodiment, the ABM3 comprises a heavy chain variable region having the amino acid sequences of VHD as set forth in Table 16 and a light chain variable region having the amino acid sequences of VLB as set forth in Table 16.


In further aspects, the ABM3 is in the form of an scFV. Exemplary anti-CD19 scFvs comprise the amino acid sequence of any one of CD19-scFv1 through CD19-scFv12 as set forth in Table 16.


In yet further aspects, a TBM comprises an ABM3 that specifically binds to CD19, for example, the anti-CD19 antibody NEG258, the anti-CD19 antibody NEG218, or an antigen-binding domain of either of the foregoing antibodies. The CD2 binding molecule of the disclosure can comprise, for example, CDR, VH, VL, or scFV sequences set forth in Tables 17A-17B (collectively “Table 17”), which list the sequences of exemplary CD19 binding sequences from NEG258 (Table 17A) an NEG218 (Table 17B).









TABLE 17A







NEG258-Based Binder Sequences










Chain
Portion
Sequence
SEQ ID NO:





NEG258_VH
CDR-H1
GYTFTTYWIQ
972



(Combined)








CDR-H2
AVYPGDADTRYTQKFQG
973



(Combined)








CDR-H3
DAGLEYYALDY
974



(Combined)








CDR-H1 (Kabat)
TYWIQ
975






CDR-H2 (Kabat)
AVYPGDADTRYTQKFQG
973






CDR-H3 (Kabat)
DAGLEYYALDY
974






CDR-H1 (Chothia)
GYTFTTY
976






CDR-H2 (Chothia)
YPGDAD
977






CDR-H3 (Chothia)
DAGLEYYALDY
974






CDR-H1 (IMGT)
GYTFTTYW
978






CDR-H2 (IMGT)
VYPGDADT
979






CDR-H3 (IMGT)
GRDAGLEYYALDY
980






VH
QVQLVQSGAEVKKPGASVKVSCKASGYTFTTYWIQWVRQ
981




APGQRLEWMGAVYPGDADTRYTQKFQGRVTLTADRSAST





AYMELSSLRSEDTAVYYCGRDAGLEYYALDYWGQGTLVTV





SS






NEG258_VL
CDR-L1
RASQDVGTAVA
982



(Combined)








CDR-L2
WASTRHT
983



(Combined)








CDR-L3
QQYANFPLYT
984



(Combined)








CDR-L1 (Kabat)
RASQDVGTAVA
982






CDR-L2 (Kabat)
WASTRHT
983






CDR-L3 (Kabat)
QQYANFPLYT
984






CDR-L1 (Chothia)
SQDVGTA
985






CDR-L2 (Chothia)
WAS
986






CDR-L3 (Chothia)
YANFPLY
987






CDR-L1 (IMGT)
QDVGTA
988






CDR-L2 (IMGT)
WAS
986






CDR-L3 (IMGT)
QQYANFPLYT
984






VL
EIVMTQSPATLSVSPGERATLSCRASQDVGTAVAWYQQKP
989




GQAPRLLIYWASTRHTGIPARFSGSGSGTEFTLTISSLQSE





DFAVYFCQQYANFPLYTFGQGTKLEIK









In some embodiments, a CD2 binding molecule comprises CDR-L1, CDR-L2, CDR-L3, CDR-H1, CDR-H2 and CDR-H3 sequences of NEG258 as set forth in Table 17A. The CDR-L1, CDR-L2, CDR-L3, CDR-H1, CDR-H2 and CDR-H3 sequences can be as defined by Kabat, Chothia, or IMGT, or the combined Chothia and Kabat CDR-L1, CDR-L2, CDR-L3, CDR-H1, CDR-H2 and CDR-H3 sequences. The CD2 binding molecule can also comprise a light chain variable sequence and/or heavy chain variable sequence of the anti-CD19 antibody NEG258 as set forth in Table 17A.


The sequences set forth in Table 17B are based on the CD19 antibody NEG218.









TABLE 17B







NEG218-Based Sequences










Chain
Portion
Sequence
SEQ ID NO:













NEG218_VH
CDR-H1
GYSFTNYWMN
990



(Combined)








CDR-H2
MIHPSDSEIRLNQKFQG
991



(Combined)








CDR-H3
WYYLSSPMDY
992



(Combined)








CDR-H1 (Kabat)
NYWMN
993






CDR-H2 (Kabat)
MIHPSDSEIRLNQKFQG
991






CDR-H3 (Kabat)
WYYLSSPMDY
992






CDR-H1 (Chothia)
GYSFTNY
994






CDR-H2 (Chothia)
HPSDSE
995






CDR-H3 (Chothia)
WYYLSSPMDY
992






CDR-H1 (IMGT)
GYSFTNYW
996






CDR-H2 (IMGT)
IHPSDSEI
997






CDR-H3 (IMGT)
SRWYYLSSPMDY
998






VH
EVQLVQSGAEVKKPGESLKISCKASGYSFTNYWMNWVRQ
999




MPGKGLEWMGMIHPSDSEIRLNQKFQGQVTLSVDKSIGTA





YMQWSSLKASDTAMYYCSRWYYLSSPMDYWGQGTTVTV





SS






NEG218_VL
CDR-L1
RASQDVGTAVA
982



(Combined)








CDR-L2
WASTRHT
983



(Combined)








CDR-L3
QQYSSYPYT
1000



(Combined)








CDR-L1 (Kabat)
RASQDVGTAVA
982






CDR-L2 (Kabat)
WASTRHT
983






CDR-L3 (Kabat)
QQYSSYPYT
1000






CDR-L1 (Chothia)
SQDVGTA
985






CDR-L2 (Chothia)
WAS
986






CDR-L3 (Chothia)
YSSYPY
1001






CDR-L1 (IMGT)
QDVGTA
988






CDR-L2 (IMGT)
WAS
986






CDR-L3 (IMGT)
QQYSSYPYT
1000






VL
EIVMTQSPATLSVSPGERATLSCRASQDVGTAVAWYQQKP
1002




GQAPRLLIYWASTRHTGIPARFSGSGSGTEFTLTISSLQSE





DFAVYFCQQYSSYPYTFGQGTKLEIK









In some embodiments, a CD2 binding molecule comprises CDR-L1, CDR-L2, CDR-L3, CDR-H1, CDR-H2 and CDR-H3 sequences of NEG218 as set forth in Table 17A. The CDR-L1, CDR-L2, CDR-L3, CDR-H1, CDR-H2 and CDR-H3 sequences can be as defined by Kabat, Chothia, or IMGT, or the combined Chothia and Kabat CDR-L1, CDR-L2, CDR-L3, CDR-H1, CDR-H2 and CDR-H3 sequences. The CD2 binding molecule can also comprise a light chain variable sequence and/or heavy chain variable sequence of the anti-CD19 antibody NEG218 as set forth in Table 17B.


7.11. Nucleic Acids and Host Cells

In another aspect, the disclosure provides nucleic acids (i.e., polynucleotides) encoding the CD2 binding molecules of the disclosure. In some embodiments, the CD2 binding molecules are encoded by a single nucleic acid. In other embodiments, the CD2 binding molecules are encoded by a plurality of (e.g., two, three, four or more) nucleic acids.


A single nucleic acid can encode a CD2 binding molecule that comprises a single polypeptide chain, a CD2 binding molecule that comprises two or more polypeptide chains, or a portion of a CD2 binding molecule that comprises more than two polypeptide chains (for example, a single nucleic acid can encode two polypeptide chains of a CD2 binding molecule comprising three, four or more polypeptide chains, or three polypeptide chains of a CD2 binding molecule comprising four or more polypeptide chains). For separate control of expression, the open reading frames encoding two or more polypeptide chains can be under the control of separate transcriptional regulatory elements (e.g., promoters and/or enhancers). The open reading frames encoding two or more polypeptides can also be controlled by the same transcriptional regulatory elements, and separated by internal ribosome entry site (IRES) sequences allowing for translation into separate polypeptides.


In some embodiments, a CD2 binding molecule comprising two or more polypeptide chains is encoded by two or more nucleic acids. The number of nucleic acids encoding a CD2 binding molecule can be equal to or less than the number of polypeptide chains in the CD2 binding molecule (for example, when more than one polypeptide chains are encoded by a single nucleic acid).


The nucleic acids can be DNA or RNA (e.g., mRNA).


In another aspect, the disclosure provides host cells and vectors containing the nucleic acids of the disclosure. The nucleic acids can be present in a single vector or separate vectors present in the same host cell or separate host cell, as described in more detail herein below.


7.11.1. Vectors


The disclosure provides vectors comprising nucleotide sequences encoding a CD2 binding molecule or a CD2 binding molecule component described herein. In one embodiment, the vectors comprise nucleotides encoding an immunoglobulin-based ABM described herein. In one embodiment, the vectors comprise nucleotides encoding an Fc domain described herein. In one embodiment, the vectors comprise nucleotides encoding a recombinant non-immunoglobulin based ABM described herein. A vector can encode one or more ABMs, one or more Fc domains, one or more non-immunoglobulin based ABM, or any combination thereof (e.g., when multiple components or sub-components are encoded as a single polypeptide chain). In one embodiment, the vectors comprise the nucleotide sequences described herein. The vectors include, but are not limited to, a virus, plasmid, cosmid, lambda phage or a yeast artificial chromosome (YAC).


Numerous vector systems can be employed. For example, one class of vectors utilizes DNA elements which are derived from animal viruses such as, for example, bovine papilloma virus, polyoma virus, adenovirus, vaccinia virus, baculovirus, retroviruses (Rous Sarcoma Virus, MMTV or MOMLV) or SV40 virus. Another class of vectors utilizes RNA elements derived from RNA viruses such as Semliki Forest virus, Eastern Equine Encephalitis virus and Flaviviruses.


Additionally, cells which have stably integrated the DNA into their chromosomes can be selected by introducing one or more markers which allow for the selection of transfected host cells. The marker can provide, for example, prototropy to an auxotrophic host, biocide resistance (e.g., antibiotics), or resistance to heavy metals such as copper, or the like. The selectable marker gene can be either directly linked to the DNA sequences to be expressed, or introduced into the same cell by cotransformation. Additional elements may also be needed for optimal synthesis of mRNA. These elements can include splice signals, as well as transcriptional promoters, enhancers, and termination signals.


Once the expression vector or DNA sequence containing the constructs has been prepared for expression, the expression vectors can be transfected or introduced into an appropriate host cell. Various techniques can be employed to achieve this, such as, for example, protoplast fusion, calcium phosphate precipitation, electroporation, retroviral transduction, viral transfection, gene gun, lipid based transfection or other conventional techniques. Methods and conditions for culturing the resulting transfected cells and for recovering the expressed polypeptides are known to those skilled in the art, and can be varied or optimized depending upon the specific expression vector and mammalian host cell employed, based upon the present description.


7.11.2. Cells


The disclosure also provides host cells comprising a nucleic acid of the disclosure.


In one embodiment, the host cells are genetically engineered to comprise one or more nucleic acids described herein.


In one embodiment, the host cells are genetically engineered by using an expression cassette. The phrase “expression cassette,” refers to nucleotide sequences, which are capable of affecting expression of a gene in hosts compatible with such sequences. Such cassettes can include a promoter, an open reading frame with or without introns, and a termination signal. Additional factors necessary or helpful in effecting expression can also be used, such as, for example, an inducible promoter.


The disclosure also provides host cells comprising the vectors described herein.


The cell can be, but is not limited to, a eukaryotic cell, a bacterial cell, an insect cell, or a human cell. Suitable eukaryotic cells include, but are not limited to, Vero cells, HeLa cells, COS cells, CHO cells, HEK293 cells, BHK cells and MDCKII cells. Suitable insect cells include, but are not limited to, Sf9 cells.


7.12. CD2 Binding Molecules with Extended In Vivo Half-Life

The CD2 binding molecules of the disclosure can be modified to have an extended half-life in vivo.


A variety of strategies can be used to extend the half life of CD2 binding molecules of the disclosure. For example, by chemical linkage to polyethyleneglycol (PEG), reCODE PEG, antibody scaffold, polysialic acid (PSA), hydroxyethyl starch (HES), albumin-binding ligands, and carbohydrate shields; by genetic fusion to proteins binding to serum proteins, such as albumin, IgG, FcRn, and transferring; by coupling (genetically or chemically) to other binding moieties that bind to serum proteins, such as nanobodies, Fabs, DARPins, avimers, affibodies, and anticalins; by genetic fusion to rPEG, albumin, domain of albumin, albumin-binding proteins, and Fc; or by incorporation into nanocarriers, slow release formulations, or medical devices.


To prolong the serum circulation of CD2 binding molecules in vivo, inert polymer molecules such as high molecular weight PEG can be attached to the CD2 binding molecules with or without a multifunctional linker either through site-specific conjugation of the PEG to the N- or C-terminus of a polypeptide comprising the CD2 binding molecule or via epsilon-amino groups present on lysine residues. To pegylate a CD2 binding molecule, the molecule can be reacted with polyethylene glycol (PEG), such as a reactive ester or aldehyde derivative of PEG, under conditions in which one or more PEG groups become attached to the CD2 binding molecules. The pegylation can be carried out by an acylation reaction or an alkylation reaction with a reactive PEG molecule (or an analogous reactive water-soluble polymer). As used herein, the term “polyethylene glycol” is intended to encompass any one of the forms of PEG that have been used to derivatize other proteins, such as mono (C1-C10)alkoxy- or aryloxy-polyethylene glycol or polyethylene glycol-maleimide. In one embodiment, the CD2 binding molecule to be pegylated is an aglycosylated antibody. Linear or branched polymer derivatization that results in minimal loss of biological activity will be used. The degree of conjugation can be closely monitored by SDS-PAGE and mass spectrometry to ensure proper conjugation of PEG molecules to the antibodies. Unreacted PEG can be separated from antibody-PEG conjugates by size-exclusion or by ion-exchange chromatography. PEG-derivatized antibodies can be tested for binding activity as well as for in vivo efficacy using methods well-known to those of skill in the art, for example, by immunoassays described herein. Methods for pegylating proteins are known and can be applied to CD2 binding molecules of the disclosure. See for example, EP 0154316 by Nishimura et al. and EP 0401384 by Ishikawa et al.


Other modified pegylation technologies include reconstituting chemically orthogonal directed engineering technology (ReCODE PEG), which incorporates chemically specified side chains into biosynthetic proteins via a reconstituted system that includes tRNA synthetase and tRNA. This technology enables incorporation of more than 30 new amino acids into biosynthetic proteins in E. coli, yeast, and mammalian cells. The tRNA incorporates a normative amino acid any place an amber codon is positioned, converting the amber from a stop codon to one that signals incorporation of the chemically specified amino acid.


Recombinant pegylation technology (rPEG) can also be used for serum half life extension. This technology involves genetically fusing a 300-600 amino acid unstructured protein tail to an existing pharmaceutical protein. Because the apparent molecular weight of such an unstructured protein chain is about 15-fold larger than its actual molecular weight, the serum half life of the protein is greatly increased. In contrast to traditional PEGylation, which requires chemical conjugation and repurification, the manufacturing process is greatly simplified and the product is homogeneous.


Polysialytion is another technology, which uses the natural polymer polysialic acid (PSA) to prolong the active life and improve the stability of therapeutic peptides and proteins. PSA is a polymer of sialic acid (a sugar). When used for protein and therapeutic peptide drug delivery, polysialic acid provides a protective microenvironment on conjugation. This increases the active life of the therapeutic protein in the circulation and prevents it from being recognized by the immune system. The PSA polymer is naturally found in the human body. It was adopted by certain bacteria which evolved over millions of years to coat their walls with it. These naturally polysialylated bacteria were then able, by virtue of molecular mimicry, to foil the body's defense system. PSA, nature's ultimate stealth technology, can be easily produced from such bacteria in large quantities and with predetermined physical characteristics. Bacterial PSA is completely non-immunogenic, even when coupled to proteins, as it is chemically identical to PSA in the human body.


Another technology include the use of hydroxyethyl starch (“HES”) derivatives linked to CD2 binding molecules. HES is a modified natural polymer derived from waxy maize starch and can be metabolized by the body's enzymes. HES solutions are usually administered to substitute deficient blood volume and to improve the rheological properties of the blood. Hesylation of a CD2 binding molecule enables the prolongation of the circulation half-life by increasing the stability of the molecule, as well as by reducing renal clearance, resulting in an increased biological activity. By varying different parameters, such as the molecular weight of HES, a wide range of HES CD2 binding molecule conjugates can be customized.


CD2 binding molecules having an increased half-life in vivo can also be generated introducing one or more amino acid modifications (i.e., substitutions, insertions or deletions) into an IgG constant domain, or FcRn binding fragment thereof (e.g., an Fc or hinge Fc domain fragment). See, e.g., International Publication No. WO 98/23289; International Publication No. WO 97/34631; and U.S. Pat. No. 6,277,375.


Furthermore, the CD2 binding molecules can be conjugated to albumin, a domain of albumin, an albumin-binding protein, or an albumin-binding antibody or antibody fragments thereof, in order to make the molecules more stable in vivo or have a longer half life in vivo. The techniques are well-known, see, e.g., International Publication Nos. WO 93/15199, WO 93/15200, and WO 01/77137; and European Patent No. EP 413,622.


The CD2 binding molecules of the present disclosure can also be fused to one or more human serum albumin (HSA) polypeptides, or a portion thereof. The use of albumin as a component of an albumin fusion protein as a carrier for various proteins has been suggested in WO 93/15199, WO 93/15200, and EP 413 622. The use of N-terminal fragments of HSA for fusions to polypeptides has also been proposed (EP 399 666). Accordingly, by genetically or chemically fusing or conjugating the molecules to albumin, can stabilize or extend the shelf-life, and/or to retain the molecule's activity for extended periods of time in solution, in vitro and/or in vivo. Additional methods pertaining to HSA fusions can be found, for example, in WO 2001077137 and WO 200306007. In an embodiment, the expression of the fusion protein is performed in mammalian cell lines, for example, CHO cell lines.


The CD2 binding molecules of the present disclosure can also be fused to an antibody or antibody fragment thereof that binds to albumin, e.g., human serum albumin (HSA). The albumin-binding antibody or antibody fragment thereof can be a Fab, a scFv, a Fv, an scFab, a (Fab′)2, a single domain antibody, a camelid VHH domain, a VH or VL domain, or a full-length monoclonal antibody (mAb).


The CD2 binding molecules of the present disclosure can also be fused to a fatty acid to extend their half-life. Fatty acids suitable for linking to a biomolecule have been described in the art, e.g., WO2015/200078, WO2015/191781, US2013/0040884. Suitable half-life extending fatty acids include those defined as a C6-70alkyl, a C6-70alkenyl or a C6-70alkynyl chain, each of which is substituted with at least one carboxylic acid (for example 1, 2, 3 or 4 CO2H) and optionally further substituted with hydroxyl group. For example, the CD2 binding molecules described herein can be linked to a fatty acid having any of the following Formulae A1, A2 or A3:




embedded image


R1 is CO2H or H;


R2, R3 and R4 are independently of each other H, OH, CO2H, —CH═CH2 or —C≡CH;


Ak is a branched C6-C30 alkylene;


n, m and p are independently of each other an integer between 6 and 30; or an amide, ester or pharmaceutically acceptable salt thereof.


In some embodiments, the fatty acid is of Formula A1, e.g., a fatty acid of Formula A1 where n and m are independently 8 to 20, e.g., 10 to 16. In another embodiment, the fatty acid moiety is of Formula A1 and where at least one of R2 and R3 is CO2H.


In some embodiments, the fatty acid is selected from the following Formulae:




embedded image


where Ak3, Ak4, Ak5, Ak6 and Ak7 are independently a (C8-20)alkylene, R5 and R6 are independently (C8-20)alkyl.


In some embodiments, the fatty acid is selected from the following Formulae:




embedded image


embedded image


In some embodiments, the fatty acid is selected from the following Formulae:




embedded image


In some embodiments, the fatty acid is of Formula A2 or A3. In a particular embodiment, the conjugate comprises a fatty acid moiety of Formula A2 where p is 8 to 20, or a fatty acid moiety of Formula A3 where Ak is C8-20alkylene.


7.13. Antibody-Drug Conjugates

The CD2 binding molecules of the disclosure can be conjugated, e.g., via a linker, to a drug moiety. Such conjugates are referred to herein as antibody-drug conjugates (or “ADCs”) for convenience, notwithstanding the fact that one or more of the ABMs might be based on non-immunoglobulin scaffolds, e.g., a MBM comprising one or more non-immunoglobulin based ABMs, such as a TCR ABM comprising Affilin-144160).


In certain aspects, the drug moiety exerts a cytotoxic or cytostatic activity. In one embodiment, the drug moiety is chosen from a maytansinoid, a kinesin-like protein KIF11 inhibitor, a V-ATPase (vacuolar-type H+-ATPase) inhibitor, a pro-apoptotic agent, a Bcl2 (B-cell lymphoma 2) inhibitor, an MCL1 (myeloid cell leukemia 1) inhibitor, a HSP90 (heat shock protein 90) inhibitor, an IAP (inhibitor of apoptosis) inhibitor, an mTOR (mechanistic target of rapamycin) inhibitor, a microtubule stabilizer, a microtubule destabilizer, an auristatin, a dolastatin, a MetAP (methionine aminopeptidase), a CRM1 (chromosomal maintenance 1) inhibitor, a DPPIV (dipeptidyl peptidase IV) inhibitor, a proteasome inhibitor, an inhibitor of a phosphoryl transfer reaction in mitochondria, a protein synthesis inhibitor, a kinase inhibitor, a CDK2 (cyclin-dependent kinase 2) inhibitor, a CDK9 (cyclin-dependent kinase 9) inhibitor, a kinesin inhibitor, an HDAC (histone deacetylase) inhibitor, a DNA damaging agent, a DNA alkylating agent, a DNA intercalator, a DNA minor groove binder, a RNA polymerase inhibitor, a topoisomerase inhibitor, or a DHFR (dihydrofolate reductase) inhibitor. In some embodiments, the drug moiety is a radioactive metal ion, such as alpha-emitters such as 213Bi or macrocyclic chelators useful for conjugating radiometal ions, including but not limited to, 131In, 131LU, 131Y, 131Ho, 131Sm, to polypeptides. In one embodiment, the macrocyclic chelator is 1,4,7,10-tetraazacyclododecane-N,N′,N″,N′″-tetraacetic acid (DOTA).


In one embodiment, the linker is chosen from a cleavable linker, a non-cleavable linker, a hydrophilic linker, a procharged linker, or a dicarboxylic acid based linker.


In some embodiments, the ADCs are compounds according to structural formula (I):





[D-L-XY]n-Ab


or salts thereof, where each “D” represents, independently of the others, a cytotoxic and/or cytostatic agent (“drug”); each “L” represents, independently of the others, a linker; “Ab” represents a CD2 binding molecule described herein; each “XY” represents a linkage formed between a functional group Rx on the linker and a “complementary” functional group Ry on the antibody, and n represents the number of drugs linked to, or drug-to-antibody ratio (DAR), of the ADC.


Some embodiments of the various antibodies (Ab) that can comprise the ADCs include the various embodiments of CD2 binding molecules described above.


In some embodiments of the ADCs and/or salts of structural formula (I), each D is the same and/or each L is the same.


Some embodiments of cytotoxic and/or cytostatic agents (D) and linkers (L) that can comprise the ADCs of the disclosure, as well as the number of cytotoxic and/or cytostatic agents linked to the ADCs, are described in more detail below.


7.13.1. Cytotoxic and/or Cytostatic Agents


The cytotoxic and/or cytostatic agents can be any agents known to inhibit the growth and/or replication of and/or kill cells, and in particular cancer and/or tumor cells. Numerous agents having cytotoxic and/or cytostatic properties are known in the literature. Non-limiting examples of classes of cytotoxic and/or cytostatic agents include, by way of example and not limitation, radionuclides, alkylating agents, topoisomerase I inhibitors, topoisomerase II inhibitors, DNA intercalating agents (e.g., groove binding agents such as minor groove binders), RNA/DNA antimetabolites, cell cycle modulators, kinase inhibitors, protein synthesis inhibitors, histone deacetylase inhibitors, mitochondria inhibitors, and antimitotic agents.


Specific non-limiting examples of agents within certain of these various classes are provided below.


Alkylating Agents: asaley ((L-Leucine, N—[N-acetyl-4-[bis-(2-chloroethyl)amino]-DL-phenylalanyl]-, ethylester; NSC 167780; CAS Registry No. 3577897)); AZQ ((1,4-cyclohexadiene-1,4-dicarbamic acid, 2,5-bis(1-aziridinyl)-3,6-dioxo-, diethyl ester; NSC 182986; CAS Registry No. 57998682)); BCNU ((N,N′-Bis(2-chloroethyl)-N-nitrosourea; NSC 409962; CAS Registry No. 154938)); busulfan (1,4-butanediol dimethanesulfonate; NSC 750; CAS Registry No. 55981); (carboxyphthalato)platinum (NSC 27164; CAS Registry No. 65296813); CBDCA ((cis-(1,1-cyclobutanedicarboxylato)diammineplatinum(II)); NSC 241240; CAS Registry No. 41575944)); CCNU ((N-(2-chloroethyl)-N′-cyclohexyl-N-nitrosourea; NSC 79037; CAS Registry No. 13010474)); CHIP (iproplatin; NSC 256927); chlorambucil (NSC 3088; CAS Registry No. 305033); chlorozotocin ((2-[[[(2-chloroethyl) nitrosoamino]carbonyl]amino]-2-deoxy-D-glucopyranose; NSC 178248; CAS Registry No. 54749905)); cis-platinum (cisplatin; NSC 119875; CAS Registry No. 15663271); clomesone (NSC 338947; CAS Registry No. 88343720); cyanomorpholinodoxorubicin (NCS 357704; CAS Registry No. 88254073); cyclodisone (NSC 348948; CAS Registry No. 99591738); dianhydrogalactitol (5,6-diepoxydulcitol; NSC 132313; CAS Registry No. 23261203); fluorodopan ((5-[(2-chloroethyl)-(2-fluoroethyl)amino]-6-methyl-uracil; NSC 73754; CAS Registry No. 834913); hepsulfam (NSC 329680; CAS Registry No. 96892578); hycanthone (NSC 142982; CAS Registry No. 23255938); melphalan (NSC 8806; CAS Registry No. 3223072); methyl CCNU ((1-(2-chloroethyl)-3-(trans-4-methylcyclohexane)-1-nitrosourea; NSC 95441; 13909096); mitomycin C (NSC 26980; CAS Registry No. 50077); mitozolamide (NSC 353451; CAS Registry No. 85622953); nitrogen mustard ((bis(2-chloroethyl)methylamine hydrochloride; NSC 762; CAS Registry No. 55867); PCNU ((1-(2-chloroethyl)-3-(2,6-dioxo-3-piperidyl)-1-nitrosourea; NSC 95466; CAS Registry No. 13909029)); piperazine alkylator ((1-(2-chloroethyl)-4-(3-chloropropyl)-piperazine dihydrochloride; NSC 344007)); piperazinedione (NSC 135758; CAS Registry No. 41109802); pipobroman ((N,N-bis(3-bromopropionyl) piperazine; NSC 25154; CAS Registry No. 54911)); porfiromycin (N-methylmitomycin C; NSC 56410; CAS Registry No. 801525); spirohydantoin mustard (NSC 172112; CAS Registry No. 56605164); teroxirone (triglycidylisocyanurate; NSC 296934; CAS Registry No. 2451629); tetraplatin (NSC 363812; CAS Registry No. 62816982); thio-tepa (N,N′,N″-tri-1,2-ethanediylthio phosphoramide; NSC 6396; CAS Registry No. 52244); triethylenemelamine (NSC 9706; CAS Registry No. 51183); uracil nitrogen mustard (desmethyldopan; NSC 34462; CAS Registry No. 66751); Yoshi-864 ((bis(3-mesyloxy propyl)amine hydrochloride; NSC 102627; CAS Registry No. 3458228).


Topoisomerase I Inhibitors: camptothecin (NSC 94600; CAS Registry No. 7689-03-4); various camptothecin derivatives and analogs (for example, NSC 100880, NSC 603071, NSC 107124, NSC 643833, NSC 629971, NSC 295500, NSC 249910, NSC 606985, NSC 74028, NSC 176323, NSC 295501, NSC 606172, NSC 606173, NSC 610458, NSC 618939, NSC 610457, NSC 610459, NSC 606499, NSC 610456, NSC 364830, and NSC 606497); morpholinisoxorubicin (NSC 354646; CAS Registry No. 89196043); SN-38 (NSC 673596; CAS Registry No. 86639-52-3).


Topoisomerase II Inhibitors: doxorubicin (NSC 123127; CAS Registry No. 25316409); amonafide (benzisoquinolinedione; NSC 308847; CAS Registry No. 69408817); m-AMSA ((4′-(9-acridinylamino)-3′-methoxymethanesulfonanilide; NSC 249992; CAS Registry No. 51264143)); anthrapyrazole derivative ((NSC 355644); etoposide (VP-16; NSC 141540; CAS Registry No. 33419420); pyrazoloacridine ((pyrazolo[3,4,5-kl]acridine-2(6H)-propanamine, 9-methoxy-N, N-dimethyl-5-nitro-, monomethanesulfonate; NSC 366140; CAS Registry No. 99009219); bisantrene hydrochloride (NSC 337766; CAS Registry No. 71439684); daunorubicin (NSC 821151; CAS Registry No. 23541506); deoxydoxorubicin (NSC 267469; CAS Registry No. 63950061); mitoxantrone (NSC 301739; CAS Registry No. 70476823); menogaril (NSC 269148; CAS Registry No. 71628961); N,N-dibenzyl daunomycin (NSC 268242; CAS Registry No. 70878512); oxanthrazole (NSC 349174; CAS Registry No. 105118125); rubidazone (NSC 164011; CAS Registry No. 36508711); teniposide (VM-26; NSC 122819; CAS Registry No. 29767202).


DNA Intercalating Agents: anthramycin (CAS Registry No. 4803274); chicamycin A (CAS Registry No. 89675376); tomaymycin (CAS Registry No. 35050556); DC-81 (CAS Registry No. 81307246); sibiromycin (CAS Registry No. 12684332); pyrrolobenzodiazepine derivative (CAS Registry No. 945490095); SGD-1882 ((S)-2-(4-ami nophenyl)-7-methoxy-8-(3-4(S)-7-methoxy-2-(4-methoxyphenyl)-5-oxo-5,11a-dihydro-1H-benzo[e]pyrrolo[1,2-a][1,4]diazepin-8-yl)oxy)propox-y)-1H-benzo[e]pyrrolo[1,2-a][1,4]diazepin-5(11aH)-one); SG2000 (SJG-136; (11aS,11a′S)-8,8′-(propane-1,3-diylbis(oxy))bis(7-methoxy-2-methylene-2,3-dihydro-1H-benzo[e]pyrrolo[1,2-a][1,4]diazepin-5(11aH)-one); NSC 694501; CAS Registry No. 232931576).


RNA/DNA Antimetabolites: L-alanosine (NSC 153353; CAS Registry No. 59163416); 5-azacytidine (NSC 102816; CAS Registry No. 320672); 5-fluorouracil (NSC 19893; CAS Registry No. 51218); acivicin (NSC 163501; CAS Registry No. 42228922); aminopterin derivative N-[2-chloro-5-[[(2,4-diamino-5-methyl-6-quinazolinyl)methyl]amino]benzoyl-]L-aspartic acid (NSC 132483); aminopterin derivative N-[4-[[(2,4-diamino-5-ethyl-6-quinazolinyl)methyl]amino]benzoyl]L-asparti-c acid (NSC 184692); aminopterin derivative N-[2-chloro-4-[[(2,4-diamino-6-pteridinyl)methyl]amino]benzoyl]L-aspartic acid monohydrate (NSC 134033); an antifo ((Nα-(4-amino-4-deoxypteroyl)-N7-hemiphthaloyl-L-ornithin-e; NSC 623017)); Baker's soluble antifol (NSC 139105; CAS Registry No. 41191042); dichlorallyl lawsone ((2-(3,3-dichloroallyl)-3-hydroxy-1,4-naphthoquinone; NSC 126771; CAS Registry No. 36417160); brequinar (NSC 368390; CAS Registry No. 96201886); ftorafur ((pro-drug; 5-fluoro-1-(tetrahydro-2-furyl)-uracil; NSC 148958; CAS Registry No. 37076689); 5,6-dihydro-5-azacytidine (NSC 264880; CAS Registry No. 62402317); methotrexate (NSC 740; CAS Registry No. 59052); methotrexate derivative (N-[[4-[[(2,4-diamino-6-pteridinyl)methyl]methylamino]-1-naphthalenyl]car-bonyl]L-glutamic acid; NSC 174121); PALA ((N-(phosphonoacetyl)-L-aspartate; NSC 224131; CAS Registry No. 603425565); pyrazofurin (NSC 143095; CAS Registry No. 30868305); trimetrexate (NSC 352122; CAS Registry No. 82952645).


DNA Antimetabolites: 3-HP (NSC 95678; CAS Registry No. 3814797); 2′-deoxy-5-fluorouridine (NSC 27640; CAS Registry No. 50919); 5-HP (NSC 107392; CAS Registry No. 19494894); α-TGDR (α-2′-deoxy-6-thioguanosine; NSC 71851 CAS Registry No. 2133815); aphidicolin glycinate (NSC 303812; CAS Registry No. 92802822); ara C (cytosine arabinoside; NSC 63878; CAS Registry No. 69749); 5-aza-2′-deoxycytidine (NSC 127716; CAS Registry No. 2353335); β-TGDR (β-2′-deoxy-6-thioguanosine; NSC 71261; CAS Registry No. 789617); cyclocytidine (NSC 145668; CAS Registry No. 10212256); guanazole (NSC 1895; CAS Registry No. 1455772); hydroxyurea (NSC 32065; CAS Registry No. 127071); inosine glycodialdehyde (NSC 118994; CAS Registry No. 23590990); macbecin II (NSC 330500; CAS Registry No. 73341738); pyrazoloimidazole (NSC 51143; CAS Registry No. 6714290); thioguanine (NSC 752; CAS Registry No. 154427); thiopurine (NSC 755; CAS Registry No. 50442).


Cell Cycle Modulators: silibinin (CAS Registry No. 22888-70-6); epigallocatechin gallate (EGCG; CAS Registry No. 989515); procyanidin derivatives (e.g., procyanidin A1 [CAS Registry No. 103883030], procyanidin B1 [CAS Registry No. 20315257], procyanidin B4 [CAS Registry No. 29106512], arecatannin B1 [CAS Registry No. 79763283]); isoflavones (e.g., genistein [4′,5,7-trihydroxyisoflavone; CAS Registry No. 446720], daidzein [4′,7-dihydroxyisoflavone, CAS Registry No. 486668]; indole-3-carbinol (CAS Registry No. 700061); quercetin (NSC 9219; CAS Registry No. 117395); estramustine (NSC 89201; CAS Registry No. 2998574); nocodazole (CAS Registry No. 31430189); podophyllotoxin (CAS Registry No. 518285); vinorelbine tartrate (NSC 608210; CAS Registry No. 125317397); cryptophycin (NSC 667642; CAS Registry No. 124689652).


Kinase Inhibitors: afatinib (CAS Registry No. 850140726); axitinib (CAS Registry No. 319460850); ARRY-438162 (binimetinib) (CAS Registry No. 606143899); bosutinib (CAS Registry No. 380843754); cabozantinib (CAS Registry No. 1140909483); ceritinib (CAS Registry No. 1032900256); crizotinib (CAS Registry No. 877399525); dabrafenib (CAS Registry No. 1195765457); dasatinib (NSC 732517; CAS Registry No. 302962498); erlotinib (NSC 718781; CAS Registry No. 183319699); everolimus (NSC 733504; CAS Registry No. 159351696); fostamatinib (NSC 745942; CAS Registry No. 901119355); gefitinib (NSC 715055; CAS Registry No. 184475352); ibrutinib (CAS Registry No. 936563961); imatinib (NSC 716051; CAS Registry No. 220127571); lapatinib (CAS Registry No. 388082788); lenvatinib (CAS Registry No. 857890392); mubritinib (CAS 366017096); nilotinib (CAS Registry No. 923288953); nintedanib (CAS Registry No. 656247175); palbociclib (CAS Registry No. 571190302); pazopanib (NSC 737754; CAS Registry No. 635702646); pegaptanib (CAS Registry No. 222716861); ponatinib (CAS Registry No. 1114544318); rapamycin (NSC 226080; CAS Registry No. 53123889); regorafenib (CAS Registry No. 755037037); AP 23573 (ridaforolimus) (CAS Registry No. 572924540); INCB018424 (ruxolitinib) (CAS Registry No. 1092939177); ARRY-142886 (selumetinib) (NSC 741078; CAS Registry No. 606143-52-6); sirolimus (NSC 226080; CAS Registry No. 53123889); sorafenib (NSC 724772; CAS Registry No. 475207591); sunitinib (NSC 736511; CAS Registry No. 341031547); tofacitinib (CAS Registry No. 477600752); temsirolimus (NSC 683864; CAS Registry No. 163635043); trametinib (CAS Registry No. 871700173); vandetanib (CAS Registry No. 443913733); vemurafenib (CAS Registry No. 918504651); SU6656 (CAS Registry No. 330161870); CEP-701 (lesaurtinib) (CAS Registry No. 111358884); XL019 (CAS Registry No. 945755566); PD-325901 (CAS Registry No. 391210109); PD-98059 (CAS Registry No. 167869218); ATP-competitive TORC1/TORC2 inhibitors including PI-103 (CAS Registry No. 371935749), PP242 (CAS Registry No. 1092351671), PP30 (CAS Registry No. 1092788094), Torin 1 (CAS Registry No. 1222998368), LY294002 (CAS Registry No. 154447366), XL-147 (CAS Registry No. 934526893), CAL-120 (CAS Registry No. 870281348), ETP-45658 (CAS Registry No. 1198357797), PX 866 (CAS Registry No. 502632668), GDC-0941 (CAS Registry No. 957054307), BGT226 (CAS Registry No. 1245537681), BEZ235 (CAS Registry No. 915019657), XL-765 (CAS Registry No. 934493762).


Protein Synthesis Inhibitors: acriflavine (CAS Registry No. 65589700); amikacin (NSC 177001; CAS Registry No. 39831555); arbekacin (CAS Registry No. 51025855); astromicin (CAS Registry No. 55779061); azithromycin (NSC 643732; CAS Registry No. 83905015); bekanamycin (CAS Registry No. 4696768); chlortetracycline (NSC 13252; CAS Registry No. 64722); clarithromycin (NSC 643733; CAS Registry No. 81103119); clindamycin (CAS Registry No. 18323449); clomocycline (CAS Registry No. 1181540); cycloheximide (CAS Registry No. 66819); dactinomycin (NSC 3053; CAS Registry No. 50760); dalfopristin (CAS Registry No. 112362502); demeclocycline (CAS Registry No. 127333); dibekacin (CAS Registry No. 34493986); dihydrostreptomycin (CAS Registry No. 128461); dirithromycin (CAS Registry No. 62013041); doxycycline (CAS Registry No. 17086281); emetine (NSC 33669; CAS Registry No. 483181); erythromycin (NSC 55929; CAS Registry No. 114078); flurithromycin (CAS Registry No. 83664208); framycetin (neomycin B; CAS Registry No. 119040); gentamycin (NSC 82261; CAS Registry No. 1403663); glycylcyclines, such as tigecycline (CAS Registry No. 220620097); hygromycin B (CAS Registry No. 31282049); isepamicin (CAS Registry No. 67814760); josamycin (NSC 122223; CAS Registry No. 16846245); kanamycin (CAS Registry No. 8063078); ketolides such as telithromycin (CAS Registry No. 191114484), cethromycin (CAS Registry No. 205110481), and solithromycin (CAS Registry No. 760981837); lincomycin (CAS Registry No. 154212); lymecycline (CAS Registry No. 992212); meclocycline (NSC 78502; CAS Registry No. 2013583); metacycline (rondomycin; NSC 356463; CAS Registry No. 914001); midecamycin (CAS Registry No. 35457808); minocycline (NSC 141993; CAS Registry No. 10118908); miocamycin (CAS Registry No. 55881077); neomycin (CAS Registry No. 119040); netilmicin (CAS Registry No. 56391561); oleandomycin (CAS Registry No. 3922905); oxazolidinones, such as eperezolid (CAS Registry No. 165800044), linezolid (CAS Registry No. 165800033), posizolid (CAS Registry No. 252260029), radezolid (CAS Registry No. 869884786), ranbezolid (CAS Registry No. 392659380), sutezolid (CAS Registry No. 168828588), tedizolid (CAS Registry No. 856867555); oxytetracycline (NSC 9169; CAS Registry No. 2058460); paromomycin (CAS Registry No. 7542372); penimepicycline (CAS Registry No. 4599604); peptidyl transferase inhibitors, e.g., chloramphenicol (NSC 3069; CAS Registry No. 56757) and derivatives such as azidamfenicol (CAS Registry No. 13838089), florfenicol (CAS Registry No. 73231342), and thiamphenicol (CAS Registry No. 15318453), and pleuromutilins such as retapamulin (CAS Registry No. 224452668), tiamulin (CAS Registry No. 55297955), valnemulin (CAS Registry No. 101312929); pirlimycin (CAS Registry No. 79548735); puromycin (NSC 3055; CAS Registry No. 53792); quinupristin (CAS Registry No. 120138503); ribostamycin (CAS Registry No. 53797356); rokitamycin (CAS Registry No. 74014510); rolitetracycline (CAS Registry No. 751973); roxithromycin (CAS Registry No. 80214831); sisomicin (CAS Registry No. 32385118); spectinomycin (CAS Registry No. 1695778); spiramycin (CAS Registry No. 8025818); streptogramins such as pristinamycin (CAS Registry No. 270076603), quinupristin/dalfopristin (CAS Registry No. 126602899), and virginiamycin (CAS Registry No. 11006761); streptomycin (CAS Registry No. 57921); tetracycline (NSC 108579; CAS Registry No. 60548); tobramycin (CAS Registry No. 32986564); troleandomycin (CAS Registry No. 2751099); tylosin (CAS Registry No. 1401690); verdamicin (CAS Registry No. 49863481).


Histone Deacetylase Inhibitors: abexinostat (CAS Registry No. 783355602); belinostat (NSC 726630; CAS Registry No. 414864009); chidamide (CAS Registry No. 743420022); entinostat (CAS Registry No. 209783802); givinostat (CAS Registry No. 732302997); mocetinostat (CAS Registry No. 726169739); panobinostat (CAS Registry No. 404950807); quisinostat (CAS Registry No. 875320299); resminostat (CAS Registry No. 864814880); romidepsin (CAS Registry No. 128517077); sulforaphane (CAS Registry No. 4478937); thioureidobutyronitrile (Kevetrin™; CAS Registry No. 6659890); valproic acid (NSC 93819; CAS Registry No. 99661); vorinostat (NSC 701852; CAS Registry No. 149647789); ACY-1215 (rocilinostat; CAS Registry No. 1316214524); CUDC-101 (CAS Registry No. 1012054599); CHR-2845 (tefinostat; CAS Registry No. 914382608); CHR-3996 (CAS Registry No. 1235859138); 4SC-202 (CAS Registry No. 910462430); CG200745 (CAS Registry No. 936221339); SB939 (pracinostat; CAS Registry No. 929016966).


Mitochondria Inhibitors: pancratistatin (NSC 349156; CAS Registry No. 96281311); rhodamine-123 (CAS Registry No. 63669709); edelfosine (NSC 324368; CAS Registry No. 70641519); d-alpha-tocopherol succinate (NSC 173849; CAS Registry No. 4345033); compound 11β (CAS Registry No. 865070377); aspirin (NSC 406186; CAS Registry No. 50782); ellipticine (CAS Registry No. 519233); berberine (CAS Registry No. 633658); cerulenin (CAS Registry No. 17397896); GX015-070 (Obatoclax®; 1H-Indole, 2-(2((3,5-dimethyl-1H-pyrrol-2-yl)methylene)-3-methoxy-2H-pyrrol-5-yl)-; NSC 729280; CAS Registry No. 803712676); celastrol (tripterine; CAS Registry No. 34157830); metformin (NSC 91485; CAS Registry No. 1115704); Brilliant green (NSC 5011; CAS Registry No. 633034); ME-344 (CAS Registry No. 1374524556).


Antimitotic Agents: allocolchicine (NSC 406042); auristatins, such as MMAE (monomethyl auristatin E; CAS Registry No. 474645-27-7) and MMAF (monomethyl auristatin F; CAS Registry No. 745017-94-1; halichondrin B (NSC 609395); colchicine (NSC 757; CAS Registry No. 64868); cholchicine derivative (N-benzoyl-deacetyl benzamide; NSC 33410; CAS Registry No. 63989753); dolastatin 10 (NSC 376128; CAS Registry No 110417-88-4); maytansine (NSC 153858; CAS Registry No. 35846-53-8); rhozoxin (NSC 332598; CAS Registry No. 90996546); taxol (NSC 125973; CAS Registry No. 33069624); taxol derivative ((2′-N-[3-(dimethylamino)propyl]glutaramate taxol; NSC 608832); thiocolchicine (3-demethylthiocolchicine; NSC 361792); trityl cysteine (NSC 49842; CAS Registry No. 2799077); vinblastine sulfate (NSC 49842; CAS Registry No. 143679); vincristine sulfate (NSC 67574; CAS Registry No. 2068782).


Any of these agents that include or that can be modified to include a site of attachment to a CD2 binding molecule can be included in the ADCs disclosed herein.


In some embodiments, the cytotoxic and/or cytostatic agent is an antimitotic agent.


In some embodiments, the cytotoxic and/or cytostatic agent is an auristatin, for example, monomethyl auristatin E (“MMAE:) or monomethyl auristatin F (“MMAF”).


7.13.2. ADC Linkers


In the ADCs of the disclosure, the cytotoxic and/or cytostatic agents are linked to the CD2 binding molecule by way of ADC linkers. The ADC linker linking a cytotoxic and/or cytostatic agent to the CD2 binding molecule of an ADC can be short, long, hydrophobic, hydrophilic, flexible or rigid, or can be composed of segments that each independently have one or more of the above-mentioned properties such that the linker can include segments having different properties. The linkers can be polyvalent such that they covalently link more than one agent to a single site on the CD2 binding molecule, or monovalent such that covalently they link a single agent to a single site on the CD2 binding molecule.


As will be appreciated by a skilled artisan, the ADC linkers link cytotoxic and/or cytostatic agents to the CD2 binding molecule by forming a covalent linkage to the cytotoxic and/or cytostatic agent at one location and a covalent linkage to the CD2 binding molecule at another. The covalent linkages are formed by reaction between functional groups on the ADC linker and functional groups on the agents and CD2 binding molecule. As used herein, the expression “ADC linker” is intended to include (i) unconjugated forms of the ADC linker that include a functional group capable of covalently linking the ADC linker to a cytotoxic and/or cytostatic agent and a functional group capable of covalently linking the ADC linker to a CD2 binding molecule; (ii) partially conjugated forms of the ADC linker that include a functional group capable of covalently linking the ADC linker to a CD2 binding molecule and that is covalently linked to a cytotoxic and/or cytostatic agent, or vice versa; and (iii) fully conjugated forms of the ADC linker that are covalently linked to both a cytotoxic and/or cytostatic agent and a CD2 binding molecule. In some embodiments of ADC linkers and ADCs of the disclosure, as well as synthons used to conjugate linker-agents to CD2 binding molecules, moieties comprising the functional groups on the ADC linker and covalent linkages formed between the ADC linker and CD2 binding molecule are specifically illustrated as Rx and XY, respectively.


The ADC linkers can, but need not be, chemically stable to conditions outside the cell, and can be designed to cleave, immolate and/or otherwise specifically degrade inside the cell. Alternatively, ADC linkers that are not designed to specifically cleave or degrade inside the cell can be used. Choice of stable versus unstable ADC linker can depend upon the toxicity of the cytotoxic and/or cytostatic agent. For agents that are toxic to normal cells, stable linkers can be used. Agents that are selective or targeted and have lower toxicity to normal cells can utilize, chemical stability of the ADC linker to the extracellular milieu is less important. A wide variety of ADC linkers useful for linking drugs to CD2 binding molecules in the context of ADCs are known. Any of these ADC linkers, as well as other ADC linkers, can be used to link the cytotoxic and/or cytostatic agents to the CD2 binding molecule of the ADCs of the disclosure.


Exemplary polyvalent ADC linkers that can be used to link many cytotoxic and/or cytostatic agents to a single CD2 binding molecule are described, for example, in WO 2009/073445; WO 2010/068795; WO 2010/138719; WO 2011/120053; WO 2011/171020; WO 2013/096901; WO 2014/008375; WO 2014/093379; WO 2014/093394; WO 2014/093640. For example, the Fleximer linker technology developed by Mersana et al. has the potential to enable high-DAR ADCs with good physicochemical properties. As shown below, the Mersana technology is based on incorporating drug molecules into a solubilizing poly-acetal backbone via a sequence of ester bonds. The methodology renders highly-loaded ADCs (DAR up to 20) while maintaining good physicochemical properties.


Additional examples of dendritic type linkers can be found in US 2006/116422; US 2005/271615; de Groot et al., 2003, Angew. Chem. Int. Ed. 42:4490-4494; Amir et al., 2003, Angew. Chem. Int. Ed. 42:4494-4499; Shamis et al., 2004, J. Am. Chem. Soc. 126:1726-1731; Sun et al., 2002, Bioorganic & Medicinal Chemistry Letters 12:2213-2215; Sun et al., 2003, Bioorganic & Medicinal Chemistry 11:1761-1768; King et al., 2002, Tetrahedron Letters 43:1987-1990.


Exemplary monovalent ADC linkers that can be used are described, for example, in Nolting, 2013, Antibody-Drug Conjugates, Methods in Molecular Biology 1045:71-100; Kitson et al., 2013, CROs-MOs--Chemica-ggi—Chemistry Today 31(4):30-38; Ducry et al., 2010, Bioconjugate Chem. 21:5-13; Zhao et al., 2011, J. Med. Chem. 54:3606-3623; U.S. Pat. Nos. 7,223,837; 8,568,728; 8,535,678; and WO2004010957.


By way of example and not limitation, some cleavable and noncleavable ADC linkers that can be included in the ADCs are described below.


7.13.2.1. Cleavable ADC Linkers


In certain embodiments, the ADC linker selected is cleavable in vivo. Cleavable ADC linkers can include chemically or enzymatically unstable or degradable linkages. Cleavable ADC linkers generally rely on processes inside the cell to liberate the drug, such as reduction in the cytoplasm, exposure to acidic conditions in the lysosome, or cleavage by specific proteases or other enzymes within the cell. Cleavable ADC linkers generally incorporate one or more chemical bonds that are either chemically or enzymatically cleavable while the remainder of the ADC linker is noncleavable. In certain embodiments, an ADC linker comprises a chemically labile group such as hydrazone and/or disulfide groups. Linkers comprising chemically labile groups exploit differential properties between the plasma and some cytoplasmic compartments. The intracellular conditions to facilitate drug release for hydrazone containing ADC linkers are the acidic environment of endosomes and lysosomes, while the disulfide containing ADC linkers are reduced in the cytosol, which contains high thiol concentrations, e.g., glutathione. In certain embodiments, the plasma stability of an ADC linker comprising a chemically labile group can be increased by introducing steric hindrance using substituents near the chemically labile group.


Acid-labile groups, such as hydrazone, remain intact during systemic circulation in the blood's neutral pH environment (pH 7.3-7.5) and undergo hydrolysis and release the drug once the ADC is internalized into mildly acidic endosomal (pH 5.0-6.5) and lysosomal (pH 4.5-5.0) compartments of the cell. This pH dependent release mechanism has been associated with nonspecific release of the drug. To increase the stability of the hydrazone group of the ADC linker, the ADC linker can be varied by chemical modification, e.g., substitution, allowing tuning to achieve more efficient release in the lysosome with a minimized loss in circulation.


Hydrazone-containing ADC linkers can contain additional cleavage sites, such as additional acid-labile cleavage sites and/or enzymatically labile cleavage sites. ADCs including exemplary hydrazone-containing ADC linkers include the following structures:




embedded image


where D and Ab represent the cytotoxic and/or cytostatic agent (drug) and Ab, respectively, and n represents the number of drug-ADC linkers linked to the CD2 binding molecule. In certain ADC linkers such as linker (Ig), the ADC linker comprises two cleavable groups—a disulfide and a hydrazone moiety. For such ADC linkers, effective release of the unmodified free drug requires acidic pH or disulfide reduction and acidic pH. Linkers such as (Ih) and (Ii) have been shown to be effective with a single hydrazone cleavage site.


Additional ADC linkers which remain intact during systemic circulation and undergo hydrolysis and release the drug when the ADC is internalized into acidic cellular compartments include carbonates. Such ADC linkers can be useful in cases where the cytotoxic and/or cytostatic agent can be covalently attached through an oxygen.


Other acid-labile groups that can be included in ADC linkers include cis-aconityl-containing ADC linkers. cis-Aconityl chemistry uses a carboxylic acid juxtaposed to an amide bond to accelerate amide hydrolysis under acidic conditions.


Cleavable ADC linkers can also include a disulfide group. Disulfides are thermodynamically stable at physiological pH and are designed to release the drug upon internalization inside cells, where the cytosol provides a significantly more reducing environment compared to the extracellular environment. Scission of disulfide bonds generally requires the presence of a cytoplasmic thiol cofactor, such as (reduced) glutathione (GSH), such that disulfide-containing ADC linkers are reasonably stable in circulation, selectively releasing the drug in the cytosol. The intracellular enzyme protein disulfide isomerase, or similar enzymes capable of cleaving disulfide bonds, can also contribute to the preferential cleavage of disulfide bonds inside cells. GSH is reported to be present in cells in the concentration range of 0.5-10 mM compared with a significantly lower concentration of GSH or cysteine, the most abundant low-molecular weight thiol, in circulation at approximately 5 Tumor cells, where irregular blood flow leads to a hypoxic state, result in enhanced activity of reductive enzymes and therefore even higher glutathione concentrations. In certain embodiments, the in vivo stability of a disulfide-containing ADC linker can be enhanced by chemical modification of the ADC linker, e.g., use of steric hindrance adjacent to the disulfide bond.


ADCs including exemplary disulfide-containing ADC linkers include the following structures:




embedded image


where D and Ab represent the drug and CD2 binding molecule, respectively, n represents the number of drug-ADC linkers linked to the CD2 binding molecule and R is independently selected at each occurrence from hydrogen or alkyl, for example. In certain embodiments, increasing steric hindrance adjacent to the disulfide bond increases the stability of the ADC linker. Structures such as (ID and (II) show increased in vivo stability when one or more R groups is selected from a lower alkyl such as methyl.


Another type of cleavable ADC linker that can be used is an ADC linker that is specifically cleaved by an enzyme. Such ADC linkers are typically peptide-based or include peptidic regions that act as substrates for enzymes. Peptide based ADC linkers tend to be more stable in plasma and extracellular milieu than chemically labile ADC linkers. Peptide bonds generally have good serum stability, as lysosomal proteolytic enzymes have very low activity in blood due to endogenous inhibitors and the unfavorably high pH value of blood compared to lysosomes. Release of a drug from a CD2 binding molecule occurs specifically due to the action of lysosomal proteases, e.g., cathepsin and plasmin. These proteases can be present at elevated levels in certain tumor cells.


In exemplary embodiments, the cleavable peptide is selected from tetrapeptides such as Gly-Phe-Leu-Gly, (SEQ ID NO: 1003), Ala-Leu-Ala-Leu (SEQ ID NO: 1004) or dipeptides such as Val-Cit, Val-Ala, Met-(D)Lys, Asn-(D)Lys, Val-(D)Asp, Phe-Lys, Ile-Val, Asp-Val, His-Val, NorVal-(D)Asp, Ala-(D)Asp 5, Met-Lys, Asn-Lys, Ile-Pro, Me3Lys-Pro, PhenylGly-(D)Lys, Met-(D)Lys, Asn-(D)Lys, Pro-(D)Lys, Met-(D)Lys, Asn-(D)Lys, AM Met-(D)Lys, Asn-(D)Lys, AW Met-(D)Lys, and Asn-(D)Lys. In certain embodiments, dipeptides can be selected over longer polypeptides due to hydrophobicity of the longer peptides.


A variety of dipeptide-based cleavable ADC linkers useful for linking drugs such as doxorubicin, mitomycin, camptothecin, pyrrolobenzodiazepine, tallysomycin and auristatin/auristatin family members to CD2 binding molecules have been described (see, Dubowchik et al., 1998, J. Org. Chem. 67:1866-1872; Dubowchik et al., 1998, Bioorg. Med. Chem. Lett. 8(21):3341-3346; Walker et al., 2002, Bioorg. Med. Chem. Lett. 12:217-219; Walker et al., 2004, Bioorg. Med. Chem. Lett. 14:4323-4327; Sutherland et al., 2013, Blood 122: 1455-1463; and Francisco et al., 2003, Blood 102:1458-1465). All of these dipeptide ADC linkers, or modified versions of these dipeptide ADC linkers, can be used in the ADCs of the disclosure. Other dipeptide ADC linkers that can be used include those found in ADCs such as Seattle Genetics' Brentuximab Vendotin SGN-35 (Adcetris™), Seattle Genetics SGN-75 (anti-CD-70, Val-Cit-monomethyl auristatin F(MMAF), Seattle Genetics SGN-CD33A (anti-CD-33, Val-Ala-(SGD-1882)), Celldex Therapeutics glembatumumab (CDX-011) (anti-NMB, Val-Cit-monomethyl auristatin E (MMAE), and Cytogen PSMA-ADC (PSMA-ADC-1301) (anti-PSMA, Val-Cit-MMAE).


Enzymatically cleavable ADC linkers can include a self-immolative spacer to spatially separate the drug from the site of enzymatic cleavage. The direct attachment of a drug to a peptide ADC linker can result in proteolytic release of an amino acid adduct of the drug, thereby impairing its activity. The use of a self-immolative spacer allows for the elimination of the fully active, chemically unmodified drug upon amide bond hydrolysis.


One self-immolative spacer is the bifunctional para-aminobenzyl alcohol group, which is linked to the peptide through the amino group, forming an amide bond, while amine containing drugs can be attached through carbamate functionalities to the benzylic hydroxyl group of the ADC linker (PABC). The resulting prodrugs are activated upon protease-mediated cleavage, leading to a 1,6-elimination reaction releasing the unmodified drug, carbon dioxide, and remnants of the ADC linker group. The following scheme depicts the fragmentation of p-amidobenzyl ether and release of the drug:




embedded image


where X-D represents the unmodified drug.


Heterocyclic variants of this self-immolative group have also been described. See for example, U.S. Pat. No. 7,989,434.


In some embodiments, the enzymatically cleavable ADC linker is a β-glucuronic acid-based ADC linker. Facile release of the drug can be realized through cleavage of the β-glucuronide glycosidic bond by the lysosomal enzyme β-glucuronidase. This enzyme is present abundantly within lysosomes and is overexpressed in some tumor types, while the enzyme activity outside cells is low. β-Glucuronic acid-based ADC linkers can be used to circumvent the tendency of an ADC to undergo aggregation due to the hydrophilic nature of β-glucuronides. In some embodiments, β-glucuronic acid-based ADC linkers can be used as ADC linkers for ADCs linked to hydrophobic drugs. The following scheme depicts the release of the drug from and ADC containing a β-glucuronic acid-based ADC linker:




embedded image


A variety of cleavable β-glucuronic acid-based ADC linkers useful for linking drugs such as auristatins, camptothecin and doxorubicin analogues, CBI minor-groove binders, and psymberin to CD2 binding molecules have been described (see, Nolting, Chapter 5 “Linker Technology in Antibody-Drug Conjugates,” In: Antibody-Drug Conjugates: Methods in Molecular Biology, vol. 1045, pp. 71-100, Laurent Ducry (Ed.), Springer Science & Business Medica, LLC, 2013; Jeffrey et al., 2006, Bioconjug. Chem. 17:831-840; Jeffrey et al., 2007, Bioorg. Med. Chem. Lett. 17:2278-2280; and Jiang et al., 2005, J. Am. Chem. Soc. 127:11254-11255). All of these β-glucuronic acid-based ADC linkers can be used in the ADCs of the disclosure.


Additionally, cytotoxic and/or cytostatic agents containing a phenol group can be covalently bonded to an ADC linker through the phenolic oxygen. One such ADC linker, described in WO 2007/089149, relies on a methodology in which a diamino-ethane “SpaceLink” is used in conjunction with traditional “PABO”-based self-immolative groups to deliver phenols. The cleavage of the ADC linker is depicted schematically below, where D represents a cytotoxic and/or cytostatic agent having a phenolic hydroxyl group.




embedded image


Cleavable ADC linkers can include noncleavable portions or segments, and/or cleavable segments or portions can be included in an otherwise non-cleavable ADC linker to render it cleavable. By way of example only, polyethylene glycol (PEG) and related polymers can include cleavable groups in the polymer backbone. For example, a polyethylene glycol or polymer ADC linker can include one or more cleavable groups such as a disulfide, a hydrazone or a dipeptide.


Other degradable linkages that can be included in ADC linkers include ester linkages formed by the reaction of PEG carboxylic acids or activated PEG carboxylic acids with alcohol groups on a biologically active agent, where such ester groups generally hydrolyze under physiological conditions to release the biologically active agent. Hydrolytically degradable linkages include, but are not limited to, carbonate linkages; imine linkages resulting from reaction of an amine and an aldehyde; phosphate ester linkages formed by reacting an alcohol with a phosphate group; acetal linkages that are the reaction product of an aldehyde and an alcohol; orthoester linkages that are the reaction product of a formate and an alcohol; and oligonucleotide linkages formed by a phosphoramidite group, including but not limited to, at the end of a polymer, and a 5′ hydroxyl group of an oligonucleotide.


In certain embodiments, the ADC linker comprises an enzymatically cleavable peptide moiety, for example, an ADC linker comprising structural formula (IVa) or (IVb):




embedded image


or a salt thereof, where: peptide represents a peptide (illustrated C→N and not showing the carboxy and amino “termini”) cleavable by a lysosomal enzyme; T represents a polymer comprising one or more ethylene glycol units or an alkylene chain, or combinations thereof; Ra is selected from hydrogen, alkyl, sulfonate and methyl sulfonate; p is an integer ranging from 0 to 5; q is 0 or 1; x is 0 or 1; y is 0 or 1; custom-character represents the point of attachment of the ADC linker to a cytotoxic and/or cytostatic agent; and * represents the point of attachment to the remainder of the ADC linker.


In certain embodiments, the peptide is selected from a tripeptide or a dipeptide. In particular embodiments, the dipeptide is selected from: Val-Cit; Cit-Val; Ala-Ala; Ala-Cit; Cit-Ala; Asn-Cit; Cit-Asn; Cit-Cit; Val-Glu; Glu-Val; Ser-Cit; Cit-Ser; Lys-Cit; Cit-Lys; Asp-Cit; Cit-Asp; Ala-Val; Val-Ala; Phe-Lys; Val-Lys; Ala-Lys; Phe-Cit; Leu-Cit; Ile-Cit; Phe-Arg; and Trp-Cit. In certain embodiments, the dipeptide is selected from: Cit-Val; and Ala-Val.


Specific exemplary embodiments of ADC linkers according to structural formula (IVa) that can be included in the ADCs include the ADC linkers illustrated below (as illustrated, the ADC linkers include a group suitable for covalently linking the ADC linker to a CD2 binding molecule):




embedded image


embedded image


Specific exemplary embodiments of ADC linkers according to structural formula (IVb) that can be included in the ADCs include the ADC linkers illustrated below (as illustrated, the ADC linkers include a group suitable for covalently linking the ADC linker to a CD2 binding molecule):




embedded image


embedded image


embedded image


embedded image


In certain embodiments, the ADC linker comprises an enzymatically cleavable peptide moiety, for example, an ADC linker comprising structural formula (IVc) or (IVd):




embedded image


or a salt thereof, where: peptide represents a peptide (illustrated C→N and not showing the carboxy and amino “termini”) cleavable by a lysosomal enzyme; T represents a polymer comprising one or more ethylene glycol units or an alkylene chain, or combinations thereof; Ra is selected from hydrogen, alkyl, sulfonate and methyl sulfonate; p is an integer ranging from 0 to 5; q is 0 or 1; x is 0 or 1; y is 0 or 1; .x custom-character represents the point of attachment of the ADC linker to a cytotoxic and/or cytostatic agent; and * represents the point of attachment to the remainder of the ADC linker.


Specific exemplary embodiments of ADC linkers according to structural formula (IVc) that can be included in the ADCs include the ADC linkers illustrated below (as illustrated, the ADC linkers include a group suitable for covalently linking the ADC linker to a CD2 binding molecule):




embedded image


Specific exemplary embodiments of ADC linkers according to structural formula (IVd) that can be included in the ADCs include the ADC linkers illustrated below (as illustrated, the ADC linkers include a group suitable for covalently linking the ADC linker to a CD2 binding molecule):




embedded image


embedded image


embedded image


embedded image


In certain embodiments, the ADC linker comprising structural formula (IVa), (IVb), (IVc), or (IVd) further comprises a carbonate moiety cleavable by exposure to an acidic medium. In particular embodiments, the ADC linker is attached through an oxygen to a cytotoxic and/or cytostatic agent.


7.13.2.2. Non-Cleavable Linkers


Although cleavable ADC linkers can provide certain advantages, the ADC linkers comprising the ADCs need not be cleavable. For noncleavable ADC linkers, the release of drug does not depend on the differential properties between the plasma and some cytoplasmic compartments. The release of the drug is postulated to occur after internalization of the ADC via antigen-mediated endocytosis and delivery to lysosomal compartment, where the CD2 binding molecule is degraded to the level of amino acids through intracellular proteolytic degradation. This process releases a drug derivative, which is formed by the drug, the ADC linker, and the amino acid residue to which the ADC linker was covalently attached. The amino acid drug metabolites from conjugates with noncleavable ADC linkers are more hydrophilic and generally less membrane permeable, which leads to less bystander effects and less nonspecific toxicities compared to conjugates with a cleavable ADC linker. In general, ADCs with noncleavable ADC linkers have greater stability in circulation than ADCs with cleavable ADC linkers. Non-cleavable ADC linkers can be alkylene chains, or can be polymeric in natures, such as, for example, based upon polyalkylene glycol polymers, amide polymers, or can include segments of alkylene chains, polyalkylene glocols and/or amide polymers.


A variety of non-cleavable ADC linkers used to link drugs to CD2 binding molecules have been described. See, Jeffrey et al., 2006, Bioconjug. Chem. 17; 831-840; Jeffrey et al., 2007, Bioorg. Med. Chem. Lett. 17:2278-2280; and Jiang et al., 2005, J. Am. Chem. Soc. 127:11254-11255. All of these ADC linkers can be included in the ADCs of the disclosure.


In certain embodiments, the ADC linker is non-cleavable in vivo, for example an ADC linker according to structural formula (VIa), (VIb), (VIc) or (VId) (as illustrated, the ADC linkers include a group suitable for covalently linking the ADC linker to a CD2 binding molecule:




embedded image


or salts thereof, where: Ra is selected from hydrogen, alkyl, sulfonate and methyl sulfonate; Rx is a moiety including a functional group capable of covalently linking the ADC linker to a CD2 binding molecule; and custom-character represents the point of attachment of the ADC linker to a cytotoxic and/or cytostatic agent.


Specific exemplary embodiments of ADC linkers according to structural formula (VIa)-(VId) that can be included in the ADCs include the ADC linkers illustrated below (as illustrated, the ADC linkers include a group suitable for covalently linking the ADC linker to a CD2 binding molecule, and custom-character represents the point of attachment to a cytotoxic and/or cytostatic agent):




embedded image


7.13.2.3. Groups Used to Attach Linkers to CD2 Binding Molecules


A variety of groups can be used to attach ADC linker-drug synthons to CD2 binding molecules to yield ADCs. Attachment groups can be electrophilic in nature and include: maleimide groups, activated disulfides, active esters such as NHS esters and HOBt esters, haloformates, acid halides, alkyl and benzyl halides such as haloacetamides. As discussed below, there are also emerging technologies related to “self-stabilizing” maleimides and “bridging disulfides” that can be used in accordance with the disclosure. The specific group used will depend, in part, on the site of attachment to the CD2 binding molecule.


One example of a “self-stabilizing” maleimide group that hydrolyzes spontaneously under CD2 binding molecule conjugation conditions to give an ADC species with improved stability is depicted in the schematic below. See US20130309256 A1; also Lyon et al., Nature Biotech published online, doi:10.1038/nbt.2968.


Normal System:




embedded image


Leads to “DAR loss” over time


SGN MaIDPR (Maleimido Dipropylamino) System:




embedded image


Polytherics has disclosed a method for bridging a pair of sulfhydryl groups derived from reduction of a native hinge disulfide bond. See, Badescu et al., 2014, Bioconjugate Chem. 25:1124-1136. The reaction is depicted in the schematic below. An advantage of this methodology is the ability to synthesize enriched DAR4 ADCs by full reduction of IgGs (to give 4 pairs of sulfhydryls) followed by reaction with 4 equivalents of the alkylating agent. ADCs containing “bridged disulfides” have increased stability.




embedded image


Similarly, as depicted below, a maleimide derivative (1, below) that is capable of bridging a pair of sulfhydryl groups has been developed. See WO2013/085925.




embedded image


7.13.2.4. ADC Linker Selection Considerations


As is known by skilled artisans, the ADC linker selected for a particular ADC can be influenced by a variety of factors, including but not limited to, the site of attachment to the CD2 binding molecule (e.g., lys, cys or other amino acid residues), structural constraints of the drug pharmacophore and the lipophilicity of the drug. The specific ADC linker selected for an ADC should seek to balance these different factors for the specific CD2 binding molecule/drug combination. For a review of the factors that are influenced by choice of ADC linkers in ADCs, see Nolting, Chapter 5 “Linker Technology in Antibody-Drug Conjugates,” In: Antibody-Drug Conjugates: Methods in Molecular Biology, vol. 1045, pp. 71-100, Laurent Ducry (Ed.), Springer Science & Business Medica, LLC, 2013.


For example, ADCs have been observed to effect killing of bystander antigen-negative cells present in the vicinity of the antigen-positive tumor cells. The mechanism of bystander cell killing by ADCs has indicated that metabolic products formed during intracellular processing of the ADCs can play a role. Neutral cytotoxic metabolites generated by metabolism of the ADCs in antigen-positive cells appear to play a role in bystander cell killing while charged metabolites can be prevented from diffusing across the membrane into the medium and therefore cannot affect bystander killing. In certain embodiments, the ADC linker is selected to attenuate the bystander killing effect caused by cellular metabolites of the ADC. In certain embodiments, the ADC linker is selected to increase the bystander killing effect.


The properties of the ADC linker can also impact aggregation of the ADC under conditions of use and/or storage. Typically, ADCs reported in the literature contain no more than 3-4 drug molecules per antibody molecule (see, e.g., Chari, 2008, Acc Chem Res 41:98-107). Attempts to obtain higher drug-to-antibody ratios (“DAR”) often failed, particularly if both the drug and the ADC linker were hydrophobic, due to aggregation of the ADC (King et al., 2002, J Med Chem 45:4336-4343; Hollander et al., 2008, Bioconjugate Chem 19:358-361; Burke et al., 2009 Bioconjugate Chem 20:1242-1250). In many instances, DARs higher than 3-4 could be beneficial as a means of increasing potency. In instances where the cytotoxic and/or cytostatic agent is hydrophobic in nature, it can be desirable to select ADC linkers that are relatively hydrophilic as a means of reducing ADC aggregation, especially in instances where DARS greater than 3-4 are desired. Thus, in certain embodiments, the ADC linker incorporates chemical moieties that reduce aggregation of the ADCs during storage and/or use. An ADC linker can incorporate polar or hydrophilic groups such as charged groups or groups that become charged under physiological pH to reduce the aggregation of the ADCs. For example, an ADC linker can incorporate charged groups such as salts or groups that deprotonate, e.g., carboxylates, or protonate, e.g., amines, at physiological pH.


Exemplary polyvalent ADC linkers that have been reported to yield DARs as high as 20 that can be used to link numerous cytotoxic and/or cytostatic agents to a CD2 binding molecule are described in WO 2009/073445; WO 2010/068795; WO 2010/138719; WO 2011/120053; WO 2011/171020; WO 2013/096901; WO 2014/008375; WO 2014/093379; WO 2014/093394; WO 2014/093640.


In particular embodiments, the aggregation of the ADCs during storage or use is less than about 10% as determined by size-exclusion chromatography (SEC). In particular embodiments, the aggregation of the ADCs during storage or use is less than 10%, such as less than about 5%, less than about 4%, less than about 3%, less than about 2%, less than about 1%, less than about 0.5%, less than about 0.1%, or even lower, as determined by size-exclusion chromatography (SEC).


7.13.3. Methods of Making ADCs


The ADCs can be synthesized using chemistries that are well-known. The chemistries selected will depend upon, among other things, the identity of the cytotoxic and/or cytostatic agent(s), the ADC linker and the groups used to attach ADC linker to the CD2 binding molecule. Generally, ADCs according to formula (I) can be prepared according to the following scheme:





D-L-Rx+Ab-Ry→[D-L-XY]n-Ab  (I)


where D, L, Ab, XY and n are as previously defined, and Rx and Ry represent complementary groups capable of forming a covalent linkages with one another, as discussed above.


The identities of groups Rx and Ry will depend upon the chemistry used to link synthon D-L-Rx to the CD2 binding molecule. Generally, the chemistry used should not alter the integrity of the CD2 binding molecule, for example its ability to bind its target. In some cases, the binding properties of the conjugated antibody will closely resemble those of the unconjugated CD2 binding molecule. A variety of chemistries and techniques for conjugating molecules to biological molecules and in particular to immunoglobulins, whose components are typically building blocks of the CD2 binding molecules of the disclosure, are well-known. See, e.g., Amon et al., “Monoclonal Antibodies For Immunotargeting Of Drugs In Cancer Therapy,” in: Monoclonal Antibodies And Cancer Therapy, Reisfeld et al. Eds., Alan R. Liss, Inc., 1985; Hellstrom et al., “Antibodies For Drug Delivery,” in: Controlled Drug Delivery, Robinson et al. Eds., Marcel Dekker, Inc., 2nd Ed. 1987; Thorpe, “Antibody Carriers Of Cytotoxic Agents In Cancer Therapy: A Review,” in: Monoclonal Antibodies '84: Biological And Clinical Applications, Pinchera et al., Eds., 1985; “Analysis, Results, and Future Prospective of the Therapeutic Use of Radiolabeled Antibody In Cancer Therapy,” in: Monoclonal Antibodies For Cancer Detection And Therapy, Baldwin et al., Eds., Academic Press, 1985; Thorpe et al., 1982, Immunol. Rev. 62:119-58; PCT publication WO 89/12624. Any of these chemistries can be used to link the synthons to a CD2 binding molecule.


A number of functional groups Rx and chemistries useful for linking synthons to accessible lysine residues are known, and include by way of example and not limitation NHS-esters and isothiocyanates.


A number of functional groups Rx and chemistries useful for linking synthons to accessible free sulfhydryl groups of cysteine residues are known, and include by way of example and not limitation haloacetyls and maleimides.


However, conjugation chemistries are not limited to available side chain groups. Side chains such as amines can be converted to other useful groups, such as hydroxyls, by linking an appropriate small molecule to the amine. This strategy can be used to increase the number of available linking sites on the antibody by conjugating multifunctional small molecules to side chains of accessible amino acid residues of the CD2 binding molecule. Functional groups Rx suitable for covalently linking the synthons to these “converted” functional groups are then included in the synthons.


The CD2 binding molecule can also be engineered to include amino acid residues for conjugation. An approach for engineering BBMs to include non-genetically encoded amino acid residues useful for conjugating drugs in the context of ADCs is described by Axup et al., 2012, Proc Natl Acad Sci USA. 109(40):16101-16106, as are chemistries and functional group useful for linking synthons to the non-encoded amino acids.


Typically, the synthons are linked to the side chains of amino acid residues of the CD2 binding molecule, including, for example, the primary amino group of accessible lysine residues or the sulfhydryl group of accessible cysteine residues. Free sulfhydryl groups can be obtained by reducing interchain disulfide bonds.


For linkages where Ry is a sulfhydryl group (for example, when Rx is a maleimide), the CD2 binding molecule is generally first fully or partially reduced to disrupt interchain disulfide bridges between cysteine residues.


Cysteine residues that do not participate in disulfide bridges can engineered into a CD2 binding molecule by modification of one or more codons. Reducing these unpaired cysteines yields a sulfhydryl group suitable for conjugation. In some embodiments, CD2 binding molecules are engineered to introduce one or more cysteine residues as sites for conjugation to a drug moiety (see, Junutula, et al, 2008, Nat Biotechnol, 26:925-932).


Sites for cysteine substitution can be selected in a constant region to provide stable and homogeneous conjugates. A CD2 binding molecule can have, for example, two or more cysteine substitutions, and these substitutions can be used in combination with other modification and conjugation methods as described herein. Methods for inserting cysteine at specific locations of an antibody are known, see, e.g., Lyons et al., 1990, Protein Eng., 3:703-708, WO 2011/005481, WO2014/124316, WO 2015/138615. In certain embodiments, a CD2 binding molecule comprises a substitution of one or more amino acids with cysteine on a constant region selected from positions 117, 119, 121, 124, 139, 152, 153, 155, 157, 164, 169, 171, 174, 189, 205, 207, 246, 258, 269, 274, 286, 288, 290, 292, 293, 320, 322, 326, 333, 334, 335, 337, 344, 355, 360, 375, 382, 390, 392, 398, 400 and 422 of a heavy chain, where the positions are numbered according to the EU system. In some embodiments, a CD2 binding molecule comprises a substitution of one or more amino acids with cysteine on a constant region selected from positions 107, 108, 109, 114, 129, 142, 143, 145, 152, 154, 156, 159, 161, 165, 168, 169, 170, 182, 183, 197, 199, and 203 of a light chain, where the positions are numbered according to the EU system, and where the light chain is a human kappa light chain. In certain embodiments a CD2 binding molecule comprises a combination of substitution of two or more amino acids with cysteine on a constant region, where the combinations comprise substitutions at positions 375 of a heavy chain, position 152 of a heavy chain, position 360 of a heavy chain, or position 107 of a light chain and where the positions are numbered according to the EU system. In certain embodiments a CD2 binding molecule comprises a substitution of one amino acid with cysteine on a constant region where the substitution is position 375 of a heavy chain, position 152 of a heavy chain, position 360 of a heavy chain, position 107 of a light chain, position 165 of a light chain or position 159 of a light chain and where the positions are numbered according to the EU system, and where the light chain is a kappa chain.


In particular embodiments, a CD2 binding molecule comprises a combination of substitution of two amino acids with cysteine on a constant region, where the CD2 binding molecule comprises cysteines at positions 152 and 375 of a heavy chain, where the positions are numbered according to the EU system.


In other particular embodiments, a CD2 binding molecule comprises a substitution of one amino acid with cysteine at position 360 of a heavy chain, where the positions are numbered according to the EU system.


In other particular embodiments, a CD2 binding molecule comprises a substitution of one amino acid with cysteine at position 107 of a light chain, where the positions are numbered according to the EU system, and where the light chain is a kappa chain.


Other positions for incorporating engineered cysteines can include, by way of example and not limitation, positions S112C, S113C, A114C, S115C, A1760, 5180C, S252C, V286C, V292C, S357C, A359C, S398C, S428C (Kabat numbering) on the human IgG, heavy chain and positions V110C, S114C, S121C, S127C, S168C, V205C (Kabat numbering) on the human Ig kappa light chain (see, e.g., U.S. Pat. Nos. 7,521,541, 7,855,275 and 8,455,622).


CD2 binding molecules useful in ADCs disclosed herein can additionally or alternatively be modified to introduce one or more other reactive amino acids (other than cysteine), including Pcl, pyrrolysine, peptide tags (such as S6, A1 and ybbR tags), and non-natural amino acids, in place of at least one amino acid of the native sequence, thus providing a reactive site on the CD2 binding molecule for conjugation to a drug moiety. For example, CD2 binding molecules can be modified to incorporate Pcl or pyrrolysine (W. Ou et al., 2011, PNAS, 108(26):10437-10442; WO2014124258) or unnatural amino acids (Axup, et al., 2012, PNAS, 109:16101-16106; for review, see C. C. Liu and P. G. Schultz, 2010, Annu Rev Biochem 79:413-444; Kim, et al., 2013, Curr Opin Chem Biol. 17:412-419) as sites for conjugation to a drug. Similarly, peptide tags for enzymatic conjugation methods can be introduced into a CD2 binding molecule (see, Strop et al. 2013, Chem Biol. 20(2):161-7; Rabuka, 2010, Curr Opin Chem Biol. 14(6):790-6; Rabuka, et al., 2012, Nat Protoc. 7(6):1052-67). One other example is the use of 4′-phosphopantetheinyl transferases (PPTase) for the conjugation of Coenzyme A analogs (WO2013184514). Such modified or engineered MBMs can be conjugated with payloads or linker-payload combinations according to known methods.


As will appreciated by a skilled artisan, the number of agents (e.g., cytotoxic and/or cytostatic agents) linked to a CD2 binding molecule can vary, such that a collection of ADCs can be heterogeneous in nature, where some CD2 binding molecules contain one linked agent, some two, some three, etc. (and some none). The degree of heterogeneity will depend upon, among other things, the chemistries used for linking the cytotoxic and/or cytostatic agents. For example, where the CD2 binding molecules are reduced to yield sulfhydryl groups for attachment, heterogeneous mixtures of CD2 binding molecules having zero, 2, 4, 6 or 8 linked agents per molecule are often produced. Furthermore, by limiting the molar ratio of attachment compound, CD2 binding molecules having zero, 1, 2, 3, 4, 5, 6, 7 or 8 linked agents per molecule are often produced. Thus, it will be understood that depending upon context, stated drug CD2 binding molecule ratios (DTRs) can be averages for a collection of CD2 binding molecules. For example, “DTR4” can refer to an ADC preparation that has not been subjected to purification to isolate specific DTR peaks and can comprise a heterogeneous mixture of ADC molecules having different numbers of cytostatic and/or cytotoxic agents attached per CD2 binding molecule (e.g., 0, 2, 4, 6, 8 agents per CD2 binding molecule), but has an average drug-to-CD2 binding molecule ratio of 4. Similarly, in some embodiments, “DTR2” refers to a heterogeneous ADC preparation in which the average drug-to-CD2 binding molecule ratio is 2.


When enriched preparations are desired, CD2 binding molecules having defined numbers of linked cytotoxic and/or cytostatic agents can be obtained via purification of heterogeneous mixtures, for example, via column chromatography, e.g., hydrophobic interaction chromatography.


Purity can be assessed by a variety of known methods. As a specific example, an ADC preparation can be analyzed via HPLC or other chromatography and the purity assessed by analyzing areas under the curves of the resultant peaks.


7.14. CD2 Binding Molecules Conjugated to Detectable Agents

CD2 binding molecules of the disclosure can be conjugated to a diagnostic or detectable agent. Such molecules can be useful for monitoring or prognosing the onset, development, progression and/or severity of a disease or disorder as part of a clinical testing procedure, such as determining the efficacy of a particular therapy. Such diagnosis and detection can accomplished by coupling the CD2 binding molecules to detectable substances including, but not limited to, various enzymes, such as, but not limited to, horseradish peroxidase, alkaline phosphatase, beta-galactosidase, or acetylcholinesterase; prosthetic groups, such as, but not limited to, streptavidin/biotin and avidin/biotin; fluorescent materials, such as, but not limited to, umbelliferone, fluorescein, fluorescein isothiocynate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; luminescent materials, such as, but not limited to, luminol; bioluminescent materials, such as but not limited to, luciferase, luciferin, and aequorin; radioactive materials, such as, but not limited to, iodine (131I, 125I, 123I, and 121I), carbon (14C), sulfur (35S), tritium (3H), indium (115In, 113In, 112In, and 111In,), technetium (99Tc), thallium (201Ti), gallium (68Ga, 67Ga), palladium (103Pd), molybdenum (99Mo), xenon (133Xe), fluorine (18F), 153Sm, 177Lu, 159Gd, 149Pm, 140La, 175Yb, 166Ho, 90Y, 47Sc, 186Re, 188Re, 142Pr, 105Rh, 97Ru, 68Ge, 57Co, 65Zn, 85Sr, 32P, 153Gd, 169Yb, 51Cr, 54Mn, 75Se, 113Sn, and 117Tin; and positron emitting metals using various positron emission tomographies, and nonradioactive paramagnetic metal ions.


7.15. CD2 Binding Molecules Attached to Solid Supports

The CD2 binding molecules can also be attached to solid supports, which are particularly useful for immunoassays or purification of the target antigen(s). Such solid supports include, but are not limited to, glass, cellulose, polyacrylamide, nylon, polystyrene, polyvinyl chloride or polypropylene.


7.16. Pharmaceutical Compositions

The CD2 binding molecules of the disclosure (as well as their conjugates; references to CD2 binding molecules in this disclosure also refers to conjugates comprising the CD2 binding molecules, such as ADCs, unless the context dictates otherwise) can be formulated as pharmaceutical compositions comprising the CD2 binding molecules, for example containing one or more pharmaceutically acceptable excipients or carriers. To prepare pharmaceutical or sterile compositions comprising the CD2 binding molecules of the present disclosure a CD2 binding molecule preparation can be combined with one or more pharmaceutically acceptable excipient or carrier.


For example, formulations of CD2 binding molecules can be prepared by mixing CD2 binding molecules with physiologically acceptable carriers, excipients, or stabilizers in the form of, e.g., lyophilized powders, slurries, aqueous solutions, lotions, or suspensions (see, e.g., Hardman et al., 2001, Goodman and Gilman's The Pharmacological Basis of Therapeutics, McGraw-Hill, New York, N.Y.; Gennaro, 2000, Remington: The Science and Practice of Pharmacy, Lippincott, Williams, and Wilkins, New York, N.Y.; Avis, et al. (eds.), 1993, Pharmaceutical Dosage Forms: General Medications, Marcel Dekker, NY; Lieberman, et al. (eds.), 1990, Pharmaceutical Dosage Forms: Tablets, Marcel Dekker, NY; Lieberman, et al. (eds.), 1990, Pharmaceutical Dosage Forms: Disperse Systems, Marcel Dekker, NY; Weiner and Kotkoskie, 2000, Excipient Toxicity and Safety, Marcel Dekker, Inc., New York, N.Y.).


Selecting an administration regimen for a CD2 binding molecule depends on several factors, including the serum or tissue turnover rate of the CD2 binding molecule, the level of symptoms, the immunogenicity of the CD2 binding molecule, and the accessibility of the target cells. In certain embodiments, an administration regimen maximizes the amount of CD2 binding molecule delivered to the subject consistent with an acceptable level of side effects. Accordingly, the amount of CD2 binding molecule delivered depends in part on the particular CD2 binding molecule and the severity of the condition being treated. Guidance in selecting appropriate doses of antibodies and small molecules are available (see, e.g., Wawrzynczak, 1996, Antibody Therapy, Bios Scientific Pub. Ltd, Oxfordshire, UK; Kresina (ed.), 1991, Monoclonal Antibodies, Cytokines and Arthritis, Marcel Dekker, New York, N.Y.; Bach (ed.), 1993, Monoclonal Antibodies and Peptide Therapy in Autoimmune Diseases, Marcel Dekker, New York, N.Y.; Baert et al., 2003, New Engl. J. Med. 348:601-608; Milgrom et al., 1999, New Engl. J. Med. 341:1966-1973; Slamon et al., 2001, New Engl. J. Med. 344:783-792; Beniaminovitz et al., 2000, New Engl. J. Med. 342:613-619; Ghosh et al., 2003, New Engl. J. Med. 348:24-32; Lipsky et al., 2000, New Engl. J. Med. 343:1594-1602).


Determination of the appropriate dose is made by the clinician, e.g., using parameters or factors known or suspected in the art to affect treatment or predicted to affect treatment. Generally, the dose begins with an amount somewhat less than the optimum dose and it is increased by small increments thereafter until the desired or optimum effect is achieved relative to any negative side effects. Important diagnostic measures include those of symptoms of, e.g., the inflammation or level of inflammatory cytokines produced.


Actual dosage levels of the CD2 binding molecules in the pharmaceutical compositions of the present disclosure can be varied so as to obtain an amount of the CD2 binding molecule which is effective to achieve the desired therapeutic response for a particular subject, composition, and mode of administration, without being toxic to the subject. The selected dosage level will depend upon a variety of pharmacokinetic factors including the activity of the particular CD2 binding molecule, the route of administration, the time of administration, the rate of excretion of the particular CD2 binding molecule being employed, the duration of the treatment, other agents (e.g., active agents such as therapeutic drugs or compounds and/or inert materials used as carriers) in combination with the particular CD2 binding molecule employed, the age, sex, weight, condition, general health and prior medical history of the subject being treated, and like factors known in the medical arts.


Compositions comprising the CD2 binding molecules can be provided by continuous infusion, or by doses at intervals of, e.g., one day, one week, or 1-7 times per week. Doses can be provided intravenously, subcutaneously, topically, orally, nasally, rectally, intramuscular, intracerebrally, or by inhalation. A specific dose protocol is one involving the maximal dose or dose frequency that avoids significant undesirable side effects.


An effective amount for a particular subject can vary depending on factors such as the condition being treated, the overall health of the subject, the method route and dose of administration and the severity of side effects (see, e.g., Maynard, et al. (1996) A Handbook of SOPs for Good Clinical Practice, Interpharm Press, Boca Raton, Fla.; Dent (2001) Good Laboratory and Good Clinical Practice, Urch Publ., London, UK).


The route of administration can be by, e.g., topical or cutaneous application, injection or infusion by intravenous, intraperitoneal, intracerebral, intramuscular, intraocular, intraarterial, intracerebrospinal, intralesional, or by sustained release systems or an implant (see, e.g., Sidman et al., 1983, Biopolymers 22:547-556; Langer et al., 1981, J. Biomed. Mater. Res. 15:167-277; Langer, 1982, Chem. Tech. 12:98-105; Epstein et al., 1985, Proc. Natl. Acad. Sci. USA 82:3688-3692; Hwang et al., 1980, Proc. Natl. Acad. Sci. USA 77:4030-4034; U.S. Pat. Nos. 6,350,466 and 6,316,024). Where necessary, the composition can also include a solubilizing agent and a local anesthetic such as lidocaine to ease pain at the site of the injection. In addition, pulmonary administration can also be employed, e.g., by use of an inhaler or nebulizer, and formulation with an aerosolizing agent. See, e.g., U.S. Pat. Nos. 6,019,968, 5,985,320, 5,985,309, 5,934,272, 5,874,064, 5,855,913, 5,290,540, and 4,880,078; and PCT Publication Nos. WO 92/19244, WO 97/32572, WO 97/44013, WO 98/31346, and WO 99/66903.


A composition of the present disclosure can also be administered via one or more routes of administration using one or more of a variety of known methods. As will be appreciated by a skilled artisan, the route and/or mode of administration will vary depending upon the desired results. Selected routes of administration for CD2 binding molecules include intravenous, intramuscular, intradermal, intraperitoneal, subcutaneous, spinal or other general routes of administration, for example by injection or infusion. General administration can represent modes of administration other than enteral and topical administration, usually by injection, and includes, without limitation, intravenous, intramuscular, intraarterial, intrathecal, intracapsular, intraorbital, intracardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intraarticular, subcapsular, subarachnoid, intraspinal, epidural and intrasternal injection and infusion. Alternatively, a composition of the disclosure can be administered via a non-general route, such as a topical, epidermal or mucosal route of administration, for example, intranasally, orally, vaginally, rectally, sublingually or topically. In one embodiment, the CD2 binding molecule is administered by infusion. In another embodiment, the CD2 binding molecule is administered subcutaneously.


If the CD2 binding molecules are administered in a controlled release or sustained release system, a pump can be used to achieve controlled or sustained release (see Langer, supra; Sefton, 1987, CRC Crit. Ref Biomed. Eng. 14:20; Buchwald et al., 1980, Surgery 88:507; Saudek et al., 1989, N. Engl. J. Med. 321:574). Polymeric materials can be used to achieve controlled or sustained release of the therapies of the disclosure (see, e.g., Medical Applications of Controlled Release, Langer and Wise (eds.), CRC Pres., Boca Raton, Fla. (1974); Controlled Drug Bioavailability, Drug Product Design and Performance, Smolen and Ball (eds.), Wiley, New York (1984); Ranger and Peppas, 1983, J., Macromol. Sci. Rev. Macromol. Chem. 23:61; see also Levy et al., 1985, Science 228:190; During et al., 1989, Ann. Neurol. 25:351; Howard et al., 1989, J. Neurosurg. 71:105); U.S. Pat. Nos. 5,679,377; 5,916,597; 5,912,015; 5,989,463; 5,128,326; PCT Publication No. WO 99/15154; and PCT Publication No. WO 99/20253. Examples of polymers used in sustained release formulations include, but are not limited to, poly(2-hydroxy ethyl methacrylate), poly(methyl methacrylate), poly(acrylic acid), poly(ethylene-co-vinyl acetate), poly(methacrylic acid), polyglycolides (PLG), polyanhydrides, poly(N-vinyl pyrrolidone), poly(vinyl alcohol), polyacrylamide, poly(ethylene glycol), polylactides (PLA), poly(lactide-co-glycolides) (PLGA), and polyorthoesters. In one embodiment, the polymer used in a sustained release formulation is inert, free of leachable impurities, stable on storage, sterile, and biodegradable. A controlled or sustained release system can be placed in proximity of the prophylactic or therapeutic target, thus requiring only a fraction of the systemic dose (see, e.g., Goodson, in Medical Applications of Controlled Release, supra, vol. 2, pp. 115-138 (1984)).


Controlled release systems are discussed in the review by Langer (1990, Science 249:1527-1533). Any technique known to one of skill in the art can be used to produce sustained release formulations comprising one or more CD2 binding molecules of the disclosure. See, e.g., U.S. Pat. No. 4,526,938, PCT publication WO 91/05548, PCT publication WO 96/20698, Ning et al., 1996, Radiotherapy & Oncology 39:179-189, Song et al., 1995, PDA Journal of Pharmaceutical Science & Technology 50:372-397, Cleek et al., 1997, Pro. Intl Symp. Control. Rel. Bioact. Mater. 24:853-854, and Lam et al., 1997, Proc. Intl Symp. Control Rel. Bioact. Mater. 24:759-760.


If the CD2 binding molecules are administered topically, they can be formulated in the form of an ointment, cream, transdermal patch, lotion, gel, shampoo, spray, aerosol, solution, emulsion, or other form well-known to one of skill in the art. See, e.g., Remington's Pharmaceutical Sciences and Introduction to Pharmaceutical Dosage Forms, 19th ed., Mack Pub. Co., Easton, Pa. (1995). For non-sprayable topical dosage forms, viscous to semi-solid or solid forms comprising a carrier or one or more excipients compatible with topical application and having a dynamic viscosity, in some instances, greater than water are typically employed. Suitable formulations include, without limitation, solutions, suspensions, emulsions, creams, ointments, powders, liniments, salves, and the like, which are, if desired, sterilized or mixed with auxiliary agents (e.g., preservatives, stabilizers, wetting agents, buffers, or salts) for influencing various properties, such as, for example, osmotic pressure. Other suitable topical dosage forms include sprayable aerosol preparations where the active ingredient, in some instances, in combination with a solid or liquid inert carrier, is packaged in a mixture with a pressurized volatile (e.g., a gaseous propellant, such as freon) or in a squeeze bottle. Moisturizers or humectants can also be added to pharmaceutical compositions and dosage forms if desired. Examples of such additional ingredients are well-known.


If the compositions comprising the CD2 binding molecules are administered intranasally, the CD2 binding molecules can be formulated in an aerosol form, spray, mist or in the form of drops. In particular, prophylactic or therapeutic agents for use according to the present disclosure can be conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebulizer, with the use of a suitable propellant (e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas). In the case of a pressurized aerosol the dosage unit can be determined by providing a valve to deliver a metered amount. Capsules and cartridges (composed of, e.g., gelatin) for use in an inhaler or insufflator can be formulated containing a powder mix of the CD2 binding molecule and a suitable powder base such as lactose or starch.


The CD2 binding molecules of the disclosure can be administered in combination therapy regimens, as described in Section 7.18, infra.


In certain embodiments, the CD2 binding molecules can be formulated to ensure proper distribution in vivo. For example, the blood-brain barrier (BBB) excludes many highly hydrophilic compounds. To ensure that the therapeutic compounds of the disclosure cross the BBB (if desired), they can be formulated, for example, in liposomes. For methods of manufacturing liposomes, see, e.g., U.S. Pat. Nos. 4,522,811; 5,374,548; and 5,399,331. The liposomes can comprise one or more moieties which are selectively transported into specific cells or organs, thus enhance targeted drug delivery (see, e.g., Ranade, 1989, J. Clin. Pharmacol. 29:685). Exemplary targeting moieties include folate or biotin (see, e.g., U.S. Pat. No. 5,416,016 to Low et al.); mannosides (Umezawa et al., 1988, Biochem. Biophys. Res. Commun. 153:1038); antibodies (Bloeman et al., 1995, FEBS Lett. 357:140; Owais et al., 1995, Antimicrob. Agents Chemother. 39:180); surfactant protein A receptor (Briscoe et al., 1995, Am. J. Physiol. 1233:134); p 120 (Schreier et al., 1994, J. Biol. Chem. 269:9090); see also Keinanen and Laukkanen, 1994, FEBS Lett. 346:123; Killion and Fidler, 1994, Immunomethods 4:273.


When used in combination therapy, e.g., as described in Section 7.18, infra, a CD2 binding molecule and one or more additional agents can be administered to a subject in the same pharmaceutical composition. Alternatively, the CD2 binding molecule and the additional agent(s) of the combination therapies can be administered concurrently to a subject in separate pharmaceutical compositions.


The therapeutic methods described herein can further comprise carrying a “companion diagnostic” test whereby a sample from a subject who is a candidate for therapy with a CD2 binding molecule is tested for the expression of CD19. The companion diagnostic test can be performed prior to initiating therapy with a CD2 binding molecule and/or during a therapeutic regimen with a CD2 binding molecule to monitor the subject's continued suitability for CD2 binding molecule therapy. The agent used in the companion diagnostic can be the CD2 binding molecule itself or another diagnostic agent, for example a labeled monospecific antibody against CD19 or a nucleic acid probe to detect CD19 RNA. The sample that can be tested in a companion diagnostic assay can be any sample in which the cells targeted by the CD2 binding molecule can be present, from example a tumor (e.g., a solid tumor) biopsy, lymph, stool, urine, blood or any other bodily fluid that might contain circulating tumor cells.


7.17. Therapeutic Indications

The CD2 binding molecules of the disclosure can be used in the treatment of immune (e.g., autoimmune) and inflammatory disease as well as proliferative diseases such as cancer.


The Ig fusion proteins of the disclosure are particularly useful for the treatment of immune related disorders, for example an immune or inflammatory disorder. Examples of immune and inflammatory disorders which can benefit from treatment with the Ig fusion proteins of the disclosure include autoimmune disorders such as rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, Reiter's Syndrome, systemic lupus erythematosus, dermatomyositis, Sjogren's syndrome, lupus erythematosus, multiple sclerosis, myasthenia gravis, psoriasis, and transplant rejection, and inflammatory disorders such as Crohn's disease, lupus nephritis, ulcerative colitis, asthma, encephilitis, inflammatory bowel disease, chronic obstructive pulmonary disease (COPD), arthritis, and allergic disorders. Autoimmune disorders which can benefit from treatment with Ig fusion proteins of the disclosure can be, for example, autoimmune disorders characterized by infiltration of lymphocytes into dermal or epidermal tissues and/or characterized by increased T cell activation or abnormal antigen presentation.


The multispecific binding proteins of the disclosure are particularly useful to treat cancers, particularly those that express TAAs targeted by such multispecific binding proteins.


The MBMs targeting a TAA can be used in the treatment of any proliferative disorder (e.g., cancer) that expresses a TAA. In particular embodiments, the cancer is HER2+ cancer, acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), adrenocortical carcinoma, anal cancer, appendix cancer, astrocytoma, basal cell carcinoma, brain tumor, bile duct cancer, bladder cancer, bone cancer, breast cancer, bronchial tumor, Burkitt Lymphoma, carcinoma of unknown primary origin, cardiac tumor, cervical cancer, chordoma, chronic lymphocytic leukemia (CLL), chronic myelogenous leukemia (CML), chronic myeloproliferative neoplasm, colon cancer, colorectal cancer, craniopharyngioma, cutaneous T-cell lymphoma, ductal carcinoma, embryonal tumor, endometrial cancer, ependymoma, esophageal cancer, esthesioneuroblastoma, fibrous histiocytoma, Ewing sarcoma, eye cancer, germ cell tumor, gallbladder cancer, gastric cancer, gastrointestinal carcinoid tumor, gastrointestinal stromal tumor, gestational trophoblastic disease, glioma, head and neck cancer, hairy cell leukemia, hepatocellular cancer, histiocytosis, Hodgkin lymphoma, hypopharyngeal cancer, intraocular melanoma, islet cell tumor, Kaposi sarcoma, kidney cancer, Langerhans cell histiocytosis, laryngeal cancer, leukemia, lip and oral cavity cancer, liver cancer, lobular carcinoma in situ, lung cancer, lymphoma, macroglobulinemia, malignant fibrous histiocytoma, melanoma, Merkel cell carcinoma, mesothelioma, metastatic squamous neck cancer with occult primary, midline tract carcinoma involving NUT gene, mouth cancer, multiple endocrine neoplasia syndrome, multiple myeloma, mycosis fungoides, myelodysplastic syndrome, myelodysplastic/myeloproliferative neoplasm, nasal cavity and para-nasal sinus cancer, nasopharyngeal cancer, neuroblastoma, non-Hodgkin lymphoma, non-small cell lung cancer, oropharyngeal cancer, osteosarcoma, ovarian cancer, pancreatic cancer, papillomatosis, paraganglioma, parathyroid cancer, penile cancer, pharyngeal cancer, pheochromocytomas, pituitary tumor, pleuropulmonary blastoma, primary central nervous system lymphoma, prostate cancer, rectal cancer, renal cell cancer, renal pelvis and ureter cancer, retinoblastoma, rhabdoid tumor, salivary gland cancer, Sezary syndrome, skin cancer, small cell lung cancer, small intestine cancer, soft tissue sarcoma, spinal cord tumor, stomach cancer, T-cell lymphoma, teratoid tumor, testicular cancer, throat cancer, thymoma and thymic carcinoma, thyroid cancer, urethral cancer, uterine cancer, vaginal cancer, vulvar cancer, or Wilms tumor.


Table 18 below shows exemplary indications that MBMs (e.g., TBMs) targeting particular TAAs can be used against.









TABLE 18







Examples of Tumor-Associated Antigen Indications








Target
Exemplary Indication(s)





ADRB3
Ewing sarcoma


ALK
NSCLC, ALCL, IMT, neuroblastoma


B7H3
melanoma, osteosarcoma, leukemia, breast, prostate, ovarian, pancreatic,



colorectal cancers


BCMA
multiple myeloma, leukemia (e.g., acute lymphoblastic leukemia (“ALL”),



acute myeloid leukemia (“AML”), chronic lymphocytic leukemia (“CLL”),



chronic myeloid leukemia (“CML”) and hairy cell leukemia (“HCL”));



lymphoma (e.g., Hodgkin's lymphoma, non-Hodgkin's lymphoma, including



diffuse large B-cell lymphoma (“DLBCL”))


Cadherin 17
gastric, pancreatic, and colorectal adenocarcinomas


CAIX
clear-cell renal cell carcinoma, hypoxic solid tumors, head and neck



squamous carcinoma


CD123
leukemia (e.g., ALL, CLL, AML, CML, HCL); lymphoma (e.g., Hodgkin's



lymphoma, non-Hodgkin's lymphoma, e.g., DLBCL); multiple myeloma. In



a preferred embodiment, the indication is AML.


CD171
neuroblastoma, paraganglioma


CD179a
B cell malignancies


CD19
leukemia (e.g., ALL, CLL, AML, CML, HCL); lymphoma (e.g., Hodgkin's



lymphoma, non-Hodgkin's lymphoma, e.g., DLBCL); multiple myeloma.


CD20
leukemia (e.g., ALL, CLL, AML, CML, HCL); lymphoma (e.g., Hodgkin's



lymphoma, non-Hodgkin's lymphoma, e.g., DLBCL); multiple myeloma.


CD22
leukemia (e.g., ALL, CLL, AML, CML, HCL); lymphoma (e.g., Hodgkin's



lymphoma, non-Hodgkin's lymphoma, e.g., DLBCL); multiple myeloma;



lung cancer


CD24
ovarian, breast, prostate, bladder, renal, non-small cell carcinomas


CD30
anaplastic large cell lymphoma, embryonal carcinoma, Hodgkin Lymphoma


CD32b
B cell malignancies, gastric, pancreatic, esophageal, glioblastoma, breast,



colorectal


CD33
leukemia (e.g., ALL, CLL, AML, CML, HCL); lymphoma (e.g., Hodgkin's



lymphoma, non-Hodgkin's lymphoma, e.g., DLBCL); multiple myeloma. In



a preferred embodiment, the indication is AML.


CD38
leukemia (e.g., ALL, CLL, AML, CML, HCL); lymphoma (e.g., Hodgkin's



lymphoma, non-Hodgkin's lymphoma, e.g., DLBCL); multiple myeloma


CD44v6
colon cancer, head and neck small cell carcinoma


CD97
B cell malignancies, gastric, pancreatic, esophageal, glioblastoma, breast,



colorectal


CEA
colorectal carcinoma, gastric carcinoma, pancreatic carcinoma, lung



cancer, breast cancer, medullary thyroid carcinoma


CLDN6
ovarian, breast, lung cancer


CLL-1
leukemia (e.g., ALL, CLL, AML, CML, HCL); lymphoma (e.g., Hodgkin's



lymphoma, non-Hodgkin's lymphoma, e.g., DLBCL); multiple myeloma. In



a preferred embodiment, the indication is AML.


CS1
multiple myeloma


EGFR
squamous cell carcinoma of lung, anal cancer, glioblastoma, epithelian



tumors of head and neck, colon cancer


EGFRvIII
Glioblastoma


EPCAM
gastrointestestinal carcinoma, colorectal cancer


EphA2
kaposi's sarcoma, glioblastoma, solid tumors, glioma


Ephrin B2
thyroid cancer, breast cancer, malignant melanoma


ERBB2
breast, ovarian, gastric cancers, lung adenocarcinoma, non-small cell lung


(Her2/neu)
cancer, uterine cancer, uterine serous endometrial carcinoma, salivary duct



carcinoma,


FAP
pancreatic cancer, colorectal cancer, metastasis, epithelial cancers, soft



tissue sarcomas


FCRL5
multiple myeloma


FLT3
leukemia (e.g., ALL, CLL, AML, CML, HCL); lymphoma (e.g., Hodgkin's



lymphoma, non-Hodgkin's lymphoma, e.g., DLBCL); multiple myeloma. In



a preferred embodiment, the indication is AML.


Folate receptor
ovarian, breast, renal, lung, colorectal, brain cancers


alpha


Folate receptor
ovarian cancer


beta


Fucosyl GM1
AML, myeloma


GD2
malignant melanoma, neuroblastoma


GD3
Melanoma


GloboH
ovarian, gastric, prostate, lung, breast, and pancreatic cancers


gp100
Melanoma


GPNMB
breast cancer, head and neck cancers


GPR20
GIST


GPR64
Ewing sarcoma, prostate, kidney and lung sarcomas


GPRC5D
multiple myeloma


HAVCR1
renal cancer


HER3
colon and gastric cancers


HMWMAA
melanoma, glioblastoma, breast cancer


IGF-I receptor
breast, prostate, lung cancers


IL-11Ra
papillary thyroid cancer, osteosarcoma, colorectal adenocarcinoma,



lymphocytic leukemia


IL-13Ra2
renal cell carcinoma, prostate cancer, gliomas, head and neck cancer,



astrocytoma


KIT
myeloid leukemia, kaposi's sarcoma, erythroleukemia, gastrointestinal



stromal tumors


KLRG2
breast cancers, lung cancers and ovarian cancers.


LewisY
squamous cell lung carcinoma, lung adenocarcinoma, ovarian carcinoma,



and colorectal adenocarcinoma


LMP2
prostate cancer, Hodgkin's lymphoma, nasopharyngeal carcinoma


LRP6
breast cancer


LY6K
breast, lung, ovarian, and cervical cancer


LYPD8
colorectal and gastric cancers


Mesothelin
mesothelioma, pancreatic cancer, ovarian cancer, stomach cancer, lung



cancer, endometrial cancer.


MUC1
breast and ovarian cancers, lung, stomach, pancreatic, prostate cancers


NCAM
melanoma, Wilms' tumor, small cell lung cancer, neuroblastoma, myeloma,



paraganglioma, pancreatic acinar cell carcinoma, myeloid leukemia


NY-BR-1
breast cancer


o-acetyl GD2
neuroblastoma, melanoma


OR51E2
prostate cancer


PANX3
osteosarcoma


PLAC1
hepatocellular carcinoma


Polysialic acid
small cell lung cancer


PDGFR-beta
myelomonocytic leukemia, chronic myeloid leukemia, acute myelogenous



leukemia, acute lymphoblastic leukemia


PRSS21
colon cancer, testicular cancer, ovarian cancer


PSCA
prostate cancer, gastric and bladder cancers


PSMA
prostate cancer,


ROR1
metastatic cancers, chronic lymphocytic leukemia, solid tumors in lung,



breast, ovarian, colon, pancreatic, sarcoma


SLC34A2
bladder cancer


SLC39A6
breast cancer, esophageal cancer


SLITRK6
breast cancer, urothelial cancer, lung cancer


SSEA-4
breast cancer, cancer stem cells, epithelial ovarian carcinoma


TACSTD2
carcinomas, e.g., non-small-cell lung cancer


TAG72
ovarian, breast, colon, lung, pancreatic cancers, gastric cancer


TEM1/CD248
colorectal cancer


TEM7R
colorectal cancer


Tn
colorectal, breast cancers, cervical, lung, stomach cancers


TSHR
thyroid cancer, multiple myeloma


Tyrosinase
prostate cancer, melanoma


UPK2
bladder cancer


VEGFR2
ovarian and pancreatic cancers, renal cell carcinoma, colorectal cancer,



medullary thyroid carcinoma









Accordingly, the present disclosure provides methods of treating cancer comprising administering to a subject suffering from cancer a MBM having a TAA ABM (e.g., ABM2 in the case of a BBM or ABM3 in the case of a TBM) that binds to a TAA expressed on that type of cancer. In some embodiments, a MBM that targets a TAA identified in Table 18 can be administered to a subject afflicted with a cancer that Table 18 indicates expressed the TAA. By way of example and not limitation, a MBM that targets EPCAM or folate receptor alpha can be administered to a subject afflicted with colorectal cancer, a MBM that targets BCMA or CD19 can be administered to a subject afflicted with a blood cancer such as multiple myeloma, a MBM that targets PSCA or PCMA can be administered a subject afflicted with prostate cancer, a MBM that targets tyrosinase or GP3 can be administered to a subject afflicted with melanoma, a TBM that targets CD33, CLL-1 or FLT3 can be administered to a subject afflicted with a blood cancer such as acute myeloid leukemia.


7.18. Combination Therapy

A CD2 binding molecule of the disclosure can be used in combination other known agents and therapies. For example, the CD2 binding molecules can be used in treatment regimens in combination with surgery, chemotherapy, antibodies, radiation, peptide vaccines, steroids, cytoxins, proteasome inhibitors, immunomodulatory drugs (e.g., IMiDs), BH3 mimetics, cytokine therapies, stem cell transplant or any combination thereof.


For convenience, an agent that is used in combination with a CD2 binding molecule is referred to herein as an “additional” agent.


Administered “in combination,” as used herein, means that two (or more) different treatments are delivered to the subject during the course of the subject's affliction with the disorder, e.g., the two or more treatments are delivered after the subject has been diagnosed with the disorder and before the disorder has been cured or eliminated or treatment has ceased for other reasons. In some embodiments, the delivery of one treatment is still occurring when the delivery of the second begins, so that there is overlap in terms of administration. This is sometimes referred to herein as “simultaneous” or “concurrent delivery”. For example, each therapy can be administered to a subject at the same time or sequentially in any order at different points in time; however, if not administered at the same time, they should be administered sufficiently close in time so as to provide the desired therapeutic effect.


A CD2 binding molecule and one or more additional agents can be administered simultaneously, in the same or in separate compositions, or sequentially. For sequential administration, the CD2 binding molecule can be administered first, and the additional agent can be administered second, or the order of administration can be reversed.


The CD2 binding molecule and the additional agent(s) can be administered to a subject in any appropriate form and by any suitable route. In some embodiments, the routes of administration are the same. In other embodiments the routes of administration are different.


In other embodiments, the delivery of one treatment ends before the delivery of the other treatment begins.


In some embodiments of either case, the treatment is more effective because of combined administration. For example, the second treatment is more effective, e.g., an equivalent effect is seen with less of the second treatment, or the second treatment reduces symptoms to a greater extent, than would be seen if the second treatment were administered in the absence of the first treatment, or the analogous situation is seen with the first treatment. In some embodiments, delivery is such that the reduction in a symptom, or other parameter related to the disorder is greater than what would be observed with one treatment delivered in the absence of the other. The effect of the two treatments can be partially additive, wholly additive, or greater than additive. The delivery can be such that an effect of the first treatment delivered is still detectable when the second is delivered.


The CD2 binding molecules and/or additional agents can be administered during periods of active disorder, or during a period of remission or less active disease. A CD2 binding molecule can be administered before the treatment with the additional agent(s), concurrently with the treatment with the additional agent(s), post-treatment with the additional agent(s), or during remission of the disorder.


When administered in combination, the CD2 binding molecule and/or the additional agent(s) can be administered in an amount or dose that is higher, lower or the same than the amount or dosage of each agent used individually, e.g., as a monotherapy.


The additional agent(s) of the combination therapies of the disclosure can be administered to a subject concurrently. The term “concurrently” is not limited to the administration of therapies (e.g., prophylactic or therapeutic agents) at exactly the same time, but rather it is meant that a pharmaceutical composition comprising a CD2 binding molecule is administered to a subject in a sequence and within a time interval such that the molecules of the disclosure can act together with the additional therapy(ies) to provide an increased benefit than if they were administered otherwise. For example, each therapy can be administered to a subject at the same time or sequentially in any order at different points in time; however, if not administered at the same time, they should be administered sufficiently close in time so as to provide the desired therapeutic or prophylactic effect. Each therapy can be administered to a subject separately, in any appropriate form and by any suitable route.


The CD2 binding molecule and the additional agent(s) can be administered to a subject by the same or different routes of administration.


The CD2 binding molecules and the additional agent(s) can be cyclically administered. Cycling therapy involves the administration of a first therapy (e.g., a first prophylactic or therapeutic agent) for a period of time, followed by the administration of a second therapy (e.g., a second prophylactic or therapeutic agent) for a period of time, optionally, followed by the administration of a third therapy (e.g., prophylactic or therapeutic agent) for a period of time and so forth, and repeating this sequential administration, i.e., the cycle in order to reduce the development of resistance to one of the therapies, to avoid or reduce the side effects of one of the therapies, and/or to improve the efficacy of the therapies.


In certain instances, the one or more additional agents, are other anti-cancer agents, anti-allergic agents, anti-nausea agents (or anti-emetics), pain relievers, cytoprotective agents, and combinations thereof.


In one embodiment, a CD2 binding molecule can be used in combination with an anti-cancer agent (e.g., a chemotherapeutic agent). Exemplary chemotherapeutic agents include an anthracycline (e.g., doxorubicin (e.g., liposomal doxorubicin)), a vinca alkaloid (e.g., vinblastine, vincristine, vindesine, vinorelbine), an alkylating agent (e.g., cyclophosphamide, decarbazine, melphalan, ifosfamide, temozolomide), an immune cell antibody (e.g., alemtuzumab, gemtuzumab, rituximab, tositumomab, obinutuzumab, ofatumumab, daratumumab, elotuzumab), an antimetabolite (including, e.g., folic acid antagonists, pyrimidine analogs, purine analogs and adenosine deaminase inhibitors (e.g., fludarabine)), an mTOR inhibitor, a TNFR glucocorticoid induced TNFR related protein (GITR) agonist, a proteasome inhibitor (e.g., aclacinomycin A, gliotoxin or bortezomib), an immunomodulator such as thalidomide or a thalidomide derivative (e.g., lenalidomide).


General chemotherapeutic agents considered for use in combination therapies include anastrozole (Arimidex®), bicalutamide (Casodex®), bleomycin sulfate (Blenoxane®), busulfan (Myleran®), busulfan injection (Busulfex®), capecitabine (Xeloda®), N4-pentoxycarbonyl-5-deoxy-5-fluorocytidine, carboplatin (Paraplatin®), carmustine (BiCNU®), chlorambucil (Leukeran®), cisplatin (Platinol®), cladribine (Leustatin®), cyclophosphamide (Cytoxan® or Neosar®), cytarabine, cytosine arabinoside (Cytosar-U®), cytarabine liposome injection (DepoCyt®), dacarbazine (DTIC-Dome®), dactinomycin (Actinomycin D, Cosmegan), daunorubicin hydrochloride (Cerubidine®), daunorubicin citrate liposome injection (DaunoXome®), dexamethasone, docetaxel (Taxotere®), doxorubicin hydrochloride (Adriamycin®, Rubex®), etoposide (Vepesid®), fludarabine phosphate (Fludara®), 5-fluorouracil (Adrucil®, Efudex®), flutamide (Eulexin®), tezacitibine, Gemcitabine (difluorodeoxycitidine), hydroxyurea (Hydrea®), Idarubicin (Idamycin®), ifosfamide (IFEX®), irinotecan (Camptosar®), L-asparaginase (ELSPAR®), leucovorin calcium, melphalan (Alkeran®), 6-mercaptopurine (Purinethol®), methotrexate (Folex®), mitoxantrone (Novantrone®), mylotarg, paclitaxel (Taxol®), phoenix (Yttrium90/MX-DTPA), pentostatin, polifeprosan 20 with carmustine implant (Gliadel®), tamoxifen citrate (Nolvadex®), teniposide (Vumon®), 6-thioguanine, thiotepa, tirapazamine (Tirazone®), topotecan hydrochloride for injection (Hycamptin®), vinblastine (Velban®), vincristine (Oncovin®), and vinorelbine (Navelbine®).


Anti-cancer agents of particular interest for combinations with the CD2 binding molecules of the present disclosure include: anthracyclines; alkylating agents; antimetabolites; drugs that inhibit either the calcium dependent phosphatase calcineurin or the p70S6 kinase FK506) or inhibit the p70S6 kinase; mTOR inhibitors; immunomodulators; anthracyclines; vinca alkaloids; proteasome inhibitors; GITR agonists (e.g., GWN323); protein tyrosine phosphatase inhibitors; a CDK4 kinase inhibitor; a BTK inhibitor; a MKN kinase inhibitor; a DGK kinase inhibitor; an oncolytic virus; a BH3 mimetic; and cytokine therapies.


Exemplary alkylating agents include, without limitation, nitrogen mustards, ethylenimine derivatives, alkyl sulfonates, nitrosoureas and triazenes): uracil mustard (Aminouracil Mustard®, Chlorethaminacil®, Demethyldopan®, Desmethyldopan®, Haemanthamine®, Nordopan®, Uracil nitrogen Mustard®, Uracillost®, Uracilmostaza®, Uramustin®, Uramustine®), chlormethine (Mustargen®), cyclophosphamide (Cytoxan®, Neosar®, Clafen®, Endoxan®, Procytox®, Revimmune™), ifosfamide (Mitoxana®), melphalan (Alkeran®), Chlorambucil (Leukeran®), pipobroman (Amedel®, Vercyte®), triethylenemelamine (Hemel®, Hexalen®, Hexastat®), triethylenethiophosphoramine, Temozolomide (Temodar®), thiotepa (Thioplex®), busulfan (Busilvex®, Myleran®), carmustine (BiCNU®), lomustine (CeeNU®), streptozocin (Zanosar®), and Dacarbazine (DTIC-Dome®). Additional exemplary alkylating agents include, without limitation, Oxaliplatin (Eloxatin®); Temozolomide (Temodar® and Temodal®); Dactinomycin (also known as actinomycin-D, Cosmegen®); Melphalan (also known as L-PAM, L-sarcolysin, and phenylalanine mustard, Alkeran®); Altretamine (also known as hexamethylmelamine (HMM), Hexalen®); Carmustine (BiCNU®); Bendamustine (Treanda®); Busulfan (Busulfex® and Myleran®); Carboplatin (Paraplatin®); Lomustine (also known as CCNU, CeeNU®); Cisplatin (also known as CDDP, Platinol® and Platinol®-AQ); Chlorambucil (Leukeran®); Cyclophosphamide (Cytoxan® and Neosar®); Dacarbazine (also known as DTIC, DIC and imidazole carboxamide, DTIC-Dome®); Altretamine (also known as hexamethylmelamine (HMM), Hexalen®); Ifosfamide (Ifex®); Prednumustine; Procarbazine (Matulane®); Mechlorethamine (also known as nitrogen mustard, mustine and mechloroethamine hydrochloride, Mustargen®); Streptozocin (Zanosar®); Thiotepa (also known as thiophosphoamide, TESPA and TSPA, Thioplex®); Cyclophosphamide (Endoxan®, Cytoxan®, Neosar®, Procytox®, Revimmune®); and Bendamustine HCl (Treanda®).


Exemplary mTOR inhibitors include, e.g., temsirolimus; ridaforolimus (formally known as deferolimus, (1R,2R,4S)-4-[(2R)-2 [(1R,9S,12S,15R,16E,18R,19R,21R,23S,24E,26E,28Z,30S,32S,35R)-1,18-dihydroxy-19,30-dimethoxy-15,17,21,23,29,35-hexamethyl-2,3,10,14,20-pentaoxo-11,36-dioxa-4-azatricyclo[30.3.1.04,9]hexatriaconta-16,24,26,28-tetraen-12-yl]propyl]-2-methoxycyclohexyl dimethylphosphinate, also known as AP23573 and MK8669, and described in PCT Publication No. WO 03/064383); everolimus (Afinitor® or RAD001); rapamycin (AY22989, Sirolimus®); simapimod (CAS 164301-51-3); emsirolimus, (5-{2,4-Bis[(3S)-3-methylmorpholin-4-yl]pyrido[2,3-d]pyrimidin-7-yl}-2-methoxyphenyl)methanol (AZD8055); 2-Amino-8-[trans-4-(2-hydroxyethoxy)cyclohexyl]-6-(6-methoxy-3-pyridinyl)-4-methyl-pyrido[2,3-d]pyrimidin-7(8H)-one (PF04691502, CAS 1013101-36-4); and N2-[1,4-dioxo-4-[[4-(4-oxo-8-phenyl-4H-1-benzopyran-2-yl)morpholinium-4-yl]methoxy]butyl]-L-arginylglycyl-L-α-aspartylL-serine- (SEQ ID NO: 1005), inner salt (SF1126, CAS 936487-67-1), and XL765.


Exemplary immunomodulators include, e.g., afutuzumab (available from Roche®); pegfilgrastim (Neulasta®); lenalidomide (CC-5013, Revlimid®); IMIDs (such as thalidomide (Thalomid®), lenalidomide, pomalidomide, and apremilast), actimid (CC4047); and IRX-2 (mixture of human cytokines including interleukin 1, interleukin 2, and interferon γ, CAS 951209-71-5, available from IRX Therapeutics).


Exemplary anthracyclines include, e.g., doxorubicin (Adriamycin® and Rubex®); bleomycin (Ienoxane®); daunorubicin (dauorubicin hydrochloride, daunomycin, and rubidomycin hydrochloride, Cerubidine®); daunorubicin liposomal (daunorubicin citrate liposome, DaunoXome®); mitoxantrone (DHAD, Novantrone®); epirubicin (Ellence™); idarubicin (Idamycin®, Idamycin PFS®); mitomycin C (Mutamycin®); geldanamycin; herbimycin; ravidomycin; and desacetylravidomycin.


Exemplary vinca alkaloids include, e.g., vinorelbine tartrate (Navelbine®), Vincristine (Oncovin®), and Vindesine (Eldisine®)); vinblastine (also known as vinblastine sulfate, vincaleukoblastine and VLB, Alkaban-AQ® and Velban®); and vinorelbine (Navelbine®).


Exemplary proteasome inhibitors include bortezomib (Velcade®); carfilzomib (PX-171-007, (S)-4-Methyl-N—((S)-1-(((S)-4-methyl-1-((R)-2-methyloxiran-2-yl)-1-oxopentan-2-yl)amino)-1-oxo-3-phenylpropan-2-yl)-2-((S)-2-(2-morpholinoacetamido)-4-phenylbutanamido)-pentanamide); marizomib (NPI-0052); ixazomib citrate (MLN-9708); delanzomib (CEP-18770); and O-Methyl-N-[(2-methyl-5-thiazolyl)carbonyl]-L-seryl-O-methyl-N-[(1S)-2-[(2R)-2-methyl-2-oxiranyl]-2-oxo-1-(phenylmethyl)ethyl]-L-serinamide (ONX-0912).


Exemplary BH3 mimetics include venetoclax, ABT-737 (4-{4-[(4′-Chloro-2-biphenylyl)methyl]-1-piperazinyl}-N-[(4-{[(2R)-4-(dimethylamino)-1-(phenylsulfanyl)-2-butanyl]amino}-3-nitrophenyl)sulfonyl]benzamide and navitoclax (formerly ABT-263).


Exemplary cytokine therapies include interleukin 2 (IL-2) and interferon-alpha (IFN-alpha).


In certain aspects, “cocktails” of different chemotherapeutic agents are administered as the additional agent(s).


In some embodiments, a CD2 binding molecule can be used in combination with a member of the thalidomide class of compounds. Members of the thalidomide class of compounds include, but are not limited to, lenalidomide (CC-5013), pomalidomide (CC-4047 or ACTIMID), thalidomide, and salts and derivatives thereof. In some embodiments, the CD2 binding molecule is used in combination with a mixture of one, two, three, or more members of the thalidomide class of compounds. Thalidomide analogs and immunomodulatory properties of thalidomide analogs are described in Bodera and Stankiewicz, Recent Pat Endocr Metab Immune Drug Discov. 2011 September; 5(3):192-6. The structural complex of thalidomide analogs and the E3 ubiquitin is described in Gandhi et al., Br J Haematol. 2014 March; 164(6):811-21. The modulation of the E3 ubiquitin ligase by thalidomide analogs is described in Fischer et al., Nature. 2014 Aug. 7; 512(7512):49-53.


In some embodiments, the member of the thalidomide class of compounds comprises a compound of Formula (I):




embedded image


or a pharmaceutically acceptable salt, ester, hydrate, solvate, or tautomer thereof, where:


X is O or S;


R1 is C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C1-C6 heteroalkyl, carbocyclyl, heterocyclyl, aryl, or heteroaryl, each of which is optionally substituted by one or more R4;


each of R2a and R2b is independently hydrogen or C1-C6 alkyl; or R2a and R2b together with the carbon atom to which they are attached form a carbonyl group or a thiocarbonyl group;


each of R3 is independently C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C1-C6 heteroalkyl, halo, cyano, —C(O)RA, —C(O)ORB, —ORB, —N(RC)(RD), —C(O)N(RC)(RD), —N(RC)C(O)RA, —S(O)xRE, —S(O)xN(RC)(RD), or —N(RC)S(O)xRE, where each alkyl, alkenyl, alkynyl, and heteroalkyl is independently and optionally substituted with one or more R6;


each R4 is independently C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C1-C6 heteroalkyl, halo, cyano, oxo, —C(O)RA, —C(O)ORB, —ORB, —N(RC)(RD), —C(O)N(RC)(RD), —N(RC)C(O)RA, —S(O)xRE, —S(O)xN(RC)(RD), —N(RC)S(O)xRE, carbocyclyl, heterocyclyl, aryl, or heteroaryl, where each alkyl, alkenyl, alkynyl, heteroalkyl, carbocyclyl, heterocyclyl, aryl, and heteroaryl is independently and optionally substituted with one or more R7;


each of RA, RB, RC, RD, and RE is independently hydrogen or C1-C6 alkyl;


each R6 is independently C1-C6 alkyl, oxo, cyano, —ORB, —N(RC)(RD), —C(O)N(RC)(RD), —N(RC)C(O)RA, aryl, or heteroaryl, where each aryl and heteroaryl is independently and optionally substituted with one or more R8;


each R7 is independently halo, oxo, cyano, —ORB, —N(RC)(RD), —C(O)N(RC)(RD), or —N(RC)C(O)RA;


each R8 is independently C1-C6 alkyl, cyano, —ORB, —N(RC)(RD), —C(O)N(RC)(RD), or —N(RC)C(O)RA;


n is 0, 1, 2, 3 or 4; and


X is 0, 1, or 2.


In some embodiments, X is 0.


In some embodiments, R1 is heterocyclyl. In some embodiments, R1 is a 6-membered heterocyclyl or a 5-membered heterocyclyl. In some embodiments, R1 is a nitrogen-containing heterocyclyl. In some embodiments, R1 is piperidinyl (e.g., piperidine-2,6-dionyl).


In some embodiments, each of R2a and R2b is independently hydrogen. In some embodiments, R2a and R2b together with the carbon to which they are attached form a carbonyl group.


In some embodiments, R3 is C1-C6 heteroalkyl, —N(RC)(RD) or —N(RC)(O)RA. In some embodiments, R3 is C1-C6 heteroalkyl (e.g., CH2NHC(O)CH2-phenyl-t-butyl), —N(RC)(RD) (e.g., NH2), or —N(RC)(O)RA (e.g., NHC(O)CH3).


In an embodiment, X is O. In an embodiment, R1 is heterocyclyl (e.g., piperidine-2,6-dionyl). In an embodiment, each of R2a and R2b is independently hydrogen. In an embodiment, n is 1. In an embodiment, R3 is —N(RC)(RD) (e.g., —NH2). In an embodiment, the compound comprises lenalidomide, e.g., 3-(4-amino-1-oxoisoindolin-2-yl)piperidine-2,6-dione, or a pharmaceutically acceptable salt thereof. In an embodiment, the compound is lenalidomide, e.g., according to the following formula:




embedded image


In an embodiment, X is O. In an embodiment, R1 is heterocyclyl (e.g., piperidinyl-2,6-dionyl). In some embodiments, R2a and R2b together with the carbon to which they are attached form a carbonyl group. In an embodiment, n is 1. In an embodiment, R3 is —N(RC)(RD) (e.g., —NH2). In an embodiment, the compound comprises pomalidomide, e.g., 4-amino-2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione, or a pharmaceutically acceptable salt thereof. In an embodiment, the compound is pomalidomide, e.g., according to the following formula:




embedded image


In an embodiment, X is O. In an embodiment, R1 is heterocyclyl (e.g., piperidinyl-2,6-dionyl). In an embodiment, R2a and R2b together with the carbon to which they are attached form a carbonyl group. In an embodiment, n is 0. In an embodiment, the compound comprises thalidomide, e.g., 2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione, or a pharmaceutically acceptable salt thereof. In an embodiment, the product is thalidomide, e.g., according to the following formula:




embedded image


In an embodiment, X is O. In an embodiment, R1 is heterocyclyl (e.g., piperidine-2,6-dionyl). In an embodiment, each of R2a and R2b is independently hydrogen. In an embodiment, n is 1. In an embodiment, R3 is C1-C6 heteroalkyl (e.g., CH2NHC(O)CH2-phenyl-t-butyl) In an embodiment, the compound comprises 2-(4-(tert-butyl)phenyl)-N-((2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-5-yl)methyl)acetamide, or a pharmaceutically acceptable salt thereof. In an embodiment, the compound has the structure as shown in the following formula:




embedded image


In some embodiments, the compound is a compound of Formula (I-a):




embedded image


or a pharmaceutically acceptable salt, ester, hydrate, or tautomer thereof, where:


Ring A is carbocyclyl, heterocyclyl, aryl, or heteroaryl, each of which optionally substituted with one or more R4;


M is absent, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, or C1-C6 heteroalkyl, where each alkyl, alkenyl, alkynyl, and heteroalkyl is optionally substituted with one or more R4;


each of R2a and R2b is independently hydrogen or C1-C6 alkyl; or R2a and R2b together with the carbon atom to which they are attached to form a carbonyl group or thiocarbonyl group;


R3a is hydrogen, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C1-C6 heteroalkyl, halo, cyano, —C(O)RA, —C(O)ORB, —ORB, —N(RC)(RD), —C(O)N(RC)(RD), —N(RC)C(O)RA, —S(O)xRE, —S(O)xN(RC)(RD), or —N(RC)S(O)xRE, where each alkyl, alkenyl, alkynyl, and heteroalkyl is optionally substituted with one or more R6;


each of R3 is independently C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C1-C6 heteroalkyl, halo, cyano, —C(O)RA, —C(O)ORB, —ORB, —N(RC)(RD), —C(O)N(RC)(RD), —N(RC)C(O)RA, —S(O)xRE, —S(O)xN(RC)(RD), or —N(R9S(O)xRE, where each alkyl, alkenyl, alkynyl, and heteroalkyl is independently and optionally substituted with one or more R6;


each R4 is independently C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C1-C6 heteroalkyl, halo, cyano, oxo, —C(O)RA, —C(O)ORB, —ORB, —N(RC)(RD), —C(O)N(RC)(RD), —N(RC)C(O)RA, S(O)xRE, —S(O)xN(RC)(RD), —N(RC)S(O)xRE, carbocyclyl, heterocyclyl, aryl, or heteroaryl, where each alkyl, alkenyl, alkynyl, carbocyclyl, heterocyclyl, aryl, or heteroaryl is independently and optionally substituted with one or more R7;


each of RA, RB, RC, RD, and RE is independently hydrogen or C1-C6 alkyl;


each R6 is independently C1-C6 alkyl, oxo, cyano, —ORB, —N(RC)(RD), —C(O)N(RC)(RD), —N(RC)C(O)RA, aryl, or heteroaryl, where each aryl or heteroaryl is independently and optionally substituted with one or more R8;


each R7 is independently halo, oxo, cyano, —ORB, —N(RC)(RD), —C(O)N(RC)(RD), or —N(RC)C(O)RA;


each R8 is independently C1-C6 alkyl, cyano, —ORB, —N(RC)(RD), —C(O)N(RC)(RD), or —N(RC)C(O)RA;


n is 0, 1, 2, or 3;


o is 0, 1, 2, 3, 4, or 5; and


x is 0, 1, or 2.


In some embodiments, X is O.


In some embodiments, M is absent.


In some embodiments, Ring A is heterocyclyl. In some embodiments, Ring A is heterocyclyl, e.g., a 6-membered heterocyclyl or a 5-membered heterocyclyl. In some embodiments, Ring A is a nitrogen-containing heterocyclyl. In some embodiments, Ring A is piperidinyl (e.g., piperidine-2,6-dionyl).


In some embodiments, M is absent and Ring A is heterocyclyl (e.g., piperidinyl, e.g., piperidine-2,6-dionyl).


In some embodiments, each of R2a and R2b is independently hydrogen. In some embodiments, R2a and R2b together with the carbon to which they are attached form a carbonyl group.


In some embodiments, R3a is hydrogen, —N(RC)(RD) or —N(RC)(O)RA. In some embodiments, R3a is hydrogen. In some embodiments, R3a is —N(RC)(RD) (e.g., —NH2). In some embodiments, R3a is —N(RC)(O)RA (e.g, NHC(O)CH3).


In some embodiments, R3 is C1-C6 heteroalkyl (e.g., CH2NHC(O)CH2-phenyl-t-butyl). In some embodiments, n is 0 or 1. In some embodiments, n is O. In some embodiments, n is 1.


The compound can comprise one or more chiral centers or exist as one or more stereoisomers. In some embodiments, the compound comprises a single chiral center and is a mixture of stereoisomers, e.g., an R stereoisomer and an S stereoisomer. In some embodiments, the mixture comprises a ratio of R stereoisomers to S stereoisomers, for example, about a 1:1 ratio of R stereoisomers to S stereoisomers (i.e., a racemic mixture). In some embodiments, the mixture comprises a ratio of R stereoisomers to S stereoisomers of about 51:49, about 52: 48, about 53:47, about 54:46, about 55:45, about 60:40, about 65:35, about 70:30, about 75:25, about 80:20, about 85:15, about 90:10, about 95:5, or about 99:1. In some embodiments, the mixture comprises a ratio of S stereoisomers to R stereoisomers of about 51:49, about 52: 48, about 53:47, about 54:46, about 55:45, about 60:40, about 65:35, about 70:30, about 75:25, about 80:20, about 85:15, about 90:10, about 95:5, or about 99:1. In some embodiments, the compound is a single stereoisomer of Formula (I) or Formula (I-a), e.g., a single R stereoisomer or a single S stereoisomer.


In some embodiments, the CD2 binding molecule is administered in combination with a kinase inhibitor. In one embodiment, the kinase inhibitor is a PI3-kinase inhibitor, e.g., CLR457, BGT226, or BYL719. In one embodiment, the kinase inhibitor is a CDK4 inhibitor, e.g., a CDK4 inhibitor described herein, e.g., a CDK4/6 inhibitor, such as, e.g., 6-Acetyl-8-cyclopentyl-5-methyl-2-(5-piperazin-1-yl-pyridin-2-ylamino)-8H-pyrido[2,3-d]pyrimidin-7-one, hydrochloride (also referred to as palbociclib or PD0332991). In one embodiment, the kinase inhibitor is a BTK inhibitor, e.g., a BTK inhibitor described herein, such as, e.g., ibrutinib. In one embodiment, the kinase inhibitor is an mTOR inhibitor, e.g., an mTOR inhibitor described herein, such as, e.g., rapamycin, a rapamycin analog, OSI-027. The mTOR inhibitor can be, e.g., an mTORC1 inhibitor and/or an mTORC2 inhibitor, e.g., an mTORC1 inhibitor and/or mTORC2 inhibitor described herein. In one embodiment, the kinase inhibitor is a MNK inhibitor, e.g., a MNK inhibitor described herein, such as, e.g., 4-amino-5-(4-fluoroanilino)-pyrazolo[3,4-d]pyrimidine. The MNK inhibitor can be, e.g., a MNK1a, MNK1b, MNK2a and/or MNK2b inhibitor. In one embodiment, the kinase inhibitor is a dual PI3K/mTOR inhibitor described herein, such as, e.g., PF-04695102. In one embodiment, the kinase inhibitor is a DGK inhibitor, e.g., a DGK inhibitor described herein, such as, e.g., DGKinh1 (D5919) or DGKinh2 (D5794).


In one embodiment, the kinase inhibitor is a BTK inhibitor selected from ibrutinib (PCI-32765); GDC-0834; RN-486; CGI-560; CGI-1764; HM-71224; CC-292; ONO-4059; CNX-774; and LFM-A13. In an embodiment, the BTK inhibitor does not reduce or inhibit the kinase activity of interleukin-2-inducible kinase (ITK), and is selected from GDC-0834; RN-486; CGI-560; CGI-1764; HM-71224; CC-292; ONO-4059; CNX-774; and LFM-A13.


In one embodiment, the kinase inhibitor is a BTK inhibitor, e.g., ibrutinib (PCI-32765). In some embodiments, a CD2 binding molecule is administered to a subject in combination with a BTK inhibitor (e.g., ibrutinib). In embodiments, a CD2 binding molecule is administered to a subject in combination with ibrutinib (also called PCI-32765) (e.g., to a subject having CLL, mantle cell lymphoma (MCL), or small lymphocytic lymphoma (SLL). For example, the subject can have a deletion in the short arm of chromosome 17 (del(17p), e.g., in a leukemic cell). In other examples, the subject does not have a del(17p). In some embodiments, the subject has relapsed CLL or SLL, e.g., the subject has previously been administered a cancer therapy (e.g., previously been administered one, two, three, or four prior cancer therapies). In some embodiments, the subject has refractory CLL or SLL. In other embodiments, the subject has follicular lymphoma, e.g., relapse or refractory follicular lymphoma. In some embodiments, ibrutinib is administered at a dosage of about 300-600 mg/day (e.g., about 300-350, 350-400, 400-450, 450-500, 500-550, or 550-600 mg/day, e.g., about 420 mg/day or about 560 mg/day), e.g., orally. In some embodiments, the ibrutinib is administered at a dose of about 250 mg, 300 mg, 350 mg, 400 mg, 420 mg, 440 mg, 460 mg, 480 mg, 500 mg, 520 mg, 540 mg, 560 mg, 580 mg, 600 mg (e.g., 250 mg, 420 mg or 560 mg) daily for a period of time, e.g., daily for 21 day cycle, or daily for 28 day cycle. In one embodiment, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 or more cycles of ibrutinib are administered. In some embodiments, ibrutinib is administered in combination with rituximab. See, e.g., Burger et al., 2013. Ibrutinib In Combination With Rituximab (iR) Is Well Tolerated and Induces a High Rate Of Durable Remissions In Patients With High-Risk Chronic Lymphocytic Leukemia (CLL): New, Updated Results Of a Phase II Trial In 40 Patients, Abstract 675 presented at 55th ASH Annual Meeting and Exposition, New Orleans, La. 7-10 December Without being bound by theory, it is thought that the addition of ibrutinib enhances the T cell proliferative response and can shift T cells from a T-helper-2 (Th2) to T-helper-1 (Th1) phenotype. Th1 and Th2 are phenotypes of helper T cells, with Th1 versus Th2 directing different immune response pathways. A Th1 phenotype is associated with proinflammatory responses, e.g., for killing cells, such as intracellular pathogens/viruses or cancerous cells, or perpetuating autoimmune responses. A Th2 phenotype is associated with eosinophil accumulation and anti-inflammatory responses.


In some embodiments, the CD2 binding molecule is administered in combination with an inhibitor of Epidermal Growth Factor Receptor (EGFR).


In some embodiments, the EGFR inhibitor is (R,E)-N-(7-chloro-1-(1-(4-(dimethylamino)but-2-enoyl)azepan-3-yl)-1H-benzo[d]imidazol-2-yl)-2-methylisonicotinamide (Compound A40) or a compound disclosed in PCT Publication No. WO 2013/184757.


In some embodiments, the EGFR inhibitor, e.g., (R,E)-N-(7-chloro-1-(1-(4-(dimethylamino)but-2-enoyl)azepan-3-yl)-1H-benzo[d]imidazol-2-yl)-2-methylisonicotinamide (Compound A40) or a compound disclosed in PCT Publication No. WO 2013/184757, is administered at a dose of 150-250 mg, e.g., per day. In some embodiments, the EGFR inhibitor, e.g., (R,E)-N-(7-chloro-1-(1-(4-(dimethylamino)but-2-enoyl)azepan-3-yl)-1H-benzo[d]imidazol-2-yl)-2-methylisonicotinamide (Compound A40) or a compound disclosed in PCT Publication No. WO 2013/184757, is administered at a dose of about 150, 200, or 250 mg, or about 150-200 or 200-250 mg.


In some embodiments, the EGFR inhibitor, (R,E)-N-(7-chloro-1-(1-(4-(dimethylamino)but-2-enoyl)azepan-3-yl)-1H-benzo[d]imidazol-2-yl)-2-methylisonicotinamide (Compound A40), or a compound disclosed in PCT Publication No. WO 2013/184757, is a covalent, irreversible tyrosine kinase inhibitor. In certain embodiments, the EGFR inhibitor, (R,E)-N-(7-chloro-1-(1-(4-(dimethylamino)but-2-enoyl)azepan-3-yl)-1H-benzo[d]imidazol-2-yl)-2-methylisonicotinamide (Compound A40), or a compound disclosed in PCT Publication No. WO 2013/184757 inhibits activating EGFR mutations (L858R, ex19del). In other embodiments, the EGFR inhibitor, (R,E)-N-(7-chloro-1-(1-(4-(dimethylamino)but-2-enoyl)azepan-3-yl)-1H-benzo[d]imidazol-2-yl)-2-methylisonicotinamide (Compound A40), or a compound disclosed in PCT Publication No. WO 2013/184757 does not inhibit, or does not substantially inhibit, wild-type (wt) EGFR. Compound A40 has shown efficacy in EGFR mutant NSCLC patients. In some embodiments, the EGFR inhibitor, (R,E)-N-(7-chloro-1-(1-(4-(dimethylamino)but-2-enoyl)azepan-3-yl)-1H-benzo[d]imidazol-2-yl)-2-methylisonicotinamide (Compound A40), or a compound disclosed in PCT Publication No. WO 2013/184757 also inhibits one or more kinases in the TEC family of kinases. The Tec family kinases include, e.g., ITK, BMX, TEC, RLK, and BTK, and are central in the propagation of T-cell receptor and chemokine receptor signaling (Schwartzberg et al. (2005) Nat. Rev. Immunol. p. 284-95). For example, Compound A40 can inhibit ITK with a biochemical IC50 of 1.3 nM. ITK is a critical enzyme for the survival of Th2 cells and its inhibition results in a shift in the balance between Th2 and Th1 cells.


In some embodiments, the EGFR inhibitor is chosen from one of more of erlotinib, gefitinib, cetuximab, panitumumab, necitumumab, PF-00299804, nimotuzumab, or R05083945.


In some embodiments, the CD2 binding molecule is administered in combination with an adenosine A2A receptor (A2AR) antagonist. Exemplary A2AR antagonists include, e.g., PBF509 (Palobiofarma/Novartis), CPI444/V81444 (Corvus/Genentech), AZD4635/HTL-1071 (AstraZeneca/Heptares), Vipadenant (Redox/Juno), GBV-2034 (Globavir), AB928 (Arcus Biosciences), Theophylline, Istradefylline (Kyowa Hakko Kogyo), Tozadenant/SYN-115 (Acorda), KW-6356 (Kyowa Hakko Kogyo), ST-4206 (Leadiant Biosciences), Preladenant/SCH 420814 (Merck/Schering), and NIR178 (Novartis).


In certain embodiments, the A2AR antagonist is PBF509. PBF509 and other A2AR antagonists are disclosed in U.S. Pat. No. 8,796,284 and WO 2017/025918. In certain embodiments, the A2AR antagonist is 5-bromo-2,6-di-(1H-pyrazol-1-yl)pyrimidine-4-amine. In certain embodiments, the A2AR antagonist has the following structure:




embedded image


In certain embodiments, the A2AR antagonist is CPI444/V81444. CPI-444 and other A2AR antagonists are disclosed in WO 2009/156737. In certain embodiments, the A2AR antagonist is (S)-7-(5-methylfuran-2-yl)-3-((6-(((tetrahydrofuran-3-yl)oxy)methyl)pyridin-2-yl)methyl)-3H-[1,2,3]triazolo[4,5-d]pyrimidin-5-amine. In certain embodiments, the A2AR antagonist is (R)-7-(5-methylfuran-2-yl)-3-((6-(((tetrahydrofuran-3-yl)oxy)methyl)pyridin-2-yl)methyl)-3H-[1,2,3]triazolo[4,5-d]pyrimidin-5-amine, or racemate thereof. In certain embodiments, the A2AR antagonist is 7-(5-methylfuran-2-yl)-3-((6-(((tetrahydrofuran-3-yl)oxy)methyl)pyridin-2-yl)methyl)-3H-[1,2,3]triazolo[4,5-d]pyrimidin-5-amine. In certain embodiments, the A2AR antagonist has the following structure:




embedded image


In certain embodiments, the A2AR antagonist is AZD4635/HTL-1071. A2AR antagonists are disclosed in WO 2011/095625. In certain embodiments, the A2AR antagonist is 6-(2-chloro-6-methylpyridin-4-yl)-5-(4-fluorophenyl)-1,2,4-triazin-3-amine. In certain embodiments, the A2AR antagonist has the following structure:




embedded image


In certain embodiments, the A2AR antagonist is ST-4206 (Leadiant Biosciences). In certain embodiments, the A2AR antagonist is an A2AR antagonist described in U.S. Pat. No. 9,133,197. In certain embodiments, the A2AR antagonist has the following structure:




embedded image


In certain embodiments, the A2AR antagonist is an A2AR antagonist described in U.S. Pat. Nos. 8,114,845, 9,029,393, US20170015758, or US20160129108.


In certain embodiments, the A2AR antagonist is istradefylline (CAS Registry Number: 155270-99-8). Istradefylline is also known as KW-6002 or 8-[(E)-2-(3,4-dimethoxyphenyl)vinyl]-1,3-diethyl-7-methyl-3,7-dihydro-1H-purine-2,6-dione. Istradefylline is disclosed, e.g., in LeWitt et al. (2008) Annals of Neurology 63 (3): 295-302).


In certain embodiments, the A2aR antagonist is tozadenant (Biotie). Tozadenant is also known as SYN115 or 4-hydroxy-N-(4-methoxy-7-morpholin-4-yl-1,3-benzothiazol-2-yl)-4-methylpiperidine-1-carboxamide. Tozadenant blocks the effect of endogenous adenosine at the A2a receptors, resulting in the potentiation of the effect of dopamine at the D2 receptor and inhibition of the effect of glutamate at the mGluR5 receptor. In some embodiments, the A2aR antagonist is preladenant (CAS Registry Number: 377727-87-2). Preladenant is also known as SCH 420814 or 2-(2-Furanyl)-7-[2-[4-[4-(2-methoxyethoxy)phenyl]-1-piperazinyl]ethyl]7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidine-5-amine. Preladenant was developed as a drug that acted as a potent and selective antagonist at the adenosine A2A receptor.


In certain embodiments, the A2aR antagonist is vipadenan. Vipadenan is also known as BIIB014, V2006, or 3-[(4-amino-3-methylphenyl)methyl]-7-(furan-2-yl)triazolo[4,5-d]pyrimidin-5-amine.


Other exemplary A2aR antagonists include, e.g., ATL-444, MSX-3, SCH-58261, SCH-412,348, SCH-442,416, VER-6623, VER-6947, VER-7835, CGS-15943, or ZM-241,385.


In some embodiments, the A2aR antagonist is an A2aR pathway antagonist (e.g., a CD-73 inhibitor, e.g., an anti-CD73 antibody) is MED19447. MED19447 is a monoclonal antibody specific for CD73. Targeting the extracellular production of adenosine by CD73 can reduce the immunosuppressive effects of adenosine. MED19447 was reported to have a range of activities, e.g., inhibition of CD73 ectonucleotidase activity, relief from AMP-mediated lymphocyte suppression, and inhibition of syngeneic tumor growth. MED19447 can drive changes in both myeloid and lymphoid infiltrating leukocyte populations within the tumor microenvironment. These changes include, e.g., increases in CD8 effector cells and activated macrophages, as well as a reduction in the proportions of myeloid-derived suppressor cells (MDSC) and regulatory T lymphocytes.


In some embodiments, the CD2 binding molecule is administered in combination with a CD20 inhibitor.


In one embodiment, the CD20 inhibitor is an anti-CD20 antibody or fragment thereof. In an embodiment, the antibody is a monospecific antibody and in another embodiment, the antibody is a bispecific antibody. In an embodiment, the CD20 inhibitor is a chimeric mouse/human monoclonal antibody, e.g., rituximab. In an embodiment, the CD20 inhibitor is a human monoclonal antibody such as ofatumumab. In an embodiment, the CD20 inhibitor is a humanized antibody such as ocrelizumab, veltuzumab, obinutuzumab, ocaratuzumab, or PRO131921 (Genentech). In an embodiment, the CD20 inhibitor is a fusion protein comprising a portion of an anti-CD20 antibody, such as TRU-015 (Trubion Pharmaceuticals).


In some embodiments, the CD2 binding molecule is administered in combination with a CD22 inhibitor. In some embodiments, the CD22 inhibitor is a small molecule or an anti-CD22 antibody molecule. In some embodiments, the antibody is a monospecific antibody, optionally conjugated to a second agent such as a chemotherapeutic agent. For instance, in an embodiment, the antibody is an anti-CD22 monoclonal antibody-MMAE conjugate (e.g., DCDT2980S). In an embodiment, the antibody is an scFv of an anti-CD22 antibody, e.g., an scFv of antibody RFB4. This scFv can be fused to all of or a fragment of Pseudomonas exotoxin-A (e.g., BL22). In an embodiment, the antibody is a humanized anti-CD22 monoclonal antibody (e.g., epratuzumab). In an embodiment, the antibody or fragment thereof comprises the Fv portion of an anti-CD22 antibody, which is optionally covalently fused to all or a fragment or (e.g., a 38 KDa fragment of) Pseudomonas exotoxin-A (e.g., moxetumomab pasudotox). In an embodiment, the anti-CD22 antibody is an anti-CD19/CD22 bispecific antibody, optionally conjugated to a toxin. For instance, in one embodiment, the anti-CD22 antibody comprises an anti-CD19/CD22 bispecific portion, (e.g., two scFv ligands, recognizing human CD19 and CD22) optionally linked to all of or a portion of diphtheria toxin (DT), e.g., first 389 amino acids of diphtheria toxin (DT), DT 390, e.g., a ligand-directed toxin such as DT2219ARL). In another embodiment, the bispecific portion (e.g., anti-CD19/anti-CD22) is linked to a toxin such as deglycosylated ricin A chain (e.g., Combotox).


In some embodiments, the CD22 inhibitor is a multispecific antibody molecule, e.g., a bispecific antibody molecule, e.g., a bispecific antibody molecule that binds to CD20 and CD3. Exemplary bispecific antibody molecules that bind to CD20 and CD3 are disclosed in WO2016086189 and WO2016182751. In some embodiments, the bispecific antibody molecule that binds to CD20 and CD3 is XENP13676 as disclosed in FIG. 74, SEQ ID NOs: 323, 324, and 325 of WO2016086189.


In some embodiments, the CD2 binding molecule is administered in combination with a FCRL2 or FCRL5 inhibitor. In some embodiments, the FCRL2 or FCRL5 inhibitor is an anti-FCRL2 antibody molecule, e.g., a bispecific antibody molecule, e.g., a bispecific antibody that binds to FCRL2 and CD3. In some embodiments, the FCRL2 or FCRL5 inhibitor is an anti-FCRL5 antibody molecule, e.g., a bispecific antibody molecule, e.g., a bispecific antibody that binds to FCRL5 and CD3.


Exemplary anti-FCRL5 antibody molecules are disclosed in US20150098900, US20160368985, WO2017096120 (e.g., antibodies ET200-001, ET200-002, ET200-003, ET200-006, ET200-007, ET200-008, ET200-009, ET200-010, ET200-011, ET200-012, ET200-013, ET200-014, ET200-015, ET200-016, ET200-017, ET200-018, ET200-019, ET200-020, ET200-021, ET200-022, ET200-023, ET200-024, ET200-025, ET200-026, ET200-027, ET200-028, ET200-029, ET200-030, ET200-031, ET200-032, ET200-033, ET200-034, ET200-035, ET200-037, ET200-038, ET200-039, ET200-040, ET200-041, ET200-042, ET200-043, ET200-044, ET200-045, ET200-069, ET200-078, ET200-079, ET200-081, ET200-097, ET200-098, ET200-099, ET200-100, ET200-101, ET200-102, ET200-103, ET200-104, ET200-105, ET200-106, ET200-107, ET200-108, ET200-109, ET200-110, ET200-111, ET200-112, ET200-113, ET200-114, ET200-115, ET200-116, ET200-117, ET200-118, ET200-119, ET200-120, ET200-121, ET200-122, ET200-123, ET200-125, ET200-005 and ET200-124 disclosed in WO2017096120).


In some embodiments, the CD2 binding molecule is administered in combination with an IL15/IL-15Ra complex. In some embodiments, the IL-15/IL-15Ra complex is chosen from NIZ985 (Novartis), ATL-803 (Altor) or CYP0150 (Cytune).


In some embodiments, the IL-15/IL-15Ra complex comprises human IL-15 complexed with a soluble form of human IL-15Ra. The complex can comprise IL-15 covalently or noncovalently bound to a soluble form of IL-15Ra. In a particular embodiment, the human IL-15 is noncovalently bonded to a soluble form of IL-15Ra. In a particular embodiment, the human IL-15 of the composition comprises an amino acid sequence as described in WO 2014/066527 and the soluble form of human IL-15Ra comprises an amino acid sequence as described in WO 2014/066527. The molecules described herein can be made by vectors, host cells, and methods described in WO 2007/084342.


In some embodiments, the IL-15/IL-15Ra complex is ALT-803, an IL-15/IL-15Ra Fc fusion protein (IL-15N72D:IL-15RaSu/Fc soluble complex). ALT-803 is disclosed in WO 2008/143794.


In some embodiments, the IL-15/IL-15Ra complex comprises IL-15 fused to the sushi domain of IL-15Ra (CYP0150, Cytune). The sushi domain of IL-15Ra refers to a domain beginning at the first cysteine residue after the signal peptide of IL-15Ra, and ending at the fourth cysteine residue after the signal peptide. The complex of IL-15 fused to the sushi domain of IL-15Ra is disclosed in WO 2007/04606 and WO 2012/175222.


In some embodiments, the CD2 binding molecule is administered in combination with a PD-1 inhibitor. In some embodiments, the PD-1 inhibitor is chosen from PDR001 (Novartis), Nivolumab (Bristol-Myers Squibb), Pembrolizumab (Merck & Co), Pidilizumab (CureTech), MED10680 (Medimmune), REGN2810 (Regeneron), TSR-042 (Tesaro), PF-06801591 (Pfizer), BGB-A317 (Beigene), BGB-108 (Beigene), INCSHR1210 (Incyte), or AMP-224 (Amplimmune). In one embodiment, the PD-1 inhibitor is an anti-PD-1 antibody molecule. In one embodiment, the PD-1 inhibitor is an anti-PD-1 antibody molecule as described in US 2015/0210769.


In one embodiment, the anti-PD-1 antibody molecule is Nivolumab (Bristol-Myers Squibb), also known as MDX-1106, MDX-1106-04, ONO-4538, BMS-936558, or OPDIVO®. Nivolumab (clone 5C4) and other anti-PD-1 antibodies are disclosed in U.S. Pat. No. 8,008,449 and WO 2006/121168. In one embodiment, the anti-PD-1 antibody molecule comprises one or more of the CDR sequences (or collectively all of the CDR sequences), the heavy chain or light chain variable region sequence, or the heavy chain or light chain sequence of Nivolumab.


In one embodiment, the anti-PD-1 antibody molecule is Pembrolizumab (Merck & Co), also known as Lambrolizumab, MK-3475, MK03475, SCH-900475, or KEYTRUDA®. Pembrolizumab and other anti-PD-1 antibodies are disclosed in Hamid, O. et al. (2013) New England Journal of Medicine 369 (2): 134-44, U.S. Pat. No. 8,354,509, and WO 2009/114335. In one embodiment, the anti-PD-1 antibody molecule comprises one or more of the CDR sequences (or collectively all of the CDR sequences), the heavy chain or light chain variable region sequence, or the heavy chain or light chain sequence of Pembrolizumab.


In one embodiment, the anti-PD-1 antibody molecule is Pidilizumab (CureTech), also known as CT-011. Pidilizumab and other anti-PD-1 antibodies are disclosed in Rosenblatt, J. et al. (2011) J Immunotherapy 34(5): 409-18, U.S. Pat. Nos. 7,695,715, 7,332,582, and 8,686,119. In one embodiment, the anti-PD-1 antibody molecule comprises one or more of the CDR sequences (or collectively all of the CDR sequences), the heavy chain or light chain variable region sequence, or the heavy chain or light chain sequence of Pidilizumab.


In one embodiment, the anti-PD-1 antibody molecule is MED10680 (Medimmune), also known as AMP-514. MED10680 and other anti-PD-1 antibodies are disclosed in U.S. Pat. No. 9,205,148 and WO 2012/145493. In one embodiment, the anti-PD-1 antibody molecule comprises one or more of the CDR sequences (or collectively all of the CDR sequences), the heavy chain or light chain variable region sequence, or the heavy chain or light chain sequence of MED10680.


In one embodiment, the anti-PD-1 antibody molecule is REGN2810 (Regeneron). In one embodiment, the anti-PD-1 antibody molecule comprises one or more of the CDR sequences (or collectively all of the CDR sequences), the heavy chain or light chain variable region sequence, or the heavy chain or light chain sequence of REGN2810.


In one embodiment, the anti-PD-1 antibody molecule is PF-06801591 (Pfizer). In one embodiment, the anti-PD-1 antibody molecule comprises one or more of the CDR sequences (or collectively all of the CDR sequences), the heavy chain or light chain variable region sequence, or the heavy chain or light chain sequence of PF-06801591.


In one embodiment, the anti-PD-1 antibody molecule is BGB-A317 or BGB-108 (Beigene). In one embodiment, the anti-PD-1 antibody molecule comprises one or more of the CDR sequences (or collectively all of the CDR sequences), the heavy chain or light chain variable region sequence, or the heavy chain or light chain sequence of BGB-A317 or BGB-108.


In one embodiment, the anti-PD-1 antibody molecule is INCSHR1210 (Incyte), also known as INCSHR01210 or SHR-1210. In one embodiment, the anti-PD-1 antibody molecule comprises one or more of the CDR sequences (or collectively all of the CDR sequences), the heavy chain or light chain variable region sequence, or the heavy chain or light chain sequence of INCSHR1210.


In one embodiment, the anti-PD-1 antibody molecule is TSR-042 (Tesaro), also known as ANB011. In one embodiment, the anti-PD-1 antibody molecule comprises one or more of the CDR sequences (or collectively all of the CDR sequences), the heavy chain or light chain variable region sequence, or the heavy chain or light chain sequence of TSR-042.


Further known anti-PD-1 antibodies include those described, e.g., in WO 2015/112800, WO 2016/092419, WO 2015/085847, WO 2014/179664, WO 2014/194302, WO 2014/209804, WO 2015/200119, U.S. Pat. Nos. 8,735,553, 7,488,802, 8,927,697, 8,993,731, and 9,102,727.


In one embodiment, the anti-PD-1 antibody is an antibody that competes for binding with, and/or binds to the same epitope on PD-1 as, one of the anti-PD-1 antibodies described herein.


In one embodiment, the PD-1 inhibitor is a peptide that inhibits the PD-1 signaling pathway, e.g., as described in U.S. Pat. No. 8,907,053. In one embodiment, the PD-1 inhibitor is an immunoadhesin (e.g., an immunoadhesin comprising an extracellular or PD-1 binding portion of PD-L1 or PD-L2 fused to a constant region (e.g., an Fc region of an immunoglobulin sequence). In one embodiment, the PD-1 inhibitor is AMP-224 (B7-DCIg (Amplimmune), e.g., disclosed in WO 2010/027827 and WO 2011/066342).


In some embodiments, the CD2 binding molecule is administered in combination with a PD-L1 inhibitor. In some embodiments, the PD-L1 inhibitor is chosen from FAZ053 (Novartis), Atezolizumab (Genentech/Roche), Avelumab (Merck Serono and Pfizer), Durvalumab (Medlmmune/AstraZeneca), or BMS-936559 (Bristol-Myers Squibb).


In one embodiment, the PD-L1 inhibitor is an anti-PD-L1 antibody molecule. In one embodiment, the PD-L1 inhibitor is an anti-PD-L1 antibody molecule as disclosed in US 2016/0108123.


In one embodiment, the anti-PD-L1 antibody molecule is Atezolizumab (Genentech/Roche), also known as MPDL3280A, RG7446, R05541267, YW243.55.S70, or TECENTRIQ™. Atezolizumab and other anti-PD-L1 antibodies are disclosed in U.S. Pat. No. 8,217,149. In one embodiment, the anti-PD-L1 antibody molecule comprises one or more of the CDR sequences (or collectively all of the CDR sequences), the heavy chain or light chain variable region sequence, or the heavy chain or light chain sequence of Atezolizumab.


In one embodiment, the anti-PD-L1 antibody molecule is Avelumab (Merck Serono and Pfizer), also known as MSB0010718C. Avelumab and other anti-PD-L1 antibodies are disclosed in WO 2013/079174. In one embodiment, the anti-PD-L1 antibody molecule comprises one or more of the CDR sequences (or collectively all of the CDR sequences), the heavy chain or light chain variable region sequence, or the heavy chain or light chain sequence of Avelumab.


In one embodiment, the anti-PD-L1 antibody molecule is Durvalumab (Medlmmune/AstraZeneca), also known as MED14736. Durvalumab and other anti-PD-L1 antibodies are disclosed in U.S. Pat. No. 8,779,108. In one embodiment, the anti-PD-L1 antibody molecule comprises one or more of the CDR sequences (or collectively all of the CDR sequences), the heavy chain or light chain variable region sequence, or the heavy chain or light chain sequence of Durvalumab.


In one embodiment, the anti-PD-L1 antibody molecule is BMS-936559 (Bristol-Myers Squibb), also known as MDX-1105 or 12A4. BMS-936559 and other anti-PD-L1 antibodies are disclosed in U.S. Pat. No. 7,943,743 and WO 2015/081158. In one embodiment, the anti-PD-L1 antibody molecule comprises one or more of the CDR sequences (or collectively all of the CDR sequences), the heavy chain or light chain variable region sequence, or the heavy chain or light chain sequence of BMS-936559.


Further known anti-PD-L1 antibodies include those described, e.g., in WO 2015/181342, WO 2014/100079, WO 2016/000619, WO 2014/022758, WO 2014/055897, WO 2015/061668, WO 2013/079174, WO 2012/145493, WO 2015/112805, WO 2015/109124, WO 2015/195163, U.S. Pat. Nos. 8,168,179, 8,552,154, 8,460,927, and 9,175,082.


In some embodiments, the CD2 binding molecule is administered in combination with a LAG-3 inhibitor. In some embodiments, the LAG-3 inhibitor is chosen from LAG525 (Novartis), BMS-986016 (Bristol-Myers Squibb), or TSR-033 (Tesaro).


In one embodiment, the LAG-3 inhibitor is an anti-LAG-3 antibody molecule. In one embodiment, the LAG-3 inhibitor is an anti-LAG-3 antibody molecule as disclosed in US 2015/0259420.


In one embodiment, the anti-LAG-3 antibody molecule is BMS-986016 (Bristol-Myers Squibb), also known as BMS986016. BMS-986016 and other anti-LAG-3 antibodies are disclosed in WO 2015/116539 and U.S. Pat. No. 9,505,839. In one embodiment, the anti-LAG-3 antibody molecule comprises one or more of the CDR sequences (or collectively all of the CDR sequences), the heavy chain or light chain variable region sequence, or the heavy chain or light chain sequence of BMS-986016.


In one embodiment, the anti-LAG-3 antibody molecule is TSR-033 (Tesaro). In one embodiment, the anti-LAG-3 antibody molecule comprises one or more of the CDR sequences (or collectively all of the CDR sequences), the heavy chain or light chain variable region sequence, or the heavy chain or light chain sequence of TSR-033.


In one embodiment, the anti-LAG-3 antibody molecule is IMP731 or GSK2831781 (GSK and Prima BioMed). IMP731 and other anti-LAG-3 antibodies are disclosed in WO 2008/132601 and U.S. Pat. No. 9,244,059. In one embodiment, the anti-LAG-3 antibody molecule comprises one or more of the CDR sequences (or collectively all of the CDR sequences), the heavy chain or light chain variable region sequence, or the heavy chain or light chain sequence of IMP731. In one embodiment, the anti-LAG-3 antibody molecule comprises one or more of the CDR sequences (or collectively all of the CDR sequences), the heavy chain or light chain variable region sequence, or the heavy chain or light chain sequence of GSK2831781.


Further known anti-LAG-3 antibodies include those described, e.g., in WO 2008/132601, WO 2010/019570, WO 2014/140180, WO 2015/116539, WO 2015/200119, WO 2016/028672, U.S. Pat. Nos. 9,244,059, 9,505,839.


In one embodiment, the anti-LAG-3 inhibitor is a soluble LAG-3 protein, e.g., IMP321 (Prima BioMed), e.g., as disclosed in WO 2009/044273.


In some embodiments, the CD2 binding molecule is administered in combination with a TIM-3 inhibitor. In some embodiments, the TIM-3 inhibitor is MBG453 (Novartis) or TSR-022 (Tesaro).


In one embodiment, the TIM-3 inhibitor is an anti-TIM-3 antibody molecule. In one embodiment, the TIM-3 inhibitor is an anti-TIM-3 antibody molecule as disclosed in US 2015/0218274.


In one embodiment, the anti-TIM-3 antibody molecule is TSR-022 (AnaptysBio/Tesaro). In one embodiment, the anti-TIM-3 antibody molecule comprises one or more of the CDR sequences (or collectively all of the CDR sequences), the heavy chain or light chain variable region sequence, or the heavy chain or light chain sequence of TSR-022. In one embodiment, the anti-TIM-3 antibody molecule comprises one or more of the CDR sequences (or collectively all of the CDR sequences), the heavy chain or light chain variable region sequence, or the heavy chain or light chain sequence of APE5137 or APE5121. APE5137, APE5121, and other anti-TIM-3 antibodies are disclosed in WO 2016/161270.


In one embodiment, the anti-TIM-3 antibody molecule is the antibody clone F38-2E2. In one embodiment, the anti-TIM-3 antibody molecule comprises one or more of the CDR sequences (or collectively all of the CDR sequences), the heavy chain or light chain variable region sequence, or the heavy chain or light chain sequence of F38-2E2.


Further known anti-TIM-3 antibodies include those described, e.g., in WO 2016/111947, WO 2016/071448, WO 2016/144803, U.S. Pat. Nos. 8,552,156, 8,841,418, and 9,163,087.


In one embodiment, the anti-TIM-3 antibody is an antibody that competes for binding with, and/or binds to the same epitope on TIM-3 as, one of the anti-TIM-3 antibodies described herein.


In some embodiments, the CD2 binding molecule is administered in combination with a transforming growth factor beta (TGF-β) inhibitor. In some embodiments, the TGF-β inhibitor is fresolimumab (CAS Registry Number: 948564-73-6). Fresolimumab is also known as GC1008. Fresolimumab is a human monoclonal antibody that binds to and inhibits TGF-beta isoforms 1, 2 and 3. Fresolimumab is disclosed, e.g., in WO 2006/086469, U.S. Pat. Nos. 8,383,780, and 8,591,901.


In some embodiments, the TGF-β inhibitor is XOMA 089. XOMA 089 is also known as XPA.42.089. XOMA 089 is a fully human monoclonal antibody that binds and neutralizes TGF-beta 1 and 2 ligands, and is disclosed in PCT Publication No. WO 2012/167143.


In some embodiments, the CD2 binding molecule is administered in combination with an anti-CD73 antibody molecule. In one embodiment, an anti-CD73 antibody molecule is a full antibody molecule or an antigen-binding fragment thereof. In certain embodiments, the anti-CD73 antibody molecule binds to a CD73 protein and reduces, e.g., inhibits or antagonizes, an activity of CD73, e.g., human CD73.


In one embodiment, the anti-CD73 antibody molecule is an anti-CD73 antibody disclosed in WO2016/075099. In one embodiment, the anti-CD73 antibody molecule is MEDI 9447, e.g., as disclosed in WO2016/075099. Alternative names for MEDI 9447 include clone 10.3 or 73combo3. MEDI 9447 is an IgG1 antibody that inhibits, e.g., antagonizes, an activity of CD73. MEDI 9447 and other anti-CD73 antibody molecules are also disclosed in WO2016/075176 and US2016/0129108.


In one embodiment, the anti-CD73 antibody molecule comprises a heavy chain variable domain, a light chain variable domain, or both, of MEDI 9477.


In one embodiment, the anti-CD73 antibody molecule is an anti-CD73 antibody disclosed in WO2016/081748. In one embodiment, the anti-CD73 antibody molecule is 11F11, e.g., as disclosed in WO2016/081748. 11F11 is an IgG2 antibody that inhibits, e.g., antagonizes, an activity of CD73. Antibodies derived from 11F11, e.g., CD73.4, and CD73.10; clones of 11F11, e.g., 11F11-1 and 11F11-2; and other anti-CD73 antibody molecules are disclosed in WO2016/081748 and U.S. Pat. No. 9,605,080.


In one embodiment, the anti-CD73 antibody molecule comprises a heavy chain variable domain, a light chain variable domain, or both, of 11F11-1 or 11F11-2.


In one embodiment, the anti-CD73 antibody molecule is an anti-CD73 antibody disclosed in e.g., U.S. Pat. No. 9,605,080.


In one embodiment, the anti-CD73 antibody molecule is CD73.4, e.g., as disclosed in U.S. Pat. No. 9,605,080. In one embodiment, the anti-CD73 antibody molecule comprises a heavy chain variable domain, a light chain variable domain, or both, of CD73.4.


In one embodiment, the anti-CD73 antibody molecule is CD73.10, e.g., as disclosed in U.S. Pat. No. 9,605,080. In one embodiment, the anti-CD73 antibody molecule comprises a heavy chain variable domain, a light chain variable domain, or both, of CD73.10.


In one embodiment, the anti-CD73 antibody molecule is an anti-CD73 antibody disclosed in WO2009/0203538. In one embodiment, the anti-CD73 antibody molecule is 067-213, e.g., as disclosed in WO2009/0203538.


In one embodiment, the anti-CD73 antibody molecule comprises a heavy chain variable domain, a light chain variable domain, or both, of 067-213.


In one embodiment, the anti-CD73 antibody molecule is an anti-CD73 antibody disclosed in U.S. Pat. No. 9,090,697. In one embodiment, the anti-CD73 antibody molecule is TY/23, e.g., as disclosed in U.S. Pat. No. 9,090,697. In one embodiment, the anti-CD73 antibody molecule comprises a heavy chain variable domain, a light chain variable domain, or both, of TY/23.


In one embodiment, the anti-CD73 antibody molecule is an anti-CD73 antibody disclosed in WO2016/055609. In one embodiment, the anti-CD73 antibody molecule comprises a heavy chain variable domain, a light chain variable domain, or both, of an anti-CD73 antibody disclosed in WO2016/055609.


In one embodiment, the anti-CD73 antibody molecule is an anti-CD73 antibody disclosed in WO2016/146818. In one embodiment, the anti-CD73 antibody molecule comprises a heavy chain variable domain, a light chain variable domain, or both, of an anti-CD73 antibody disclosed in WO2016/146818.


In one embodiment, the anti-CD73 antibody molecule is an anti-CD73 antibody disclosed in WO2004/079013. In one embodiment, the anti-CD73 antibody molecule comprises a heavy chain variable domain, a light chain variable domain, or both, of an anti-CD73 antibody disclosed in WO2004/079013.


In one embodiment, the anti-CD73 antibody molecule is an anti-CD73 antibody disclosed in WO2012/125850. In one embodiment, the anti-CD73 antibody molecule comprises a heavy chain variable domain, a light chain variable domain, or both, of an anti-CD73 antibody disclosed in WO2012/125850.


In one embodiment, the anti-CD73 antibody molecule is an anti-CD73 antibody disclosed in WO2015/004400. In one embodiment, the anti-CD73 antibody molecule comprises a heavy chain variable domain, a light chain variable domain, or both, of an anti-CD73 antibody disclosed in WO2015/004400.


In one embodiment, the anti-CD73 antibody molecule is an anti-CD73 antibody disclosed in WO2007/146968. In one embodiment, the anti-CD73 antibody molecule comprises a heavy chain variable domain, a light chain variable domain, or both, of an anti-CD73 antibody disclosed in WO2007146968.


In one embodiment, the anti-CD73 antibody molecule is an anti-CD73 antibody disclosed in US2007/0042392. In one embodiment, the anti-CD73 antibody molecule comprises a heavy chain variable domain, a light chain variable domain, or both, of an anti-CD73 antibody disclosed in US2007/0042392.


In one embodiment, the anti-CD73 antibody molecule is an anti-CD73 antibody disclosed in US2009/0138977. In one embodiment, the anti-CD73 antibody molecule comprises a heavy chain variable domain, a light chain variable domain, or both, of an anti-CD73 antibody disclosed in US2009/0138977.


In one embodiment, the anti-CD73 antibody molecule is an anti-CD73 antibody disclosed in Flocke et al., Eur J Cell Biol. 1992 June; 58(1):62-70. In one embodiment, the anti-CD73 antibody molecule comprises a heavy chain variable domain, a light chain variable domain, or both, of an anti-CD73 antibody disclosed in Flocke et al., Eur J Cell Biol. 1992 June; 58(1):62-70.


In one embodiment, the anti-CD73 antibody molecule is an anti-CD73 antibody disclosed in Stagg et al., PNAS. 2010 January 107(4): 1547-1552. In some embodiments, the anti-CD73 antibody molecule is TY/23 or TY11.8, as disclosed in Stagg et al. In one embodiment, the anti-CD73 antibody molecule comprises a heavy chain variable domain, a light chain variable domain, or both, of an anti-CD73 antibody disclosed in Stagg et al.


In some embodiments, the CD2 binding molecule is administered in combination with an interleukine-17 (IL-17) inhibitor.


In some embodiments, the IL-17 inhibitor is secukinumab (CAS Registry Numbers: 875356-43-7 (heavy chain) and 875356-44-8 (light chain)). Secukinumab is also known as AIN457 and COSENTYX®. Secukinumab is a recombinant human monoclonal IgG1/K antibody that binds specifically to IL-17A. It is expressed in a recombinant Chinese Hamster Ovary (CHO) cell line. Secukinumab is described, e.g., in WO 2006/013107, U.S. Pat. Nos. 7,807,155, 8,119,131, 8,617,552, and EP 1776142.


In some embodiments, the IL-17 inhibitor is CJM112. CJM112 is also known as XAB4. CJM112 is a fully human monoclonal antibody (e.g., of the IgG1/K isotype) that targets IL-17A. CJM112 is disclosed, e.g., in WO 2014/122613.


CJM112 can bind to human, cynomolgus, mouse and rat IL-17A and neutralize the bioactivity of these cytokines in vitro and in vivo. IL-17A, a member of the IL-17 family, is a major proinflammatory cytokine that has been indicated to play important roles in many immune mediated conditions, such as psoriasis and cancers (Witowski et al. (2004) Cell Mol. Life Sci. p. 567-79; Miossec and Kolls (2012) Nat. Rev. Drug Discov. p. 763-76).


In some embodiments, the IL-17 inhibitor is ixekizumab (CAS Registry Number: 1143503-69-8). Ixekizumab is also known as LY2439821. Ixekizumab is a humanized IgG4 monoclonal antibody that targets IL-17A. Ixekizumab is described, e.g., in WO 2007/070750, U.S. Pat. Nos. 7,838,638, and 8,110,191.


In some embodiments, the IL-17 inhibitor is brodalumab (CAS Registry Number: 1174395-19-7). Brodalumab is also known as AMG 827 or AM-14. Brodalumab binds to the interleukin-17 receptor A (IL-17RA) and prevents IL-17 from activating the receptor. Brodalumab is disclosed, e.g., in WO 2008/054603, U.S. Pat. Nos. 7,767,206, 7,786,284, 7,833,527, 7,939,070, 8,435,518, 8,545,842, 8,790,648, and 9,073,999.


In some embodiments, the CD2 binding molecule is administered in combination with an interleukine-1 beta (IL-1β) inhibitor.


In some embodiments, the IL-1β inhibitor is canakinumab. Canakinumab is also known as ACZ885 or ILARIS®. Canakinumab is a human monoclonal IgG1/K antibody that neutralizes the bioactivity of human IL-1β. Canakinumab is disclosed, e.g., in WO 2002/16436, U.S. Pat. No. 7,446,175, and EP 1313769.


In some embodiments, the CD2 binding molecule is administered in combination with a CD32B inhibitor. In some embodiments, the CD32B inhibitor is an anti-CD32B antibody molecule. Exemplary anti-CD32B antibody molecules are disclosed in U.S. Pat. Nos. 8,187,593, 8,778,339, 8,802,089, US20060073142, US20170198040, and US20130251706.


In some embodiments, the CD2 binding molecule is administered in combination with one of the compounds listed in Table 19.












TABLE 19





Compound
Generic

Patents/Patent


Design-
Name

Application


ation
Tradename
Compound Structure
Publications







A1 
Sotrastaurin


embedded image


EP 1682103 US 2007/142401 WO 2005/039549





A2 
Nilotinib HCl monohydrate TASIGNA ®


embedded image


WO 2004/005281 US 7,169,791





A3 



embedded image


WO 2009/141386 US 2010/0105667





A4 



embedded image


WO 2010/029082





A5 



embedded image


WO 2011/076786





A6 
Deferasirox EXJADE ®


embedded image


WO 1997/049395





A7 
Letrozole FEMARA ®


embedded image


US 4,978,672





A8 



embedded image


WO 2013/124826 US 2013/0225574





A9 



embedded image


WO 2013/111105





A10
BLZ945


embedded image


WO 2007/121484





A11
Imatinib mesylate GLEEVEC ®


embedded image


WO 1999/003854





A12
Capmatinib


embedded image


EP 2099447 US 7,767,675 US 8,420,645





A13
Ruxolitinib Phosphate JAKAFI ®


embedded image


WO 2007/070514 EP 2474545 US 7,598,257 WO 2014/018632





A14
Panobinostat


embedded image


WO 2014/072493 WO 2002/022577 EP 1870399





A15
Osilodrostat


embedded image


WO 2007/024945





A16



embedded image


WO 2008/016893 EP 2051990 US 8,546,336





A17
ceritinib ZYKADIA ™


embedded image


WO 2008/073687 US 8,039,479





A18
Ribociclib KISQALI ®


embedded image


US 8,415,355 US 8,685,980





A19



embedded image


WO 2010/007120





A20

Human monoclonal antibody to PRLR
US 7,867,493





A21



embedded image


WO 2010/026124 EP 2344474 US 2010/0056576 WO2008/106692





A22
WNT974


embedded image


WO 2010/101849





A23



embedded image


WO 2011/101409





A24

Human monoclonal antibody to HER3,, e.g.,
WO 2012/022814




LJM716
EP 2606070





US 8,735,551


A25

Antibody Drug Con ugate (ADC)
WO 2014/160160,





e.g., Ab: 12425 (see





Table 1, paragraph





[00191])





Linker: SMCC (see





paragraph [00117]





Payload: DM1 (see





paragraph [00111]





See also Claim 29


A26

Monoclonal antibody or Fab to M-CSF, e.g.,
WO 2004/045532




MCS110






A27
Midostaurin


embedded image


WO 2003/037347 EP 1441737 US 2012/252785





A28
Everolimus AFINITOR ®


embedded image


WO 2014/085318





A29



embedded image


WO 2007/030377 US 7,482,367





A30
Pasireotide diaspartate SIGNIFOR®


embedded image


US 7,473,761





A31



embedded image


WO 2013/184757





A32



embedded image


WO 2006/122806





A33



embedded image


WO 2008/073687 US 8,372,858





A34



embedded image


WO 2010/002655 US 8,519,129





A35



embedded image


WO 2010/002655 US 8,519,129





A36



embedded image


WO 2010/002655





A37
Valspodar AMDRAY ™


embedded image


EP 296122





A38
Vatalanib succinate


embedded image


WO 98/35958





A39

IDH inhibitor, e.g., IDH305
WO2014/141104





A40
Asciminib


embedded image


WO2013/171639 W02013/171640 WO2013/171641 WO2013/171642





A41

cRAF inhibitor
WO2014/151616


A42

ERK1/2 ATP competitive inhibitor
WO2015/066188





A43



embedded image


WO2011/023773





A44



embedded image


WO2012/149413





A45
SHP099


embedded image


WO2015/107493





A46

SHP2 inhibitor of Formula I
WO2015/107495





A47



embedded image


WO2015/022662





A48



embedded image


WO2014/141104





A49



embedded image


WO2010/015613 WO2013030803 US 7,989,497,





A50

A2A receptor antagonist of Formula (I)
WO 2017/025918





WO2011/121418





US 8,796,284





A51



embedded image


WO2014/130310





A52
trametinib


embedded image


WO2005/121142 US 7,378,423





A53
dabrafenib


embedded image


WO 2009/137391 US 7,994,185





A54
octreotide


embedded image


US 4,395,403 EP 0 029 579





A55



embedded image


WO 2016/103155 US 9580437 EP 3237418





A56



embedded image


US 9,512,084 WO/2015/079417





A57



embedded image


WO2011/049677









In some embodiments, a CD2 binding molecule is administered in combination with one or more of NIZ985, a GITR agonist such as GWN323, PTK787, MBG453, mAb12425, CLR457, BGT226, BYL719, AMN107, ABL001, IDH305/LQS305, LJM716, MCS110, WNT974/LGK974, BLZ945, NIR178, QBM076, MBG453, CGS-20267, LHS534, LKG960, LDM099/SHP099, TN0155, LCL161, MAP855/LQN716, RAD001, LEJ511, LDK378, LOU064, LSZ102, LEQ506, RAF265/CHIR265, canakinumab, gevokizumab, Anakinra, Rilonacept, CGS-20267, PSC833, GGP-57148B, CGM097, HDM201, LBH589, PKC412, LHC165, MAK683, INC280, INC424, LJE704, LAG525, and NIS793.


In some embodiments, the CD2 binding molecule is administered in combination with a standard treatment.


Standard treatment for multiple myeloma and associated diseases includes chemotherapy, stem cell transplant (autologous or allogeneic), radiation therapy, and other drug therapies. Frequently used anti-myeloma drugs include alkylating agents (e.g., bendamustine, cyclophosphamide and melphalan), proteasome inhibitors (e.g., bortezomib), corticosteroids (e.g., dexamethasone and prednisone), and immunomodulators (e.g., thalidomide and lenalidomide or Revlimid®), or any combination thereof. Biphosphonate drugs are also frequently administered in combination with the standard anti-MM treatments to prevent bone loss. Patients older than 65-70 years of age are unlikely candidates for stem cell transplant. In some cases, double-autologous stem cell transplants are options for patients less than 60 years of age with suboptimal response to the first transplant. The compositions and methods of the present disclosure can be administered in combination with any of the currently prescribed treatments for multiple myeloma.


Hodgkin's lymphoma is commonly treated with radiation therapy, chemotherapy, or hematopoietic stem cell transplantation. The most common therapy for non-Hodgkin's lymphoma is R-CHOP, which consists of four different chemotherapies (cyclophosphamide, doxorubicin, vincristine, and prenisolone) and rituximab (Rituxan®). Other therapies commonly used to treat NHL include other chemotherapeutic agents, radiation therapy, stem cell transplantation (autologous or allogeneic bone marrow transplantation), or biological therapy, such as immunotherapy. Other examples of biological therapeutic agents include, but are not limited to, rituximab (Rituxan®), tositumomab (Bexxar®), epratuzumab (LymphoCide®), and alemtuzumab (MabCampath®). The compositions and methods of the present disclosure can be administered in combination with any of the currently prescribed treatments for Hodgkin's lymphoma or non-Hodgkin's lymphoma.


Standard treatment for WM consists of chemotherapy, specifically with rituximab (Rituxan®). Other chemotherapeutic drugs can be used in combination, such as chlorambucil (Leukeran®), cyclophosphamide (Neosar®), fludarabine (Fludara®), cladribine (Leustatin®), vincristine, and/or thalidomide. Corticosteriods, such as prednisone, can also be administered in combination with the chemotherapy. Plasmapheresis, or plasma exchange, is commonly used throughout treatment of the patient to alleviate some symptoms by removing the paraprotein from the blood. In some cases, stem cell transplantation is an option for some patients.


The CD2 binding molecules of the disclosure can be administered in combination with an agent which reduces or ameliorates a side effect associated with the administration of such binding molecules, including MBMs that bind to both CD19 and CD3. Side effects associated with the administration of MBMs that bind to both CD19 and CD3 can include, but are not limited to, cytokine release syndrome (“CRS”) and hemophagocytic lymphohistiocytosis (HLH), also termed Macrophage Activation Syndrome (MAS). Symptoms of CRS can include high fevers, nausea, transient hypotension, hypoxia, and the like. CRS can include clinical constitutional signs and symptoms such as fever, fatigue, anorexia, myalgias, arthalgias, nausea, vomiting, and headache. CRS can include clinical skin signs and symptoms such as rash. CRS can include clinical gastrointestinal signs and symptoms such as nausea, vomiting and diarrhea. CRS can include clinical respiratory signs and symptoms such as tachypnea and hypoxemia. CRS can include clinical cardiovascular signs and symptoms such as tachycardia, widened pulse pressure, hypotension, increased cardiac output (early) and potentially diminished cardiac output (late). CRS can include clinical coagulation signs and symptoms such as elevated d-dimer, hypofibrinogenemia with or without bleeding. CRS can include clinical renal signs and symptoms such as azotemia. CRS can include clinical hepatic signs and symptoms such as transaminitis and hyperbilirubinemia. CRS can include clinical neurologic signs and symptoms such as headache, mental status changes, confusion, delirium, word finding difficulty or frank aphasia, hallucinations, tremor, dymetria, altered gait, and seizures.


Accordingly, the methods described herein can comprise administering a MBM that binds to both CD19 and CD3 to a subject and further administering one or more agents to manage elevated levels of a soluble factor resulting from treatment with the MBM. In one embodiment, the soluble factor elevated in the subject is one or more of IFN-γ, TNFα, IL-2 and IL-6. In an embodiment, the factor elevated in the subject is one or more of IL-1, GM-CSF, IL-10, IL-8, IL-5 and fraktalkine. Therefore, an agent administered to treat this side effect can be an agent that neutralizes one or more of these soluble factors. In one embodiment, the agent that neutralizes one or more of these soluble forms is an antibody or antigen binding fragment thereof. Examples of such agents include, but are not limited to a steroid (e.g., corticosteroid), an inhibitor of TNFα, and inhibitor of IL-1R, and an inhibitor of IL-6. An example of a TNFα inhibitor is an anti-TNFα antibody molecule such as, infliximab, adalimumab, certolizumab pegol, and golimumab. Another example of a TNFα inhibitor is a fusion protein such as entanercept. Small molecule inhibitor of TNFα include, but are not limited to, xanthine derivatives (e.g. pentoxifylline) and bupropion. An example of an IL-6 inhibitor is an anti-IL-6 antibody molecule such as tocilizumab (toc), sarilumab, elsilimomab, ONTO 328, ALD518/BMS-945429, ONTO 136, CPSI-2364, CDP6038, VX30, ARGX-109, FE301, and FM101. In one embodiment, the anti-IL-6 antibody molecule is tocilizumab. An example of an IL-1R based inhibitor is anakinra.


In some embodiment, the subject is administered a corticosteroid, such as, e.g., methylprednisolone, hydrocortisone, among others. In some embodiments, the subject is administered a corticosteroid, e.g., methylprednisolone, hydrocortisone, in combination with Benadryl and Tylenol prior to the administration of a CD2 binding molecule, e.g., a MBM that binds CD2, CD3 and a TAA.


In some embodiments, the subject is administered a vasopressor, such as, e.g., norepinephrine, dopamine, phenylephrine, epinephrine, vasopressin, or any combination thereof.


In an embodiment, the subject can be administered an antipyretic agent. In an embodiment, the subject can be administered an analgesic agent.


8. EXAMPLES

Examples 1-15 below correspond to Examples 1-15, respectively, of U.S. provisional application Nos. 62/850,918 and 62/854,715 (the “priority applications”). FIGS. 4-13, discussed in Examples 2 to 11 below, correspond to FIGS. 4-13 of the priority applications. The data shown in FIGS. 4-13 was generated with the bispecific and trispecific constructs described in Example 1 of the priority applications and described in Example 1 below. The original nomenclature shown in FIGS. 4-13 of the priority applications has been replaced with simplified nomenclature in the present disclosure. The correspondence between the original and simplified nomenclature is shown in Table B.












TABLE B





FIG. of the
FIG. of the




priority
present

Simplified


applications
disclosure
Original nomenclature
nomenclature







 4
4A-4B
αCD19(NEG218)-αCD3(16 nM)
CD3hi BSP2 - 2 arm




αCD19(NEG258)-αCD3(16 nM)
CD3hi BSP1 - 2 arm




αgH-αCD3(16 nM)
control


 5
5A-5B
αgH-αCD3(16 nM)
control




αCD19(NEG218)-αCD3(16 nM)
CD3hi BSP2 - 2 arm




αCD19(NEG258)-αCD3(16 nM)
CD3hi BSP1 - 2 arm


 6B
6C-6F
αCD19(NEG258)-αCD3(16 nM)-
CD3hi TSP1L




αLyzm




αCD19(NEG258)-αCD3(16 nM)-
CD3hi TSP1




αCD58IgV




αCD19(NEG258)-αCD3(30 nM)-
CD3med TSP1




αCD58IgV




αCD19(NEG258)-αCD3(48 nM)-
CD3lo TSP1




αCD58IgV




αCD19(NEG218)-αCD3(16 nM)
CD3hi BSP2 - 2 arm




αCD19(NEG218)-αCD3(16 nM)-
CD3hi TSP2




αCD58IgV


 7
7A
αCD19(NEG218)-αCD3-CD58(IgV)
CD3hi TSP2



7B
αCD19(NEG258)-αCD3-
CD3hi TSP1




αCD58(IgV)


 8A
8A
αCD19(NEG258)-αCD3(16 nM)-
CD3hi TSP1L




α-Lyzm




αCD19(NEG258)-αCD3(16 nM)-
CD3hi TSP1




αCD58IgV


 8B
8C-8E
αCD19(NEG258)-αCD3(16 nM)-
CD3hi TSP1L




αLyzm



 8F-8H
αCD19(NEG258)-αCD3(16 nM)-
CD3hi TSP1




αCD58IgV


 9A-9B
9A-9P
αCD19(NEG218)-αCD3-CD58IgV
CD3hi TSP2




αCD19(NEG258)-αCD3-CD58IgV
CD3hi TSP1


10A-10B
10A-10P
αCD19(NEG258)-αCD3(48 nM)-
CD3lo TSP1




CD58IgV




αCD19(NEG258)-αCD3(30 nM)-
CD3med TSP1




CD58IgV




αCD19(NEG258)-αCD3(16 nM)-
CD3hi TSP1




CD58IgV


11A-11B
11A-11L
αCD19(NEG258)-αCD3-αLyzm
CD3hi TSP1L




αCD19(NEG258)-αCD3-CD58IgV
CD3hi TSP1


12
12A-12C
αCD19(NEG258)-αCD3-CD58IgV
CD3hi TSP1




αCD19(NEG218)-αCD3-CD58IgV
CD3hi TSP2


13
13A-13C
αCD19(NEG218)-αCD3-CD58IgV
CD3hi TSP2




αCD19(NEG258)-αCD3-CD58IgV
CD3hi TSP1









8.1. Example 1: Production of Anti-CD3-Anti-CD19 IgG1 Bispecific and Trispecific Binding Molecules in Knob-into-Holes Format

BBMs having a CD3 ABM and a CD19 ABM (shown schematically in FIG. 3A), and TBMs having a CD3 ABM, a CD19 ABM, and a CD2 ABM (shown schematically in FIG. 3B) were produced in a knob-into-hole (KIH) format. Each BBM and TBM of this Example comprises a first half antibody (shown schematically as the left half of each construct shown in FIGS. 3A-3B) and a second half antibody (shown schematically as the right half of each construct shown in FIGS. 3A-3B).


8.1.1. Materials and Methods


8.1.1.1. Plasmids Encoding BBMs and TBMs


Plasmids for all constructs were synthesized and codon optimized for expression in mammalian cells.


For each bispecific construct, three plasmids were synthesized. A first plasmid encoding an anti-CD19 heavy chain was synthesized as a fusion comprising (in the N-terminal to C-terminal direction) (i) an anti-CD19 VH domain and (ii) a constant hIgG1 domain containing T366S, L368A, and Y407V mutations for a hole to facilitate heterodimerization as well as silencing mutations. A second plasmid encoding a light chain was synthesized as a fusion comprising (in the N-terminal to C-terminal direction) (i) an anti-CD19 VL domain and (ii) a constant human kappa sequence. The proteins encoded by the first and second plasmids form the first half antibody. A third plasmid encoding the second half antibody was synthesized as a fusion comprising (in the N-terminal to C-terminal direction) (i) an anti-CD3 single chain variable fragment (having the VH and VL domains of an anti-CD3 antibody designated as CD3hi (as defined in the following paragraph)), (ii) a linker, and (iii) a constant hIgG1 domain containing a T366W mutation for a knob to facilitate heterodimerization as well as silencing mutations.


For each trispecific construct, three plasmids were synthesized. A first plasmid encoding an anti-CD19 heavy chain was synthesized as a fusion comprising (in the N-terminal to C-terminal direction) (i) an anti-CD19 VH domain fused to a constant hIgG1 CH1 domain, (ii) a linker, (iii) an anti-CD3 scFv with VH and VL domains of an anti-CD3 antibody having high, medium, or low affinity to CD3 (in relative terms), and referred to herein as CD3hi, CD3med or CD3lo (from anti-CD3 antibodies having an affinity to CD3 of 16 nM, 30 nM, or 48 nm, respectively, as measured by Biacore), (iv) a second linker, and (v) an hIgG1 Fc domain containing T366S, L368A, and Y407V mutations for a hole to facilitate heterodimerization as well as silencing mutations. It should be understood that with respect to the mentioned Biacore affinity values and relative terms in the construct names, these are used merely for identification purposes and are not intended to represent absolute affinity values. A second plasmid encoding a light chain was synthesized as a fusion comprising (in the N-terminal to C-terminal direction) (i) an anti-CD19 VL domain and (ii) a constant human kappa sequence. The proteins encoded by the first and second plasmids form the first half antibody. A third plasmid encoding the second half antibody was synthesized as a fusion comprising (in the N-terminal to C-terminal direction) (i) the IgV domain of CD58 (CD58-6) and (ii) a constant hIgG1 domain containing a T366W mutation for a knob to facilitate heterodimerization as well as silencing mutations.


Control constructs corresponding to the CD3hi TSP1 (which was originally referred to as CD19_NEG258_CD3_16 nM-CD58 or CD19_NEG258_CD3_16 nM-CD58 Trispecific and has a NEG258-based CD19 binding arm) and CD3hi TSP2 (which was originally referred to as CD19_NEG218_CD3_16 nM-CD58 or CD19_NEG218_CD3_16 nM-CD58 Trispecific and has a NEG218-based CD19 binding arm) trispecific constructs were produced in which the CD2 ABM was replaced with a Vhh against hen egg lysozyme (such control constructs originally referred to as CD19_NEG258_CD3_16 nM-lysozyme Trispecific and CD19_NEG218_CD3_16 nM-lysozyme Trispecific, respectively, and having the simplified names CD3hi TSP1L and CD3hi TSP2L, respectively).


Amino acid sequences for components of the constructs are shown in Table 20A (without Fc sequences) and Table 20-B (with Fc sequences).









TABLE 20-A







Amino acid sequences











Simplified
Original


SEQ


Construct
Construct
Chain

ID


Name
Name
Description
Amino Acid Sequence
NO:





CD3hi
CD19_NEG258_
First Half
QVQLVQSGAEVKKPGASVKVSCKASGYTFTTY
1006


TSP1
CD3_
Antibody
WIQWVRQAPGQRLEWMGAVYPGDADTRYTQK




16 nM-
Heavy Chain
FQGRVTLTADRSASTAYMELSSLRSEDTAVYYC




Trispecific
(Fc sequence
GRDAGLEYYALDYWGQGTLVTVSSASTKGPSV





not shown)
FPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSW






NSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSS






SLGTQTYICNVNHKPSNTKVDKRVEPKSCGGG






GSGGGGSEVQLVESGGGLVQPGGSLKLSCAA






SGFTFNTYAMNWVRQASGKGLEWVGRIRSKY






NNYATYYADSVKDRFTISRDDSKSTLYLQMNSL






KTEDTAVYYCVRHGNFGNSYVSWFAYWGQGT






LVTVSSGGGGSGGGGSGGGGSGGGGSQAVV






TQEPSLTVSPGGTVTLTCRSSTGAVTTSNYAN






WVQQKPGQAPRGLIGGTNKRAPWTPARFSGS






LLGDKAALTLSGAQPEDEAEYFCALWYSNLWV






FGGGTKLTVLGGGGS








First Half
EIVMTQSPATLSVSPGERATLSCRASQDVGTAV
1007




Antibody
AWYQQKPGQAPRLLIYWASTRHTGIPARFSGS





Light Chain
GSGTEFTLTISSLQSEDFAVYFCQQYANFPLYT






FGQGTKLEIKRTVAAPSVFIFPPSDEQLKSGTAS






VVCLLNNFYPREAKVQWKVDNALQSGNSQESV






TEQDSKDSTYSLSSTLTLSKADYEKHKVYACEV






THQGLSSPVTKSFNRGEC








Second Half
SQQIYGVVYGNVTFHVPSNVPLKEVLWKKQKD
1008




Antibody
KVAELENSEFRAFSSFKNRNLDTVSGSLTIYNL





(Fc sequence
TSSDEDEYEMESPNITDTMKFFLYVLESGGGGS





not shown)







CD3med
CD19_
First Half
QVQLVQSGAEVKKPGASVKVSCKASGYTFTTY
1009


TSP1
NEG258_CD3_
Antibody
WIQWVRQAPGQRLEWMAGAVYPGDADTRYTQK




30 nM-CD58
Heavy Chain
FQGRVTLTADRSASTAYMELSSLRSEDTAVYYC




Trispecific
(Fc sequence
GRDAGLEYYALDYWGQGTLVTVSSASTKGPSV





not shown)
FPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSW






NSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSS






SLGTQTYICNVNHKPSNTKVDKRVEPKSCGGG






GSGGGGSEVQLVESGGGLVQPGGSLKLSCAA






SGFTFNTYAMNWVRQASGKGLEWVGRIRSKY






NNYATYYADSVKDRFTISRDDSKNTAYLQMNSL






KTEDTAVYYCVRHGNFGNSYVSWFAHWGQGT






LVTVSSGGGGSGGGGSGGGGSGGGGSQAVV






TQEPSLTVSPGGTVTLTCGSSTGAVTSSNYAN






WVQQKPGQAPRGLIGGTNKRAPWTRARFSGS






LLGGKAALTLSGAQPEDEAEYYCALWYSNLWV






FGGGTKLTVLGGGGS








First Half
EIVMTQSPATLSVSPGERATLSCRASQDVGTAV
1007




Antibody
AWYQQKPGQAPRLLIYWASTRHTGIPARFSGS





Light Chain
GSGTEFTLTISSLQSEDFAVYFCQQYANFPLYT






FGQGTKLEIKRTVAAPSVFIFPPSDEQLKSGTAS






VVCLLNNFYPREAKVQWKVDNALQSGNSQESV






TEQDSKDSTYSLSSTLTLSKADYEKHKVYACEV






THQGLSSPVTKSFNRGEC








Second Half
SQQIYGVVYGNVTFHVPSNVPLKEVLWKKQKD
1008




Antibody
KVAELENSEFRAFSSFKNRVYLDTVSGSLTIYNL





(Fc sequence
TSSDEDEYEMESPNITDTMKFFLYVLESGGGGS





not shown)







CD3lo
CD19_
First Half
QVQLVQSGAEVKKPGASVKVSCKASGYTFTTY
1010


TSP1
NEG258_CD3_
Antibody
WIQWVRQAPGQRLEWMGAVYPGDADTRYTQK




48 nM-CD58
Heavy Chain
FQGRVTLTADRSASTAYMELSSLRSEDTAVYYC




Trispecific
(Fc sequence
GRDAGLEYYALDYWGQGTLVTVSSASTKGPSV





not shown)
FPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSW






NSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSS






SLGTQTYICNVNHKPSNTKVDKRVEPKSCGGG






GSGGGGSEVQLVESGGGLVQPGGSLKLSCAA






SGFTFNTYAMNWVRQASGKGLEWVGRIRSKY






NNYATYYADSVKDRFTISRDDSKSTAYLQMNSL






KTEDTAVYYCVRHGNFGNSYVSWFAYWGQGT






LVTVSSGGGGSGGGGSGGGGSGGGGSQAVV






TQEPSLTVSPGGTVTLTCRSSTGAVTTSNYAN






WVQQKPGQAPRGLIGGTNKRAPWTPARFSGS






LLGDKAALTLSGAQPEDEAEYFCALWYSNLWV






FGGGTKLTVLGGGGS








First Half
EIVMTQSPATLSVSPGERATLSCRASQDVGTAV
1007




Antibody
AWYQQKPGQAPTLLIYWASTRHTGIPARFSGS





Light Chain
GSGTEFTLTISSLQSEDFAVYFCQQYANFPLYT






FGQGTKLEIKRTVAAPSVFIFPPSDEQLKSGTAS






VVCLLNNFYPREAKVQWKVDNALQSGNSQESV






TEQDSKDSTYSLSSTLTLSKADYEKHKVYACEV






THQGLSSPVTKSFNRGEC








Second Half
SQQIYGVVYGNVTFHVFSNVPLKEVLWKKQKD
1008




Antibody
KVAELENSEFRAFSSFKNRVYLDTVSGSLTIYNL





(Fc sequence
TSSDEDEYEMESPNITDTMKFFLYVLESGGGGS





not shown)







CD3hi
CD19_
First Half
EVQLVQSGAEVKKPGESLKISCKASGYSFTNY
1011


TSP2
NEG218_CD3_
Antibody
WMNWVRQMPGKGLEWMGMIHPSDSEIRLNQK




16 nM-CD58
Heavy Chain
FQGQVTLSVDKSIGTAYMQWSSLKASDTAMYY




Trispedfic
(Fc sequence
CSRWYYLSSPMDYWGQGTTVTVSSASTKGPS





not shown)
VFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVS






WNSGALTSGVHTFPAVLQSSGLYSLSSVVTVP






SSSLGTQTYICNVNHKPSNTKVDKRVEPKSCG






GGGSGGGGSEVQLVESGGGLVQPGGSLKLSC






AASGFTFNTYAMNWVRQASGKGLEWVGRIRS






KYNNYATYYADSVKDRFTISRDDSKSTLYLQMN






SLKTEDTAVYYCVRHGNFGNSYVSWFAYWGQ






GTLVTVSSGGGGSGGGGSGGGGSGGGGSQA






VVTQEPSLTVSPGGTVTLTCRSSTGAVTTSNYA






NWVQQKPGQAPRGLIGGTNKRAPWTPARFSG






SLLGDKAALTLSGAQPEDEAEYFCALWYSNLW






VFGGGTKLTVLGGGGS








First Half
EIVMTQSPATLSVSPGERATLSCRASQDVGTAV
1012




Antibody
AWYQQKPGQAPRLLIYWASTRHTGIPARFSGS





Light Chain
GSGTEFTLTISSLQSEDFAVYFCQQYSSYPYTF






GQGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASV






VCLLNNFYPREAKVQWKVDNALQSGNSQESVT






EQDSKDSTYSLSSTLTLSKADYEKHKVYACEVT






HQGLSSPVTKSFNRGEC








Second Half
SQQIYGVVYGNVTFHVFSNVPLKEVLWKKQKD
1008




Antibody
KVAELENSEFRAFSSFKNRVYLDTVSGSLTIYNL





(Fc sequence
TSSDEDEYEMESPNITDTMKFFLYVLESGGGGS





not shown)







CD3hi
CD19_
First Half
QVQLVQSGAEVKKPGASVKVSCKASGYTFTTY
1006


TSP1L
NEG258_CD3_
Antibody
WIQWVRQAPGQRLEWMGAVYPGDADTRYTQK




16 nM-
Heavy Chain
FQGRVTLTADRSASTAYMELSSLRSEDTAVYYC




lysozyme
(Fc sequence
GRDAGLEYYALDYWGQGTLVTVSSASTKGPSV




Trispecific
not shown)
FPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSW






NSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSS






SLGTQTYICNVNHKPSNTKVDKRVEPKSCGGG






GSGGGGSEVQLVESGGGLVQPGGSLKLSCAA






SGFTFNTYAMNWVRQASGKGLEWVGRIRSKY






NNYATYYADSVKDRFTISRDDSKSTLYLQMNSL






KTEDTAVYYCVRHGNFGNSYVSWFAYWGQGT






LVTVSSGGGGSGGGGSGGGGSGGGGSQAVV






TQEPSLTVSPGGTVTLTCRSSTGAVTTSNYAN






WVQQKPGQAPRGLIGGTNKRAPWTPARFSGS






LLGDKAALTLSGAQPEDEAEYFCALWYSNLWV






FGGGTKLTVLGGGGS








First Half
EIVMTQSPATLSVSPGERATLSCRASQDVGTAV
1007




Antibody
AWYQQKPGQAPRLLIYWASTRHTGIPARFSGS





Light Chain
GSGTEFTLTISSLQSEDFAVYFCQQYANFPLYT






FGQGTKLEIKRTVAAPSVFIFPPSDEQLKSGTAS






VVCLLNNFYPREAKVQWKVDNALQSGNSQESV






TEQDSKDSTYSLSSTLTLSKADYEKHKVYACEV






THQGLSSPVTKSFNRGEC








Second Half
DVQLQASGGGSVQAGGSLRLSCAASGYTIGPY
1013




Antibody
CMGWFRQAPGKEREGVAAINMGGGITYYADSV





(Fc sequence
KGRFTISQDNAKNTVYLLMNSLEPEDTAIYYCAA





not shown)
DSTIYASYYECGHGLSTGGYGYDSWGQGTQVT






VSSGGGGS






CD3hi
CD19_
First Half
EVQLVQSGAEVKKPGESLKISCKASGYSFTNY
1011


TSP2L
NEG218_CD3_
Antibody
WMNWVRQMPGKGLEWMGMIHPSDSEIRLNQK




16 nM-
Heavy Chain
FQGQVTLSVDKSIGTAYMQWSSLKASDTAMYY




lysozyme
(Fc sequence
CSRWYYLSSPMDYWGQGTTVTVSSASTKGPS




Trispecific
not shown)
VFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVS






WNSGALTSGVHTFPAVLQSSGLYSLSSVVTVP






SSSLGTQTYICNVNHKPSNTKVDKRVEPKSCG






GGGSGGGGSEVQLVESGGGLVQPGGSLKLSC






AASGFTFNIYAMNWVRQASGKGLEWVGRIRS






KYNNYATYYADSVKDRFTISRDDSKSTLYLQMN






SLKTEDTAVYYCVRHGNFGNSYVSWFAYWGQ






GTLVTVSSGGGGSGGGGSGGGGSGGGGSQA






VVTQEPSLTVSPGGTVTLTCRSSTGAVTTSNYA






NWVQQKPGQAPRGLIGGTNKRAPWTPARFSG






SLLGDKAALTLSGAQPEDEAEYFCALWYSNLW






VFGGGTKLTVLGGGGS








First Half
EIVMTQSPATLSVSPGERATLSCRASQDVGTAV
1012




Antibody
AWYQQKPGQAPRLLIYWASTRHTGIPARFSGS





Light Chain
GSGTEFTLTISSLQSEDFAVYFCQQYSSYPYTF






GQGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASV






VCLLNNFYPREAKVQWKVDNALQSGNSQESVT






EQDSKDSTYSLSSTLTLSKADYEKHKVYACEVT






HQGLSSPVTKSFNRGEC








Second Half
DVQLQASGGGSVQAGGSLRLSCAASGYTIGPY
1013




Antibody
CMGWFRQAPGKEREGVAAINMGGGITYYADSV





(Fc sequence
KGRFTISQDNAKNTVYLLMNSLEPEDTAIYYCAA





not shown)
DSTIYASYYECGHGLSTGGYGYDSWGQGTQVT






VSSGGGGS






CD3N
CD19_
First Half
QVQLVQSGAEVKKPGASVKVSCKASGYTFTTY
1014


BSP1 - 2
NEG258_CD3_
Antibody
WIQWVRQAPGQRLEWMGAVYPGDADTRYTQK



arm
16 nM
Heavy Chain
FQGRVTLTADRSASTAYMELSSLRSEDTAVYYC




Bispecific
(Fc sequence
GRDAGLEYYALDYWGQGTLVTVSSASTKGPSV





not shown)
FPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSW






NSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSS






SLGTQTYICNVNHKPSNTKVDKRVEPKSC








First Half
EIVMTQSPATLSVSPGERATLSCRASQDVGTAV
1007




Antibody
AWYQQKPGQAPRLLIYWASTRHTGIPARFSGS





Light Chain
GSGTEFTLTISSLQSEDFAVYFCQQYANFPLYT






FGQGTKLEIKRTVAAPSVFIFPFSDEQLKSGTAS






VVCLLNNFYPREAKVQWKVDNALQSGNSQESV






TEQDSKDSTYSLSSTLTLSKADYEKHKVYACEV






THQGLSSPVTKSFNRGEC








Second Half
EVQLVESGGGLVQPGGSLKLSCAASGFTFNTY
1015




Antibody
AMNWVRQASGKGLEWVGRIRSKYNNYATYYA





(Fc sequence
DSVKDRFTISRDDSKSTLYLQMNSLKTEDTAVY





not shown)
YCVRHGNFGNSYVSWFAYWGQGTLVTVSSGG






GGSGGGGSGGGGSGGGGSQAVVTQEPSLTV






SPGGTVTLTCRSSTGAVTTSNYANWVQQKPG






QAPRGLIGGTNKRAPWTPARFSGSLLGDKAAL






TLSGAQPEDEAEYFCALWYSNLWVFGGGTKLT






VLGGGGS






CD3hi
CD19_
First Half
EVQLVQSGAEVKKPGESLKISCKASGYSFTNY
1016


BSP2 - 2
NEG218_CD3_
Antibody
WMNWVRQMPGKGLEWMGMIHPSDSEIRLNQK



arm
16 nM
Heavy Chain
FQGQVTLSVDKSIGTAYMQWSSLKASDTAMYY




Bispecific
(Fc sequence
CSRWYYLSSPMDYWGQGTTVTVSSASTKGPS





not shown)
VFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVS






WNSGALTSGVHTFPAVLQSSGLYSLSSVVTVP






SSSLGTQTYICNVNHKPSNTKVDKRVEPKSC








First Half
EIVMTQSPATLSVSPGERATLSCRASQDVGTAV
1012




Antibody
AWYQQKPGQAPRLLIYWASTRHTGIPARFSGS





Light Chain
GSGTEFTLTISSLQSEDFAVYFCQQYSSYPYTF






GQGTKLEIKRTVAAPSVFIFPFSDEQLKSGTASV






VCLLNNFYPREAKVQWKVDNALQSGNSQESVT






EQDSKDSTYSLSSTLTLSKADYEKHKVYACEVT






HQGLSSPVTKSFNRGEC








Second Half
EVQLVESGGGLVQPGGSLKLSCAASGFTFNTY
1015




Antibody
AMNWVRQASGKGLEWVGRIRSKYNNYATYYA





(Fc sequence 
DSVKDRFTISRDDSKSTLYLQMNSLKTEDTAVY





not shown)
YCVRHGNFGNSYVSWFAYWGQGTLVTVSSGG






GGSGGGGSGGGGSGGGGSQAVVTQEPSLTV






SPGGTVTLTCRSSTGAVTTSNYANWVQQKPG






QAPRGLIGGTNKRAPWTPARFSGSLLGDKAAL






TLSGAQPEDEAEYFCALWYSNLWVFGGGTKLT






VLGGGGS









Table 20-B below shows the full length amino acid sequences of the constructs shown in Table 20-A (using the simplified construct names), including Fc sequences.









TABLE 20-B







Amino acid sequences













SEQ


Construct
Chain

ID


Name
Description
Amino Acid Sequence
NO:





CD3hi
First Half
QVQLVQSGAEVKKPGASVKVSCKASGYTFTTYWIQWV
1321


TSP1
Antibody
RQAPGQRLEWMGAVYPGDADTRYTQKFQGRVTLTAD




Heavy Chain
RSASTAYMELSSLRSEDTAVYYCGRDAGLEYYALDYW




(includes Fc
GQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCL




sequence)
VKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSL





SSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSC





GGGGSGGGGSEVQLVESGGGLVQPGGSLKLSCAASG





FTFNTYAMNWVRQASGKGLEWVGRIRSKYNNYATYY





ADSVKDRFTISRDDSKSTLYLQMNSLKTEDTAVYYCVR





HGNFGNSYVSWFAYWGQGTLVTVSSGGGGSGGGGS





GGGGSGGGGSQAVVTQEPSLTVSPGGTVTLTCRSST





GAVTTSNYANWVQQKPGQAPRGLIGGTNKRAPWTPA





RFSGSLLGDKAALTLSGAQPEDEAEYFCALWYSNLWV





FGGGTKLTVLGGGGSDKTHTCPPCPAPELLGGPSVFL





FPPKPKDTLMISRTPEVTCVVVAVSHEDPEVKFNWYVD





GVEVHNAKTKPREEQYASTYRVVSVLTVLHQDWLNGK





EYKCKVSNKALAAPIEKTISKAKGQPREPQVCTLPPSR





EEMTKNQVSLSCAVKGFYPSDIAVEWESNGQPENNYK





TTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMH





EALHNHYTQKSLSLSPGK







First Half
EIVMTQSPATLSVSPGERATLSCRASQDVGTAVAWYQ
1007



Antibody
QKPGQAPRLLIYWASTRHTGIPARFSGSGSGTEFTLTIS




Light Chain
SLQSEDFAVYFCQQYANFPLYTFGQGTKLEIKRTVAAP





SVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVD





NALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEK





HKVYACEVTHQGLSSPVTKSFNRGEC







Second Half
SQQIYGVVYGNVTFHVPSNVPLKEVLWKKQKDKVAEL
1322



Antibody
ENSEFRAFSSFKNRVYLDTVSGSLTIYNLTSSDEDEYE




(includes Fc
MESPNITDTMKFFLYVLESGGGGSDKTHTCPPCPAPEL




sequence)
LGGPSVFLFPPKPKDTLMISRTPEVTCVVVAVSHEDPE





VKFNWYVDGVEVHNAKTKPREEQYASTYRVVSVLTVL





HQDWLNGKEYKCKVSNKALAAPIEKTISKAKGQPREP





QVYTLPPCREEMTKNQVSLWCLVKGFYPSDIAVEWES





NGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG





NVFSCSVMHEALHNRYTQKSLSLSPGK






CD3med
First Half
QVQLVQSGAEVKKPGASVKVSCKASGYTFTTYWIQWV
1323


TSP1
Antibody
RQAPGQRLEWMGAVYPGDADTRYTQKFQGRVTLTAD




Heavy Chain
RSASTAYMELSSLRSEDTAVYYCGRDAGLEYYALDYW




(includes Fc
GQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCL




sequence)
VKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSL





SSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSC





GGGGSGGGGSEVQLVESGGGLVQPGGSLKLSCAASG





FTFNTYAMNWVRQASGKGLEWVGRIRSKYNNYATYY





ADSVKDRFTISRDDSKNTAYLQMNSLKTEDTAVYYCVR





HGNFGNSYVSWFAHWGQGTLVTVSSGGGGSGGGGS





GGGGSGGGGSQAVVTQEPSLTVSPGGTVTLTCGSST





GAVTSSNYANWVQQKPGQAPRGLIGGTNKRAPWTPA





RFSGSLLGGKAALTLSGAQPEDEAEYYCALWYSNLWV





FGGGTKLTVLGGGGSDKTHTCPPCPAPELLGGPSVFL





FPPKPKDTLM1SRTPEVTCVVVAVSHEDPEVKFNWYVD





GVEVHNAKTKPREEQYASTYRVVSVLTVLHQDWLNGK





EYKCKVSNKALAAPIEKTISKAKGQPREPQVCTLPPSR





EEMTKNQVSLSCAVKGFYPSDIAVEWESNGQPENNYK





TTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMH





EALHNHYTQKSLSLSPGK







First Half
EIVMTQSPATLSVSPGERATLSCRASQDVGTAVAWYQ
1007



Antibody
QKPGQAPRLLIYWASTRHTGIPARFSGSGSGTEFTLTIS




Light Chain
SLQSEDFAVYFCQQYANFPLYTFGQGTKLEIKRTVAAP





SVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVD





NALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEK





HKVYACEVTHQGLSSPVTKSFNRGEC







Second Half
SQQIYGVVYGNVTFHVPSNVPLKEVLWKKQKDKVAEL
1322



Antibody
ENSEFRAFSSFKNRVYLDTVSGSLTIYNLTSSDEDEYE




(includes Fc
MESPNITDTMKFFLYVLESGGGGSDKTHTCPPCPAPEL




sequence)
LGGPSVFLFPPKPKDTLMISRTPEVTCVVVAVSHEDPE





VKFNWYVDGVEVHNAKTKPREEQYASTYRVVSVLTVL





HQDWLNGKEYKCKVSNKALAAPIEKTISKAKGQPREP





QVYTLPPCREEMTKNQVSLWCLVKGFYPSDIAVEWES





NGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG





NVFSCSVMHEALHNRYTQKSLSLSPGK






CD3lo
First Half
QVQLVQSGAEVKKPGASVKVSCKASGYTFTTYWIQWV
1324


TSP1
Antibody
RQAPGQRLEWMGAVYPGDADTRYTQKFQGRVTLTAD




Heavy Chain
RSASTAYMELSSLRSEDTAVYYCGRDAGLEYYALDYW




(includes Fc
GQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCL




sequence)
VKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSL





SSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSC





GGGGSGGGGSEVQLVESGGGLVQPGGSLKLSCAASG





FTFNTYAMNWVRQASGKGLEWVGRIRSKYNNYATYY





ADSVKDRFTISRDDSKSTAYLQMNSLKTEDTAVYYCVR





HGNFGNSYVSWFAYWGQGTLVTVSSGGGGSGGGGS





GGGGSGGGGSQAVVTQEPSLTVSPGGTVTLTCRSST





GAVTTSNYANWVQQKPGQAPRGLIGGTNKRAPWTPA





RFSGSLLGDKAALTLSGAQPEDEAEYFCALWYSNLWV





FGGGTKLTVLGGGGSDKTHTCPPCPAPELLGGPSVFL





FPPKPKDTLMISRTPEVTCVVVAVSHEDPEVKFNWYVD





GVEVHNAKTKPREEQYASTYRVVSVLTVLHQDWLNGK





EYKCKVSNKALAAPIEKTISKAKGQPREPQVCTLPPSR





EEMTKNQVSLSCAVKGFYPSDIAVEWESNGQPENNYK





TTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMH





EALHNHYTQKSLSLSPGK







First Half
EIVMTQSPATLSVSPGERATLSCRASQDVGTAVAWYQ
1007



Antibody
QKPGQAPRLLIYWASTRHTGIPARFSGSGSGTEFTLTIS




Light Chain
SLOSEDFAVYFCQQYANFPLYTFGQGTKLEIKRTVAAP





SVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVD





NALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEK





HKVYACEVTHQGLSSPVTKSFNRGEC







Second Half
SQQIYGVVYGNVTFHVPSNVPLKEVLWKKQKDKVAEL
1322



Antibody
ENSEFRAFSSFKNRVYLDTVSGSLTIYNLTSSDEDEYE




(includes Fc
MESPNITDTMKFFLYVLESGGGGSDKTHTCPPCPAPEL




sequence)
LGGPSVFLFPPKPKDTLMISRTPEVTCVVVAVSHEDPE





VKFNWYVDGVEVHNAKTKPREEQYASTYRVVSVLTVL





HQDWLNGKEYKCKVSNKALAAPIEKTISKAKGQPREP





QVYTLPPCREEMTKNQVSLWCLVKGFYPSDIAVEWES





NGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG





NVFSCSVMHEALHNRYTQKSLSLSPGK






CD3hi
First Half
EVQLVQSGAEVKKPGESLKISCKASGYSFTNYWMNWV
1325


TSP2
Antibody
RQMPGKGLEWMGMIHPSDSEIRLNQKFQGQVTLSVD




Heavy Chain
KSIGTAYMQWSSLKASDTAMYYCSRWYYLSSPMDYW




(includes Fc
GQGTTVTVSSASTKGPSVEPLAPSSKSTSGGTAALGC




sequence)
LVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSL





SSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSC





GGGGSGGGGSEVQLVESGGGLVQPGGSLKLSCAASG





FTFNTYAMNWVRQASGKGLEWVGRIRSKYNNYATYY





ADSVKDRFTISRDDSKSTLYLQMNSLKTEDTAVYYCVR





HGNFGNSYVSWFAYWGQGTLVTVSSGGGGSGGGGS





GGGGSGGGGSQAVVTQEPSLTVSPGGTVTLTCRSST





GAVTTSNYANWVQQKPGQAPRGLIGGTNKRAPWTPA





RFSGSLLGDKAALTLSGAQPEDEAEYFCALWYSNLWV





FGGGTKLTVLGGGGSDKTHTCPPCPAPELLGGPSVFL





FPPKPKDTLMISRTPEVTCVVVAVSHEDPEVKFNWYVD





GVEVHNAKTKPREEQYASTYRVVSVLTVLHQDWLNGK





EYKCKVSNKALAAPIEKTISKAKGQPREPQVCTLPPSR





EEMTKNQVSLSCAVKGFYPSDIAVEWESNGGPENNYK





TTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMH





EALHNHYTQKSLSLSPGK







First Half
EIVMTQSPATLSVSPGERATLSCRASQDVGTAVAWYQ
1012



Antibody
QKPGQAPRLLIYWASTRHTGIPARFSGSGSGTEFTLTIS




Light Chain
SLQSEDFAVYFCQQYSSYPYTFGQGTKLEIKRTVAAPS





VFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDN





ALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHK





VYACEVTHGGLSSPVTKSFNRGEC







Second Half
SGQIYGVVYGNVTFHVPSNVPLKEVLWKKQKDKVAEL
1322



Antibody
ENSEFRAFSSFKNRVYLDTVSGSLTIYNLTSSDEDEYE




(includes Fc
MESPNITDTMKFFLYVLESGGGGSDKTHTCPPCPAPEL




sequence)
LGGPSVFLFPPKPKDTLMISRTPEVTCVVVAVSHEDPE





VKFNWYVDGVEVHNAKTKPREEQYASTYRVVSVLTVL





HQDWLNGKEYKCKVSNKALAAPIEKTISKAKGQPREP





QVYTLPPCREEMTKNQVSLWCLVKGRYPSDIAVEWES





NGOPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG





NVFSCSVMHEALHNRYTQKSLSLSPGK






CD3hi
First Half
QVQLVQSGAEVKKPGASVKVSCKASGYTFTTYWIQWV
1321


TSP1L
Antibody
RQAPGQRLEWMGAVYPGDADTRYTQKFQGRVTLTAD




Heavy Chain
RSASTAYMELSSLRSEDTAVYYCGRDAGLEYYALDYW




(includes Fc
GQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCL




sequence)
VKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSL





SSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSC





GGGGSGGGGSEVQLVESGGGLVQPGGSLKLSCAASG





FTFNTYAMNWVRQASGKGLEWVGRIRSKYNNYATYY





ADSVKDRFTISRDDSKSTLYLQMNSLKTEDTAVYYCVR





HGNFGNSYVSWFAYWGQGTLVTVSSGGGGSGGGGS





GGGGSGGGGSQAVVTQEPSLTVSPGGTVTLTCRSST





GAVTTSNYANWVQQKPGQAPRGLIGGTNKRAPWTPA





RFSGSLLGDKAALTLSGAQPEDEAEYFCALWYSNLWV





FGGGTKLTVLGGGGSDKTHTCPPCPAPELLGGPSVFL





FPPKPKDTLMISRTPEVTCVVVAVSHEDPEVKFNWYVD





GVEVHNAKTKPREEQYASTYRVVSVLTVLHQDWLNGK





EYKCKVSNKALAAPIEKTISKAKGQPREPQVCTLPPSR





EEMTKNQVSLSCAVKGFYPSDIAVEWESNGQPENNYK





TTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMH





EALHNHYTQKSLSLSPGK







First Half
EIVMTQSPATLSVSPGERATLSCRASQDVGTAVAWYQ
1007



Antibody
QKPGQAPRLLIYWASTRHTGIPARFSGSGSGTEFTLTIS




Light Chain
SLQSEDFAVYFCQQYANFPLYTFGQGTKLEIKRTVAAP





SVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVD





NALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEK





HKVYACEVTHQGLSSPVTKSFNRGEC







Second Half
DVQLQASGGGSVQAGGSLRLSCAASGYTIGPYCMGW
1326



Antibody
FRQAPGKEREGVAAINMGGGITYYADSVKGRFTISQDN




(includes Fc
AKNTVYLLMNSLEPEDTAIYYCAADSTIYASYYECGHGL




sequence)
STGGYGYDSWGQGTQVTVSSGGGGSDKTHTCPPCP





APELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVAVSH





EDPEVKFNWYVDGVEVHNAKTKPREEQYASTYRVVSV





LTVLHQDWLNGKEYKCKVSNKALAAPIEKTISKAKGQP





REPQVYTLPPCREEMTKNQVSLWCLVKGFYPSDIAVE





WESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRW





QQGNVFSCSVNHEALHNRYTQKSLSLSPGK






CD3hi
First Half
EVQLVQSGAEVKKPGESLKISCKASGYSFTNYWMNWV
1325


TSP2L
Antibody
RQMPGKGLEWMGMIHPSDSEIRLNQKFQGQVTLSVD




Heavy Chain
KSIGTAYMQWSSLKASDTAMYYCSRWYYLSSPMDYW




(includes Fc
GQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGC




sequence)
LVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSL





SSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSC





GGGGSGGGGSEVQLVESGGGLVQPGGSLKLSCAASG





FTFNTYAMNWVRQASGKGLEWVGRIRSKYNNYATYY





ADSVKDRFTISRDDSKSTLYLQMNSLKTEDTAVYYCVR





HGNFGNSYVSWFAYWGQGTLVTVSSGGGGSGGGGS





GGGGSGGGGSQAVVTQEPSLTVSPGGTVTLTCRSST





GAVTTSNYANWVQQKPGQAPRGLIGGTNKRAPWTPA





RFSGSLLGDKAALTLSGAQPEDEAEYFCALWYSNLWV





FGGGTKLTVLGGGGSDKTHTCPPCPAPELLGGPSVFL





FPPKPKDTLMISRTPEVTCVVVAVSHEDPEVKFNWYVD





GVEVHNAKTKPREEQYASTYRVVSVLTVLHQDWLNGK





EYKCKVSNKALAAPIEKTISKAKGQPREPQVCTLPPSR





EEMTKNGVSLSCAVKGFYPSDIAVEWESNGQPENNYK





TTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMH





EALHNHYTQKSLSLSPGK







First Half
EIVMTQSPATLSVSPGERATLSCRASQDVGTAVAWYQ
1013



Antibody
QKPGQAPRLLIYWASTRHTGIPARFSGSGSGTEFTLTIS




Light Chain
SLQSEDFAVYFCQQYSSYPYTFGQGTKLEIKRTVAAPS





VFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDN





ALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHK





VYACEVTHGGLSSPVTKSFNRGEC







Second Half
DVQLQASGGGSVQAGGSLRLSCAASGYTIGPYCMGW
1326



Antibody
FRQAPGKEREGVAAINMGGGITYYADSVKGRFTISQDN




(includes Fc
AKNTVYLLMNSLEPEDTAIYYCAADSTIYASYYECGHGL




sequence)
STGGYGYDSWGQGTQVTVSSGGGGSDKTHTCPPCP





APELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVAVSH





EDPEVKFNWYVDGVEVHNAKTKPREEQYASTYRVVSV





LTVLHQDWLNGKEYKCKVSNKALAAPIEKTISKAKGQP





REPQVYTLPPCREEMTKNQVSLWCLVKGFYPSDIAVE





WESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRW





QQGNVFSCSVMHEALHNRYTQKSLSLSPGK






CD3hi
First Half
QVQLVQSGAEVKKPGASVKVSCKASGYTFTTYWIQWV
1327


BSP1- 2
Antibody
RQAPGQRLEWMGAVYPGDADTRYTQKFQGRVTLTAD



arm
Heavy Chain
RSASTAYMELSSLRSEDTAVYYCGRDAGLEYYALDYW




(includes Fc
GQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCL




sequence)
VKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSL





SSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSC





DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPE





VTCVVVAVSHEDPEVKFNWYVDGVEVHNAKTKPREE





QYASTYRVVSVLTVLHQDWLNGKEYKCKVSNKALAAPI





EKTISKAKGQPREPQVCTLPPSREEMTKNQVSLSCAV





KGFYPSDAVEWESNGQPENNYKTTPPVLDSDGSFFL





VSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL





SPGK







First Half
EIVMTQSPATLSVSPGERATLSCRASQDVGTAVAWYQ
1007



Antibody
QKPGQAPRLLIYWASTRHTGIPARFSGSGSGTEFTLTIS




Light Chain
SLQSEDFAVYFCQQYANFPLYTFGQGTKLEIKRTVAAP





SVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVD





NALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEK





HKVYACEVTHQGLSSPVTKSFNRGEC







Second Half
EVQLVESGGGLVQPGGSLKLSCAASGFTFNTYAMNW
1328



Antibody
VRQASGKGLEWVGRIRSKYNNYATYYADSVKDRFTIS




(includes Fc
RDDSKSTLYLQMNSLKTEDTAVYYCVRHGNFGNSYVS




sequence)
WFAYWGQGTLVTVSSGGGGSGGGGSGGGGSGGGG





SGAVVTQEPSLTVSPGGTVTLTCRSSTGAVTTSNYAN





WVQQKPGQAPRGLIGGTNKRAPWTPARFSGSLLGDK





AALTLSGAQPEDEAEYFCALWYSNLWVFGGGTKLTVL





GGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMI





SRTPEVTCVVVAVSHEDPEVKFNWYVDGVEVHNAKTK





PREEQYASTYRVVSVLTVLHQDWLNGKEYKCKVSNKA





LAAPIEKTISKAKGQPREPQVYTLPPCREEMTKNQVSL





WCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDG





SFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNRYTQK





SLSLSPGK






CD3hi
First Half
EVQLVQSGAEVKKPGESLKISCKASGYSFTNYWMNVW
1329


BSP2 - 2
Antibody
RQMPGKGLEWMGMIHPSDSEIRLNQKFQGQVTLSVD



arm
Heavy Chain
KSIGTAYMQWSSLKASDTAMYYCSRWYYLSSPMDYW




(includes Fc
GQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGC




sequence)
LVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSL





SSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSC





DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPE





VTCVVVAVSHEDPEVKFNWYVDGVEVHNAKTKPREE





QYASTYRVVSVLTVLHQDWLNGKEYKCKVSNKALAAPI





EKTISKAKGQPREPQVCTLPPSREEMTKNQVSLSCAV





KGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFL





VSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL





SPGK







First Half
EIVMTQSPATLSVSPGERATLSCRASQDVGTAVAWYQ
1012



Antibody
QKPGQAPRLLIYWASTRHTGPARFSGSGSGTEFTLTIS




Light Chain
SLQSEDFAVYFCQQYSSYPYTFGQGTKLEIKRTVAAPS





VFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDN





ALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHK





VYACEVTHQGLSSPVTKSFNRGEC







Second Half
EVQLVESGGGLVQPGGSLKLSCAASGFTFNTYAMNW
1328



Antibody
VRQASGKGLEWVGRIRSKYNNYATYYADSVKDRFTIS




(includes Fc
RDDSKSTLYLQMNSLKTEDTAVYYCVRHGNFGNSYVS




sequence)
WFAYWGQGTLVTVSSGGGGSGGGGSGGGGSGGGG





SQAVVTQEPSLTVSPGGTVTLTCRSSTGAVTTSNYAN





WVQQKPGQAPRGLIGGTNKRAPWTPARFSGSLLGDK





AALTLSGAQPEDEAEYFCALWYSNLWVFGGGTKLTVL





GGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMI





SRTPEVTCVVVAVSHEDPEVKFNWYVDGVEVHNAKTK





PREEQYASTYRVVSVLTVLHQWLNGKEYKCKVSNKA





LAAPIEKTISKAKGQPREPQVYTLPPCREEMTKNQVSL





WCLVKGEYPSDIAVEWESNGQPENNYKTTPPVLDSDG





SFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNRYTQK





SLSLSPGK









8.1.1.2. Expression and Purification


BBMs and TBMs were expressed transiently by co-transfection of the respective chains in HEK293 cells. Briefly, transfection of the cells with the heavy and light chain plasmids was performed using PEI as transfection reagent with a final DNA:PEI ratio of 1:3. 1 mg of plasmid per liter of culture was used for transfection of cultures having 2.0 million cells/mL of serum media. After 5 days of expression, BBMs and TBMs were harvested by clarification of the media via centrifugation and filtration. Purification was performed via anti-CH1 affinity batch binding (CaptureSelect IgG-CH1 Affinity Matrix, Thermo-Fisher Scientific, Waltham, Mass., USA) or Protein A (rProteinA Sepharose, Fast flow, GE Healthcare, Uppsala, Sweden) batch binding using 1 ml resin/100 mL supernatant. The protein was allowed to bind for a minimum of 2 hours with gentle mixing, and the supernatant loaded onto a gravity filtration column. The resin was washed with 20-50 CV of PBS. BBMs and TBMs were eluted with 20 CV of 50 mM citrate, 90 mM NaCl pH 3.2. 50 mM sucrose. The eluted BBM and TBM fractions were adjusted to pH 5.5 with 1 M sodium citrate 50 mM sucrose. Preparative size exclusion chromatography was performed using Hi Load 16/60 Superdex 200 grade column (GE Healthcare Life Sciences, Uppsala, Sweden) as a final polishing step when aggregates were present. To confirm that the identity of the proteins of the BBMs and TBMs expressed matched the predicted masses for the primary amino acid sequences, proteins were analyzed by high-performance liquid chromatography coupled to mass spectrometry.


8.1.1.3. CD3 Affinity Measurements


The affinity of the CD3hi, CD3med, and CD3lo mAbs to CD3 were determined at 25° C. using a Biacore T200 system. Briefly, anti-hFc IgG1 was immobilized on a CM5 chip. After capturing CD3-Fc (1 μg/ml in HBS-EP+ buffer, flow rate of 50 μl/min, with a 30 second injection time) kinetic data was acquired by subsequent injections of 1:2 dilution series of the different antibodies in HBS-EP+ buffer.


Data were evaluated using the Biacore T200 evaluation software version 1.0. The raw data were double referenced, i.e. the response of the measuring flow cell was corrected for the response of the reference flow cell, and in a second step the response of a blank injection was subtracted. Finally, the sensorgrams were fitted by applying 1:1 binding model to calculate kinetic rate constants and dissociation equilibrium constants. Rmax was set at local. Data were processed individually for each run.


8.2. Example 2: Ability of BBMs to Elicit Redirected T-Cell Cytotoxic Activity (RTCC) Against CD19+ Target Cells

8.2.1. Materials and Methods


A RTCC assay with the BBMs of Example 1 was performed to measure the ability of the BBMs to elicit RTCC against CD19+ Nalm6-luc and Karpas422-luc cells. Nalm-6 is a human B cell precursor leukemia cell line and Karpas422 is a human B-cell non-hodgkin lymphoma cell line. Briefly, Nalm6 and Karpas422 cells engineered to express the firefly luciferase reporter gene were cultured in RPM11640 culture media with 10% fetal bovine serum (FBS). 10,000 target cells with serial diluted BBMs or gH isotype antibody control (agH-CD3hi) were seeded on 384-well flat-bottom microtiter plate. Primary human T cells were isolated from cryopreserved peripheral blood mononuclear cells (PBMCs) and expanded using anti-CD3 and anti-CD28 dynabeads (Thermo fisher, catalog #11131D) and subsequently cryopreserved. Expanded T cells were thawed and aliquoted to the plate to achieve an effector cell (i.e., T cell) to target cell (i.e., cancer cell) ratio (E:T ratio) of 3:1. Plates were incubated in a 37° C. incubator with 5% CO2 overnight. Following the co-incubation, Bright Glo (Promega, catalog #E2620) was added to all wells and the luminescence signal was subsequently measured on an Envision (Perkin Elmer). Target cells with Bright Glo served as maximal signal. The percent RTCC of target cells was calculated using the following formula: [100−(sample/maximal signal)*100%].


8.2.2. Results


Results are shown in FIGS. 4A-4B. BBMs based on both NEG258 and NEG218 mediated RTCC activity against Nalm6-luc and Karpas422-luc cells whereas gH isotype antibody (control) was not active, as expected.


8.3. Example 3: Ability of BBMs to Elicit T-Cell Proliferation

8.3.1. Materials and Methods


The BBMs described in Example 1, containing the variable regions of NEG258 and NEG218, were evaluated for their ability to induce T cell proliferation upon co-culture with CD19 expressing target cells. Briefly, Karpas422 and Nalm-6 target cells stably expressing firefly luciferase were irradiated on the day of the assay and plated at a density of 60,000 cells per well in a Costar 96 well plate (Corning, Cat #3904) in T Cell Media (TCM) [RPMI-1640 (ThermoFisher Scientific, Cat #11875-085), 10% FBS (Seradigm, Cat #1500-500), 1% L-Glutamine (Thermo Fisher Scientific, Cat #25830-081), 1% Non Essential Amino Acids (Thermo Fisher Scientific, Cat #11140-050), 1% Pen/Strep (Thermo Fisher Scientific, Cat #15070063), 1% HEPES (Thermo Fisher Scientific, Cat #15630080), Sodium Pyruvate (Thermo Fisher Scientific, Cat #11360-070), 0.1% Beta-mercaptoethanol (Thermo Fisher Scientific, Cat #21985-023)]. Peripheral blood mononuclear cells (PBMCs) previously isolated from Leukopak donors (Hemacare) and cryopreserved were thawed and Pan T cells were isolated by negative selection using the Pan T cell Isolation Kit, human [Miltenyi Biotec, Cat #130-096-535] following the manufacturer's protocol. Isolated T cells were labelled with 5 μM Cell Trace Violet (CTV) (Thermo Fisher Scientific, Cat #C34557) following the manufacturer's protocol and 60,000 CTV labeled T cells were co-cultured with 60,000 target cells to achieve an E:T ratio of 1:1. A dilution series of the NEG258- and NEG218-based BBMs and control binding molecules (agH-CD3hi) ranging from 16 μM-10,000 μM was added to cells and the plates were incubated in a 5% CO2, 37° C. incubator for 96 hrs. After incubation, the cells were harvested, treated with Human TruStain FcX (Fc Block) [Biolegend, Cat #422302] following manufacturer instructions and then stained with Fixable Viability Dye eFlour 780 (ThermoFisher Scientific, Cat #65-0865-14) by incubation at 4 C for 30 mins. The cells were then washed twice using FACS Buffer and stained with PerCP-Cy5.5 conjugated anti-human CD3 mAb (Biolegend, Cat #317336) by incubation at 4° C. for 30 mins. The samples were then run on BD LSR Fortessa and analyzed using FlowJo to determine % proliferated CD3+ T cells based on CD3 staining and dilution of Cell Trace Violet dye.


8.3.2. Results


Both NEG258- and NEG218-based BBMs induced proliferation of T cells upon co-culture with two different CD19 expressing target cell lines (FIGS. 5A-5B). The T cell proliferation effect was dose-dependent, and the NEG258-based BBM showed more potent activity than the NEG218-based BBM. The control antibody did not induce any T cell proliferation indicating that CD19 target-specific engagement was required for the proliferation of T cells.


8.4. Example 4: Ability of TBMs to Elicit CD2 Dependent T Cell Activation

8.4.1. Materials & Methods


A Jurkat cell line (JNL, an immortalized human T-cell line) that stably expresses a luciferase reporter gene driven by the NFAT promoter was used to measure T cell activation. The level of CD2 expression in JNL cells was confirmed by flow cytometry (FIG. 6A). In order to generate CD2 knockout (KO) cells by CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats), JNL cells were electroporated with a CD2 Cas9 ribonucleoprotein complex. CD2 cells were subsequently sorted to enrich for a uniform CD2 population (FIG. 6B). A JNL reporter assay with CD2+ and CD2 JNL cells was then performed to measure bispecfic or trispecific construct-dependent T cell activation. In brief, 10,000 Nalm6 or Karpas422 cells with serial diluted BBMs or TBMs were seeded on 384-well flat-bottom microtiter plate. JNL cells were then added to the plate to achieve effector to target ratio of 3:1. Plates were incubated at a 37° C. incubator with 5% CO2 for overnight. Following the co-incubation, Bright Glo (Promega, catalog #E2620) was added to all wells and the luminescence signal was subsequently measured on an Envision (Perkin Elmer).


8.4.2. Results


Both BBMs and TBMs induced dose-dependent increase in luminescence when incubated with CD2 WT JNL cells, and the response level was higher with TBMs (FIGS. 6C-6F). When CD2-KO JNL cells were used as effector, decreased T cell activation was observed with TBMs as compared to corresponding BBMs, suggesting that the advantage of TBMs is dependent on CD2 expression on the T cells.


8.5. Example 5: Binding of NEG258- and NEG218-Based TBMs to Cyno B Cells

8.5.1. Materials and Methods


Cynomolgus (cyno) PBMCs (iQ Biosciences #IQB-MnPB102) were depleted of CD3+ cells using MACS positive selection (Miltenyi #130-092-012). The remaining cell population was resuspended in a FACS buffer. 100,000 cells per well were plated in a V-bottom 96-well plate, and incubated on ice for one hour with TBMs of Example 1 at 1 ug/mL. Following two washes with FACS buffer, the cells were incubated with Alexa-647 labeled anti-human Fc secondary antibody (Jackson Immuno #109-605-098) and cyno cross reactive FITC mouse anti-human CD20 antibody (BD Pharmingen #556632) for one hour on ice. Following two washes with FACS buffer, cells were resuspended in 100 μL of buffer and data was collected on a Beckman Coulter Cytoflex. Cells were analyzed using CytExper v2.3 and gated through CD20 positive population.


8.5.2. Results


Due to their proximal evolutionary relationship to humans, cynomolgus monkeys are the most appropriate preclinical model to analyze the therapeutic effect and potential toxicity of antibody therapeutics, and therefore it is useful for antibodies in clinical development to bind to cynomolgus homolog of their human target. As shown in FIGS. 7A-7B, both the NEG258- and NEG-218 TBMs bind to cyno B cells, indicating that the CD19 binding arm recognizes cyno CD19.


8.6. Example 6: Ability of TBMs to Induce T Cell Activation Upon Cyno B Cells Depletion in PBMCs

8.6.1. Materials & Methods


An ex vivo cyno B cell depletion assay was conducted to measure the ability of NEG258-based TBMs of Example 1 to lyse CD20 positive B cells in PBMCs (peripheral blood mononuclear cells). In brief, PBMCs were isolated from cynomolgus (cyno) monkey whole blood (BiolVT) using ficoll gradient centrifugation. Isolated PBMCs and serial diluted TBMs were seeded on 96-well flat-bottom microtiter plate. Plates were incubated in a 37° C. incubator with 5% CO2 overnight. After 24 h of incubation, samples were harvested and simultaneously stained for CD3 and CD20 to identify B and T cells within the PBMC population. To allow quantitative analysis of the cell population, 75,600 counting beads were added prior to the acquisition by flow cytometry. For each sample, 20,000 beads were acquired in order to determine the absolute numbers of B cells. The percent B cell depletion was determined by calculation of the ratio between the number of B cells and the number of beads. For detection of T cell activation, the cells were stained with anti-CD3, anti-CD69 and anti-CD25 (Biolegend and BD Biosciences).


8.6.2. Results


Both NEG258-based TBMs depleted cyno B cells (FIG. 8A) and induced activation of CD3+ T cells as evidence by upregulation of CD69 and CD25 expression (FIGS. 8C-8H). As expected, neither B cell depletion nor T cell activation occurred in the absence of added TBM. These results show both the ability of the NEG258-based TBMs induce activation of cyno T cells as well as the specificity of the activation.


8.7. Example 7: Re-Directed T Cell Cytotoxicity by CD19 TBMs

NEG258- and NEG218 based TBMs of Example 1 (having CD3 ABMs with the VH and VL domains of an anti-CD3 antibody having an affinity to CD3 of 16 nM as measured by Biacore) were analyzed for their potential to induce T cell-mediated apoptosis in tumor target cells.


8.7.1. Materials and Methods


In one study, the TBMs were compared across multiple donor effector cells. Briefly, huCD19-expressing Nalm6 or Karpas422 target cells were engineered to overexpress firefly luciferase. Cells were harvested and resuspended in RPMI medium (Invitrogen #11875-093) with 10% FBS. 2,500 target cells per well were plated in a flat-bottom 384-well plate. Human pan T effector cells were isolated via MACS negative selection (Miltenyi Biotec #130-096-535) from two donors from cryopreserved PBMC (Cellular Technologies Limited #CTL-UP1) then added to the plate to obtain a final E:T ratio of 3:1 or 5:1. Co-cultured cells were incubated with a serial dilution of all constructs and controls. For normalization, average maximum luminescence refers to target cells co-incubated with effector cells, but without any test construct. After an incubation of 24, 48, 72 or 96 hr at 37° C., 5% CO2, OneGlo luciferase substrate (Promega #E6120) was added to the plate. Luminescence was measured on an Envision plate reader after a 10 minute incubation. Percent specific lysis was calculated using the following equation: Specific lysis (%)=(1−(sample luminescence/average maximum luminescence))*100


8.7.2. Results


As shown in FIGS. 9A-9P, the TBMs show cytotoxic activity against both Nalm6 target cells (FIGS. 9A-9H) and Karpas422 cells (FIGS. 9I-P) at multiple time points, E:T ratios and effector T cell donors. The NEG258-based TBM appears to be more potent than the NEG218-based TBM.


8.8. Example 8: Re-Directed T Cell Cytotoxicity by TBMs with Different CD3 Affinities

The NEG258-based TBMs of Example 1 with CD3 ABMs (comprising the VH and VL domains of anti-CD3 antibodies having affinities to CD3 of 16 nM, 30 nM and 48 nM as measured by Biacore) were analyzed for their potential to induce T cell-mediated apoptosis in tumor target cells.


8.8.1. Materials and Methods


In one study, the TBMs were compared across multiple donor effector cells. Briefly, huCD19-expressing Nalm6 and Karpas422 target cells were engineered to overexpress firefly luciferase. Cells were harvested and resuspended in RPMI medium (Invitrogen #11875-093) with 10% FBS. 2,500 target cells per well were plated in a flat-bottom 384-well plate. Human pan T effector cells were isolated via MACS negative selection (Miltenyi Biotec #130-096-535) from two donors from cryopreserved PBMCs (Cellular Technologies Limited #CTL-UP1), then added to the plate to obtain a final E:T ratio of 3:1 or 5:1. Co-cultured cells were incubated with serial dilutions of a TBM or control. For normalization, average maximum luminescence refers to target cells co-incubated with effector cells, but without any test construct. After an incubation of 24, 48, 72 or 96 hr at 37° C., 5% CO2, OneGlo luciferase substrate (Promega #E6120) was added to the plate. Luminescence was measured on an Envision plate reader after a 10 minute incubation. Percent specific lysis was calculated using the following equation: Specific lysis (%)=(1−(sample luminescence/average maximum luminescence))*100


8.8.2. Results


As shown in FIGS. 10A-10P, the TBMs show cytotoxic activity against both Nalm6 target cells (FIGS. 10A-10H) and Karpas422 (FIGS. 101-10P) at multiple time points, E:T ratios and effector T cell donors.


8.9. Example 9: RTCC Activity of the NEG258-Based TBMs Vs. BBMs and TBMs that do not Bind to CD2

The NEG258-based TBMs of Example 1 containing either a CD2 binding arm or a control lysozyme binding arm were compared for their potential to induce T cell-mediated apoptosis in Nalm6 or Karpas422 target cells target cells. The study also included blinatumomab as a control. Blinatumomab is a bispecific T cell engager, or BiTE, that binds to both CD19 and CD3 but lacks an Fc domain (see, e.g., U.S. Pat. No. 10,191,034).


8.9.1. Materials and Methods


The purified TBMs were compared across multiple donor effector cells. Briefly, huCD19-expressing Nalm6 and Karpas422 target cells were engineered to overexpress firefly luciferase. Cells were harvested and resuspendend in RPMI medium (Invitrogen #11875-093) with 10% FBS. 5,000 target cells per well were plated in a flat-bottom 384-well plate. Human pan T effector cells were isolated via negative selection (Stemcell Technologies #17951) from two donors from cryopreserved PBMCs that were separated from a leukopak (Hemacare #PB001F-1) by Ficoll density gradient centrifugation. Purified T cells were then added to the plate to obtain a final E:T ratio of 3:1, 1:1, 1:3 or 1:5. Co-cultured cells were incubated with serial dilutions of all constructs and controls. For normalization, average maximum luminescence refers to target cells co-incubated with effector cells, but without any test construct. After an incubation of 48, 72 or 96 hr at 37° C., 5% CO2, OneGlo luciferase substrate (Promega #E6120) was added to the plate. Luminescence was measured on an Envision plate reader after a 10 minute incubation. Percent specific lysis was calculated using the following equation: Specific lysis (%)=(1−(sample luminescence/average maximum luminescence))*100


8.9.2. Results


As shown in FIGS. 11A-11L, both types of TBMs show cytotoxic activity against both Nalm6 target cells (FIGS. 11A-11H) and Karpas422 cells (FIGS. 11I-11L). The TBM containing a CD2 binding arm demonstrated superior cytotoxic activity compared to the TBM with a lysozyme binding arm and to blinatumomab, particularly at lower E:T ratios.


8.10. Example 10: Cytokine Release Assay

The NEG258- and NEG218-based TBMs of Example 1 were analyzed for their ability to induce T cell-mediated de novo secretion of cytokines in the presence of tumor target cells.


8.10.1. Materials and Methods


Briefly, huCD19-expressing Nalm6 target cells were harvested and resuspended in RPMI medium with 10% FBS. 20,000 target cells per well were plated in a flat-bottom 96-well plate. Human pan T effector cells were isolated via MACS negative selection from cryopreserved PBMC then added to the plate to obtain a final E:T ratio of 5:1. Co-cultured cells were incubated with serial dilutions of all constructs and controls. After an incubation of 24 hr at 37° C., 5% CO2, the supernatants were harvested by centrifugation at 300×g for 5 min for subsequent analysis.


A multiplexed ELISA was performed according to the manufacturer's instructions using a V-PLEX Proinflammatory Panel 1 Kit (MesoScale Discovery #K15049D).


8.10.2. Results


As shown in FIGS. 12A-12C, both NEG258- and NEG218-based TBMs induce significant cytokine secretion by T cells at all dose levels measured. These figures indicate that they can be effective at lower doses.


8.11. Example 11: Binding of NEG258- and NEG218-Based TBMs to Human and Cyno CD19

8.11.1. Materials and Methods


The mouse cell line 300.19 was engineered to overexpress either human CD19 or cyno CD19. Cells were cultured in in RPMI medium (Invitrogen #11875-093) with 10% FBS and 2-mercaptoethanol. Cells were harvested and resuspended in FACS buffer (PBS containing 1% FBS). 50,000 cells per well were plated in a V-bottom 96-well plate. Each cell line was incubated with serial dilutions of TBMs of Example 1 for one hour on ice. Cells were centrifuged for 4 min at 400×g and washed with FACS buffer. This was repeated twice, and then the cells were incubated with Alexa-647 labeled anti-human Fc secondary antibody (Jackson Immuno #109-605-098) for 30 min on ice. The cells were washed twice, then resuspended in 100 μL of FACS buffer. FACS data was collected on a Beckman Coulter Cytoflex and analysis was performed using CytExpert v2.3.


8.11.2. Results


As shown in FIGS. 13A-13B, the NEG258- and NEG218-based TBMs bind to cell lines engineered to overexpress both human and cyno CD19. NEG258 appears to bind equally to both human and cyno while NEG218 appears to have greater affinity for cyno CD19 than human CD19. Of the two, NEG258 appears to have greater affinity for both human CD19 and cyno CD19.


8.12. Example 12: Engineering CD58 for Improved Stability

8.12.1. Background


Human CD58 contains a signal peptide of 29 amino acids and two Ig-like domains. The most N-terminal Ig-like domain, referred to as domain 1, is of V-type, similar to a variable region of an antibody, and the second domain, named domain 2, is of C-type, is similar to a constant regions of an antibody. A schematic overview of the CD58 domain structure is shown in FIG. 14.


As illustrated in Examples 1-11, domain 1 of CD58, which interacts with CD2, can be used in lieu of an anti-CD2 antibody binding fragment in multispecific binding molecules. However, CD58 exhibits lower stability than immunoglobulins.


In order to improve stability of human CD58 domain 1, the protein was engineered to include a pair of cysteine that form a disulfide bridge upon expression to stabilize the molecule.


Four different pairs of amino acids were engineered to be replaced by cysteines: (1) V45 and M105, (2) V45 and M114, (3) V54 and G88 and (4) W56 and L90.


8.12.2. Materials and Methods


8.12.2.1. Recombinant Expression


To assess the binding and biophysical characteristics, the CD58 disulfide variants were transiently produced and purified from HEK293 cells along with the CD2 extracellular domain. All plasmids were codon optimized for mammalian expression. Human and cyno CD2 constructs were produced with a C-terminal Avi-Tag and a N terminal 8×his tag (SEQ ID NO: 1017) followed by a EVNLYFQS sequence (SEQ ID NO: 1018) for cleavage of the histag after purification. CD2 constructs were site selectively biotinylated during expression via co-transfection of a plasmid encoding the BirA enzyme. CD58 was expressed with a C-terminal 8×his tag (SEQ ID NO: 1017). Transient expression and purification in HEK293F cells was performed with standard methodology. The sequences are shown in Table 21.











TABLE 21







SEQ ID


Protein Name
AA Sequence
NO:







Human CD2
SKEITNALETWGALGQDINLDIPSFQMSDDIDDIKWEKTS
1019



DKKKIAQFRKEKETFKEKDTYKLFKNGTLKIKHLKTDDQ




DIYKVSIYDTKGKNVLEKIFDLKIQERVSKPKISWTCINTT




LTCEVMNGTDPELNLYQDGKHLKLSQRVITHKWTTSLS




AKFKCTAGNKVSKESSVEPVSCPEKGLDGGGGSGLNDI




FEAQKIEWHE






Cyno CD2
SKEIRNALETWGALGQDIDLDIPSFQMSDDIDDIRWEKT
1020



SDKKKIAQFRKEKETFEEKDAYKLFKNGTLKIKHLKIHDQ




DSYKVSIYDTKGKNVLEKTFDLKIQERVSEPKISWTCINT




TLTCEVMNGTDPELNLYQDGKHVKLSQRVITHKWTTSL




SAKFKCTAGNKVSKESRMETVSCPEKGLDGGGGSGLN




DIFEAQKIEWHE






CD58 Full ECD
SQQIYGVVYGNVTFHVPSNVPLKEVLWKKQKDKVAELE
1021



NSEFRAFSSFKNRVYLDTVSGSLTIYNLTSSDEDEYEME




SPNITDTMKFFLYVLESLPSPTLTCALTNGSIEVQCMIPE




HYNSHRGLIMYSWDCPMEQCKRNSTSIYFKMENDLPQ




KIQCTLSNPLFNTTSSIILTTCIPSSGHSRHRGGGGSHHH




HHHHH






CD58_IgV
SQQIYGVVYGNVTFHVPSNVPLKEVLWKKQKDKVAELE
1022



NSEFRAFSSFKNRVYLDTVSGSLTIYNLTSSDEDEYEME




SPNITDTMKFFLYVLESGGGGSHHHHHHHH






IgV
SQQIYGVVYGNVITHCPSNVPLKEVLWKKQKDKVAELE
1023


V45C_M105C
NSEFRAFSSFKNRVYLDTVSGSLTIYNLTSSDEDEYECE




SPNITDTMKFFLYVLESGGGGSHHHHHHHH






IgV
SQQIYGVVYGNVTFHVPSNVPLKECLWKKQKDKVAELE
1024


V54C_G88C
NSEFRAFSSFKNRVYLDTVSCSLTIYNLTSSDEDEYEME




SPNITDTMKFFLYVLESGGGGSHHHHHHHH






IgV
SQQIYGVVYGNVTFHCPSNVPLKEVLWKKQKDKVAELE
1025


V45C_M114C
NSEFRAFSSFKNRVYLDTVSGSLTIYNLTSSDEDEYEME




SPNITDTCKFFLYVLESGGGGSHHHHHHHH









For expression, transfection was performed using PEI as transfection reagent. For small scale (<5L) transfections, cells were grown in shake flasks on an orbital shaker (100 rpm) in a humidified incubator (85%) at 8% CO2). Transfection was done with a ratio of 1 DNA:3 PEI. 1 mg/L culture of plasmid was used for transfection at 2.0 million cells/mL in Expi293 medium. After 5 days of expression, the culture was centrifuged and filtrated. Purification was performed via Nickel-NTA batch binding using 1 ml resin/100 mL supernatant. The protein was allowed to bind for a minimum of 2 hours with gentle mixing, and the mixture was loaded onto a gravity filtration column. The resin was washed with 30 CV of PBS. Proteins were eluted with imidazole. The eluted protein was concentrated and finally purified via a preparative size exclusion chromatography (Hi Load 16/60 Superdex 75 grade column, GE Healthcare Life Sciences, Uppsala, Sweden). To confirm that the identity of the proteins expressed matched the predicted masses for the primary amino acid sequences, proteins were analyzed by high-performance liquid chromatography coupled to mass spectrometry.


8.12.2.2. Stability


Disulfide stabilized variants were assessed for improved thermal stability using both differential scanning calorimetry (DSC) and differential scanning fluorimetry (DSF) using standard techniques. For DSF, 1-3 ug of each construct was add to 1× Sypro Orange (Thermo-Fisher) in 25 ul total volume in 96-well PCR plate. Using a Bio-Rad CFX96 RT-PCR system equipped with C1000 Thermal Cycler, the temperature was increased from 25° C. to 95° C. at 0.5° C./minute and the fluorescence monitored. The manufacturer-supplied software was used to determine Tm.


For DSC, all samples were dialyzed into HEPES-buffered saline (HBS) and diluted to final concentration of 0.5 mg/mL. Tm and Tonset were determined using a MicroCal VP-Capillary DSC system (Malvern) by increasing temperature from 25° C. to 100° C. at 1° C./minute with a filtering period of 2 seconds and a mid-gain setting.


8.12.2.3. Binding Affinity


To ensure the binding affinity remained uncompromised by the additional of the stabilizing disulfide variance, isothermal calorimetry (ITC) was performed on the resulting recombinant CD58 proteins to determine their apparent KD and binding stoicheometry (n) to recombinant human CD2.


Briefly, recombinant human CD2 and recombinant human CD58 variants were dialyzed into HEPES-buffered saline (HBS). CD2 was diluted to final concentration of 100 μM, CD58 variants were diluted to 10 μM. CD2 was titrated into 10 μM of CD58 variants via multiple injections and ΔH (kcal/mole) determined using a MicroCal VP-ITC isothermal titration calorimeter (Malvern). Titrations of CD2 into HBS were used as a reference and KD and n determined from the resulting data.


8.12.3. Results


Results for both DSF and DSC measurements for the constructs are shown in Table 22 below.












TABLE 22









By Differential
By Differential



Scanning
Scanning



Fluorimetry (DSF)
Calorimetry (DSC)










CD58 variant
Tm (° C.)
Tmonset (° C.)
Tm (° C.)













CD58 Full ECD
59.5
48.8
65.0


CD58_IgV
48.5
46.3
60.9


IgV V45C_M105C
48.5
43.9
66.8


IgV V54C_G88C
76.5
66.7
80.9


IgV V45C_M114C
63.5
49.6
72.5









Results of the affinity studies are shown in Table 23 below. Addition of stabilizing disulfide had no detrimental impact on the affinity or the binding stoicheometry.













TABLE 23







CD58 variant
KD (uM)
n









CD58 Full ECD
0.57 (±0.05)
0.92 (±0.01)



CD58_IgV
0.61 (±0.07)
0.96 (±0.01)



IgV V45C_M105C
0.88 (±0.06)
0.97 (±0.01)



IgV V54C_G88C
0.60 (±0.06)
 0.83 (±.0.01)



IgV V45C_M114C
0.38 (±0.03)
 0.88 (±.0.01)










8.13. Example 13: Production of Anti-CD3-Anti-CD19-CD58 IgG1 TBMs in Knob-into-Holes Format

8.13.1. Materials and Methods


Constructs were synthesized and codon optimized for expression in mammalian cells. For each trispecific construct, three plasmids were synthesized. A first plasmid encoding an anti-CD19 heavy chain was synthesized as a fusion comprising (in the N-terminal to C-terminal direction) (i) a VH domain fused to a constant hIgG1 CH1 domain, (ii) a linker, (iii) an anti-CD3 scFv, (iv) a second linker and (v) a hIgG1 Fc domain containing mutations for a hole to facilitate heterodimerization as well as silencing mutations. A second plasmid encoding a light chain was synthesized as a fusion comprising (in the N-terminal to C-terminal direction) an anti-CD19 VL domain and (ii) a constant human kappa sequence. A third plasmid encoding a second half antibody was synthesized as a fusion comprising (in the N-terminal to C-terminal direction) a CD58 disulfide stabilized variant fused to a constant hIgG1 domain containing mutations for a knob to facilitate heterodimerization as well as silencing mutations. The sequences are shown in Table 24.












TABLE 24





Trispecific
Chain

SEQ ID


Name
Description
Sequence
NO:







CD19_CTL119
First Half
QVQLQESGPGLVKPSETLSLTCTVSGVSLPDYG
1026


_CD3_16 nM-
Antibody
VSWIRQPPGKGLEWIGVIWGSETTYYQSSLKSR



CD58_Full ECD
Heavy Chain
VTISKDNSKNQVSLKLSSVTAADTAVYYCAKHY



Trispecific
(Fc
YYGGSYAMDYWGQGTLVTVSSASTKGPSVFPL




sequence
APSSKSTSGGTAALGCLVKDYFPEPVTVSWNS




not shown)
GALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSL





GTQTYICNVNHKPSNTKVDKRVEPKSCGGGGS





GGGGSEVQLVESGGGLVQPGGSLKLSCAASGF





TFNTYAMNWVRQASGKGLEWVGRIRSKYNNYA





TYYADSVKDRFTISRDDSKSTLYLQMNSLKTED





TAVYYCVRHGNFGNSYVSWFAYWGQGTLVTVS





SGGGGSGGGGSGGGGSGGGGSQAVVTQEPS





LTVSPGGTVTLTCRSSTGAVTTSNYANWVQQK





PGQAPRGLIGGTNKRAPWTPARFSGSLLGDKA





ALTLSGAQPEDEAEYFCALWYSNLWVFGGGTK





LTVLGGGGS







First Half
QVQLQESGPGLVKPSETLSLTCTVSGVSLPDYG
1330



Antibody
VSWIRQPPGKGLEWIGVIWGSETTYYQSSLKSR




Heavy Chain
VTISKDNSKNQVSLKLSSVTAADTAVYYCAKHY




(includes Fc
YYGGSYAMDYWGQGTLVTVSSASTKGPSVFPL




sequence)
APSSKSTSGGTAALGCLVKDYFPEPVTVSWNS





GALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSL





GTQTYICNVNHKPSNTKVDKRVEPKSCGGGGS





GGGGSEVQLVESGGGLVQPGGSLKLSCAASGF





TFNTYAMNWVRQASGKGLEWVGRIRSKYNNYA





TYYADSVKDRFTISRDDSKSTLYLQMNSLKTED





TAVYYCVRHGNFGNSYVSWFAYWGQGTLVTVS





SGGGGSGGGGSGGGGSGGGGSQAVVTQEPS





LTVSPGGTVTLTCRSSTGAVTTSNYANWVQQK





PGQAPRGLIGGTNKRAPWTPARFSGSLLGDKA





ALTLSGAQPEDEAEYFCALWYSNLWVFGGGTK





LTVLGGGGSDKTHTCPPCPAPELLGGPSVFLFP





PKPKDTLMISRTPEVTCVVVAVSHEDPEVKFNW





YVDGVEVHNAKTKPREEQYGSTYRVVSVLTVLH





QDWLNGKEYKCKVSNKALAAPIEKTISKAKGQP





REPQVCTLPPSRDELTKNQVSLSCAVKGFYPSD





IAVEWESNGQPENNYKTTPPVLDSDGSFFLVSK





LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL





SLSPGK







Second Half
FSQQIYGVVYGNVTFHVPSNVPLKEVLWKKQKD
1027



Antibody
KVAELENSEFRAFSSFKNRVYLDTVSGSLTIYNL




(Fc
TSSDEDEYEMESPNITDTMKFFLYVLESLPSPTL




sequence
TCALTNGSIEVQCMIPEHYNSHRGLIMYSWDCP




not shown)
MEQCKRNSTSIYFKMENDLPQKIQCTLSNPLFN





TTSSIILTTCIPSSGHSRHRGGGS







Second Half
FSQQIYGVVYGNVTFHVPSNVPLKEVLWKKQKD
1331



Antibody
KVAELENSEFRAFSSFKNRVYLDTVSGSLTIYNL




(includes Fc
TSSDEDEYEMESPNITDTMKFFLYVLESLPSPTL




sequence)
TCALTNGSIEVQCMIPEHYNSHRGLIMYSWDCP





MEQCKRNSTSIYFKMENDLPQKIQCTLSNPLFN





TTSSIILTTCIPSSGHSRHRGGGSDKTHTCPPCP





APELLGGPSVFLFPPKPKDTLMISRTPEVTCVVV





DVSHEDPEVKFNWYVDGVEVHNAKTKPREEQY





ASTYRVVSVLTVLHQDWLNGKEYKCKVSNKALP





APIEKTISKAKGQPREPQVYTLPPCREEMTKNQ





VSLWCLVKGFYPSDIAVEWESNGQPENNYKTT





PPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCS





VMHEALHNRYTQKSLSLSPGK







First Half
EIVMTQSPATLSLSPGERATLSCRASQDISKYLN
1028



Antibody
WYQQKPGQAPRLLIYHTSRLHSGIPARFSGSGS




Light Chain
GTDYTLTISSLQPEDFAVYFCQQGNTLPYTFGQ





GTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVC





LLNNFYPREAKVQWKVDNALQSGNSQESVTEQ





DSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQ





GLSSPVTKSFNRGEC






CD19_CTL119
First Half
QVQLQESGPGLVKPSETLSLTCTVSGVSLPDYG
1026


_CD3_16 nM-
Antibody
VSWIRQPPGKGLEWIGVIWGSETTYYQSSLKSR



CD58_IgV
Heavy Chain
VTISKDNSKNQVSLKLSSVTAADTAVYYCAKHY



Trispecific
(Fc
YYGGSYAMDYWGQGTLVTVSSASTKGPSVFPL




sequence
APSSKSTSGGTAALGCLVKDYFPEPVTVSWNS




not shown)
GALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSL





GTQTYICNVNHKPSNTKVDKRVEPKSCGGGGS





GGGGSEVQLVESGGGLVQPGGSLKLSCAASGF





TFNTYAMNWVRQASGKGLEWVGRIRSKYNNYA





TYYADSVKDRFTISRDDSKSTLYLQMNSLKTED





TAVYYCVRHGNFGNSYVSWFAYWGQGTLVTVS





SGGGGSGGGGSGGGGSGGGGSQAVVTQEPS





LTVSPGGTVTLTCRSSTGAVTTSNYANWVQQK





PGQAPRGLIGGTNKRAPWTPARFSGSLLGDKA





ALTLSGAQPEDEAEYFCALWYSNLWVFGGGTK





LTVLGGGGS







First Half
QVQLQESGPGLVKPSETLSLTCTVSGVSLPDYG
1330



Antibody
VSWIRQPPGKGLEWIGVIWGSETTYYQSSLKSR




Heavy Chain
VTISKDNSKNQVSLKLSSVTAADTAVYYCAKHY




(includes Fc
YYGGSYAMDYWGQGTLVTVSSASTKGPSVFPL




sequence)
APSSKSTSGGTAALGCLVKDYFPEPVTVSWNS





GALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSL





GTQTYICNVNHKPSNTKVDKRVEPKSCGGGGS





GGGGSEVQLVESGGGLVQPGGSLKLSCAASGF





TFNTYAMNWVRQASGKGLEWVGRIRSKYNNYA





TYYADSVKDRFTISRDDSKSTLYLQMNSLKTED





TAVYYCVRHGNFGNSYVSWFAYWGQGTLVTVS





SGGGGSGGGGSGGGGSGGGGSQAVVTQEPS





LTVSPGGTVTLTCRSSTGAVTTSNYANWVQQK





PGQAPRGLIGGTNKRAPWTPARFSGSLLGDKA





ALTLSGAQPEDEAEYFCALWYSNLWVFGGGTK





LTVLGGGGSDKTHTCPPCPAPELLGGPSVFLFP





PKPKDTLMISRTPEVTCVVVAVSHEDPEVKFNW





YVDGVEVHNAKTKPREEQYGSTYRVVSVLTVLH





QDWLNGKEYKCKVSNKALAAPIEKTISKAKGQP





REPQVCTLPPSRDELTKNQVSLSCAVKGFYPSD





IAVEWESNGQPENNYKTTPPVLDSDGSFFLVSK





LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL





SLSPGK







Second Half
SQQIYGVVYGNVTFHVPSNVPLKEVLWKKQKD
1008



Antibody
KVAELENSEFRAFSSFKNRVYLDTVSGSLTIYNL




(Fc
TSSDEDEYEMESPNITDTMKFFLYVLESGGGGS




sequence





not shown)








Second Half
SQQIYGVVYGNVTFHVPSNVPLKEVLWKKQKD
1322



Antibody
KVAELENSEFRAFSSFKNRVYLDTVSGSLTIYNL




(includes Fc
TSSDEDEYEMESPNITDTMKFFLYVLESGGGGS




sequence)
DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMIS





RTPEVTCVVVAVSHEDPEVKFNWYVDGVEVHN





AKTKPREEQYASTYRVVSVLTVLHQDWLNGKE





YKCKVSNKALAAPIEKTISKAKGQPREPQVYTLP





PCREEMTKNQVSLWCLVKGFYPSDIAVEWESN





GQPENNYKTTPPVLDSDGSFFLYSKLTVDKSR





WQQGNVFSCSVMHEALHNRYTQKSLSLSPGK







First Half
EIVMTQSPATLSLSPGERATLSCRASQDISKYLN
1028



Antibody
WYQQKPGQAPRLLIYHTSRLHSGIPARFSGSGS




Light Chain
GTDYTLTISSLQPEDFAVYFCQQGNTLPYTFGQ





GTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVC





LLNNFYPREAKVQWKVDNALQSGNSQESVTEQ





DSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQ





GLSSPVTKSFNRGEC






CD19_CTL119
First Half
QVQLQESGPGLVKPSETLSLTCTVSGVSLPDYG
1026


_CD3_16 nM-
Antibody
VSWIRQPPGKGLEWIGVIWGSETTYYQSSLKSR



CD58_IgV_
Heavy Chain
VTISKDNSKNQVSLKLSSVTAADTAVYYCAKHY



V45C_M105C
(Fc
YYGGSYAMDYWGQGTLVTVSSASTKGPSVFPL



Trispecific
sequence
APSSKSTSGGTAALGCLVKDYFPEPVTVSWNS




not shown)
GALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSL





GTQTYICNVNHKPSNTKVDKRVEPKSCGGGGS





GGGGSEVQLVESGGGLVQPGGSLKLSCAASGF





TFNTYAMNWVRQASGKGLEWVGRIRSKYNNYA





TYYADSVKDRFTISRDDSKSTLYLQMNSLKTED





TAVYYCVRHGNFGNSYVSWFAYWGQGTLVTVS





SGGGGSGGGGSGGGGSGGGGSQAVVTQEPS





LTVSPGGTVTLTCRSSTGAVTTSNYANWVQQK





PGQAPRGLIGGTNKRAPWTPARFSGSLLGDKA





ALTLSGAQPEDEAEYFCALWYSNLWVFGGGTK





LTVLGGGGS







First Half
QVQLQESGPGLVKPSETLSLTCTVSGVSLPDYG
1330



Antibody
VSWIRQPPGKGLEWIGVIWGSETTYYQSSLKSR




Heavy Chain
VTISKDNSKNQVSLKLSSVTAADTAVYYCAKHY




(includes Fc
YYGGSYAMDYWGQGTLVTVSSASTKGPSVFPL




sequence)
APSSKSTSGGTAALGCLVKDYFPEPVTVSWNS





GALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSL





GTQTYICNVNHKPSNTKVDKRVEPKSCGGGGS





GGGGSEVQLVESGGGLVQPGGSLKLSCAASGF





TFNTYAMNWVRQASGKGLEWVGRIRSKYNNYA





TYYADSVKDRFTISRDDSKSTLYLQMNSLKTED





TAVYYCVRHGNFGNSYVSWFAYWGQGTLVTVS





SGGGGSGGGGSGGGGSGGGGSQAVVTQEPS





LTVSPGGTVTLTCRSSTGAVTTSNYANWVQQK





PGQAPRGLIGGTNKRAPWTPARFSGSLLGDKA





ALTLSGAQPEDEAEYFCALWYSNLWVFGGGTK





LTVLGGGGSDKTHTCPPCPAPELLGGPSVFLFP





PKPKDTLMISRTPEVTCVVVAVSHEDPEVKFNW





YVDGVEVHNAKTKPREEQYGSTYRVVSVLTVLH





QDWLNGKEYKCKVSNKALAAPIEKTISKAKGQP





REPQVCTLPPSRDELTKNQVSLSCAVKGFYPSD





IAVEWESNGQPENNYKTTPPVLDSDGSFFLVSK





LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL





SLSPGK







Second Half
SQQIYGVVYGNVTFHCPSNVPLKEVLWKKQKD
1029



Antibody
KVAELENSEFRAFSSFKNRVYLDTVSGSLTIYNL




(Fc
TSSDEDEYECESPNITDTMKFFLYVLESGS




sequence





not shown)








Second Half
SQQIYGVVYGNVTFHCPSNVPLKEVLWKKQKD
1332



Antibody
KVAELENSEFRAFSSFKNRVYLDTVSGSLTIYNL




(includes Fc
TSSDEDEYECESPNITDTMKFFLYVLESGSDKT




sequence)
HTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTP





EVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKT





KPREEQYASTYRVVSVLTVLHQDWLNGKEYKC





KVSNKALPAPIEKTISKAKGQPREPQVYTLPPCR





EEMTKNQVSLWCLVKGFYPSDIAVEWESNGQP





ENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQ





GNVFSCSVMHEALHNRYTQKSLSLSPGK







First Half
EIVMTQSPATLSLSPGERATLSCRASQDISKYLN
1028



Antibody
WYQQKPGQAPRLLIYHTSRLHSGIPARFSGSGS




Light Chain
GTDYTLTISSLQPEDFAVYFCQQGNTLPYTFGQ





GTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVC





LLNNFYPREAKVQWKVDNALQSGNSQESVTEQ





DSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQ





GLSSPVTKSFNRGEC






CD19_CTL119
First Half
QVQLQESGPGLVKPSETLSLTCTVSGVSLPDYG
1026


_CD3_16 nM-
Antibody
VSWIRQPPGKGLEWIGVIWGSETTYYQSSLKSR



CD58_IgV
Heavy Chain
VTISKDNSKNQVSLKLSSVTAADTAVYYCAKHY



V54C_G88C
(Fc
YYGGSYAMDYWGQGTLVTVSSASTKGPSVFPL



Trispecific
sequence
APSSKSTSGGTAALGCLVKDYFPEPVTVSWNS




not shown)
GALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSL





GTQTYICNVNHKPSNTKVDKRVEPKSCGGGGS





GGGGSEVQLVESGGGLVQPGGSLKLSCAASGF





TFNTYAMNWVRQASGKGLEWVGRIRSKYNNYA





TYYADSVKDRFTISRDDSKSTLYLQMNSLKTED





TAVYYCVRHGNFGNSYVSWFAYWGQGTLVTVS





SGGGGSGGGGSGGGGSGGGGSQAVVTQEPS





LTVSPGGTVTLTCRSSTGAVTTSNYANWVQQK





PGQAPRGLIGGTNKRAPWTPARFSGSLLGDKA





ALTLSGAQPEDEAEYFCALWYSNLWVFGGGTK





LTVLGGGGS







First Half
QVQLQESGPGLVKPSETLSLTCTVSGVSLPDYG
1330



Antibody
VSWIRQPPGKGLEWIGVIWGSETTYYQSSLKSR




Heavy Chain
VTISKDNSKNQVSLKLSSVTAADTAVYYCAKHY




(includes Fc
YYGGSYAMDYWGQGTLVTVSSASTKGPSVFPL




sequence)
APSSKSTSGGTAALGCLVKDYFPEPVTVSWNS





GALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSL





GTQTYICNVNHKPSNTKVDKRVEPKSCGGGGS





GGGGSEVQLVESGGGLVQPGGSLKLSCAASGF





TFNTYAMNWVRQASGKGLEWVGRIRSKYNNYA





TYYADSVKDRFTISRDDSKSTLYLQMNSLKTED





TAVYYCVRHGNFGNSYVSWFAYWGQGTLVTVS





SGGGGSGGGGSGGGGSGGGGSQAVVTQEPS





LTVSPGGTVTLTCRSSTGAVTTSNYANWVQQK





PGQAPRGLIGGTNKRAPWTPARFSGSLLGDKA





ALTLSGAQPEDEAEYFCALWYSNLWVFGGGTK





LTVLGGGGSDKTHTCPPCPAPELLGGPSVFLFP





PKPKDTLMISRTPEVTCVVVAVSHEDPEVKFNW





YVDGVEVHNAKTKPREEQYGSTYRVVSVLTVLH





QDWLNGKEYKCKVSNKALAAPIEKTISKAKGQP





REPQVCTLPPSRDELTKNQVSLSCAVKGFYPSD





IAVEWESNGQPENNYKTTPPVLDSDGSFFLVSK





LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL





SLSPGK







Second Half
SQQIYGVVYGNVTFHVPSNVPLKECLWKKQKD
1030



Antibody
KVAELENSEFRAFSSFKNRVYLDTVSCSLTIYNL




(Fc
TSSDEDEYEMESPNITDTMKFFLYVLESGS




sequence





not shown)








Second Half
SQQIYGVVYGNVTFHVPSNVPLKECLWKKQKD
1333



Antibody
KVAELENSEFRAFSSFKNRVYLDTVSCSLTIYNL




(includes Fc
TSSDEDEYEMESPNITDTMKFFLYVLESGSDKT




sequence)
HTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTP





EVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKT





KPREEQYASTYRVVSVLTVLHQDWLNGKEYKC





KVSNKALPAPIEKTISKAKGQPREPQVYTLPPCR





EEMTKNQVSLWCLVKGFYPSDIAVEWESNGQP





ENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQ





GNVFSCSVMHEALHNRYTQKSLSLSPGK







First Half
EIVMTQSPATLSLSPGERATLSCRASQDISKYLN
1028



Antibody
WYQQKPGQAPRLLIYHTSRLHSGIPARFSGSGS




Light Chain
GTDYTLTISSLQPEDFAVYFCQQGNTLPYTFGQ





GTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVC





LLNNFYPREAKVQWKVDNALQSGNSQESVTEQ





DSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQ





GLSSPVTKSFNRGEC






CD19_CTL119
First Half
QVQLQESGPGLVKPSETLSLTCTVSGVSLPDYG
1026


_CD3_16 nM-
Antibody
VSWIRQPPGKGLEWIGVIWGSETTYYQSSLKSR



CD58_IgV
Heavy Chain
VTISKDNSKNQVSLKLSSVTAADTAVYYCAKHY



V45C_M114C
(Fc
YYGGSYAMDYWGQGTLVTVSSASTKGPSVFPL



Trispecific
sequence
APSSKSTSGGTAALGCLVKDYFPEPVTVSWNS




not shown)
GALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSL





GTQTYICNVNHKPSNTKVDKRVEPKSCGGGGS





GGGGSEVQLVESGGGLVQPGGSLKLSCAASGF





TFNTYAMNWVRQASGKGLEWVGRIRSKYNNYA





TYYADSVKDRFTISRDDSKSTLYLQMNSLKTED





TAVYYCVRHGNFGNSYVSWFAYWGQGTLVTVS





SGGGGSGGGGSGGGGSGGGGSQAVVTQEPS





LTVSPGGTVTLTCRSSTGAVTTSNYANWVQQK





PGQAPRGLIGGTNKRAPVVTPARFSGSLLGDKA





ALTLSGAQPEDEAEYFCALWYSNLWVFGGGTK





LTVLGGGGS







First Half
QVQLQESGPGLVKPSETLSLTCTVSGVSLPDYG
1330



Antibody
VSWIRQPPGKGLEWIGVIWGSETTYYQSSLKSR




Heavy Chain
VTISKDNSKNQVSLKLSSVTAADTAVYYCAKHY




(includes Fc
YYGGSYAMDYWGQGTLVTVSSASTKGPSVFPL




sequence)
APSSKSTSGGTAALGCLVKDYFPEPVTVSWNS





GALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSL





GTQTYICNVNHKPSNTKVDKRVEPKSCGGGGS





GGGGSEVQLVESGGGLVQPGGSLKLSCAASGF





TFNTYAMNWVRQASGKGLEWVGRIRSKYNNYA





TYYADSVKDRFTISRDDSKSTLYLQMNSLKTED





TAVYYCVRHGNFGNSYVSWFAYWGQGTLVTVS





SGGGGSGGGGSGGGGSGGGGSQAVVTQEPS





LTVSPGGTVTLTCRSSTGAVTTSNYANWVQQK





PGQAPRGLIGGTNKRAPWTPARFSGSLLGDKA





ALTLSGAQPEDEAEYFCALWYSNLWVFGGGTK





LTVLGGGGSDKTHTCPPCPAPELLGGPSVFLFP





PKPKDTLMISRTPEVTCVVVAVSHEDPEVKFNW





YVDGVEVHNAKTKPREEQYGSTYRVVSVLTVLH





QDWLNGKEYKCKVSNKALAAPIEKTISKAKGQP





REPQVCTLPPSRDELTKNQVSLSCAVKGFYPSD





IAVEWESNGQPENNYKTTPPVLDSDGSFFLVSK





LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL





SLSPGK







Second Half
SQQIYGVVYGNVTFHCPSNVPLKEVLWKKQKD
1031



Antibody
KVAELENSEFRAFSSFKNRVYLDTVSGSLTIYNL




(Fc
TSSDEDEYEMESPNITDTCKFFLYVLESGS




sequence





not shown)








Second Half
SQQIYGVVYGNVTFHCPSNVPLKEVLWKKQKD
1334



Antibody
KVAELENSEFRAFSSFKNRVYLDTVSGSLTIYNL




(includes Fc
TSSDEDEYEMESPNITDTCKFFLYVLESGSDKT




sequence)
HTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTP





EVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKT





KPREEQYASTYRVVSVLTVLHQDWLNGKEYKC





KVSNKALPAPIEKTISKAKGQPREPQVYTLPPCR





EEMTKNQVSLWCLVKGFYPSDIAVEWESNGQP





ENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQ





GNVFSCSVMHEALHNRYTQKSLSLSPGK







First Half
EIVMTQSPATLSLSPGERATLSCRASQDISKYLN
1028



Antibody
WYQQKPGQAPRLLIYHTSRLHSGIPARFSGSGS




Light Chain
GTDYTLTISSLQPEDFAVYFCQQGNTLPYTFGQ





GTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVC





LLNNFYPREAKVQWKVDNALQSGNSQESVTEQ





DSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQ





GLSSPVTKSFNRGEC









Trispecific binding molecules were expressed transiently by co-transfection of the respective chains in HEK293 cells.


Briefly, transfection was performed using PEI as transfection reagent. For small scale (<5L) transfections, cells were grown in shake flasks on an orbital shaker (115 rpm) in a humidified incubator (85%) at 5% CO2). Plasmids were combined with PEI at a final ratio of 1 DNA:3 PEI. 1 mg/L culture of plasmid was used for transfection at 2.0 million cells/mL serum media. After 5 days of expression, the TBMs were harvested by clarification of the media via centrifugation and filtration. Purification was performed via anti-CH1 affinity batch binding (CaptureSelect IgG-CH1 Affinity Matrix, Thermo-Fisher Scientific, Waltham, Mass., USA) or Protein A (rProteinA Sepharose, Fast flow, GE Healthcare, Uppsala, Sweden) batch binding using 1 ml resin/100 mL supernatant. The protein was allowed to bind for a minimum of 2 hours with gentle mixing, and the supernatant loaded onto a gravity filtration column. The resin was washed with 20-50 CV of PBS. TBMs were eluted with 20 CV of 50 mM citrate, 90 mM NaCl pH 3.2. 50 mM sucrose The eluted TBMs were adjusted to pH 5.5 with 1 M sodium citrate 50 mM sucrose. Preparative size exclusion chromatography was performed using Hi Load 16/60 Superdex 200 grade column (GE Healthcare Life Sciences, Uppsala, Sweden) as a final polishing step when aggregates were presented. To confirm that the identity of the proteins of the TBMs expressed matched the predicted masses for the primary amino acid sequences, proteins were analyzed by high-performance liquid chromatography coupled to mass spectrometry.


8.13.2. Results


As shown in Table 25 below, inclusion of stabilizing disulfide variants had no adverse impact on overall expression yields of increased aggregate content upon purification.












TABLE 25







Expression




(mg/L)
% HMWS


















CD19_CTL119_CD3_16 nM-CD58_Full
20
<10%


ECD Trispecific


(Full ECD WT)


CD19_CTL119_CD3_16 nM-CD58_IgV
20
~10


Trispecific


(IgV WT)


CD19_CTL119_CD3_16 nM-
55
~10


CD58_IgV_V45C_M105C


Trispecific (IgV V45C_M105C)


CD19_CTL119_CD3_16 nM-CD58_IgV
65
~10


V54C_G88C Trispecific


(IgV V54C_G88C)


CD19_CTL119_CD3_16 nM-CD58_IgV
63
~10


V45C_M114C Trispecific


(IgV V45C_M114C)









8.14. Example 14: Re-Directed T Cell Cytotoxicity with TBMs Containing CD58 Variants

TBMs of Example 13 containing the variant CD58 domains were analyzed for their potential to induce T cell-mediated apoptosis in tumor target cells.


8.14.1. Materials and Methods


Briefly, huCD19-expressing Nalm6 target cells were engineered to overexpress firefly luciferase. Cells were harvested and resuspendend in RPMI medium (Invitrogen #11875-093) with 10% FBS. 10,000 target cells per well were plated in a flat-bottom 96-well plate. Human pan T effector cells were isolated via MACS negative selection (Miltenyi Biotec #130-096-535) from two donors from cryopreserved PBMC (Cellular Technologies Limited #CTL-UP1) then added to the plate to obtain a final E:T ratio of 5:1. Co-cultured cells were incubated with a serial dilution of all constructs and controls. For normalization, average maximum luminescence refers to target cells co-incubated with effector cells, but without any test construct. After an incubation of either 24 or 48 hr at 37° C., 5% CO2, OneGlo luciferase substrate (Promega #E6120) was added to the plate. Luminescence was measured on an Envision plate reader after a 10 minute incubation. Percent specific lysis was calculated using the following equation: Specific lysis (%)=(1−(sample luminescence/average maximum luminescence))*100


8.14.2. Results


As shown in FIG. 15, the TBMs containing the variant CD58 domains show comparable cytotoxic activity to a TBM with wild type CD58.


8.15. Example 15: T-Cell Activation with TBMs Containing CD58 Variants

As an alternative to primary T cell activation, a Jurkat-NFAT reporter cell line was used to evaluate the functional activity of the TBMs of Example 13 containing the variant CD58 domains.


8.15.1. Materials and Methods


The Jurkat T cell line (E6-1) was transfected with a NFAT-luciferase reporter construct and a stable, clonal cell line Jurkat cells with NFAT-LUC reporter (JNL), was selected for further characterization based on strong induction of the NFAT reporter following PMA and ionomycin stimulation.


The Jurkat reporter cell line for was used for determination of non-specific activation of N FAT.


Purified TBMs were tested for their potential to induce NFAT activation in the absence of target cells.


Jurkat cells with NFAT-LUC reporter (JNL) were grown in RPMI-1640 media containing 2 mM glutamine and 10% fetal bovine serum with puromycin at 0.5 ug/ml. 100,000 JNL cells per well were plated in a flat-bottom 96-well plate and were incubated with serial dilutions of the TBMs and controls. After an incubation of 6 hr at 37° C., 5% CO2, OneGlo luciferase substrate (Promega #E6120) was added to the plate. Luminescence was measured on an Envision plate reader after a 10 minute incubation.


8.15.2. Results


As shown in FIG. 16, the TBMs containing the variant CD58 domains show tumor-independent (i.e., non-target cell specific) activation levels comparable to or lower than TBMs containing wild type CD58.


9. SPECIFIC EMBODIMENTS, CITATION OF REFERENCES

While various specific embodiments have been illustrated and described, it will be appreciated that various changes can be made without departing from the spirit and scope of the disclosure(s). The present disclosure is exemplified by the numbered embodiments set forth below.


1. A CD2 binding molecule comprising a variant CD58 domain having a pair of cysteine substitutions as compared to the corresponding domain in SEQ ID NO:1, the cysteine substitutions selected from:

    • (a) a V45C substitution and a M105C substitution;
    • (b) a V54C substitution and a G88C substitution;
    • (c) a V45C substitution and a M114C substitution; or
    • (d) a W56C substitution and a L900 substitution.


2. The CD2 binding molecule of embodiment 1, wherein the variant CD58 domain comprises an amino acid sequence having at least 90% sequence identity to a CD2-binding portion of SEQ ID NO:1.


3. The CD2 binding molecule of embodiment 1 or embodiment 2 wherein the CD2-binding portion comprises the amino acid sequence of SEQ ID NO:6.


4. The CD2 binding molecule of any one of embodiments 1 to 3, which comprises an amino acid sequence having at least 90% sequence identity to the amino acid sequence of SEQ ID NO:6.


5. The CD2 binding molecule of embodiment 4, which comprises an amino acid sequence having at least 95% sequence identity to the amino acid sequence of SEQ ID NO:6.


6. The CD2 binding molecule of embodiment 5, which comprises an amino acid sequence having at least 97% sequence identity to the amino acid sequence of SEQ ID NO:6.


7. The CD2 binding molecule of embodiment 6, which comprises an amino acid sequence having at least 98% sequence identity to the amino acid sequence of SEQ ID NO:6.


8. The CD2 binding molecule of embodiment 1 or embodiment 2, wherein the CD2-binding portion comprises the amino acid sequence of SEQ ID NO:4.


9. The CD2 binding molecule of embodiment 8, which comprises an amino acid sequence having at least 90% sequence identity to the amino acid sequence of SEQ ID NO:4.


10. The CD2 binding molecule of embodiment 9, which comprises an amino acid sequence having at least 95% sequence identity to the amino acid sequence of SEQ ID NO:4.


11. The CD2 binding molecule of embodiment 10, which comprises an amino acid sequence having at least 97% sequence identity to the amino acid sequence of SEQ ID NO:4.


12. The CD2 binding molecule of embodiment 11, which comprises an amino acid sequence having at least 98% sequence identity to the amino acid sequence of SEQ ID NO:4.


13. The CD2 binding molecule of any one of embodiments 1 to 12, which comprises a V45C substitution and a M105C substitution as compared to the amino acid sequence of SEQ ID NO:1.


14. The CD2 binding molecule of embodiment 8 or embodiment 13, wherein the amino acid sequence comprises the amino acid sequence of SEQ ID NO:8.


15. The CD2 binding molecule of any one of embodiments 1 to 12, which comprises a V54C substitution and a G88C substitution as compared to the amino acid sequence of SEQ ID NO:1.


16. The CD2 binding molecule of embodiment 15, wherein the amino acid sequence comprises the amino acid sequence of SEQ ID NO:9.


17. The CD2 binding molecule of any one of embodiments 1 to 12, which comprises a V45C substitution and a M114C substitution as compared to the amino acid sequence of SEQ ID NO:1.


18. The CD2 binding molecule of embodiment 17, wherein the amino acid sequence comprises the amino acid sequence of SEQ ID NO:10.


19. The CD2 binding molecule of any one of embodiments 1 to 12, which comprises a W56C substitution and a L900 substitution as compared to the amino acid sequence of SEQ ID NO:1.


20. The CD2 binding molecule of embodiment 19, wherein the amino acid sequence comprises the amino acid sequence of SEQ ID NO:11.


21. The CD2 binding molecule of any one of embodiments 1 to 20, which exhibits increased thermostability as compared to the corresponding CD2 binding molecule without the cysteine substitutions.


22. The CD2 binding molecule of any one of embodiments 1 to 21, in which the CD2-binding portion exhibits at least a 10% increase in its Tm as compared to the corresponding CD2-binding portion without the cysteine substitutions.


23. The CD2 binding molecule of embodiment 22, in which the CD2-binding portion exhibits at least a 20% increase in its Tm as compared to the corresponding CD2-binding portion without the cysteine substitutions.


24. The CD2 binding molecule of embodiment 23, in which the CD2-binding portion exhibits at least a 30% increase in its Tm as compared to the corresponding CD2-binding portion without the cysteine substitutions.


25. The CD2 binding molecule of any one of embodiments 22 to 24, wherein Tm is measured by differential scanning fluorimetry.


26. The CD2 binding molecule of any one of embodiments 22 to 24, wherein Tm is measured by differential scanning calorimetry.


27. The CD2 binding molecule of any one of embodiments 1 to 26, which is a fusion polypeptide.


28. The CD2 binding molecule of embodiment 27, in which the CD2-binding portion is operably linked to an Fc domain.


29. The CD2 binding molecule of any one of embodiments 1 to 28, which is a soluble polypeptide.


30. The CD2 binding molecule of any one of embodiments 1 to 26, which is a multispecific binding molecule (MBM) comprising the variant CD58 domain as a first antigen-binding module (ABM1) and a second antigen-binding module (ABM2), optionally wherein ABM2 binds specifically to a component of a human T-cell receptor (TCR) complex or a tumor associated antigen (TAA).


31. The CD2 binding molecule of embodiment 30, wherein ABM2 binds specifically to a component of a human T-cell receptor (TCR) complex.


32. The CD2 binding molecule of embodiment 31, wherein the component of the TCR complex is CD3.


33. The CD2 binding molecule of embodiment 32, wherein ABM2 is an anti-CD3 antibody or an antigen-binding domain thereof.


34. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-1.


35. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-2.


36. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-3.


37. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-4.


38. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-5.


39. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-6.


40. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-7.


41. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-8.


42. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-9.


43. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-10.


44. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-11.


45. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-12.


46. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-13.


47. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-14.


48. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-15.


49. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-16.


50. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-17.


51. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-18.


52. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-19.


53. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-20.


54. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-21.


55. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-22.


56. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-23.


57. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-24.


58. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-25.


59. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-26.


60. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-27.


61. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-28.


62. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-29.


63. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-30.


64. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-31.


65. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-32.


66. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-33.


67. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-34.


68. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-35.


69. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-36.


70. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-37.


71. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-38.


72. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-39.


73. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-40.


74. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-41.


75. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-42.


76. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-43.


77. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-44.


78. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-45.


79. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-46.


80. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-47.


81. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-48.


82. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-49.


83. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-50.


84. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-51.


85. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-52.


86. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-53.


87. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-54.


88. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-55.


89. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-56.


90. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-57.


91. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-58.


92. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-59.


93. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-60.


94. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-61.


95. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-62.


96. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-63.


97. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-64.


98. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-65.


99. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-66.


100. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-67.


101. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-68.


102. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-69.


103. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-70.


104. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-71.


105. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-72.


106. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-73.


107. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-74.


108. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-75.


109. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-76.


110. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-77.


111. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-78.


112. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-79.


113. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-80.


114. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-81.


115. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-82.


116. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-83.


117. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-84.


118. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-85.


119. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-86.


120. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-87.


121. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-88.


122. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-89.


123. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-90.


124. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-91.


125. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-92.


126. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-93.


127. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-95.


128. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-95.


129. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-96.


130. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-97.


131. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-98.


132. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-99.


133. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-100.


134. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-101.


135. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-102.


136. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-103.


137. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-104.


138. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-105.


139. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-106.


140. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-107.


141. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-108.


142. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-109.


143. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-110.


144. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-111.


145. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-112.


146. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-113.


147. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-114.


148. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-115.


149. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-116.


150. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-117.


151. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-118.


152. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-119.


153. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-120.


154. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-121.


155. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-122.


156. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-123.


157. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-124.


158. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-125.


159. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-126.


160. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-127.


161. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-128.


162. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-129.


163. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the CDR sequences of CD3-130.


164. The CD2 binding molecule of any one of embodiments 34 to 163, wherein the CDRs are defined by Kabat numbering, as set forth in Table 12B.


165. The CD2 binding molecule of any one of embodiments 34 to 163, wherein the CDRs are defined by Chothia numbering, as set forth in Table 12C.


166. The CD2 binding molecule of any one of embodiment embodiments 34 to 163, wherein the CDRs are defined by a combination of Kabat and Chothia numbering, as set forth in Table 12D.


167. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the heavy and light chain variable sequences of CD3-1, as set forth in Table 12A.


168. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the heavy and light chain variable sequences of CD3-2, as set forth in Table 12A.


169. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the heavy and light chain variable sequences of CD3-3, as set forth in Table 12A.


170. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the heavy and light chain variable sequences of CD3-4, as set forth in Table 12A.


171. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the heavy and light chain variable sequences of CD3-5, as set forth in Table 12A.


172. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the heavy and light chain variable sequences of CD3-6, as set forth in Table 12A.


173. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the heavy and light chain variable sequences of CD3-7, as set forth in Table 12A.


174. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the heavy and light chain variable sequences of CD3-8, as set forth in Table 12A.


175. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the heavy and light chain variable sequences of CD3-9, as set forth in Table 12A.


176. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the heavy and light chain variable sequences of CD3-10, as set forth in Table 12A.


177. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the heavy and light chain variable sequences of CD3-11, as set forth in Table 12A.


178. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the heavy and light chain variable sequences of CD3-12, as set forth in Table 12A.


179. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the heavy and light chain variable sequences of CD3-13, as set forth in Table 12A.


180. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the heavy and light chain variable sequences of CD3-14, as set forth in Table 12A.


181. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the heavy and light chain variable sequences of CD3-15, as set forth in Table 12A.


182. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the heavy and light chain variable sequences of CD3-16, as set forth in Table 12A.


183. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the heavy and light chain variable sequences of CD3-17, as set forth in Table 12A.


184. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the heavy and light chain variable sequences of CD3-18, as set forth in Table 12A.


185. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the heavy and light chain variable sequences of CD3-19, as set forth in Table 12A.


186. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the heavy and light chain variable sequences of CD3-20, as set forth in Table 12A.


187. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the heavy and light chain variable sequences of CD3-21, as set forth in Table 12A.


188. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the heavy and light chain variable sequences of CD3-22, as set forth in Table 12A.


189. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the heavy and light chain variable sequences of CD3-23, as set forth in Table 12A.


190. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the heavy and light chain variable sequences of CD3-24, as set forth in Table 12A.


191. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the heavy and light chain variable sequences of CD3-25, as set forth in Table 12A.


192. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the heavy and light chain variable sequences of CD3-26, as set forth in Table 12A.


193. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the heavy and light chain variable sequences of CD3-27, as set forth in Table 12A.


194. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the heavy and light chain variable sequences of CD3-28, as set forth in Table 12A.


195. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the heavy and light chain variable sequences of CD3-129, as set forth in Table 12A.


196. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the heavy and light chain variable sequences of CD3-130, as set forth in Table 12A.


197. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the amino acid sequence of the scFV designated as CD3-12 in Table 12A.


198. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the amino acid sequence of the scFV designated as CD3-21 in Table 12A.


199. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the amino acid sequence of the scFV designated as CD3-22 in Table 12A.


200. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the amino acid sequence of the scFV designated as CD3-23 in Table 12A.


201. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the amino acid sequence of the scFV designated as CD3-24 in Table 12A.


202. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the amino acid sequence of the scFV designated as CD3-25 in Table 12A.


203. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the amino acid sequence of the scFV designated as CD3-26 in Table 12A.


204. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the amino acid sequence of the scFV designated as CD3-27 in Table 12A.


205. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the amino acid sequence of the scFV designated as CD3-28 in Table 12A.


206. The CD2 binding molecule of embodiment 32, ABM2 comprises the amino acid sequence of the scFV designated as CD3-129 in Table 12A.


207. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises the amino acid sequence of the scFV designated as CD3-130 in Table 12A.


208. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises a CDR-H1 sequence, a CDR-H2 sequence, a CDR-H3 sequence, a CDR-L1 sequence, a CDR-L2 sequence, and a CDR-L3 sequence set forth in Table AA, Table AB, or Table AC.


209. The CD2 binding molecule of embodiment 208, wherein ABM2 comprises a CDR-H1 sequence, a CDR-H2 sequence, a CDR-H3 sequence, a CDR-L1 sequence, a CDR-L2 sequence, and a CDR-L3 sequence set forth in Table AA.


210. The CD2 binding molecule of embodiment 209, wherein the amino acid designated X1 in Table AA is T.


211. The CD2 binding molecule of embodiment 209, wherein the amino acid designated X1 in Table AA is A.


212. The CD2 binding molecule of any one of embodiments 209 to 211, wherein the amino acid designated X2 in Table AA is S.


213. The CD2 binding molecule of any one of embodiments 209 to 211, wherein the amino acid designated X2 in Table AA is R.


214. The CD2 binding molecule of any one of embodiments 209 to 213, wherein the amino acid designated X3 in Table AA is N.


215. The CD2 binding molecule of any one of embodiments 209 to 213, wherein the amino acid designated X3 in Table AA is Y.


216. The CD2 binding molecule of any one of embodiments 209 to 213, wherein the amino acid designated X3 in Table AA is Q.


217. The CD2 binding molecule of any one of embodiments 209 to 216, wherein the amino acid designated X4 in Table AA is H.


218. The CD2 binding molecule of any one of embodiments 209 to 216, wherein the amino acid designated X4 in Table AA is S.


219. The CD2 binding molecule of any one of embodiments 209 to 218, wherein the amino acid designated X5 in Table AA is M.


220. The CD2 binding molecule of any one of embodiments 209 to 218, wherein the amino acid designated X5 in Table AA is L.


221. The CD2 binding molecule of any one of embodiments 209 to 220, wherein the amino acid designated X6 in Table AA is K.


222. The CD2 binding molecule of any one of embodiments 209 to 220, wherein the amino acid designated X6 in Table AA is R.


223. The CD2 binding molecule of any one of embodiments 209 to 222, wherein the amino acid designated X7 in Table AA is S.


224. The CD2 binding molecule of any one of embodiments 209 to 222, wherein the amino acid designated X7 in Table AA is K.


225. The CD2 binding molecule of any one of embodiments 209 to 224, wherein the amino acid designated X55 in Table AA is F.


226. The CD2 binding molecule of any one of embodiments 209 to 224, wherein the amino acid designated X55 in Table AA is Y.


227. The CD2 binding molecule of any one of embodiments 209 to 224, wherein the amino acid designated X55 in Table AA is S.


228. The CD2 binding molecule of any one of embodiments 209 to 227, wherein the amino acid designated X8 in Table AA is W.


229. The CD2 binding molecule of any one of embodiments 209 to 227, wherein the amino acid designated X8 in Table AA is Y.


230. The CD2 binding molecule of any one of embodiments 209 to 227, wherein the amino acid designated X8 in Table AA is S.


231. The CD2 binding molecule of any one of embodiments 209 to 227, wherein the amino acid designated X8 in Table AA is T.


232. The CD2 binding molecule of any one of embodiments 209 to 231, wherein the amino acid designated X9 in Table AA is W.


233. The CD2 binding molecule of any one of embodiments 209 to 231, wherein the amino acid designated X9 in Table AA is Y.


234. The CD2 binding molecule of any one of embodiments 209 to 231, wherein the amino acid designated X9 in Table AA is S.


235. The CD2 binding molecule of any one of embodiments 209 to 231, wherein the amino acid designated X9 in Table AA is T.


236. The CD2 binding molecule of any one of embodiments 209 to 235, wherein the amino acid designated X10 in Table AA is H.


237. The CD2 binding molecule of any one of embodiments 209 to 235, wherein the amino acid designated X10 in Table AA is Y.


238. The CD2 binding molecule of any one of embodiments 209 to 237, wherein the amino acid designated X11 in Table AA is S.


239. The CD2 binding molecule of any one of embodiments 209 to 237, wherein the amino acid designated X11 in Table AA is G.


240. The CD2 binding molecule of any one of embodiments 209 to 239, wherein the amino acid designated X12 in Table AA is I.


241. The CD2 binding molecule of any one of embodiments 209 to 239, wherein the amino acid designated X12 in Table AA is L.


242. The CD2 binding molecule of any one of embodiments 209 to 241, wherein the amino acid designated X13 in Table AA is V.


243. The CD2 binding molecule of any one of embodiments 209 to 241, wherein the amino acid designated X13 in Table AA is G.


244. The CD2 binding molecule of any one of embodiments 209 to 243, wherein the amino acid designated X14 in Table AA is R.


245. The CD2 binding molecule of any one of embodiments 209 to 243, wherein the amino acid designated X14 in Table AA is N.


246. The CD2 binding molecule of any one of embodiments 209 to 245, wherein the amino acid designated X15 in Table AA is D.


247. The CD2 binding molecule of any one of embodiments 209 to 245, wherein the amino acid designated X15 in Table AA is E.


248. The CD2 binding molecule of any one of embodiments 209 to 245, wherein the amino acid designated X15 in Table AA is L.


249. The CD2 binding molecule of any one of embodiments 209 to 248, wherein the amino acid designated X16 in Table AA is G.


250. The CD2 binding molecule of any one of embodiments 209 to 248, wherein the amino acid designated X16 in Table AA is N.


251. The CD2 binding molecule of any one of embodiments 209 to 248, wherein the amino acid designated X16 in Table AA is E.


252. The CD2 binding molecule of any one of embodiments 209 to 251, wherein the amino acid designated X17 in Table AA is R.


253. The CD2 binding molecule of any one of embodiments 209 to 251, wherein the amino acid designated X17 in Table AA is S.


254. The CD2 binding molecule of any one of embodiments 209 to 253, wherein the amino acid designated X18 in Table AA is V.


255. The CD2 binding molecule of any one of embodiments 209 to 253, wherein the amino acid designated X18 in Table AA is T.


256. The CD2 binding molecule of any one of embodiments 209 to 255, wherein the amino acid designated X19 in Table AA is N.


257. The CD2 binding molecule of any one of embodiments 209 to 255, wherein the amino acid designated X19 in Table AA is T.


258. The CD2 binding molecule of any one of embodiments 209 to 257, wherein the amino acid designated X20 in Table AA is R.


259. The CD2 binding molecule of any one of embodiments 209 to 257, wherein the amino acid designated X20 in Table AA is L.


260. The CD2 binding molecule of any one of embodiments 209 to 259, wherein the amino acid designated X21 in Table AA is F.


261. The CD2 binding molecule of any one of embodiments 209 to 259, wherein the amino acid designated X21 in Table AA is E.


262. The CD2 binding molecule of any one of embodiments 209 to 261, wherein the amino acid designated X22 in Table AA is S.


263. The CD2 binding molecule of any one of embodiments 209 to 261, wherein the amino acid designated X22 in Table AA is Y.


264. The CD2 binding molecule of any one of embodiments 209 to 263, wherein the amino acid designated X23 in Table AA is S.


265. The CD2 binding molecule of any one of embodiments 209 to 263, wherein the amino acid designated X23 in Table AA is Y.


266. The CD2 binding molecule of any one of embodiments 209 to 265, wherein the amino acid designated X24 in Table AA is S.


267. The CD2 binding molecule of any one of embodiments 209 to 265, wherein the amino acid designated X24 in Table AA is A.


268. The CD2 binding molecule of any one of embodiments 209 to 267, wherein the amino acid designated X25 in Table AA is H.


269. The CD2 binding molecule of any one of embodiments 209 to 267, wherein the amino acid designated X25 in Table AA is T.


270. The CD2 binding molecule of any one of embodiments 209 to 269, wherein the amino acid designated X26 in Table AA is F.


271. The CD2 binding molecule of any one of embodiments 209 to 269, wherein the amino acid designated X26 in Table AA is Y.


272. The CD2 binding molecule of any one of embodiments 209 to 271, wherein the amino acid designated X27 in Table AA is W.


273. The CD2 binding molecule of any one of embodiments 209 to 271, wherein the amino acid designated X27 in Table AA is Y.


274. The CD2 binding molecule of any one of embodiments 209 to 273, wherein ABM2 comprises the CDR-H1 sequence C1-1.


275. The CD2 binding molecule of any one of embodiments 209 to 273, wherein ABM2 comprises the CDR-H1 sequence C1-2.


276. The CD2 binding molecule of any one of embodiments 209 to 273, wherein ABM2 comprises the CDR-H1 sequence C1-3.


277. The CD2 binding molecule of any one of embodiments 209 to 273, wherein ABM2 comprises the CDR-H1 sequence C1-4.


278. The CD2 binding molecule of any one of embodiments 209 to 277, wherein ABM2 comprises the CDR-H2 sequence C1-5.


279. The CD2 binding molecule of any one of embodiments 209 to 277, wherein ABM2 comprises the CDR-H2 sequence C1-6.


280. The CD2 binding molecule of any one of embodiments 209 to 277, wherein ABM2 comprises the CDR-H2 sequence C1-7.


281. The CD2 binding molecule of any one of embodiments 209 to 280, wherein ABM2 comprises the CDR-H3 sequence C1-8.


282. The CD2 binding molecule of any one of embodiments 209 to 280, wherein ABM2 comprises the CDR-H3 sequence C1-9.


283. The CD2 binding molecule of any one of embodiments 209 to 280, wherein ABM2 comprises the CDR-H3 sequence C1-10.


284. The CD2 binding molecule of any one of embodiments 209 to 280, wherein ABM2 comprises the CDR-H3 sequence C1-11.


285. The CD2 binding molecule of any one of embodiments 209 to 284, wherein ABM2 comprises the CDR-L1 sequence C1-12.


286. The CD2 binding molecule of any one of embodiments 209 to 284, wherein ABM2 comprises the CDR-L1 sequence C1-13.


287. The CD2 binding molecule of any one of embodiments 209 to 284, wherein ABM2 comprises the CDR-L1 sequence C1-14.


288. The CD2 binding molecule of any one of embodiments 209 to 284, wherein ABM2 comprises the CDR-L1 sequence C1-15.


289. The CD2 binding molecule of any one of embodiments 209 to 284, wherein ABM2 comprises the CDR-L1 sequence C1-16.


290. The CD2 binding molecule of any one of embodiments 209 to 284, wherein ABM2 comprises the CDR-L1 sequence C1-17.


291. The CD2 binding molecule of any one of embodiments 209 to 290, wherein ABM2 comprises the CDR-L2 sequence C1-18.


292. The CD2 binding molecule of any one of embodiments 209 to 290, wherein ABM2 comprises the CDR-L2 sequence C1-19.


293. The CD2 binding molecule of any one of embodiments 209 to 292, wherein ABM2 comprises the CDR-L3 sequence C1-20.


294. The CD2 binding molecule of any one of embodiments 209 to 292, wherein ABM2 comprises the CDR-L3 sequence C1-21.


295. The CD2 binding molecule of any one of embodiments 209 to 292, wherein ABM2 comprises the CDR-L3 sequence C1-22.


296. The CD2 binding molecule of any one of embodiments 209 to 292, wherein ABM2 comprises the CDR-L3 sequence C1-23.


297. The CD2 binding molecule of embodiment 208, wherein ABM2 comprises a CDR-H1 sequence, a CDR-H2 sequence, a CDR-H3 sequence, a CDR-L1 sequence, a CDR-L2 sequence, and a CDR-L3 sequence set forth in Table AB.


298. The CD2 binding molecule of embodiment 297, wherein the amino acid designated X28 in Table AB is V.


299. The CD2 binding molecule of embodiment 297, wherein the amino acid designated X28 in Table AB is I.


300. The CD2 binding molecule of any one of embodiments 297 to 299, wherein the amino acid designated X29 in Table AB is F.


301. The CD2 binding molecule of any one of embodiments 297 to 299, wherein the amino acid designated X29 in Table AB is Y.


302. The CD2 binding molecule of any one of embodiments 297 to 301, wherein the amino acid designated X30 in Table AB is N.


303. The CD2 binding molecule of any one of embodiments 297 to 301, wherein the amino acid designated X30 in Table AB is S.


304. The CD2 binding molecule of any one of embodiments 297 to 303, wherein the amino acid designated X31 in Table AB is A.


305. The CD2 binding molecule of any one of embodiments 297 to 303, wherein the amino acid designated X31 in Table AB is S.


306. The CD2 binding molecule of any one of embodiments 297 to 305, wherein the amino acid designated X32 in Table AB is T.


307. The CD2 binding molecule of any one of embodiments 297 to 305, wherein the amino acid designated X32 in Table AB is K.


308. The CD2 binding molecule of any one of embodiments 297 to 307, wherein the amino acid designated X33 in Table AB is T.


309. The CD2 binding molecule of any one of embodiments 297 to 307, wherein the amino acid designated X33 in Table AB is A.


310. The CD2 binding molecule of any one of embodiments 297 to 309, wherein the amino acid designated X34 in Table AB is S.


311. The CD2 binding molecule of any one of embodiments 297 to 309, wherein the amino acid designated X34 in Table AB is R.


312. The CD2 binding molecule of any one of embodiments 297 to 311, wherein the amino acid designated X35 in Table AB is N.


313. The CD2 binding molecule of any one of embodiments 297 to 311, wherein the amino acid designated X35 in Table AB is G.


314. The CD2 binding molecule of any one of embodiments 297 to 313, wherein the amino acid designated X36 in Table AB is S.


315. The CD2 binding molecule of any one of embodiments 297 to 313, wherein the amino acid designated X36 in Table AB is A.


316. The CD2 binding molecule of any one of embodiments 297 to 315, wherein the amino acid designated X37 in Table AB is A.


317. The CD2 binding molecule of any one of embodiments 297 to 315, wherein the amino acid designated X37 in Table AB is T.


318. The CD2 binding molecule of any one of embodiments 297 to 315, wherein the amino acid designated X37 in Table AB is S.


319. The CD2 binding molecule of any one of embodiments 297 to 318, wherein the amino acid designated X38 in Table AB is N.


320. The CD2 binding molecule of any one of embodiments 297 to 318, wherein the amino acid designated X38 in Table AB is D.


321. The CD2 binding molecule of any one of embodiments 297 to 320, wherein the amino acid designated X39 in Table AB is N.


322. The CD2 binding molecule of any one of embodiments 297 to 320, wherein the amino acid designated X39 in Table AB is K.


323. The CD2 binding molecule of any one of embodiments 297 to 322, wherein the amino acid designated X40 in Table AB is D.


324. The CD2 binding molecule of any one of embodiments 297 to 322, wherein the amino acid designated X40 in Table AB is N.


325. The CD2 binding molecule of any one of embodiments 297 to 324, wherein the amino acid designated X41 in Table AB is H.


326. The CD2 binding molecule of any one of embodiments 297 to 324, wherein the amino acid designated X41 in Table AB is N.


327. The CD2 binding molecule of any one of embodiments 297 to 326, wherein the amino acid designated X42 in Table AB is Q.


328. The CD2 binding molecule of any one of embodiments 297 to 326, wherein the amino acid designated X42 in Table AB is E.


329. The CD2 binding molecule of any one of embodiments 297 to 328, wherein the amino acid designated X43 in Table AB is R.


330. The CD2 binding molecule of any one of embodiments 297 to 328, wherein the amino acid designated X43 in Table AB is S.


331. The CD2 binding molecule of any one of embodiments 297 to 328, wherein the amino acid designated X43 in Table AB is G.


332. The CD2 binding molecule of any one of embodiments 297 to 331, wherein ABM2 comprises the CDR-H1 sequence C2-1.


333. The CD2 binding molecule of any one of embodiments 297 to 331, wherein ABM2 comprises the CDR-H1 sequence C2-2.


334. The CD2 binding molecule of any one of embodiments 297 to 331, wherein ABM2 comprises the CDR-H1 sequence C2-3.


335. The CD2 binding molecule of any one of embodiments 297 to 331, wherein ABM2 comprises the CDR-H1 sequence C2-4.


336. The CD2 binding molecule of any one of embodiments 297 to 335, wherein ABM2 comprises the CDR-H2 sequence C2-5.


337. The CD2 binding molecule of any one of embodiments 297 to 335, wherein ABM2 comprises the CDR-H2 sequence C2-6.


338. The CD2 binding molecule of any one of embodiments 297 to 335, wherein ABM2 comprises the CDR-H2 sequence C2-7.


339. The CD2 binding molecule of any one of embodiments 297 to 338, wherein ABM2 comprises the CDR-H3 sequence C2-8.


340. The CD2 binding molecule of any one of embodiments 297 to 338, wherein ABM2 comprises the CDR-H3 sequence C2-9.


341. The CD2 binding molecule of any one of embodiments 297 to 340, wherein ABM2 comprises the CDR-L1 sequence C2-10.


342. The CD2 binding molecule of any one of embodiments 297 to 340, wherein ABM2 comprises the CDR-L1 sequence C2-11.


343. The CD2 binding molecule of any one of embodiments 297 to 340, wherein ABM2 comprises the CDR-L1 sequence C2-12.


344. The CD2 binding molecule of any one of embodiments 297 to 343, wherein ABM2 comprises the CDR-L2 sequence C2-13.


345. The CD2 binding molecule of any one of embodiments 297 to 343, wherein ABM2 comprises the CDR-L2 sequence C2-14.


346. The CD2 binding molecule of any one of embodiments 297 to 343, wherein ABM2 comprises the CDR-L2 sequence C2-15.


347. The CD2 binding molecule of any one of embodiments 297 to 346, wherein ABM2 comprises the CDR-L3 sequence C2-16.


348. The CD2 binding molecule of any one of embodiments 297 to 346, wherein ABM2 comprises the CDR-L3 sequence C2-17.


349. The CD2 binding molecule of embodiment 208, wherein ABM2 comprises a CDR-H1 sequence, a CDR-H2 sequence, a CDR-H3 sequence, a CDR-L1 sequence, a CDR-L2 sequence, and a CDR-L3 sequence set forth in Table AC.


350. The CD2 binding molecule of embodiment 349, wherein the amino acid designated X44 in Table AC is G.


351. The CD2 binding molecule of embodiment 349, wherein the amino acid designated X44 in Table AC is A.


352. The CD2 binding molecule of any one of embodiments 349 to 351, wherein the amino acid designated X45 in Table AC is H.


353. The CD2 binding molecule of any one of embodiments 349 to 351, wherein the amino acid designated X45 in Table AC is N.


354. The CD2 binding molecule of any one of embodiments 349 to 353, wherein the amino acid designated X46 in Table AC is D.


355. The CD2 binding molecule of any one of embodiments 349 to 353, wherein the amino acid designated X46 in Table AC is G.


356. The CD2 binding molecule of any one of embodiments 349 to 355, wherein the amino acid designated X47 in Table AC is A.


357. The CD2 binding molecule of any one of embodiments 349 to 355, wherein the amino acid designated X47 in Table AC is G.


358. The CD2 binding molecule of any one of embodiments 349 to 357, wherein the amino acid designated X48 in Table AC is N.


359. The CD2 binding molecule of any one of embodiments 349 to 357, wherein the amino acid designated X48 in Table AC is K.


360. The CD2 binding molecule of any one of embodiments 349 to 359, wherein the amino acid designated X49 in Table AC is V.


361. The CD2 binding molecule of any one of embodiments 349 to 359, wherein the amino acid designated X49 in Table AC is A.


362. The CD2 binding molecule of any one of embodiments 349 to 361, wherein the amino acid designated X50 in Table AC is N.


363. The CD2 binding molecule of any one of embodiments 349 to 361, wherein the amino acid designated X50 in Table AC is V.


364. The CD2 binding molecule of any one of embodiments 349 to 363, wherein the amino acid designated X51 in Table AC is A.


365. The CD2 binding molecule of any one of embodiments 349 to 363, wherein the amino acid designated X51 in Table AC is V.


366. The CD2 binding molecule of any one of embodiments 349 to 365, wherein the amino acid designated X52 in Table AC is Y.


367. The CD2 binding molecule of any one of embodiments 349 to 365, wherein the amino acid designated X52 in Table AC is F.


368. The CD2 binding molecule of any one of embodiments 349 to 367, wherein the amino acid designated X53 in Table AC is I.


369. The CD2 binding molecule of any one of embodiments 349 to 367, wherein the amino acid designated X53 in Table AC is V.


370. The CD2 binding molecule of any one of embodiments 349 to 369, wherein the amino acid designated X54 in Table AC is I.


371. The CD2 binding molecule of any one of embodiments 349 to 369, wherein the amino acid designated X54 in Table AC is H.


372. The CD2 binding molecule of any one of embodiments 349 to 371, wherein ABM2 comprises the CDR-H1 sequence C3-1.


373. The CD2 binding molecule of any one of embodiments 349 to 371, wherein ABM2 comprises the CDR-H1 sequence C3-2.


374. The CD2 binding molecule of any one of embodiments 349 to 371, wherein ABM2 comprises the CDR-H1 sequence C3-3.


375. The CD2 binding molecule of any one of embodiments 349 to 371, wherein ABM2 comprises the CDR-H1 sequence C3-4.


376. The CD2 binding molecule of any one of embodiments 349 to 375, wherein ABM2 comprises the CDR-H2 sequence C3-5.


377. The CD2 binding molecule of any one of embodiments 349 to 375, wherein ABM2 comprises the CDR-H2 sequence C3-6.


378. The CD2 binding molecule of any one of embodiments 349 to 375, wherein ABM2 comprises the CDR-H2 sequence C3-7.


379. The CD2 binding molecule of any one of embodiments 349 to 378, wherein ABM2 comprises the CDR-H3 sequence C3-8.


380. The CD2 binding molecule of any one of embodiments 349 to 378, wherein ABM2 comprises the CDR-H3 sequence C3-9.


381. The CD2 binding molecule of any one of embodiments 349 to 380, wherein ABM2 comprises the CDR-L1 sequence C3-10.


382. The CD2 binding molecule of any one of embodiments 349 to 380, wherein ABM2 comprises the CDR-L1 sequence C3-11.


383. The CD2 binding molecule of any one of embodiments 349 to 380, wherein ABM2 comprises the CDR-L1 sequence C3-12.


384. The CD2 binding molecule of any one of embodiments 349 to 383, wherein ABM2 comprises the CDR-L2 sequence C3-13.


385. The CD2 binding molecule of any one of embodiments 349 to 383, wherein ABM2 comprises the CDR-L2 sequence C3-14.


386. The CD2 binding molecule of any one of embodiments 349 to 385, wherein ABM2 comprises the CDR-L3 sequence C3-15.


387. The CD2 binding molecule of any one of embodiments 349 to 385, wherein ABM2 comprises the CDR-L3 sequence C3-16.


388. The CD2 binding molecule of embodiment 32, wherein ABM2 comprises CDR-H1 CDR-H2, and CDR-H3 sequences set forth in Table AD-1, Table AE-1, Table AF-1, Table AG-1, Table AH-1, or Table AI-1, and the corresponding CDR-L1, CDR-L2, and CDR-L3 sequences set forth in Table AD-2, Table AE-2, Table AF-2, Table AG-2, Table AH-2, or Table AI-2, respectfully.


389. The CD2 binding molecule of embodiment 388, wherein ABM2 comprises CDR-H1, CDR-H2, and CDR-H3 sequences set forth in Table AD-1 and the corresponding CDR-L1, CDR-L2, and CDR-L3 sequences set forth in Table AD-2.


390. The CD2 binding molecule of embodiment 388, wherein ABM2 comprises CDR-H1, CDR-H2, and CDR-H3 sequences set forth in Table AE-1 and the corresponding CDR-L1, CDR-L2, and CDR-L3 sequences set forth in Table AE-2.


391. The CD2 binding molecule of embodiment 388, wherein ABM2 comprises CDR-H1, CDR-H2, and CDR-H3 sequences set forth in Table AF-1 and the corresponding CDR-L1, CDR-L2, and CDR-L3 sequences set forth in Table AF-2.


392. The CD2 binding molecule of embodiment 388, wherein ABM2 comprises CDR-H1, CDR-H2, and CDR-H3 sequences set forth in Table AG-1 and the corresponding CDR-L1, CDR-L2, and CDR-L3 sequences set forth in Table AG-2.


393. The CD2 binding molecule of embodiment 388, wherein ABM2 comprises CDR-H1, CDR-H2, and CDR-H3 sequences set forth in Table AH-1 and the corresponding CDR-L1, CDR-L2, and CDR-L3 sequences set forth in Table AH-2.


394. The CD2 binding molecule of embodiment 388, wherein ABM2 comprises CDR-H1, CDR-H2, and CDR-H3 sequences set forth in Table AI-1 and the corresponding CDR-L1, CDR-L2, and CDR-L3 sequences set forth in Table AI-2.


395. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of NOV292.


396. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of NOV123.


397. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of Sp10b.


398. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of NOV453.


399. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of NOV229.


400. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of NOV110.


401. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of NOV832.


402. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of NOV589.


403. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of NOV580.


404. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of NOV567.


405. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of NOV221.


406. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_sp11a_bkm1.


407. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_SP11a_bkm2.


408. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_sp11a_hz0.


409. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_SP11A_HZ1.


410. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_sp11a_sansPTM_hz1.


411. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_sp11a_sansPTM_rat.


412. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_sp11a_VHVL_YY.


413. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_SP11A_VHVL_SS.


414. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_SP11A_VHVL_WS.


415. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_sp11a_VHVL_SW.


416. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_SP11A_VHVL_TT.


417. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_SP11A_VHVL_TW.


418. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_SP11A_VHVL_WT.


419. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_SP11A VH3_VLK3.


420. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_sp11a_VH1_VK2.


421. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_SP11A_VH3_VLK1.


422. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_SP11A_VH5_VK2.


423. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_sp9aFW1_VL_VH_S56G.


424. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_SP9AFW4_VL_VH_S56G.


425. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_sp9aFW1_VL_VH.


426. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_sp9aFW4_VLVH.


427. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_sp9arabtor_VHVL.


428. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_sp9arabtor_VLVH.


429. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_sp11a_VHVL_YY_SANSPTM.


430. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_sp11a_VHVL_YY_SANSPTM_Y.


431. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_sp11a_VHVL_YY_SANSPTM_S.


432. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_sp11a_VHVL_YY_Y.


433. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_sp11a_VHVL_YY_s.


434. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_sp11a_VHVL_SS_SANSPTM.


435. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_sp11a_VHVL_SS_SANSPTM_Y.


436. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_sp11a_VHVL_SS_SANSPTM_S.


437. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_sp11a_VHVL_SS_Y.


438. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_sp11a_VHVL_SS_S.


439. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_sp11a_VHVL_SS_SANSPTM.


440. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_sp11a_VHVL_WS_SANSPTM_Y.


441. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_sp11a_VHVL_WS_SANSPTM_S.


442. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_sp11a_VHVL_WS_Y.


443. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_sp11a_VHVL_WS_S.


444. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_sp11a_VHVL_WS_SANSPTM.


445. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_sp11a_VHVL_SW_SANSPTM_Y.


446. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_sp11a_VHVL_SW_SANSPTM_S.


447. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_sp11a_VHVL_SW_Y.


448. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_sp11a_VHVL_SW_S.


449. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_sp11a_VHVL_SW_SANSPTM.


450. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_sp11a_VHVL_TW_SANSPTM_Y.


451. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_sp11a_VHVL_TW_SANSPTM_S.


452. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_sp11a_VHVL_TW_Y.


453. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_sp11a_VHVL_TW_S.


454. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_sp11a_VHVL_TW_SANSPTM.


455. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_sp11a_VHVL_TT_SANSPTM_Y.


456. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_sp11a_VHVL_TT_SANSPTM_S.


457. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_sp11a_VHVL_TT_Y.


458. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_sp11a_VHVL_TT_S.


459. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_sp11a_VHVL_TT_SANSPTM.


460. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_SP11AVH3_VLK_3_Y.


461. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_SP11AVH3_VLK_3_S.


462. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_SP11AVH3_VLK_3_Y_PTM.


463. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_SP11AVH3_VLK_3_S_PTM.


464. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_SP11AVH3_VLK_3_Y_SW.


465. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_SP11AVH3_VLK_3_S_SW.


466. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_SP11AVH3_VLK_3_Y_PTM_SW.


467. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_SP11AVH3_VLK_3_S_SWPTM.


468. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_SP11AVH3_VLK_SWPTM.


469. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_SP11AVH3_VLK_3_SW.


470. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_sp11a_VH1_VK2_Y.


471. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_sp11a_VH1_VK2_S.


472. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_sp11a_VH1_VK2_Y_PTM.


473. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_sp11a_VH1_VK2_S_PTM.


474. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_sp11a_VH1_VK2_Y_SW.


475. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_sp11a_VH1_VK2_S_SW.


476. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_sp11a_VH1_VK2_Y_PTM.


477. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_sp11a_VH1_VK2_S_PTM_SW.


478. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_sp11a_VH1_VK2_SW.


479. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_sp11a_VH1_VK2_SW PTM.


480. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_SP11A_VH3_VLK1_Y.


481. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_SP11A_VH3_VLK1_S.


482. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_SP11A_VH3_VLK1_Y_PTM.


483. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_SP11A_VH3_VLK1_S_PTM.


484. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_SP11A_VH3_VLK1_Y_SW.


485. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_SP11A_VH3_VLK1_S_SW.


486. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_SP11A_VH3_VLK1_Y_PTM.


487. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_SP11A_VH3_VLK1_S_PTM_SW.


488. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_SP11A_VH3_VLK1PTM_SW.


489. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_SP11A_VH3_VLK1_SW.


490. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_SP11A_VH5_VK2_Y.


491. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_SP11A_VH5_VK2_S.


492. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_SP11A_VH5_VK2_Y_PTM.


493. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_SP11A_VH5_VK2_S_PTM.


494. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_SP11A_VH5_VK2_Y_SW.


495. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_SP11A_VH5_VK2_S_SW.


496. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_SP11A_VH5_VK2_Y_PTM_SW.


497. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_SP11A_VH5_VK2_S_PTM_SW.


498. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_SP11A_VH5_VK2_PTM_SW.


499. The CD2 binding molecule of any one of embodiments 389 to 394, wherein ABM2 comprises CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of CD3_SP11A_VH5_VK2_SW.


500. The CD2 binding molecule of embodiment 388, wherein ABM2 comprises a heavy chain variable sequence set forth in Table AJ-1 and the corresponding light chain variable sequence set forth in Table AJ-2.


501. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of NOV292.


502. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of NOV123.


503. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of Sp10b.


504. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of NOV453.


505. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of NOV229.


506. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of NOV110.


507. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of NOV832.


508. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of NOV589.


509. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of NOV580.


510. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of NOV567.


511. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of NOV221.


512. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_sp11a_bkm1.


513. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_SP11a_bkm2.


514. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_sp11a_hz0.


515. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_SP11A_HZ1.


516. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_sp11a_sansPTM_hz1.


517. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_sp11a_sansPTM_rat.


518. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_sp11a_VHVL_YY.


519. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_SP11A_VHVL_SS.


520. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_SP11A_VHVL_WS.


521. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_sp11a_VHVL_SW.


522. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_SP11A_VHVL_TT.


523. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_SP11A_VHVL_TW.


524. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_SP11A_VHVL_WT.


525. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_SP11A VH3_VLK_3.


526. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_sp11a_VH1_VK2.


527. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_SP11A_VH3_VLK1.


528. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_SP11A_VH5_VK2.


529. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_sp9aFW1_VL_VH_S56G.


530. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_SP9AFW4_VL_VH_S56G.


531. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_sp9aFW1_VL_VH.


532. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_sp9aFW4_VLVH.


533. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_sp9arabtor_VHVL.


534. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_sp9arabtor_VLVH.


535. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_sp11a_VHVL_YY_SANSPTM.


536. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_sp11a_VHVL_YY_SANSPTM_Y.


537. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_sp11a_VHVL_YY_SANSPTM_S.


538. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_sp11a_VHVL_YY_Y.


539. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_sp11a_VHVL_YY_s.


540. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_sp11a_VHVL_SS_SANSPTM.


541. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_sp11a_VHVL_SS_SANSPTM_Y.


542. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_sp11a_VHVL_SS_SANSPTM_S.


543. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_sp11a_VHVL_SS_Y.


544. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_sp11a_VHVL_SS_S.


545. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_sp11a_VHVL_SS_SANSPTM.


546. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_sp11a_VHVL_WS_SANSPTM_Y.


547. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_sp11a_VHVL_WS_SANSPTM_S.


548. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_sp11a_VHVL_WS_Y.


549. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_sp11a_VHVL_WS_S.


550. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_sp11a_VHVL_WS_SANSPTM.


551. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_sp11a_VHVL_SW_SANSPTM_Y.


552. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_sp11a_VHVL_SW_SANSPTM_S.


553. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_sp11a_VHVL_SW_Y.


554. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_sp11a_VHVL_SW_S.


555. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_sp11a_VHVL_SW_SANSPTM.


556. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_sp11a_VHVL_TW_SANSPTM_Y.


557. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_sp11a_VHVL_TW_SANSPTM_S.


558. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_sp11a_VHVL_TW_Y.


559. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_sp11a_VHVL_TW_S.


560. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_sp11a_VHVL_TW_SANSPTM.


561. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_sp11a_VHVL_TT_SANSPTM_Y.


562. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_sp11a_VHVL_TT_SANSPTM_S.


563. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_sp11a_VHVL_TT_Y.


564. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_sp11a_VHVL_TT_S.


565. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_sp11a_VHVL_TT_SANSPTM.


566. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_SP11AVH3_VLK_3_Y.


567. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_SP11AVH3_VLK_3_S.


568. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_SP11AVH3_VLK_3_Y_PTM.


569. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_SP11AVH3_VLK_3_S_PTM.


570. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_SP11AVH3_VLK_3_Y_SW.


571. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_SP11AVH3_VLK_3_S_SW.


572. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_SP11AVH3_VLK_3_Y_PTM_SW.


573. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_SP11AVH3_VLK_3_S_SWPTM.


574. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_SP11AVH3_VLK_SWPTM.


575. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_SP11AVH3_VLK_3_SW.


576. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_sp11a_VH1_VK2_Y.


577. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_sp11a_VH1_VK2_S.


578. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_sp11a_VH1_VK2_Y_PTM.


579. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_sp11a_VH1_VK2_S_PTM.


580. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_sp11a_VH1_VK2_Y_SW.


581. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_sp11a_VH1_VK2_S_SW.


582. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_sp11a_VH1_VK2_Y_PTM.


583. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_sp11a_VH1_VK2_S_PTM_SW.


584. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_sp11a_VH1_VK2_SW.


585. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_sp11a_VH1_VK2_SW PTM.


586. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_SP11A_VH3_VLK1_Y.


587. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_SP11A_VH3_VLK1_S.


588. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_SP11A_VH3_VLK1_Y_PTM.


589. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_SP11A_VH3_VLK1_S_PTM.


590. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_SP11A_VH3_VLK1_Y_SW.


591. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_SP11A_VH3_VLK1_S_SW.


592. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_SP11A_VH3_VLK1_Y_PTM.


593. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_SP11A_VH3_VLK1_S_PTM_SW.


594. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_SP11A_VH3_VLK1PTM_SW.


595. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_SP11A_VH3_VLK1_SW.


596. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_SP11A_VH5_VK2_Y.


597. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_SP11A_VH5_VK2_S.


598. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_SP11A_VH5_VK2_Y_PTM.


599. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_SP11A_VH5_VK2_S_PTM.


600. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_SP11A_VH5_VK2_Y_SW.


601. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_SP11A_VH5_VK2_S_SW.


602. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_SP11A_VH5_VK2_Y_PTM_SW.


The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_SP11A_VH5_VK2_S_PTM_SW.


604. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_SP11A_VH5_VK2_PTM_SW.


605. The CD2 binding molecule of embodiment 500, wherein ABM2 comprises the heavy chain variable sequence and the light chain variable sequence of CD3_SP11A_VH5_VK2_SW.


606. The CD2 binding molecule of embodiment 31, wherein the component of the TCR complex is TCR-α, TCR-β, or a TCR-α/β dimer.


607. The CD2 binding molecule of embodiment 606, wherein ABM2 is an antibody or an antigen-binding domain thereof.


608. The CD2 binding molecule of embodiment 607, wherein ABM2 comprises the CDR sequences of BMA031.


609. The CD2 binding molecule of embodiment 608, wherein the CDR sequences are defined as in Table 13.


610. The CD2 binding molecule of embodiment 609, wherein the CDR sequences are defined by Kabat numbering, as set forth in Table 13.


611. The CD2 binding molecule of embodiment 609, wherein the CDR sequences are defined by IMGT numbering, as set forth in Table 13.


612. The CD2 binding molecule of embodiment 609, wherein the CDR sequences are defined by Chothia numbering, as set forth in Table 13.


613. The CD2 binding molecule of embodiment 609, wherein the CDR sequences are defined by a combination of Kabat and Chothia numbering, as set forth in Table 13.


614. The CD2 binding molecule of embodiment 607, wherein ABM2 comprises the heavy and light chain variable sequences of BMA031.


615. The CD2 binding molecule of embodiment 31, wherein the component of the TCR complex is TCR-γ, TCR-δ, or a TCR-γ/δ dimer.


616. The CD2 binding molecule of embodiment 615, wherein ABM2 is an antibody or an antigen-binding domain thereof.


617. The CD2 binding molecule of embodiment 616, wherein ABM2 comprises the CDR sequences of δTCS1.


618. The CD2 binding molecule of embodiment 617, wherein the CDR sequences are defined by Kabat numbering.


619. The CD2 binding molecule of embodiment 617, wherein the CDR sequences are defined by Chothia numbering.


620. The CD2 binding molecule of embodiment 617, wherein the CDR sequences are defined by a combination of Kabat and Chothia numbering.


621. The CD2 binding molecule of embodiment 616, wherein ABM2 comprises the heavy and light chain variable sequences of δTCS1.


622. The CD2 binding molecule of embodiment 30, wherein ABM2 binds specifically to a TAA.


623. The CD2 binding molecule of embodiment 622, wherein ABM2 is an anti-TAA antibody or an antigen-binding domain thereof.


624. The CD2 binding molecule of embodiment 623, wherein the TAA is TSHR, CD171, CS-1, CLL-1, GD3, Tn Ag, FLT3, CD38, CD44v6, B7H3, KIT, IL-13Ra2, IL-11Ra, PSCA, PRSS21, VEGFR2, LewisY, CD24, PDGFR-beta, SSEA-4, MUC1, EGFR, NCAM, CAIX, LMP2, EphA2, fucosyl GM1, sLe, GM3, TGS5, HMWMAA, o-acetyl-GD2, GD2, folate receptor alpha, folate receptor beta, TEM1/CD248, TEM7R, CLDN6, GPRC5D, CXORF61, CD97, CD179a, ALK, polysialic acid, PLAC1, GloboH, NY-BR-1, UPK2, HAVCR1, ADRB3, PANX3, GPR20, LY6K, OR51E2, TAARP, WT1, ETV6-AML, sperm protein 17, XAGE1, Tie 2, MAD-CT-1, MAD-CT-2, Fos-related antigen 1, p53 mutant, hTERT, sarcoma translocation breakpoints, ML-IAP, ERG (TMPRSS2 ETS fusion gene), NA17, PAX3, Androgen receptor, Cyclin B1, MYCN, RhoC, CYP1B1, BORIS, SART3, PAX5, OY-TES1, LCK, AKAP-4, SSX2, CD79a, CD79b, CD72, LAIR1, FCAR, LILRA2, CD300LF, CLEC12A, BST2, EMR2, LY75, GPC3, FCRL5, IGLL1, CD19, CD20, CD30, ERBB2, ROR1, FLT3, TAAG72, CD22, CD33, GD2, BCMA, gp100Tn, FAP, tyrosinase, EPCAM, CEA, Igf-I receptor, EphB2, mesothelin, Cadherin17, CD32b, EGFRvIII, GPNMB, GPR64, HER3, LRP6, LYPD8, NKG2D, SLC34A2, SLC39A6, SLITRK6, or TACSTD2.


625. The CD2 binding molecule of embodiment 624, wherein the anti-TAA antibody or antigen-binding domain thereof has the CDR sequences of an antibody set forth in Table 14A or Table 14B.


626. The CD2 binding molecule of embodiment 624, wherein the anti-TAA antibody or antigen-binding domain thereof has the heavy and light chain variable region sequences of an antibody set forth in Table 14A or Table 14B.


627. The CD2 binding molecule of embodiment 625 or embodiment 626, wherein the anti-TAA antibody or antigen-binding domain thereof binds to CD22.


628. The CD2 binding molecule of embodiment 625 or embodiment 626, wherein the anti-TAA antibody or antigen-binding domain thereof binds to CS1.


629. The CD2 binding molecule of embodiment 625 or embodiment 626, wherein the anti-TAA antibody or antigen-binding domain thereof binds to CD33.


630. The CD2 binding molecule of embodiment 625 or embodiment 626, wherein the anti-TAA antibody or antigen-binding domain thereof binds to GD2.


631. The CD2 binding molecule of embodiment 625 or embodiment 626, wherein the anti-TAA antibody or antigen-binding domain thereof binds to BCMA.


632. The CD2 binding molecule of embodiment 625 or embodiment 626, wherein the anti-TAA antibody or antigen-binding domain thereof binds to Tn.


633. The CD2 binding molecule of embodiment 625 or embodiment 626, wherein the anti-TAA antibody or antigen-binding domain thereof binds to PSMA.


634. The CD2 binding molecule of embodiment 625 or embodiment 626, wherein the anti-TAA antibody or antigen-binding domain thereof binds to ROR1.


635. The CD2 binding molecule of embodiment 625 or embodiment 626, wherein the anti-TAA antibody or antigen-binding domain thereof binds to FLT3.


636. The CD2 binding molecule of embodiment 625 or embodiment 626, wherein the anti-TAA antibody or antigen-binding domain thereof binds to TAAG72.


637. The CD2 binding molecule of embodiment 625 or embodiment 626, wherein the anti-TAA antibody or antigen-binding domain thereof binds to FAP.


638. The CD2 binding molecule of embodiment 625 or embodiment 626, wherein the anti-TAA antibody or antigen-binding domain thereof binds to CD38.


639. The CD2 binding molecule of embodiment 625 or embodiment 626, wherein the anti-TAA antibody or antigen-binding domain thereof binds to CD44v6.


640. The CD2 binding molecule of embodiment 625 or embodiment 626, wherein the anti-TAA antibody or antigen-binding domain thereof binds to CEA.


641. The CD2 binding molecule of embodiment 625 or embodiment 626, wherein the anti-TAA antibody or antigen-binding domain thereof binds to EPCAM.


642. The CD2 binding molecule of embodiment 625 or embodiment 626, wherein the anti-TAA antibody or antigen-binding domain thereof binds to PRSS21.


643. The CD2 binding molecule of embodiment 625 or embodiment 626, wherein the anti-TAA antibody or antigen-binding domain thereof binds to B7H3.


644. The CD2 binding molecule of embodiment 625 or embodiment 626, wherein the anti-TAA antibody or antigen-binding domain thereof binds to KIT.


645. The CD2 binding molecule of embodiment 625 or embodiment 626, wherein the anti-TAA antibody or antigen-binding domain thereof binds to IL-13Ra2.


646. The CD2 binding molecule of embodiment 625 or embodiment 626, wherein the anti-TAA antibody or antigen-binding domain thereof binds to CD30.


647. The CD2 binding molecule of embodiment 625 or embodiment 626, wherein the anti-TAA antibody or antigen-binding domain thereof binds to GD3.


648. The CD2 binding molecule of embodiment 625 or embodiment 626, wherein the anti-TAA antibody or antigen-binding domain thereof binds to CD171.


649. The CD2 binding molecule of embodiment 625 or embodiment 626, wherein the anti-TAA antibody or antigen-binding domain thereof binds to IL-11Ra.


650. The CD2 binding molecule of embodiment 625 or embodiment 626, wherein the anti-TAA antibody or antigen-binding domain thereof binds to PSCA.


651. The CD2 binding molecule of embodiment 625 or embodiment 626, wherein the anti-TAA antibody or antigen-binding domain thereof binds to VEGFR2.


652. The CD2 binding molecule of embodiment 625 or embodiment 626, wherein the anti-TAA antibody or antigen-binding domain thereof binds to LewisY.


653. The CD2 binding molecule of embodiment 625 or embodiment 626, wherein the anti-TAA antibody or antigen-binding domain thereof binds to CD24.


654. The CD2 binding molecule of embodiment 625 or embodiment 626, wherein the anti-TAA antibody or antigen-binding domain thereof binds to PDGFR-beta.


655. The CD2 binding molecule of embodiment 625 or embodiment 626, wherein the anti-TAA antibody or antigen-binding domain thereof binds to SSEA-4.


656. The CD2 binding molecule of embodiment 625 or embodiment 626, wherein the anti-TAA antibody or antigen-binding domain thereof binds to CD20.


657. The CD2 binding molecule of embodiment 625 or embodiment 626, wherein the anti-TAA antibody or antigen-binding domain thereof binds to folate receptor alpha.


658. The CD2 binding molecule of embodiment 625 or embodiment 626, wherein the anti-TAA antibody or antigen-binding domain thereof binds to ERBB2.


659. The CD2 binding molecule of embodiment 625 or embodiment 626, wherein the anti-TAA antibody or antigen-binding domain thereof binds to MUC1.


660. The CD2 binding molecule of embodiment 625 or embodiment 626, wherein the anti-TAA antibody or antigen-binding domain thereof binds to EGFR.


661. The CD2 binding molecule of embodiment 625 or embodiment 626, wherein the anti-TAA antibody or antigen-binding domain thereof binds to NCAM.


662. The CD2 binding molecule of embodiment 625 or embodiment 626, wherein the anti-TAA antibody or antigen-binding domain thereof binds to ephrin B2


663. The CD2 binding molecule of embodiment 625 or embodiment 626, wherein the anti-TAA antibody or antigen-binding domain thereof binds to IGF-I receptor.


664. The CD2 binding molecule of embodiment 625 or embodiment 626, wherein the anti-TAA antibody or antigen-binding domain thereof binds to CAIX.


665. The CD2 binding molecule of embodiment 625 or embodiment 626, wherein the anti-TAA antibody or antigen-binding domain thereof binds to LM P2.


666. The CD2 binding molecule of embodiment 625 or embodiment 626, wherein the anti-TAA antibody or antigen-binding domain thereof binds to gp100.


667. The CD2 binding molecule of embodiment 625 or embodiment 626, wherein the anti-TAA antibody or antigen-binding domain thereof binds to tyrosinase.


668. The CD2 binding molecule of embodiment 625 or embodiment 626, wherein the anti-TAA antibody or antigen-binding domain thereof binds to ephA2.


669. The CD2 binding molecule of embodiment 625 or embodiment 626, wherein the anti-TAA antibody or antigen-binding domain thereof binds to mesothelin.


670. The CD2 binding molecule of embodiment 625 or embodiment 626, wherein the anti-TAA antibody or antigen-binding domain thereof binds to ALK.


671. The CD2 binding molecule of embodiment 625 or embodiment 626, wherein the anti-TAA antibody or antigen-binding domain thereof binds to CD19.


672. The CD2 binding molecule of embodiment 625 or embodiment 626, wherein the anti-TAA antibody or antigen-binding domain thereof binds to CD97.


673. The CD2 binding molecule of embodiment 625 or embodiment 626, wherein the anti-TAA antibody or antigen-binding domain thereof binds to CLDN6.


674. The CD2 binding molecule of embodiment 625 or embodiment 626, wherein the anti-TAA antibody or antigen-binding domain thereof binds to EGFRvIII.


675. The CD2 binding molecule of embodiment 625 or embodiment 626, wherein the anti-TAA antibody or antigen-binding domain thereof binds to folate receptor beta.


676. The CD2 binding molecule of embodiment 625 or embodiment 626, wherein the anti-TAA antibody or antigen-binding domain thereof binds to GloboH.


677. The CD2 binding molecule of embodiment 625 or embodiment 626, wherein the anti-TAA antibody or antigen-binding domain thereof binds to GPRC5D.


678. The CD2 binding molecule of embodiment 625 or embodiment 626, wherein the anti-TAA antibody or antigen-binding domain thereof binds to HMWMAA.


679. The CD2 binding molecule of embodiment 625 or embodiment 626, wherein the anti-TAA antibody or antigen-binding domain thereof binds to LRP6.


680. The CD2 binding molecule of embodiment 625 or embodiment 626, wherein the anti-TAA antibody or antigen-binding domain thereof binds to NY-BR-1.


681. The CD2 binding molecule of embodiment 625 or embodiment 626, wherein the anti-TAA antibody or antigen-binding domain thereof binds to PLAC1.


682. The CD2 binding molecule of embodiment 625 or embodiment 626, wherein the anti-TAA antibody or antigen-binding domain thereof binds to polysialic acid.


683. The CD2 binding molecule of embodiment 625 or embodiment 626, wherein the anti-TAA antibody or antigen-binding domain thereof binds to TEM1/CD248.


684. The CD2 binding molecule of embodiment 625 or embodiment 626, wherein the anti-TAA antibody or antigen-binding domain thereof binds to TSHR.


685. The CD2 binding molecule of embodiment 623, wherein the TAA is CD19.


686. The CD2 binding molecule of embodiment 685, wherein the anti-TAA antibody or antigen-binding domain thereof comprises the CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequence of the anti-CD19 antibody NEG258 as defined by Kabat and set forth in Table 17A.


687. The CD2 binding molecule of embodiment 685, wherein the anti-TAA antibody or antigen-binding domain thereof comprises the CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of the anti-CD19 antibody NEG258 as defined by Chothia and set forth in Table 17A.


688. The CD2 binding molecule of embodiment 685, wherein the anti-TAA antibody or antigen-binding domain thereof comprises the CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequence of the anti-CD19 antibody NEG258 as defined by IMGT and set forth in Table 17A.


689. The CD2 binding molecule of embodiment 685, wherein the anti-TAA antibody or antigen-binding domain thereof comprises the CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of the anti-CD19 antibody NEG258 as defined by the combination of Kabat and Chothia and set forth in Table 17A.


690. The CD2 binding molecule of embodiment 685, wherein the anti-TAA antibody or antigen-binding domain thereof comprises the heavy chain and/or light chain variable sequences of the anti-CD19 antibody NEG258 as set forth in Table 17A.


691. The CD2 binding molecule of embodiment 685, wherein the anti-TAA antibody or antigen-binding domain thereof comprises the CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequence of the anti-CD19 antibody NEG218 as defined by Kabat and set forth in Table 17B.


692. The CD2 binding molecule of embodiment 685, wherein the anti-TAA antibody or antigen-binding domain thereof comprises the CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of the anti-CD19 antibody NEG218 as defined by Chothia and set forth in Table 17B.


693. The CD2 binding molecule of embodiment 685, wherein the anti-TAA antibody or antigen-binding domain thereof comprises the CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequence of the anti-CD19 antibody NEG218 as defined by IMGT and set forth in Table 17B.


694. The CD2 binding molecule of embodiment 685, wherein the anti-TAA antibody or antigen-binding domain thereof comprises the CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of the anti-CD19 antibody NEG218 as defined by the combination of Kabat and Chothia and set forth in Table 17B.


695. The CD2 binding molecule of embodiment 685, wherein the anti-TAA antibody or antigen-binding domain thereof comprises the heavy chain and/or light chain variable sequences of the anti-CD19 antibody NEG218 as set forth in Table 17B.


696. The CD2 binding molecule of embodiment 685, wherein the anti-TAA antibody or antigen-binding domain thereof comprises heavy chain CDRs having the amino acid sequences of CD19-H1, CD19-H2A, and CD19-H3 as set forth in Table 16 and light chain CDRs having the amino acid sequences of CD19-L1, CD19-L2, and CD19-L3 as set forth in Table 16.


697. The CD2 binding molecule of embodiment 685, wherein the anti-TAA antibody or antigen-binding domain thereof comprises a heavy chain variable region having the amino acid sequences of VHA as set forth in Table 16 and a light chain variable region having the amino acid sequences of VLA as set forth in Table 16.


698. The CD2 binding molecule of embodiment 685, wherein the anti-TAA antibody or antigen-binding domain thereof comprises heavy chain CDRs having the amino acid sequences of CD19-H1, CD19-H2B, and CD19-H3 as set forth in Table 16 and light chain CDRs having the amino acid sequences of CD19-L1, CD19-L2, and CD19-L3 as set forth in Table 16.


699. The CD2 binding molecule of embodiment 685, wherein the anti-TAA antibody or antigen-binding domain thereof comprises a heavy chain variable region having the amino acid sequences of VHB as set forth in Table 16 and a light chain variable region having the amino acid sequences of VLB as set forth in Table 16.


700. The CD2 binding molecule of embodiment 685, wherein the anti-TAA antibody or antigen-binding domain thereof comprises heavy chain CDRs having the amino acid sequences of CD19-H1, CD19-H2C, and CD19-H3 as set forth in Table 16 and light chain CDRs having the amino acid sequences of CD19-L1, CD19-L2, and CD19-L3 as set forth in Table 16.


701. The CD2 binding molecule of embodiment 685, wherein the anti-TAA antibody or antigen-binding domain thereof comprises a heavy chain variable region having the amino acid sequences of VHC as set forth in Table 16 and a light chain variable region having the amino acid sequences of VLB as set forth in Table 16.


702. The CD2 binding molecule of embodiment 685, wherein the anti-TAA antibody or antigen-binding domain thereof comprises heavy chain CDRs having the amino acid sequences of CD19-H1, CD19-H2D, and CD19-H3 as set forth in Table 16 and light chain CDRs having the amino acid sequences of CD19-L1, CD19-L2, and CD19-L3 as set forth in Table 16.


703. The CD2 binding molecule of embodiment 685, wherein the anti-TAA antibody or antigen-binding domain thereof comprises a heavy chain variable region having the amino acid sequences of VHD as set forth in Table 16 and a light chain variable region having the amino acid sequences of VLB as set forth in Table 16.


704. The CD2 binding molecule of embodiment 623, wherein the TAA is Her2.


705. The CD2 binding molecule of embodiment 623, wherein the TAA is mesothelin.


706. The CD2 binding molecule of embodiment 623, wherein the TAA is BCMA.


707. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the CDR sequences of BCMA-1.


708. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the CDR sequences of BCMA-2.


709. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the CDR sequences of BCMA-3.


710. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the CDR sequences of BCMA-4.


711. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the CDR sequences of BCMA-5.


712. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the CDR sequences of BCMA-6.


713. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the CDR sequences of BCMA-7.


714. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the CDR sequences of BCMA-8.


715. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the CDR sequences of BCMA-9.


716. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the CDR sequences of BCMA-10.


717. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the CDR sequences of BCMA-11.


718. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the CDR sequences of BCMA-12.


719. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the CDR sequences of BCMA-13.


720. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the CDR sequences of BCMA-14.


721. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the CDR sequences of BCMA-15.


722. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the CDR sequences of BCMA-16.


723. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the CDR sequences of BCMA-17.


724. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the CDR sequences of BCMA-18.


725. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the CDR sequences of BCMA-19.


726. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the CDR sequences of BCMA-20.


727. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the CDR sequences of BCMA-21.


728. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the CDR sequences of BCMA-22.


729. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the CDR sequences of BCMA-23.


730. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the CDR sequences of BCMA-24.


731. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the CDR sequences of BCMA-25.


732. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the CDR sequences of BCMA-26.


733. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the CDR sequences of BCMA-27.


734. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the CDR sequences of BCMA-28.


735. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the CDR sequences of BCMA-29.


736. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the CDR sequences of BCMA-30.


737. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the CDR sequences of BCMA-31.


738. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the CDR sequences of BCMA-32.


739. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the CDR sequences of BCMA-33.


740. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the CDR sequences of BCMA-34.


741. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the CDR sequences of BCMA-35.


742. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the CDR sequences of BCMA-36.


743. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the CDR sequences of BCMA-37.


744. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the CDR sequences of BCMA-38.


745. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the CDR sequences of BCMA-39.


746. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the CDR sequences of BCMA-40.


747. The CD2 binding molecule of any one of embodiments 707 to 746, wherein the CDRs are defined by Kabat numbering, as set forth in Tables 15B and 15E.


748. The CD2 binding molecule of any one of embodiments 707 to 746, wherein the CDRs are defined by Chothia numbering, as set forth in Tables 15C and 15F.


749. CD2 binding molecule of any one of embodiments 707 to 746, wherein the CDRs are defined by a combination of Kabat and Chothia numbering, as set forth in Tables 15D and 15G.


750. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-1, as set forth in Table 15A.


751. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-2, as set forth in Table 15A.


752. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-3, as set forth in Table 15A.


753. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-4, as set forth in Table 15A.


754. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-5, as set forth in Table 15A.


755. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-6, as set forth in Table 15A.


756. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-7, as set forth in Table 15A.


757. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-8, as set forth in Table 15A.


758. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-9, as set forth in Table 15A.


759. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-10, as set forth in Table 15A.


760. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-11, as set forth in Table 15A.


761. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-12, as set forth in Table 15A.


762. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-13, as set forth in Table 15A.


763. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-14, as set forth in Table 15A.


764. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-15, as set forth in Table 15A.


765. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-16, as set forth in Table 15A.


766. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-17, as set forth in Table 15A.


767. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-18, as set forth in Table 15A.


768. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-19, as set forth in Table 15A.


769. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-20, as set forth in Table 15A.


770. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-21, as set forth in Table 15A.


771. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-22, as set forth in Table 15A.


772. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-23, as set forth in Table 15A.


773. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-24, as set forth in Table 15A.


774. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-25, as set forth in Table 15A.


775. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-26, as set forth in Table 15A.


776. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-27, as set forth in Table 15A.


777. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-28, as set forth in Table 15A.


778. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-29, as set forth in Table 15A.


779. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-30, as set forth in Table 15A.


780. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-31, as set forth in Table 15A.


781. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-32, as set forth in Table 15A.


782. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-33, as set forth in Table 15A.


783. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-34, as set forth in Table 15A.


784. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-35, as set forth in Table 15A.


785. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-36, as set forth in Table 15A.


786. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-37, as set forth in Table 15A.


787. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-38, as set forth in Table 15A.


788. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-39, as set forth in Table 15A.


789. The CD2 binding molecule of embodiment 706, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-40, as set forth in Table 15A.


790. The CD2 binding molecule of any one of embodiments 30 to 789, wherein ABM2 is an antibody, an antibody fragment, an scFv, a dsFv, a Fv, a Fab, an scFab, a (Fab′)2, a single domain antibody (SDAB), a VH or VL domain, or a camelid VHH domain.


791. The CD2 binding molecule of embodiment 790, wherein ABM2 is an scFv.


792. The CD2 binding molecule of any of embodiment 790, wherein ABM2 is a Fab.


793. The CD2 binding molecule of embodiment 622, wherein if TAA is a receptor, ABM2 comprises a receptor binding domain of a ligand of the receptor, and if TAA is a ligand, ABM2 comprises a ligand binding domain of a receptor of the ligand.


794. The CD2 binding molecule of embodiment 793, wherein the TAA is TSHR, CD171, CS-1, CLL-1, GD3, Tn Ag, FLT3, CD38, CD44v6, B7H3, KIT, IL-13Ra2, IL-11Ra, PSCA, PRSS21, VEGFR2, LewisY, CD24, PDGFR-beta, SSEA-4, MUC1, EGFR, NCAM, CAIX, LMP2, EphA2, fucosyl GM1, sLe, GM3, TGS5, HMWMAA, o-acetyl-GD2, GD2, folate receptor alpha, folate receptor beta, TEM1/CD248, TEM7R, CLDN6, GPRC5D, CXORF61, CD97, CD179a, ALK, polysialic acid, PLAC1, GloboH, NY-BR-1, UPK2, HAVCR1, ADRB3, PANX3, GPR20, LY6K, OR51E2, TAARP, WT1, ETV6-AML, sperm protein 17, XAGE1, Tie 2, MAD-CT-1, MAD-CT-2, Fos-related antigen 1, p53 mutant, hTERT, sarcoma translocation breakpoints, ML-IAP, ERG (TMPRSS2 ETS fusion gene), NA17, PAX3, Androgen receptor, Cyclin B1, MYCN, RhoC, CYP1B1, BORIS, SART3, PAX5, OY-TES1, LCK, AKAP-4, SSX2, CD79a, CD79b, CD72, LAIR1, FCAR, LILRA2, CD300LF, CLEC12A, BST2, EMR2, LY75, GPC3, FCRL5, IGLL1, CD19, CD20, CD30, ERBB2, ROR1, FLT3, TAAG72, CD22, CD33, GD2, BCMA, gp100Tn, FAP, tyrosinase, EPCAM, CEA, Igf-I receptor, EphB2, mesothelin, Cadherin17, CD32b, EGFRvIII, GPNMB, GPR64, HER3, LRP6, LYPD8, NKG2D, SLC34A2, SLC39A6, SLITRK6, or TACSTD2.


795. The CD2 binding molecule of embodiment 794, wherein the TAA is CD22.


796. The CD2 binding molecule of embodiment 794, wherein the TAA is CS1.


797. The CD2 binding molecule of embodiment 794, wherein the TAA is CD33.


798. The CD2 binding molecule of embodiment 794, wherein the TAA is GD2.


799. The CD2 binding molecule of embodiment 794, wherein the TAA is BCMA.


800. The CD2 binding molecule of embodiment 794, wherein the TAA is Tn.


801. The CD2 binding molecule of embodiment 794, wherein the TAA is PSMA.


802. The CD2 binding molecule of embodiment 794, wherein the TAA is ROR1.


803. The CD2 binding molecule of embodiment 794, wherein the TAA is FLT3.


804. The CD2 binding molecule of embodiment 794, wherein the TAA is TAAG72.


805. The CD2 binding molecule of embodiment 794, wherein the TAA is FAP.


806. The CD2 binding molecule of embodiment 794, wherein the TAA is CD38.


807. The CD2 binding molecule of embodiment 794, wherein the TAA is CD44v6.


808. The CD2 binding molecule of embodiment 794, wherein the TAA is CEA.


809. The CD2 binding molecule of embodiment 794, wherein the TAA is EPCAM.


810. The CD2 binding molecule of embodiment 794, wherein the TAA is PRSS21.


811. The CD2 binding molecule of embodiment 794, wherein the TAA is B7H3.


812. The CD2 binding molecule of embodiment 794, wherein the TAA is KIT.


813. The CD2 binding molecule of embodiment 794, wherein the TAA is IL-13Ra2.


814. The CD2 binding molecule of embodiment 794, wherein the TAA is CD30.


815. The CD2 binding molecule of embodiment 794, wherein the TAA is GD3.


816. The CD2 binding molecule of embodiment 794, wherein the TAA is CD171.


817. The CD2 binding molecule of embodiment 794, wherein the TAA is IL-11Ra.


818. The CD2 binding molecule of embodiment 794, wherein the TAA is PSCA.


819. The CD2 binding molecule of embodiment 794, wherein the TAA is VEGFR2.


820. The CD2 binding molecule of embodiment 794, wherein the TAA is LewisY.


821. The CD2 binding molecule of embodiment 794, wherein the TAA is CD24.


822. The CD2 binding molecule of embodiment 794, wherein the TAA is PDGFR-beta.


823. The CD2 binding molecule of embodiment 794, wherein the TAA is SSEA-4.


824. The CD2 binding molecule of embodiment 794, wherein the TAA is CD20.


825. The CD2 binding molecule of embodiment 794, wherein the TAA is folate receptor alpha.


826. The CD2 binding molecule of embodiment 794, wherein the TAA is ERBB2.


827. The CD2 binding molecule of embodiment 794, wherein the TAA is MUC1.


828. The CD2 binding molecule of embodiment 794, wherein the TAA is EGFR.


829. The CD2 binding molecule of embodiment 794, wherein the TAA is NCAM.


830. The CD2 binding molecule of embodiment 794, wherein the TAA is ephrin B2


831. The CD2 binding molecule of embodiment 794, wherein the TAA is IGF-I receptor.


832. The CD2 binding molecule of embodiment 794, wherein the TAA is CAIX.


833. The CD2 binding molecule of embodiment 794, wherein the TAA is LMP2.


834. The CD2 binding molecule of embodiment 794, wherein the TAA is gp100.


835. The CD2 binding molecule of embodiment 794, wherein the TAA is tyrosinase.


836. The CD2 binding molecule of embodiment 794, wherein the TAA is ephA2.


837. The CD2 binding molecule of embodiment 794, wherein the TAA is mesothelin.


838. The CD2 binding molecule of embodiment 794, wherein the TAA is ALK.


839. The CD2 binding molecule of embodiment 794, wherein the TAA is CD19.


840. The CD2 binding molecule of embodiment 794, wherein the TAA is CD97.


841. The CD2 binding molecule of embodiment 794, wherein the TAA is CLDN6.


842. The CD2 binding molecule of embodiment 794, wherein the TAA is EGFRvIII.


843. The CD2 binding molecule of embodiment 794, wherein the TAA is folate receptor beta.


844. The CD2 binding molecule of embodiment 794, wherein the TAA is GloboH.


845. The CD2 binding molecule of embodiment 794, wherein the TAA is GPRC5D.


846. The CD2 binding molecule of embodiment 794, wherein the TAA is HMWMAA.


847. The CD2 binding molecule of embodiment 794, wherein the TAA is LRP6.


848. The CD2 binding molecule of embodiment 794, wherein the TAA is NY-BR-1.


849. The CD2 binding molecule of embodiment 794, wherein the TAA is PLAC1.


850. The CD2 binding molecule of embodiment 794, wherein the TAA is polysialic acid.


851. The CD2 binding molecule of embodiment 794, wherein the TAA is TEM1/CD248.


852. The CD2 binding molecule of embodiment 794, wherein the TAA is TSHR.


853. The CD2 binding molecule of embodiment 794, wherein the TAA is CD19.


854. The CD2 binding molecule of embodiment 794, wherein the TAA is Her2.


855. The CD2 binding molecule of any one of embodiments 30 to 854, which is a bispecific binding molecule (BBM).


856. The CD2 binding molecule of embodiment 855, which is bivalent.


857. The CD2 binding molecule of embodiment 856, wherein the CD2 binding molecule has any one of the configurations depicted in FIGS. 1B-1F with the variant CD58 domain substituted for a depicted Fab or scFv.


858. The CD2 binding molecule of embodiment 857, wherein the CD2 binding molecule has the configuration depicted in FIG. 1B with the variant CD58 domain substituted for a depicted Fab or scFv.


859. The CD2 binding molecule of embodiment 857, wherein the CD2 binding molecule has the configuration depicted in FIG. 1C with the variant CD58 domain substituted for a depicted Fab or scFv.


860. The CD2 binding molecule of embodiment 857, wherein the CD2 binding molecule has the configuration depicted in FIG. 1D with the variant CD58 domain substituted for a depicted Fab or scFv.


861. The CD2 binding molecule of embodiment 857, wherein the CD2 binding molecule has the configuration depicted in FIG. 1E with the variant CD58 domain substituted for a depicted Fab or scFv.


862. The CD2 binding molecule of embodiment 857, wherein the CD2 binding molecule has the configuration depicted in FIG. 1F with the variant CD58 domain substituted for a depicted Fab or scFv.


863. The CD2 binding molecule of any one of embodiments 857 to 862, which has the configuration referred to as B1 in Section 7.7.1.


864. The CD2 binding molecule of any one of embodiments 857 to 862, which has the configuration referred to as B2 in Section 7.7.1.


865. The CD2 binding molecule of embodiment 855, which is trivalent.


866. The CD2 binding molecule of embodiment 865, wherein the CD2 binding molecule has any one of the configurations depicted in (i) FIGS. 1G-1T with the variant CD58 domain substituted for at least one depicted Fab and/or scFv, (ii) FIGS. 1U-1W with the variant CD58 domain optionally substituted for at least one depicted Fab and/or scFv or (iii) FIGS. 1X-1Z with the variant CD58 domain substituted for at least one depicted Fab and/or scFv.


867. The CD2 binding molecule of embodiment 866, wherein the CD2 binding molecule has the configuration depicted in FIG. 1G with the variant CD58 domain substituted for at least one depicted Fab and/or scFv.


868. The CD2 binding molecule of embodiment 866, wherein the CD2 binding molecule has the configuration depicted in FIG. 1H with the variant CD58 domain substituted for at least one depicted Fab and/or scFv.


869. The CD2 binding molecule of embodiment 866, wherein the CD2 binding molecule has the configuration depicted in FIG. 1I with the variant CD58 domain substituted for at least one depicted Fab and/or scFv.


870. The CD2 binding molecule of embodiment 866, wherein the CD2 binding molecule has the configuration depicted in FIG. 1J with the variant CD58 domain substituted for at least one depicted Fab and/or scFv.


871. The CD2 binding molecule of embodiment 866, wherein the CD2 binding molecule has the configuration depicted in FIG. 1K with the variant CD58 domain substituted for at least one depicted Fab and/or scFv.


872. The CD2 binding molecule of embodiment 866, wherein the CD2 binding molecule has the configuration depicted in FIG. 1L with the variant CD58 domain substituted for at least one depicted Fab and/or scFv.


873. The CD2 binding molecule of embodiment 866, wherein the CD2 binding molecule has the configuration depicted in FIG. 1M with the variant CD58 domain substituted for at least one depicted Fab and/or scFv.


874. The CD2 binding molecule of embodiment 866, wherein the CD2 binding molecule has the configuration depicted in FIG. 1N with the variant CD58 domain substituted for at least one depicted Fab and/or scFv.


875. The CD2 binding molecule of embodiment 866, wherein the CD2 binding molecule has the configuration depicted in FIG. 1O with the variant CD58 domain substituted for at least one depicted Fab and/or scFv.


876. The CD2 binding molecule of embodiment 866, wherein the CD2 binding molecule has the configuration depicted in FIG. 1P with the variant CD58 domain substituted for at least one depicted Fab and/or scFv.


877. The CD2 binding molecule of embodiment 866, wherein the CD2 binding molecule has the configuration depicted in FIG. 1Q with the variant CD58 domain substituted for at least one depicted Fab and/or scFv.


878. The CD2 binding molecule of embodiment 866, wherein the CD2 binding molecule has the configuration depicted in FIG. 1R with the variant CD58 domain substituted for at least one depicted Fab and/or scFv.


879. The CD2 binding molecule of embodiment 866, wherein the CD2 binding molecule has the configuration depicted in FIG. 1S with the variant CD58 domain substituted for at least one depicted Fab and/or scFv.


880. The CD2 binding molecule of embodiment 866, wherein the CD2 binding molecule has the configuration depicted in FIG. 1T with the variant CD58 domain substituted for at least one depicted Fab and/or scFv.


881. The CD2 binding molecule of embodiment 866, wherein the CD2 binding molecule has the configuration depicted in FIG. 1U with the variant CD58 domain optionally substituted for at least one depicted Fab and/or scFv.


882. The CD2 binding molecule of embodiment 866, wherein the CD2 binding molecule has the configuration depicted in FIG. 1V with the variant CD58 domain optionally substituted for at least one depicted Fab and/or scFv.


883. The CD2 binding molecule of embodiment 866, wherein the CD2 binding molecule has the configuration depicted in FIG. 1W with the variant CD58 domain optionally substituted for at least one depicted Fab and/or scFv.


884. The CD2 binding molecule of embodiment 866, wherein the CD2 binding molecule has the configuration depicted in FIG. 1X with the variant CD58 domain substituted for at least one depicted Fab and/or scFv.


885. The CD2 binding molecule of embodiment 866, wherein the CD2 binding molecule has the configuration depicted in FIG. 1Y with the variant CD58 domain substituted for at least one depicted Fab and/or scFv.


886. The CD2 binding molecule of embodiment 866, wherein the CD2 binding molecule has the configuration depicted in FIG. 1Z with the variant CD58 domain substituted for at least one depicted Fab and/or scFv.


887. The CD2 binding molecule of any one of embodiments 865 to 886, which has the configuration referred to as T1 in Section 7.7.2.


888. The CD2 binding molecule of any one of embodiments 865 to 886, which has the configuration referred to as T2 in Section 7.7.2.


889. The CD2 binding molecule of any one of embodiments 865 to 886, which has the configuration referred to as T3 in Section 7.7.2.


890. The CD2 binding molecule of any one of embodiments 865 to 886, which has the configuration referred to as T4 in Section 7.7.2.


891. The CD2 binding molecule of any one of embodiments 865 to 886, which has the configuration referred to as T5 in Section 7.7.2.


892. The CD2 binding molecule of any one of embodiments 865 to 886, which has the configuration referred to as T6 in Section 7.7.2.


893. The CD2 binding molecule of embodiment 855, which is tetravalent.


894. The CD2 binding molecule of embodiment 893, wherein the CD2 binding molecule has any one of the configurations depicted in FIGS. 1AA-1AH with the variant CD58 domain substituted for at least one depicted Fab and/or scFv.


895. The CD2 binding molecule of embodiment 894, wherein the CD2 binding molecule has the configuration depicted in FIG. 1AA with the variant CD58 domain substituted for at least one depicted Fab and/or scFv.


896. The CD2 binding molecule of embodiment 894, wherein the CD2 binding molecule has the configuration depicted in FIG. 1AB with the variant CD58 domain substituted for at least one depicted Fab and/or scFv.


897. The CD2 binding molecule of embodiment 894, wherein the CD2 binding molecule has the configuration depicted in FIG. 1AC with the variant CD58 domain substituted for at least one depicted Fab and/or scFv.


898. The CD2 binding molecule of embodiment 894, wherein the CD2 binding molecule has the configuration depicted in FIG. 1AD with the variant CD58 domain substituted for at least one depicted Fab and/or scFv.


899. The CD2 binding molecule of embodiment 894, wherein the CD2 binding molecule has the configuration depicted in FIG. 1AE with the variant CD58 domain substituted for at least one depicted Fab and/or scFv.


900. The CD2 binding molecule of embodiment 894, wherein the CD2 binding molecule has the configuration depicted in FIG. 1AF with the variant CD58 domain substituted for at least one depicted Fab and/or scFv.


901. The CD2 binding molecule of embodiment 894, wherein the CD2 binding molecule has the configuration depicted in FIG. 1AG with the variant CD58 domain substituted for at least one depicted Fab and/or scFv.


902. The CD2 binding molecule of embodiment 894, wherein the CD2 binding molecule has the configuration depicted in FIG. 1AH with the variant CD58 domain substituted for at least one depicted Fab and/or scFv.


903. The CD2 binding molecule of any one of embodiments 893 to 902, which has the configuration referred to as Tv1 in Section 7.7.3.


904. The CD2 binding molecule of any one of embodiments 893 to 902, which has the configuration referred to as Tv2 in Section 7.7.3.


905. The CD2 binding molecule of any one of embodiments 893 to 902, which has the configuration referred to as Tv3 in Section 7.7.3.


906. The CD2 binding molecule of any one of embodiments 893 to 902, which has the configuration referred to as Tv4 in Section 7.7.3.


907. The CD2 binding molecule of any one of embodiments 893 to 902, which has the configuration referred to as Tv5 in Section 7.7.3.


908. The CD2 binding molecule of any one of embodiments 893 to 902, which has the configuration referred to as Tv6 in Section 7.7.3.


909. The CD2 binding molecule of any one of embodiments 893 to 902, which has the configuration referred to as Tv7 in Section 7.7.3.


910. The CD2 binding molecule of any one of embodiments 893 to 902, which has the configuration referred to as Tv8 in Section 7.7.3.


911. The CD2 binding molecule of any one of embodiments 893 to 902, which has the configuration referred to as Tv9 in Section 7.7.3.


912. The CD2 binding molecule of any one of embodiments 893 to 902, which has the configuration referred to as Tv10 in Section 7.7.3.


913. The CD2 binding molecule of any one of embodiments 893 to 902, which has the configuration referred to as Tv11 in Section 7.7.3.


914. The CD2 binding molecule of any one of embodiments 893 to 902, which has the configuration referred to as Tv12 in Section 7.7.3.


915. The CD2 binding molecule of any one of embodiments 893 to 902, which has the configuration referred to as Tv13 in Section 7.7.3.


916. The CD2 binding molecule of any one of embodiments 893 to 902, which has the configuration referred to as Tv14 in Section 7.7.3.


917. The CD2 binding molecule of any one of embodiments 30 to 854, which is a trispecific binding molecule (TBM) further comprising a third antigen-binding module (ABM3), optionally wherein ABM3 binds specifically to a human tumor-associated antigen (TAA).


918. The CD2 binding molecule of embodiment 917, wherein ABM3 binds specifically to a human TAA, and wherein when ABM2 binds to a TAA, ABM2 and ABM3 bind specifically to different TAAs.


919. The CD2 binding molecule of embodiment 918, wherein ABM3 is an anti-TAA antibody or an antigen-binding domain thereof.


920. The CD2 binding molecule of embodiment 919, wherein ABM3 binds specifically to a TAA which is TSHR, CD171, CS-1, CLL-1, GD3, Tn Ag, FLT3, CD38, CD44v6, B7H3, KIT, IL-13Ra2, IL-11Ra, PSCA, PRSS21, VEGFR2, LewisY, CD24, PDGFR-beta, SSEA-4, MUC1, EGFR, NCAM, CAIX, LMP2, EphA2, fucosyl GM1, sLe, GM3, TGS5, HMWMAA, o-acetyl-GD2, GD2, folate receptor alpha, folate receptor beta, TEM1/CD248, TEM7R, CLDN6, GPRC5D, CXORF61, CD97, CD179a, ALK, polysialic acid, PLAC1, GloboH, NY-BR-1, UPK2, HAVCR1, ADRB3, PANX3, GPR20, LY6K, OR51E2, TAARP, WT1, ETV6-AML, sperm protein 17, XAGE1, Tie 2, MAD-CT-1, MAD-CT-2, Fos-related antigen 1, p53 mutant, hTERT, sarcoma translocation breakpoints, ML-IAP, ERG (TMPRSS2 ETS fusion gene), NA17, PAX3, Androgen receptor, Cyclin B1, MYCN, RhoC, CYP1B1, BORIS, SART3, PAX5, OY-TES1, LCK, AKAP-4, SSX2, CD79a, CD79b, CD72, LAIR1, FCAR, LILRA2, CD300LF, CLEC12A, BST2, EMR2, LY75, GPC3, FCRL5, IGLL1, CD19, CD20, CD30, ERBB2, ROR1, FLT3, TAAG72, CD22, CD33, GD2, BCMA, gp100Tn, FAP, tyrosinase, EPCAM, CEA, Igf-I receptor, EphB2, mesothelin, Cadherin17, CD32b, EGFRvIII, GPNMB, GPR64, HER3, LRP6, LYPD8, NKG2D, SLC34A2, SLC39A6, SLITRK6, or TACSTD2.


921. The CD2 binding molecule of embodiment 920, wherein ABM3 is an anti-TAA antibody or antigen-binding domain thereof having the CDR sequences of an antibody set forth in Table 14A or Table 14B.


922. The CD2 binding molecule of embodiment 920, wherein ABM3 is an anti-TAA antibody or antigen-binding domain thereof has the heavy and light chain variable region sequences of an antibody set forth in Table 14A or Table 14B.


923. The CD2 binding molecule of embodiment 921 or embodiment 922, wherein ABM3 binds to CD22.


924. The CD2 binding molecule of embodiment 921 or embodiment 922, wherein ABM3 binds to CS1.


925. The CD2 binding molecule of embodiment 921 or embodiment 922, wherein ABM3 binds to CD33.


926. The CD2 binding molecule of embodiment 921 or embodiment 922, wherein ABM3 binds to GD2.


927. The CD2 binding molecule of embodiment 921 or embodiment 922, wherein ABM3 binds to BCMA.


928. The CD2 binding molecule of embodiment 921 or embodiment 922, wherein ABM3 binds to Tn.


929. The CD2 binding molecule of embodiment 921 or embodiment 922, wherein ABM3 binds to PSMA.


930. The CD2 binding molecule of embodiment 921 or embodiment 922, wherein ABM3 binds to ROR1.


931. The CD2 binding molecule of embodiment 921 or embodiment 922, wherein ABM3 binds to FLT3.


932. The CD2 binding molecule of embodiment 921 or embodiment 922, wherein ABM3 binds to TAAG72.


933. The CD2 binding molecule of embodiment 921 or embodiment 922, wherein ABM3 binds to FAP.


934. The CD2 binding molecule of embodiment 921 or embodiment 922, wherein ABM3 binds to CD38.


935. The CD2 binding molecule of embodiment 921 or embodiment 922, wherein ABM3 binds to CD44v6.


936. The CD2 binding molecule of embodiment 921 or embodiment 922, wherein ABM3 binds to CEA.


937. The CD2 binding molecule of embodiment 921 or embodiment 922, wherein ABM3 binds to EPCAM.


938. The CD2 binding molecule of embodiment 921 or embodiment 922, wherein ABM3 binds to PRSS21.


939. The CD2 binding molecule of embodiment 921 or embodiment 922, wherein ABM3 binds to B7H3.


940. The CD2 binding molecule of embodiment 921 or embodiment 922, wherein ABM3 binds to KIT.


941. The CD2 binding molecule of embodiment 921 or embodiment 922, wherein ABM3 binds to IL-13Ra2.


942. The CD2 binding molecule of embodiment 921 or embodiment 922, wherein ABM3 binds to CD30.


943. The CD2 binding molecule of embodiment 921 or embodiment 922, wherein ABM3 binds to GD3.


944. The CD2 binding molecule of embodiment 921 or embodiment 922, wherein ABM3 binds to CD171.


945. The CD2 binding molecule of embodiment 921 or embodiment 922, wherein ABM3 binds to IL-11Ra.


946. The CD2 binding molecule of embodiment 921 or embodiment 922, wherein ABM3 binds to PSCA.


947. The CD2 binding molecule of embodiment 921 or embodiment 922, wherein binds to VEGFR2.


948. The CD2 binding molecule of embodiment 921 or embodiment 922, wherein ABM3 binds to LewisY.


949. The CD2 binding molecule of embodiment 921 or embodiment 922, wherein ABM3 binds to CD24.


950. The CD2 binding molecule of embodiment 921 or embodiment 922, wherein ABM3 binds to PDGFR-beta.


951. The CD2 binding molecule of embodiment 921 or embodiment 922, wherein ABM3 binds to SSEA-4.


952. The CD2 binding molecule of embodiment 921 or embodiment 922, wherein ABM3 binds to CD20.


953. The CD2 binding molecule of embodiment 921 or embodiment 922, wherein binds to folate receptor alpha.


954. The CD2 binding molecule of embodiment 921 or embodiment 922, wherein ABM3 binds to ERBB2.


955. The CD2 binding molecule of embodiment 921 or embodiment 922, wherein ABM3 binds to MUC1.


956. The CD2 binding molecule of embodiment 921 or embodiment 922, wherein ABM3 binds to EGFR.


957. The CD2 binding molecule of embodiment 921 or embodiment 922, wherein ABM3 binds to NCAM.


958. The CD2 binding molecule of embodiment 921 or embodiment 922, wherein ABM3 binds to ephrin B2


959. The CD2 binding molecule of embodiment 921 or embodiment 922, wherein ABM3 binds to IGF-I receptor.


960. The CD2 binding molecule of embodiment 921 or embodiment 922, wherein ABM3 binds to CAIX.


961. The CD2 binding molecule of embodiment 921 or embodiment 922, wherein ABM3 binds to LMP2.


962. The CD2 binding molecule of embodiment 921 or embodiment 922, wherein ABM3 binds to gp100.


963. The CD2 binding molecule of embodiment 921 or embodiment 922, wherein ABM3 binds to tyrosinase.


964. The CD2 binding molecule of embodiment 921 or embodiment 922, wherein ABM3 binds to ephA2.


965. The CD2 binding molecule of embodiment 921 or embodiment 922, wherein ABM3 binds to mesothelin.


966. The CD2 binding molecule of embodiment 921 or embodiment 922, wherein ABM3 binds to ALK.


967. The CD2 binding molecule of embodiment 921 or embodiment 922, wherein ABM3 binds to CD19.


968. The CD2 binding molecule of embodiment 921 or embodiment 922, wherein ABM3 binds to CD97.


969. The CD2 binding molecule of embodiment 921 or embodiment 922, wherein ABM3 binds to CLDN6.


970. The CD2 binding molecule of embodiment 921 or embodiment 922, wherein ABM3 binds to EGFRvIII.


971. The CD2 binding molecule of embodiment 921 or embodiment 922, wherein ABM3 binds to folate receptor beta.


972. The CD2 binding molecule of embodiment 921 or embodiment 922, wherein ABM3 binds to GloboH.


973. The CD2 binding molecule of embodiment 921 or embodiment 922, wherein ABM3 binds to GPRC5D.


974. The CD2 binding molecule of embodiment 921 or embodiment 922, wherein ABM3 binds to HMWMAA.


975. The CD2 binding molecule of embodiment 921 or embodiment 922, wherein ABM3 binds to LRP6.


976. The CD2 binding molecule of embodiment 921 or embodiment 922, wherein ABM3 binds to NY-BR-1.


977. The CD2 binding molecule of embodiment 921 or embodiment 922, wherein ABM3 binds to PLAC1.


978. The CD2 binding molecule of embodiment 921 or embodiment 922, wherein ABM3 binds to polysialic acid.


979. The CD2 binding molecule of embodiment 921 or embodiment 922, wherein ABM3 binds to TEM1/CD248.


980. The CD2 binding molecule of embodiment 921 or embodiment 922, wherein ABM3 binds to TSHR.


981. The CD2 binding molecule of embodiment 919, wherein ABM3 binds to CD19.


982. The CD2 binding molecule of embodiment 981, wherein ABM3 comprises the CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequence of the anti-CD19 antibody NEG258 as defined by Kabat and set forth in Table 17A.


983. The CD2 binding molecule of embodiment 981, wherein ABM3 comprises the CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of the anti-CD19 antibody NEG258 as defined by Chothia and set forth in Table 17A.


984. The CD2 binding molecule of embodiment 981, wherein ABM3 comprises the CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequence of the anti-CD19 antibody NEG258 as defined by IMGT and set forth in Table 17A.


985. The CD2 binding molecule of embodiment 981, wherein ABM3 comprises the CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of the anti-CD19 antibody NEG258 as defined by the combination of Kabat and Chothia and set forth in Table 17A.


986. The CD2 binding molecule of embodiment 981, wherein ABM3 comprises the heavy chain and/or light chain variable sequences of the anti-CD19 antibody NEG258 as set forth in Table 17A.


987. The CD2 binding molecule of embodiment 981, wherein ABM3 comprises the CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequence of the anti-CD19 antibody NEG218 as defined by Kabat and set forth in Table 17B.


988. The CD2 binding molecule of embodiment 981, wherein ABM3 comprises the CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of the anti-CD19 antibody NEG218 as defined by Chothia and set forth in Table 17B.


989. The CD2 binding molecule of embodiment 981, wherein ABM3 comprises the CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequence of the anti-CD19 antibody NEG218 as defined by IMGT and set forth in Table 17B.


990. The CD2 binding molecule of embodiment 981, wherein ABM3 comprises the CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of the anti-CD19 antibody NEG218 as defined by the combination of Kabat and Chothia and set forth in Table 17B.


991. The CD2 binding molecule of embodiment 981, wherein ABM3 comprises the heavy chain and/or light chain variable sequences of the anti-CD19 antibody NEG218 as set forth in Table 17B.


992. The CD2 binding molecule of embodiment 981, wherein ABM3 comprises heavy chain CDRs having the amino acid sequences of CD19-H1, CD19-H2A, and CD19-H3 as set forth in Table 16 and light chain CDRs having the amino acid sequences of CD19-L1, CD19-L2, and CD19-L3 as set forth in Table 16.


993. The CD2 binding molecule of embodiment 981, wherein ABM3 comprises a heavy chain variable region having the amino acid sequences of VHA as set forth in Table 16 and a light chain variable region having the amino acid sequences of VLA as set forth in Table 16.


994. The CD2 binding molecule of embodiment 981, wherein ABM3 comprises heavy chain CDRs having the amino acid sequences of CD19-H1, CD19-H2B, and CD19-H3 as set forth in Table 16 and light chain CDRs having the amino acid sequences of CD19-L1, CD19-L2, and CD19-L3 as set forth in Table 16.


995. The CD2 binding molecule of embodiment 981, wherein ABM3 comprises a heavy chain variable region having the amino acid sequences of VHB as set forth in Table 16 and a light chain variable region having the amino acid sequences of VLB as set forth in Table 16.


996. The CD2 binding molecule of embodiment 981, wherein ABM3 comprises heavy chain CDRs having the amino acid sequences of CD19-H1, CD19-H2C, and CD19-H3 as set forth in Table 16 and light chain CDRs having the amino acid sequences of CD19-L1, CD19-L2, and CD19-L3 as set forth in Table 16.


997. The CD2 binding molecule of embodiment 981, wherein ABM3 comprises a heavy chain variable region having the amino acid sequences of VHC as set forth in Table 16 and a light chain variable region having the amino acid sequences of VLB as set forth in Table 16.


998. The CD2 binding molecule of embodiment 981, ABM3 comprises heavy chain CDRs having the amino acid sequences of CD19-H1, CD19-H2D, and CD19-H3 as set forth in Table 16 and light chain CDRs having the amino acid sequences of CD19-L1, CD19-L2, and CD19-L3 as set forth in Table 16.


999. The CD2 binding molecule of embodiment 981, wherein ABM3 comprises a heavy chain variable region having the amino acid sequences of VHD as set forth in Table 16 and a light chain variable region having the amino acid sequences of VLB as set forth in Table 16.


1000. The CD2 binding molecule of embodiment 919, wherein ABM3 binds to Her2.


1001. The CD2 binding molecule of embodiment 919, wherein ABM3 binds to mesothelin.


1002. The CD2 binding molecule of embodiment 919, wherein ABM3 binds to BCMA.


1003. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the CDR sequences of BCMA-1.


1004. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the CDR sequences of BCMA-2.


1005. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the CDR sequences of BCMA-3.


1006. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the CDR sequences of BCMA-4.


1007. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the CDR sequences of BCMA-5.


1008. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the CDR sequences of BCMA-6.


1009. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the CDR sequences of BCMA-7.


1010. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the CDR sequences of BCMA-8.


1011. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the CDR sequences of BCMA-9.


1012. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the CDR sequences of BCMA-10.


1013. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the CDR sequences of BCMA-11.


1014. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the CDR sequences of BCMA-12.


1015. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the CDR sequences of BCMA-13.


1016. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the CDR sequences of BCMA-14.


1017. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the CDR sequences of BCMA-15.


1018. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the CDR sequences of BCMA-16.


1019. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the CDR sequences of BCMA-17.


1020. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the CDR sequences of BCMA-18.


1021. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the CDR sequences of BCMA-19.


1022. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the CDR sequences of BCMA-20.


1023. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the CDR sequences of BCMA-21.


1024. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the CDR sequences of BCMA-22.


1025. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the CDR sequences of BCMA-23.


1026. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the CDR sequences of BCMA-24.


1027. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the CDR sequences of BCMA-25.


1028. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the CDR sequences of BCMA-26.


1029. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the CDR sequences of BCMA-27.


1030. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the CDR sequences of BCMA-28.


1031. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the CDR sequences of BCMA-29.


1032. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the CDR sequences of BCMA-30.


1033. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the CDR sequences of BCMA-31.


1034. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the CDR sequences of BCMA-32.


1035. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the CDR sequences of BCMA-33.


1036. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the CDR sequences of BCMA-34.


1037. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the CDR sequences of BCMA-35.


1038. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the CDR sequences of BCMA-36.


1039. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the CDR sequences of BCMA-37.


1040. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the CDR sequences of BCMA-38.


1041. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the CDR sequences of BCMA-39.


1042. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the CDR sequences of BCMA-40.


1043. The CD2 binding molecule of any one of embodiments 1003 to 1042, wherein the CDRs are defined by Kabat numbering, as set forth in Tables 15B and 15E.


1044. The CD2 binding molecule of any one of embodiments 1003 to 1042, wherein the CDRs are defined by Chothia numbering, as set forth in Tables 15C and 15F.


1045. CD2 binding molecule of any one of embodiments 1003 to 1042, wherein the CDRs are defined by a combination of Kabat and Chothia numbering, as set forth in Tables 15D and 15G.


1046. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the heavy and light chain variable sequences of BCMA-1, as set forth in Table 15A.


1047. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the heavy and light chain variable sequences of BCMA-2, as set forth in Table 15A.


1048. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the heavy and light chain variable sequences of BCMA-3, as set forth in Table 15A.


1049. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the heavy and light chain variable sequences of BCMA-4, as set forth in Table 15A.


1050. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the heavy and light chain variable sequences of BCMA-5, as set forth in Table 15A.


1051. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the heavy and light chain variable sequences of BCMA-6, as set forth in Table 15A.


1052. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the heavy and light chain variable sequences of BCMA-7, as set forth in Table 15A.


1053. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the heavy and light chain variable sequences of BCMA-8, as set forth in Table 15A.


1054. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the heavy and light chain variable sequences of BCMA-9, as set forth in Table 15A.


1055. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the heavy and light chain variable sequences of BCMA-10, as set forth in Table 15A.


1056. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the heavy and light chain variable sequences of BCMA-11, as set forth in Table 15A.


1057. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the heavy and light chain variable sequences of BCMA-12, as set forth in Table 15A.


1058. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the heavy and light chain variable sequences of BCMA-13, as set forth in Table 15A.


1059. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the heavy and light chain variable sequences of BCMA-14, as set forth in Table 15A.


1060. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the heavy and light chain variable sequences of BCMA-15, as set forth in Table 15A.


1061. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the heavy and light chain variable sequences of BCMA-16, as set forth in Table 15A.


1062. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the heavy and light chain variable sequences of BCMA-17, as set forth in Table 15A.


1063. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the heavy and light chain variable sequences of BCMA-18, as set forth in Table 15A.


1064. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the heavy and light chain variable sequences of BCMA-19, as set forth in Table 15A.


1065. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the heavy and light chain variable sequences of BCMA-20, as set forth in Table 15A.


1066. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the heavy and light chain variable sequences of BCMA-21, as set forth in Table 15A.


1067. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the heavy and light chain variable sequences of BCMA-22, as set forth in Table 15A.


1068. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the heavy and light chain variable sequences of BCMA-23, as set forth in Table 15A.


1069. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the heavy and light chain variable sequences of BCMA-24, as set forth in Table 15A.


1070. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the heavy and light chain variable sequences of BCMA-25, as set forth in Table 15A.


1071. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the heavy and light chain variable sequences of BCMA-26, as set forth in Table 15A.


1072. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the heavy and light chain variable sequences of BCMA-27, as set forth in Table 15A.


1073. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the heavy and light chain variable sequences of BCMA-28, as set forth in Table 15A.


1074. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the heavy and light chain variable sequences of BCMA-29, as set forth in Table 15A.


1075. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the heavy and light chain variable sequences of BCMA-30, as set forth in Table 15A.


1076. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the heavy and light chain variable sequences of BCMA-31, as set forth in Table 15A.


1077. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the heavy and light chain variable sequences of BCMA-32, as set forth in Table 15A.


1078. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the heavy and light chain variable sequences of BCMA-33, as set forth in Table 15A.


1079. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the heavy and light chain variable sequences of BCMA-34, as set forth in Table 15A.


1080. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the heavy and light chain variable sequences of BCMA-35, as set forth in Table 15A.


1081. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the heavy and light chain variable sequences of BCMA-36, as set forth in Table 15A.


1082. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the heavy and light chain variable sequences of BCMA-37, as set forth in Table 15A.


1083. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the heavy and light chain variable sequences of BCMA-38, as set forth in Table 15A.


1084. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the heavy and light chain variable sequences of BCMA-39, as set forth in Table 15A.


1085. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the heavy and light chain variable sequences of BCMA-40, as set forth in Table 15A.


1086. The CD2 binding molecule of embodiment 1002, wherein ABM3 comprises the heavy and light chain variable sequences of BCMA-40, as set forth in Table 15A.


1087. The CD2 binding molecule of embodiment 918, wherein if ABM3 binds a TAA that is a receptor, ABM3 comprises a receptor binding domain of a ligand of the receptor, and if ABM3 binds a TAA that is a ligand, ABM3 comprises a ligand binding domain of a receptor of the ligand.


1088. The CD2 binding molecule of embodiment 1087, wherein ABM3 binds a TAA which is TSHR, CD171, CS-1, CLL-1, GD3, Tn Ag, FLT3, CD38, CD44v6, B7H3, KIT, IL-13Ra2, IL-11Ra, PSCA, PRSS21, VEGFR2, LewisY, CD24, PDGFR-beta, SSEA-4, MUC1, EGFR, NCAM, CAIX, LMP2, EphA2, fucosyl GM1, sLe, GM3, TGS5, HMWMAA, o-acetyl-GD2, GD2, folate receptor alpha, folate receptor beta, TEM1/CD248, TEM7R, CLDN6, GPRC5D, CXORF61, CD97, CD179a, ALK, polysialic acid, PLAC1, GloboH, NY-BR-1, UPK2, HAVCR1, ADRB3, PANX3, GPR20, LY6K, OR51E2, TAARP, WT1, ETV6-AML, sperm protein 17, XAGE1, Tie 2, MAD-CT-1, MAD-CT-2, Fos-related antigen 1, p53 mutant, hTERT, sarcoma translocation breakpoints, ML-IAP, ERG (TMPRSS2 ETS fusion gene), NA17, PAX3, Androgen receptor, Cyclin B1, MYCN, RhoC, CYP1B1, BORIS, SART3, PAX5, OY-TES1, LCK, AKAP-4, SSX2, CD79a, CD79b, CD72, LAIR1, FCAR, LILRA2, CD300LF, CLEC12A, BST2, EMR2, LY75, GPC3, FCRL5, IGLL1, CD19, CD20, CD30, ERBB2, ROR1, FLT3, TAAG72, CD22, CD33, GD2, BCMA, gp100Tn, FAP, tyrosinase, EPCAM, CEA, Igf-I receptor, EphB2, mesothelin, Cadherin17, CD32b, EGFRvIII, GPNMB, GPR64, HER3, LRP6, LYPD8, NKG2D, SLC34A2, SLC39A6, SLITRK6, or TACSTD2.


1089. The CD2 binding molecule of embodiment 1088, wherein ABM3 binds CD22.


1090. The CD2 binding molecule of embodiment 1088, wherein ABM3 binds CS1.


1091. The CD2 binding molecule of embodiment 1088, wherein ABM3 binds CD33.


1092. The CD2 binding molecule of embodiment 1088, wherein ABM3 binds GD2.


1093. The CD2 binding molecule of embodiment 1088, wherein ABM3 binds BCMA.


1094. The CD2 binding molecule of embodiment 1088, wherein ABM3 binds Tn.


1095. The CD2 binding molecule of embodiment 1088, wherein ABM3 binds PSMA.


1096. The CD2 binding molecule of embodiment 1088, wherein ABM3 binds ROR1.


1097. The CD2 binding molecule of embodiment 1088, wherein ABM3 binds FLT3.


1098. The CD2 binding molecule of embodiment 1088, wherein ABM3 binds TAAG72.


1099. The CD2 binding molecule of embodiment 1088, wherein ABM3 binds FAP.


1100. The CD2 binding molecule of embodiment 1088, wherein ABM3 binds CD38.


1101. The CD2 binding molecule of embodiment 1088, wherein ABM3 binds CD44v6.


1102. The CD2 binding molecule of embodiment 1088, wherein ABM3 binds CEA.


1103. The CD2 binding molecule of embodiment 1088, wherein ABM3 binds EPCAM.


1104. The CD2 binding molecule of embodiment 1088, wherein ABM3 binds PRSS21.


1105. The CD2 binding molecule of embodiment 1088, wherein ABM3 binds B7H3.


1106. The CD2 binding molecule of embodiment 1088, wherein ABM3 binds KIT.


1107. The CD2 binding molecule of embodiment 1088, wherein ABM3 binds IL-13Ra2.


1108. The CD2 binding molecule of embodiment 1088, wherein ABM3 binds CD30.


1109. The CD2 binding molecule of embodiment 1088, wherein ABM3 binds GD3.


1110. The CD2 binding molecule of embodiment 1088, wherein ABM3 binds CD171.


1111. The CD2 binding molecule of embodiment 1088, wherein ABM3 binds IL-11Ra.


1112. The CD2 binding molecule of embodiment 1088, wherein ABM3 binds PSCA.


1113. The CD2 binding molecule of embodiment 1088, wherein ABM3 binds VEGFR2.


1114. The CD2 binding molecule of embodiment 1088, wherein ABM3 binds LewisY.


1115. The CD2 binding molecule of embodiment 1088, wherein ABM3 binds CD24.


1116. The CD2 binding molecule of embodiment 1088, wherein ABM3 binds PDGFR-beta.


1117. The CD2 binding molecule of embodiment 1088, wherein ABM3 binds SSEA-4.


1118. The CD2 binding molecule of embodiment 1088, wherein ABM3 binds CD20.


1119. The CD2 binding molecule of embodiment 1088, wherein ABM3 binds folate receptor alpha.


1120. The CD2 binding molecule of embodiment 1088, wherein ABM3 binds ERBB2.


1121. The CD2 binding molecule of embodiment 1088, wherein the ABM3 binds MUC1.


1122. The CD2 binding molecule of embodiment 1088, wherein the ABM3 binds EGFR.


1123. The CD2 binding molecule of embodiment 1088, wherein the ABM3 binds NCAM.


1124. The CD2 binding molecule of embodiment 1088, wherein the ABM3 binds ephrin B2


1125. The CD2 binding molecule of embodiment 1088, wherein the ABM3 binds IGF-I receptor.


1126. The CD2 binding molecule of embodiment 1088, wherein the ABM3 binds CAIX.


1127. The CD2 binding molecule of embodiment 1088, wherein the ABM3 binds LMP2.


1128. The CD2 binding molecule of embodiment 1088, wherein the ABM3 binds gp100.


1129. The CD2 binding molecule of embodiment 1088, wherein the ABM3 binds tyrosinase.


1130. The CD2 binding molecule of embodiment 1088, wherein the ABM3 binds ephA2.


1131. The CD2 binding molecule of embodiment 1088, wherein the ABM3 binds mesothelin.


1132. The CD2 binding molecule of embodiment 1088, wherein the ABM3 binds ALK.


1133. The CD2 binding molecule of embodiment 1088, wherein the ABM3 binds CD19.


1134. The CD2 binding molecule of embodiment 1088, wherein the ABM3 binds CD97.


1135. The CD2 binding molecule of embodiment 1088, wherein the ABM3 binds CLDN6.


1136. The CD2 binding molecule of embodiment 1088, wherein the ABM3 binds EGFRvIII.


1137. The CD2 binding molecule of embodiment 1088, wherein the ABM3 binds folate receptor beta.


1138. The CD2 binding molecule of embodiment 1088, wherein the ABM3 binds GloboH.


1139. The CD2 binding molecule of embodiment 1088, wherein the ABM3 binds GPRC5D.


1140. The CD2 binding molecule of embodiment 1088, wherein the ABM3 binds HMWMAA.


1141. The CD2 binding molecule of embodiment 1088, wherein the ABM3 binds LRP6.


1142. The CD2 binding molecule of embodiment 1088, wherein the ABM3 binds NY-BR-1.


1143. The CD2 binding molecule of embodiment 1088, wherein the ABM3 binds PLAC1.


1144. The CD2 binding molecule of embodiment 1088, wherein the ABM3 binds polysialic acid.


1145. The CD2 binding molecule of embodiment 1088, wherein the ABM3 binds TEM1/CD248.


1146. The CD2 binding molecule of embodiment 1088, wherein the ABM3 binds TSHR.


1147. The CD2 binding molecule of embodiment 1088, wherein the ABM3 binds CD19.


1148. The CD2 binding molecule of embodiment 1088, wherein the TAA is Her2.


1149. The CD2 binding molecule of any one of embodiments 917 to 1148, which is trivalent.


1150. The CD2 binding molecule of embodiment 1149, wherein the CD2 binding molecule has any one of the configurations depicted in (i) FIGS. 2B-2G with the variant CD58 domain substituted for a depicted Fab or scFv, (ii) FIGS. 2H-2J with the variant CD58 domain optionally substituted for a depicted Fab or scFv, (iii) FIGS. 2K-2O with the variant CD58 domain substituted for a depicted Fab or scFv, or (iv) FIG. 2P with the variant CD58 domain optionally substituted for a depicted Fab or scFv.


1151. The CD2 binding molecule of embodiment 1150, wherein the CD2 binding molecule has the configuration depicted in FIG. 2B with the variant CD58 domain substituted for a depicted Fab or scFv.


1152. The CD2 binding molecule of embodiment 1150, wherein the CD2 binding molecule has the configuration depicted in FIG. 2C with the variant CD58 domain substituted for a depicted Fab or scFv.


1153. The CD2 binding molecule of embodiment 1150, wherein the CD2 binding molecule has the configuration depicted in FIG. 2D with the variant CD58 domain substituted for a depicted Fab or scFv.


1154. The CD2 binding molecule of embodiment 1150, wherein the CD2 binding molecule has the configuration depicted in FIG. 2E with the variant CD58 domain substituted for a depicted Fab or scFv.


1155. The CD2 binding molecule of embodiment 1150, wherein the CD2 binding molecule has the configuration depicted in FIG. 2F with the variant CD58 domain substituted for a depicted Fab or scFv.


1156. The CD2 binding molecule of embodiment 1150, wherein the CD2 binding molecule has the configuration depicted in FIG. 2G with the variant CD58 domain substituted for a depicted Fab or scFv.


1157. The CD2 binding molecule of embodiment 1150, wherein the CD2 binding molecule has the configuration depicted in FIG. 2H with the variant CD58 domain optionally substituted for a depicted Fab or scFv.


1158. The CD2 binding molecule of embodiment 1150, wherein the CD2 binding molecule has the configuration depicted in FIG. 2I with the variant CD58 domain optionally substituted for a depicted Fab or scFv.


1159. The CD2 binding molecule of embodiment 1150, wherein the CD2 binding molecule has the configuration depicted in FIG. 2J with the variant CD58 domain optionally substituted for a depicted Fab or scFv.


1160. The CD2 binding molecule of embodiment 1150, wherein the CD2 binding molecule has the configuration depicted in FIG. 2K with the variant CD58 domain substituted for a depicted Fab or scFv.


1161. The CD2 binding molecule of embodiment 1150, wherein the CD2 binding molecule has the configuration depicted in FIG. 2L with the variant CD58 domain substituted for a depicted Fab or scFv.


1162. The CD2 binding molecule of embodiment 1150, wherein the CD2 binding molecule has the configuration depicted in FIG. 2M with the variant CD58 domain substituted for a depicted Fab or scFv.


1163. The CD2 binding molecule of embodiment 1150, wherein the CD2 binding molecule has the configuration depicted in FIG. 2N with the variant CD58 domain substituted for a depicted Fab or scFv.


1164. The CD2 binding molecule of embodiment 1150, wherein the CD2 binding molecule has the configuration depicted in FIG. 2O with the variant CD58 domain substituted for a depicted Fab or scFv.


1165. The CD2 binding molecule of embodiment 1150, wherein the CD2 binding molecule has the configuration depicted in FIG. 2P with the variant CD58 domain optionally substituted for a depicted Fab or scFv.


1166. The CD2 binding molecule of any one of embodiments 1149 to 1165, which has the configuration referred to as T1 in Section 7.8.1.


1167. The CD2 binding molecule of any one of embodiments 1149 to 1165, which has the configuration referred to as T2 in Section 7.8.1.


1168. The CD2 binding molecule of any one of embodiments 1149 to 1165, which has the configuration referred to as T3 in Section 7.8.1.


1169. The CD2 binding molecule of any one of embodiments 1149 to 1165, which has the configuration referred to as T4 in Section 7.8.1.


1170. The CD2 binding molecule of any one of embodiments 1149 to 1165, which has the configuration referred to as T5 in Section 7.8.1.


1171. The CD2 binding molecule of any one of embodiments 1149 to 1165, which has the configuration referred to as T6 in Section 7.8.1.


1172. The CD2 binding molecule of any one of embodiments 917 to 1148, which is tetravalent.


1173. The CD2 binding molecule of embodiment 1172, wherein the CD2 binding molecule has any one of the configurations depicted in FIGS. 2Q-2S with the variant CD58 domain substituted for at least one depicted Fab and/or scFv.


1174. The CD2 binding molecule of embodiment 1173, wherein the CD2 binding molecule has the configuration depicted in FIG. 2Q with the variant CD58 domain substituted for at least one depicted Fab and/or scFv.


1175. The CD2 binding molecule of embodiment 1173, wherein the CD2 binding molecule has the configuration depicted in FIG. 2R with the variant CD58 domain substituted for at least one depicted Fab and/or scFv.


1176. The CD2 binding molecule of embodiment 1173, wherein the CD2 binding molecule has the configuration depicted in FIG. 2S with the variant CD58 domain substituted for at least one depicted Fab and/or scFv.


1177. The CD2 binding molecule of any one of embodiments 1172 to 1176, which has any of the configurations referred to as Tv1 through Tv24 in Table 9.


1178. The CD2 binding molecule of any one of embodiments 917 to 1148, which is pentavalent.


1179. The CD2 binding molecule of embodiment 1178, wherein the CD2 binding molecule has the configuration depicted in FIG. 2T with the variant CD58 domain substituted for at least one depicted Fab and/or scFv.


1180. The CD2 binding molecule of embodiment 1178 or embodiment 1179, which has any of the configurations referred to as Pv1 through Pv100 in Table 10.


1181. The CD2 binding molecule of any one of embodiments 917 to 1148, which is hexavalent.


1182. The CD2 binding molecule of embodiment 1181, wherein the CD2 binding molecule has any one of the configurations depicted in FIGS. 2U-2V with the variant CD58 domain substituted for at least one depicted Fab and/or scFv.


1183. The CD2 binding molecule of embodiment 1182, wherein the CD2 binding molecule has the configuration depicted in FIG. 2U with the variant CD58 domain substituted for at least one depicted Fab and/or scFv.


1184. The CD2 binding molecule of embodiment 1182, wherein the CD2 binding molecule has the configuration depicted in FIG. 2V with the variant CD58 domain substituted for at least one depicted Fab and/or scFv.


1185. The CD2 binding molecule of any one of embodiments 1181 to 1184, which has any of the configurations referred to as Hv1 through Hv330 in Table 11.


1186. The CD2 binding molecule of any one of embodiments 917 to 1182, except when depending from any one of embodiments 1087 to 1148, wherein ABM3 is an antibody, an antibody fragment, an scFv, a dsFv, a Fv, a Fab, an scFab, a (Fab′)2, a single domain antibody (SDAB), a VH or VL domain, or a camelid VHH domain.


1187. The CD2 binding molecule of embodiment 1186, wherein ABM3 is an scFv.


1188. The CD2 binding molecule of embodiment 1187, wherein ABM3 binds CD19 and comprises the amino acid sequence of CD19-scFv1 as set forth in Table 16.


1189. The CD2 binding molecule of embodiment 1187 wherein ABM3 binds CD19 and comprises the amino acid sequence of CD19-scFv2 as set forth in Table 16.


1190. The CD2 binding molecule of embodiment 1187, wherein ABM3 binds CD19 and comprises the amino acid sequence of CD19-scFv3 as set forth in Table 16.


1191. The CD2 binding molecule of embodiment 1187, wherein ABM3 binds CD19 and comprises the amino acid sequence of CD19-scFv4 as set forth in Table 16.


1192. The CD2 binding molecule of embodiment 1187, wherein ABM3 binds CD19 and comprises the amino acid sequence of CD19-scFv5 as set forth in Table 16.


1193. The CD2 binding molecule of embodiment 1187, wherein ABM3 binds CD19 and comprises the amino acid sequence of CD19-scFv6 as set forth in Table 16.


1194. The CD2 binding molecule of embodiment 1187, wherein ABM3 binds CD19 and comprises the amino acid sequence of CD19-scFv7 as set forth in Table 16.


1195. The CD2 binding molecule of embodiment 1187, wherein ABM3 binds CD19 and comprises the amino acid sequence of CD19-scFv8 as set forth in Table 16.


1196. The CD2 binding molecule of embodiment 1187, wherein ABM3 binds CD19 and comprises the amino acid sequence of CD19-scFv9 as set forth in Table 16.


1197. The CD2 binding molecule of embodiment 1187, wherein ABM3 binds CD19 and comprises the amino acid sequence of CD19-scFv10 as set forth in Table 16.


1198. The CD2 binding molecule of embodiment 1187, wherein ABM3 binds CD19 and comprises the amino acid sequence of CD19-scFv11 as set forth in Table 16.


1199. The CD2 binding molecule of embodiment 1187, wherein ABM3 binds CD19 and comprises the amino acid sequence of CD19-scFv12 as set forth in Table 16.


1200. The CD2 binding molecule of embodiment 1187, wherein ABM3 binds BCMA and comprises the amino acid sequence of the scFv corresponding to BCMA-1 as set forth in Table 15A.


1201. The CD2 binding molecule of embodiment 1187, wherein ABM3 binds BCMA and comprises the amino acid sequence of the scFv corresponding to BCMA-2 as set forth in Table 15A.


1202. The CD2 binding molecule of embodiment 1187, wherein ABM3 binds BCMA and comprises the amino acid sequence of the scFv corresponding to BCMA-3 as set forth in Table 15A.


1203. The CD2 binding molecule of embodiment 1187, wherein ABM3 binds BCMA and comprises the amino acid sequence of the scFv corresponding to BCMA-4 as set forth in Table 15A.


1204. The CD2 binding molecule of embodiment 1187, wherein ABM3 binds BCMA and comprises the amino acid sequence of the scFv corresponding to BCMA-5 as set forth in Table 15A.


1205. The CD2 binding molecule of embodiment 1187, wherein ABM3 binds BCMA and comprises the amino acid sequence of the scFv corresponding to BCMA-6 as set forth in Table 15A.


1206. The CD2 binding molecule of embodiment 1187, wherein ABM3 binds BCMA and comprises the amino acid sequence of the scFv corresponding to BCMA-7 as set forth in Table 15A.


1207. The CD2 binding molecule of embodiment 1187, wherein ABM3 binds BCMA and comprises the amino acid sequence of the scFv corresponding to BCMA-8 as set forth in Table 15A.


1208. The CD2 binding molecule of embodiment 1187, wherein ABM3 binds BCMA and comprises the amino acid sequence of the scFv corresponding to BCMA-9 as set forth in Table 15A.


1209. The CD2 binding molecule of embodiment 1187, wherein ABM3 binds BCMA and comprises the amino acid sequence of the scFv corresponding to BCMA-10 as set forth in Table 15A.


1210. The CD2 binding molecule of embodiment 1187, wherein ABM3 binds BCMA and comprises the amino acid sequence of the scFv corresponding to BCMA-11 as set forth in Table 15A.


1211. The CD2 binding molecule of embodiment 1187, wherein ABM3 binds BCMA and comprises the amino acid sequence of the scFv corresponding to BCMA-12 as set forth in Table 15A.


1212. The CD2 binding molecule of embodiment 1187, wherein ABM3 binds BCMA and comprises the amino acid sequence of the scFv corresponding to BCMA-13 as set forth in Table 15A.


1213. The CD2 binding molecule of embodiment 1187, wherein ABM3 binds BCMA and comprises the amino acid sequence of the scFv corresponding to BCMA-14 as set forth in Table 15A.


1214. The CD2 binding molecule of embodiment 1187, wherein ABM3 binds BCMA and comprises the amino acid sequence of the scFv corresponding to BCMA-15 as set forth in Table 15A.


1215. The CD2 binding molecule of embodiment 1187, wherein ABM3 binds BCMA and comprises the amino acid sequence of the scFv corresponding to BCMA-16 as set forth in Table 15A.


1216. The CD2 binding molecule of embodiment 1187, wherein ABM3 binds BCMA and comprises the amino acid sequence of the scFv corresponding to BCMA-17 as set forth in Table 15A.


1217. The CD2 binding molecule of embodiment 1187, wherein ABM3 binds BCMA and comprises the amino acid sequence of the scFv corresponding to BCMA-18 as set forth in Table 15A.


1218. The CD2 binding molecule of embodiment 1187, wherein ABM3 binds BCMA and comprises the amino acid sequence of the scFv corresponding to BCMA-19 as set forth in Table 15A.


1219. The CD2 binding molecule of embodiment 1187, wherein ABM3 binds BCMA and comprises the amino acid sequence of the scFv corresponding to BCMA-20 as set forth in Table 15A.


1220. The CD2 binding molecule of embodiment 1187, wherein ABM3 binds BCMA and comprises the amino acid sequence of the scFv corresponding to BCMA-21 as set forth in Table 15A.


1221. The CD2 binding molecule of embodiment 1187, wherein ABM3 binds BCMA and comprises the amino acid sequence of the scFv corresponding to BCMA-22 as set forth in Table 15A.


1222. The CD2 binding molecule of embodiment 1187, wherein ABM3 binds BCMA and comprises the amino acid sequence of the scFv corresponding to BCMA-23 as set forth in Table 15A.


1223. The CD2 binding molecule of embodiment 1187, wherein ABM3 binds BCMA and comprises the amino acid sequence of the scFv corresponding to BCMA-24 as set forth in Table 15A.


1224. The CD2 binding molecule of embodiment 1187, wherein ABM3 binds BCMA and comprises the amino acid sequence of the scFv corresponding to BCMA-25 as set forth in Table 15A.


1225. The CD2 binding molecule of embodiment 1187, wherein ABM3 binds BCMA and comprises the amino acid sequence of the scFv corresponding to BCMA-26 as set forth in Table 15A.


1226. The CD2 binding molecule of embodiment 1187, wherein ABM3 binds BCMA and comprises the amino acid sequence of the scFv corresponding to BCMA-27 as set forth in Table 15A.


1227. The CD2 binding molecule of embodiment 1187, wherein ABM3 binds BCMA and comprises the amino acid sequence of the scFv corresponding to BCMA-28 as set forth in Table 15A.


1228. The CD2 binding molecule of embodiment 1187, wherein ABM3 binds BCMA and comprises the amino acid sequence of the scFv corresponding to BCMA-29 as set forth in Table 15A.


1229. The CD2 binding molecule of embodiment 1187, wherein ABM3 binds BCMA and comprises the amino acid sequence of the scFv corresponding to BCMA-30 as set forth in Table 15A.


1230. The CD2 binding molecule of embodiment 1187, wherein ABM3 binds BCMA and comprises the amino acid sequence of the scFv corresponding to BCMA-31 as set forth in Table 15A.


1231. The CD2 binding molecule of embodiment 1187, wherein ABM3 binds BCMA and comprises the amino acid sequence of the scFv corresponding to BCMA-32 as set forth in Table 15A.


1232. The CD2 binding molecule of embodiment 1187, wherein ABM3 binds BCMA and comprises the amino acid sequence of the scFv corresponding to BCMA-33 as set forth in Table 15A.


1233. The CD2 binding molecule of embodiment 1187, wherein ABM3 binds BCMA and comprises the amino acid sequence of the scFv corresponding to BCMA-34 as set forth in Table 15A.


1234. The CD2 binding molecule of embodiment 1187, wherein ABM3 binds BCMA and comprises the amino acid sequence of the scFv corresponding to BCMA-35 as set forth in Table 15A.


1235. The CD2 binding molecule of embodiment 1187, wherein ABM3 binds BCMA and comprises the amino acid sequence of the scFv corresponding to BCMA-36 as set forth in Table 15A.


1236. The CD2 binding molecule of embodiment 1187, wherein ABM3 binds BCMA and comprises the amino acid sequence of the scFv corresponding to BCMA-37 as set forth in Table 15A.


1237. The CD2 binding molecule of embodiment 1187, wherein ABM3 binds BCMA and comprises the amino acid sequence of the scFv corresponding to BCMA-38 as set forth in Table 15A.


1238. The CD2 binding molecule of embodiment 1187, wherein ABM3 binds BCMA and comprises the amino acid sequence of the scFv corresponding to BCMA-39 as set forth in Table 15A.


1239. The CD2 binding molecule of embodiment 1187, wherein ABM3 binds BCMA and comprises the amino acid sequence of the scFv corresponding to BCMA-40 as set forth in Table 15A.


1240. The CD2 binding molecule of embodiment 1186, wherein ABM3 is a Fab.


1241. The CD2 binding molecule of any one of embodiments 30 to 1240, in which each antigen-binding module is capable of binding its respective target at the same time as each of the other antigen-binding modules is bound to its respective target.


1242. The CD2 binding molecule of any one of embodiments 30 to 1241, which comprises a first variant Fc region and a second variant Fc region that together form an Fc heterodimer.


1243. The CD2 binding molecule of any one of embodiments 917 to 1241, which comprises:

    • (a) a first monomer or half antibody comprising:
      • (i) a first chain comprising a first variant Fc region and a first heavy chain variable domain;
      • (ii) the variant CD58 domain; and
    • (b) a second monomer or half antibody comprising:
      • (i) a second chain comprising a second variant Fc region and first heavy chain variable domain;
      • (ii) a second scFv domain; and
    • (c) a third chain comprising a light chain constant domain and a light chain variable domain; wherein
    • the first and second variant Fc regions form a heterodimer,
    • the first heavy chain variable domain and the light chain variable domain form ABM2, and
    • the second scFv domain forms ABM3.


1244. The CD2 binding molecule of any one of embodiments 917 to 1241, which comprises:

    • (a) a first monomer or half antibody comprising:
      • (i) a first chain comprising a first variant Fc region and a first heavy chain variable domain;
      • (ii) a first scFv domain; and
    • (b) a second monomer or half antibody comprising:
      • (i) a second chain comprising a second variant Fc region and first heavy chain variable domain;
      • (ii) the variant CD58 domain; and
    • (c) a third chain comprising a light chain constant domain and a light chain variable domain; wherein
    • the first and second variant Fc regions form a heterodimer,
    • the first heavy chain variable domain and the light chain variable domain form ABM2, and
    • the first scFv domain forms ABM3.


1245. The CD2 binding molecule of any one of embodiments 917 to 1241, which comprises:

    • (a) a first monomer or half antibody comprising:
      • (i) a first chain comprising a first variant Fc region and a first heavy chain variable domain;
      • (ii) a first scFv domain; and
    • (b) a second monomer or half antibody comprising:
      • (i) a second chain comprising a second variant Fc region and first heavy chain variable domain;
      • (ii) the variant CD58 domain; and
    • (c) a third chain comprising a light chain constant domain and a light chain variable domain; wherein:
    • the first and second variant Fc regions form a heterodimer,
    • the first heavy chain variable domain and the light chain variable domain form ABM3, and
    • the first scFv domain forms ABM2.


1246. The CD2 binding molecule of any one of embodiments 917 to 1241, which comprises:

    • (a) a first monomer or half antibody comprising:
      • (i) a first chain comprising a first variant Fc region and a first heavy chain variable domain;
      • (ii) the variant CD58 domain; and
    • (b) a second monomer or half antibody comprising:
      • (i) a second chain comprising a second variant Fc region and first heavy chain variable domain;
      • (ii) a second scFv domain; and
    • (c) a third chain comprising a light chain constant domain and a light chain variable domain; wherein
    • the first and second variant Fc regions form a heterodimer,
    • the first heavy chain variable domain and the light chain variable domain form ABM3, and
    • the second scFv domain forms ABM2.


1247. The CD2 binding molecule of embodiment any of embodiments 1243 to 1246, wherein said first and second scFv domains are covalently attached to the C-terminus of said first and second chains, respectively.


1248. The CD2 binding molecule of embodiment any of embodiments 1243 to 1246, wherein said first and second scFv domains are covalently attached to the N-terminus of said first and second chains, respectively.


1249. The CD2 binding molecule of embodiment any of embodiments 1243 to 1248, wherein each of the scFv domains is attached between said Fc region and the CH domain of said chain.


1250. The CD2 binding molecule of embodiment any of embodiments 1243 to 1249, wherein the scFv domains are covalently attached using one or more domain linkers.


1251. The CD2 binding molecule of embodiment any of embodiments 1243 to 1250, wherein the scFv domains comprise at least one scFv linker.


1252. The CD2 binding molecule of embodiment 1251, wherein at least one scFv linker is charged.


1253. The CD2 binding molecule of embodiment 1252, wherein the charged linker is selected from L1 through L54.


1254. The CD2 binding molecule of any one of embodiments 1242 to 1253, wherein the first and second variant Fc regions comprise the amino acid substitutions S364K/E357Q:L368D/K370S.


1255. The CD2 binding molecule of any one of embodiments 1242 to 1253, wherein the first and second variant Fc regions comprise the amino acid substitutions L368D/K370S:S364K.


1256. The CD2 binding molecule of any one of embodiments 1242 to 1253, wherein the first and second variant Fc regions comprise the amino acid substitutions L368E/K370S:S364K.


1257. The CD2 binding molecule of any one of embodiments 1242 to 1253, wherein the first and second variant Fc regions comprise the amino acid substitutions T411T/E360E/Q362E:D401K.


1258. The CD2 binding molecule of any one of embodiments 1242 to 1253, wherein the first and second variant Fc regions comprise the amino acid substitutions L368D 370S:S364/E357L.


1259. The CD2 binding molecule of any one of embodiments 1242 to 1253, wherein the first and second variant Fc regions comprise the amino acid substitutions 370S:S364K/E357Q.


1260. The CD2 binding molecule of any one of embodiments 1242 to 1253, wherein the first and second variant Fc regions comprise the amino acid substitutions of any of the steric variants listed in FIG. 4 of WO 2014/110601.


1261. The CD2 binding molecule of any one of embodiments 1242 to 1253, wherein the first and second variant Fc regions comprise the amino acid substitutions of any of the variants listed in FIG. 5 of WO 2014/110601.


1262. The CD2 binding molecule of any one of embodiments 1242 to 1253, wherein the first and second variant Fc regions comprise the amino acid substitutions of any of the variants listed in FIG. 6 of WO 2014/110601.


1263. The CD2 binding molecule of any one of embodiments 1242 to 1262, wherein at least one of the Fc regions comprises an ablation variant modification.


1264. The CD2 binding molecule of embodiment 1263, wherein the ablation variant modifications are selected from Table 3.


1265. The CD2 binding molecule of embodiment 1264, wherein the ablation variant modification comprises G236R.


1266. The CD2 binding molecule of embodiment 1264, wherein the ablation variant modification comprises S239G.


1267. The CD2 binding molecule of embodiment 1264, wherein the ablation variant modification comprises S239K.


1268. The CD2 binding molecule of embodiment 1264, wherein the ablation variant modification comprises S239Q.


1269. The CD2 binding molecule of embodiment 1264, wherein the ablation variant modification comprises S239R.


1270. The CD2 binding molecule of embodiment 1264, wherein the ablation variant modification comprises V266D.


1271. The CD2 binding molecule of embodiment 1264, wherein the ablation variant modification comprises S267K.


1272. The CD2 binding molecule of embodiment 1264, wherein the ablation variant modification comprises S267R.


1273. The CD2 binding molecule of embodiment 1264, wherein the ablation variant modification comprises H268K.


1274. The CD2 binding molecule of embodiment 1264, wherein the ablation variant modification comprises E269R.


1275. The CD2 binding molecule of embodiment 1264, wherein the ablation variant modification comprises 299R.


1276. The CD2 binding molecule of embodiment 1264, wherein the ablation variant modification comprises 299K


1277. The CD2 binding molecule of embodiment 1264, wherein the ablation variant modification comprises K322A


1278. The CD2 binding molecule of embodiment 1264, wherein the ablation variant modification comprises A327G


1279. The CD2 binding molecule of embodiment 1264, wherein the ablation variant modification comprises A327L


1280. The CD2 binding molecule of embodiment 1264, wherein the ablation variant modification comprises A327N


1281. The CD2 binding molecule of embodiment 1264, wherein the ablation variant modification comprises A327Q


1282. The CD2 binding molecule of embodiment 1264, wherein the ablation variant modification comprises L328E


1283. The CD2 binding molecule of embodiment 1264, wherein the ablation variant modification comprises L328R


1284. The CD2 binding molecule of embodiment 1264, wherein the ablation variant modification comprises P329A


1285. The CD2 binding molecule of embodiment 1264, wherein the ablation variant modification comprises P329H


1286. The CD2 binding molecule of embodiment 1264, wherein the ablation variant modification comprises P329K


1287. The CD2 binding molecule of embodiment 1264, wherein the ablation variant modification comprises A330L


1288. The CD2 binding molecule of embodiment 1264, wherein the ablation variant modification comprises A330S/P331S


1289. The CD2 binding molecule of embodiment 1264, wherein the ablation variant modification comprises 1332K


1290. The CD2 binding molecule of embodiment 1264, wherein the ablation variant modification comprises 1332R


1291. The CD2 binding molecule of embodiment 1264, wherein the ablation variant modification comprises V266D/A327Q


1292. The CD2 binding molecule of embodiment 1264, wherein the ablation variant modification comprises V266D/P329K


1293. The CD2 binding molecule of embodiment 1264, wherein the ablation variant modification comprises G236R/L328R


1294. The CD2 binding molecule of embodiment 1264, wherein the ablation variant modification comprises E233P/L234V/L235A/G236del/S239K.


1295. The CD2 binding molecule of embodiment 1264, wherein the ablation variant modification comprises E233P/L234V/L235A/G236del/S267K.


1296. The CD2 binding molecule of embodiment 1264, wherein the ablation variant modification comprises E233P/L234V/L235A/G236del/S239K/A327G.


1297. The CD2 binding molecule of embodiment 1264, wherein the ablation variant modification comprises E233P/L234V/L235A/G236del/S267K/A327G.


1298. The CD2 binding molecule of embodiment 1264, wherein the ablation variant modification comprises E233P/L234V/L235A/G236del.


1299. The CD2 binding molecule of embodiment 1264, wherein the ablation variant modification comprises S239K/S267K.


1300. The CD2 binding molecule of embodiment 1264, wherein the ablation variant modification comprises 267K/P329K.


1301. The CD2 binding molecule of embodiment 1264, wherein the ablation variant modification comprises D265A/N297A/P329A.


1302. The CD2 binding molecule of embodiment 1264, wherein the ablation variant modification comprises D265N/N297D/P329G.


1303. The CD2 binding molecule of embodiment 1264, wherein the ablation variant modification comprises D265E/N297Q/P329S.


1304. The CD2 binding molecule of any one of embodiments 1263 to 1303, wherein both variant Fc regions comprise the ablation variant modification.


1305. The CD2 binding molecule of any one of embodiments 1242 to 1304, wherein at least one of the Fc regions further comprises pI variant substitutions.


1306. The CD2 binding molecule of embodiment 1305, wherein said pI variant substitutions are selected from Table 4.


1307. The CD2 binding molecule of embodiment 1306, wherein the pI variant substitutions comprise the substitutions present in pI_ISO(−).


1308. The CD2 binding molecule of embodiment 1306, wherein the pI variant substitutions comprise the substitutions present in pI_(−)_isosteric_A.


1309. The CD2 binding molecule of embodiment 1306, wherein the pI variant substitutions comprise the substitutions present in pI_(−)_isosteric_B.


1310. The CD2 binding molecule of embodiment 1306, wherein the pI variant substitutions comprise the substitutions present in PI_ISO(+RR).


1311. The CD2 binding molecule of embodiment 1306, wherein the pI variant substitutions comprise the substitutions present in pI_ISO(+).


1312. The CD2 binding molecule of embodiment 1306, wherein the pI variant substitutions comprise the substitutions present in pI_(+)_isosteric_A.


1313. The CD2 binding molecule of embodiment 1306, wherein the pI variant substitutions comprise the substitutions present in pI_(+)_isosteric_B.


1314. The CD2 binding molecule of embodiment 1306, wherein the pI variant substitutions comprise the substitutions present in pI_(+)_isosteric_E269Q/E272Q.


1315. The CD2 binding molecule of embodiment 1306, wherein the pI variant substitutions comprise the substitutions present in pI_(+)_isosteric_E269Q/E283Q.


1316. The CD2 binding molecule of embodiment 1306, wherein the pI variant substitutions comprise the substitutions present in pI_(+)_isosteric_E2720/E283Q.


1317. The CD2 binding molecule of embodiment 1306, wherein the pI variant substitutions comprise the substitutions present in pI_(+)_isosteric_E269Q.


1318. The CD2 binding molecule of embodiment any of embodiments 1242 to 1317, wherein the first and/or second Fc region further comprises one or more amino acid substitution(s) selected from 434A, 434S, 428L, 308F, 259I, 428L/434S, 259I/308F, 436I/428L, 436I or V/434S, 436V/428L, 252Y, 252Y/254T/256E, 259I/308F/428L, 236A, 239D, 239E, 332E, 332D, 239D/332E, 267D, 267E, 328F, 267E/328F, 236A/332E, 239D/332E/330Y, 239D, 332E/330L, 236R, 328R, 236R/328R, 236N/267E, 243L, 298A and 299T.


1319. The CD2 binding molecule of embodiment any of embodiments 1242 to 1317, wherein the first and/or second Fc region further comprises one or more amino acid substitution comprises the amino acid substitution 434A, 434S or 434V.


1320. The CD2 binding molecule of embodiment 1319, wherein the first and/or second Fc region further comprises one or more amino acid substitution comprises the amino acid substitution 428L.


1321. The CD2 binding molecule of embodiment 1319 or embodiment 1320, wherein the first and/or second Fc region further comprises one or more amino acid substitution comprises the amino acid substitution 308F.


1322. The CD2 binding molecule of any one of embodiments 1319 to 1321, wherein the first and/or second Fc region further comprises one or more amino acid substitution comprises the amino acid substitution 259I.


1323. The CD2 binding molecule of any one of embodiments 1319 to 1322, wherein the first and/or second Fc region further comprises one or more amino acid substitution comprises the amino acid substitution 436I.


1324. The CD2 binding molecule of any one of embodiments 1319 to 1323, wherein the first and/or second Fc region further comprises one or more amino acid substitution comprises the amino acid substitution 252Y.


1325. The CD2 binding molecule of any one of embodiments 1319 to 1324, wherein the first and/or second Fc region further comprises one or more amino acid substitution comprises the amino acid substitution 254T.


1326. The CD2 binding molecule of any one of embodiments 1319 to 1325, wherein the first and/or second Fc region further comprises one or more amino acid substitution comprises the amino acid substitution 256E.


1327. The CD2 binding molecule of any one of embodiments 1319 to 1326, wherein the first and/or second Fc region further comprises one or more amino acid substitution comprises the amino acid substitution 239D or 239E.


1328. The CD2 binding molecule of any one of embodiments 1319 to 1327, wherein the first and/or second Fc region further comprises one or more amino acid substitution comprises the amino acid substitution 332E or 332D.


1329. The CD2 binding molecule of any one of embodiments 1319 to 1328, wherein the first and/or second Fc region further comprises one or more amino acid substitution comprises the amino acid substitution 267D or 267E.


1330. The CD2 binding molecule of any one of embodiments 1319 to 1329, wherein the first and/or second Fc region further comprises one or more amino acid substitution comprises the amino acid substitution 330L.


1331. The CD2 binding molecule of any one of embodiments 1319 to 1330, wherein the first and/or second Fc region further comprises one or more amino acid substitution comprises the amino acid substitution 236R or 236N.


1332. The CD2 binding molecule of any one of embodiments 1319 to 1331, wherein the first and/or second Fc region further comprises one or more amino acid substitution comprises the amino acid substitution 328R.


1333. The CD2 binding molecule of any one of embodiments 1319 to 1332, wherein the first and/or second Fc region further comprises one or more amino acid substitution comprises the amino acid substitution 243L.


1334. The CD2 binding molecule of any one of embodiments 1319 to 1333, wherein the first and/or second Fc region further comprises one or more amino acid substitution comprises the amino acid substitution 298A.


1335. The CD2 binding molecule of any one of embodiments 1319 to 1334, wherein the first and/or second Fc region further comprises one or more amino acid substitution comprises the amino acid substitution 299T.


1336. The CD2 binding molecule of embodiment 1242, wherein:

    • (a) the first and second variant Fc regions comprise the amino acid substitutions S364K/E357Q:L368D/K370S;
    • (b) the first and/or second variant Fc regions comprises the ablation variant modifications E233P/L234V/L235A/G236del/S267K, and
    • (c) the first and/or second variant Fc regions comprises the pI variant substitutions N208D/Q295E/N384D/Q418E/N421D (pI_(−)_isosteric_A).


1337. The CD2 binding molecule of embodiment 1336, wherein the first variant Fc region comprises the ablation variant modifications E233P/L234V/L235A/G236del/S267K.


1338. The CD2 binding molecule of any one of embodiments 1336 to 1337, wherein the second variant Fc region comprises the ablation variant modifications E233P/L234V/L235A/G236del/S267K.


1339. The CD2 binding molecule of any one of embodiments 1336 to 1338, wherein the first variant Fc region comprises the pI variant substitutions N208D/Q295E/N384D/Q418E/N421D (pI_(−)_isosteric_A).


1340. The CD2 binding molecule of any one of embodiments 1336 to 1339, wherein the second variant Fc region comprises the pI variant substitutions N208D/Q295E/N384D/Q418E/N421D (pI_(−)_isosteric_A).


1341. The CD2 binding molecule of any one of embodiments 1242 to 1340, wherein the first or second variant Fc region comprises an amino acid sequence which is at least 90% identical to SEQ ID NO:1335.


1342. The CD2 binding molecule of any one of embodiments 1242 to 1340, wherein the first or second variant Fc region comprises an amino acid sequence which is at least 95% identical to SEQ ID NO:1335.


1343. The CD2 binding molecule of any one of embodiments 1242 to 1340, wherein the first or second variant Fc region comprises the amino acid sequence of SEQ ID NO:1335 modified with the substitutions recited in any one of embodiments 1254 to 1340.


1344. The CD2 binding molecule of any one of embodiments 1242 to 1340, wherein the first or second variant Fc region comprises the amino acid sequence of SEQ ID NO:1335 with a substitution at 1, 2, 3, 4, 5 or 6 of positions 233, 234, 235, 236, 237, 239, 265, 266, 267, 268, 269, 297, 299, 322, 327, 328, 329, 330, 331 and 332, optionally wherein one or more of the substitutions are substitutions recited in any one of embodiments 1254 to 1340.


1345. The CD2 binding molecule of any one of 1242 to 1344, wherein the first or second variant Fc region comprises an amino acid sequence which is at least 90% identical to SEQ ID NO:1336.


1346. The CD2 binding molecule of any one of embodiments 1242 to 1344, wherein the first or second variant Fc region comprises an amino acid sequence which is at least 95% identical to SEQ ID NO:1336.


1347. The CD2 binding molecule of any one of embodiments 1242 to 1344, wherein the first or second variant Fc region comprises the amino acid sequence of SEQ ID NO:1336 modified with the substitutions recited in any one of embodiments 1254 to 1340.


1348. The CD2 binding molecule of any one of embodiments 1242 to 1344, wherein the first or second variant Fc region comprises the amino acid sequence of SEQ ID NO:1336 with a substitution at 1, 2, 3, 4, 5 or 6 of positions 233, 234, 235, 236, 237, 239, 265, 266, 267, 268, 269, 297, 299, 322, 327, 328, 329, 330, 331 and 332, optionally wherein one or more of the substitutions are substitutions recited in any one of embodiments 1254 to 1340.


1349. The CD2 binding molecule of any one of embodiments 1242 to 1344, wherein the first or second variant Fc region comprises an amino acid sequence which is at least 90% identical to SEQ ID NO:1337.


1350. The CD2 binding molecule of any one of embodiments 1242 to 1344, wherein the first or second variant Fc region comprises an amino acid sequence which is at least 95% identical to SEQ ID NO:1337.


1351. The CD2 binding molecule of any one of embodiments 1242 to 1344, wherein the first or second variant Fc region comprises the amino acid sequence of SEQ ID NO:1337 modified with the substitutions recited in any one of embodiments 1254 to 1340.


1352. The CD2 binding molecule of any one of embodiments 1242 to 1344, wherein the first or second variant Fc region comprises the amino acid sequence of SEQ ID NO:1337 with a substitution at 1, 2, 3, 4, 5 or 6 of positions 233, 234, 235, 236, 237, 239, 265, 266, 267, 268, 269, 297, 299, 322, 327, 328, 329, 330, 331 and 332, optionally wherein one or more of the substitutions are substitutions recited in any one of embodiments 1254 to 1340.


1353. The CD2 binding molecule of any one of embodiments 1242 to 1352, wherein the first or second variant Fc region comprises an amino acid sequence which is at least 90% identical to SEQ ID NO:1338.


1354. The CD2 binding molecule of any one of embodiments 1242 to 1352, wherein the first or second variant Fc region comprises an amino acid sequence which is at least 95% identical to SEQ ID NO:1338.


1355. The CD2 binding molecule of any one of embodiments 1242 to 1352, wherein the first or second variant Fc region comprises the amino acid sequence of SEQ ID NO:1338 modified with the substitutions recited in any one of embodiments 1254 to 1340.


1356. The CD2 binding molecule of any one of embodiments 1242 to 1352, wherein the first or second variant Fc region comprises the amino acid sequence of SEQ ID NO:1338 with a substitution at 1, 2, 3, 4, 5 or 6 of positions 233, 234, 235, 236, 237, 239, 265, 266, 267, 268, 269, 297, 299, 322, 327, 328, 329, 330, 331 and 332, optionally wherein one or more of the substitutions are substitutions recited in any one of embodiments 1254 to 1340.


1357. A conjugate comprising (a) the CD2 binding molecule of any one of embodiments 1 to 1356, and (b) an agent.


1358. The conjugate of embodiment 1357, wherein the agent is a therapeutic agent, a diagnostic agent, a masking moiety, a cleavable moiety, a stabilizing moiety or any combination thereof.


1359. The conjugate of embodiment 1358, wherein the agent is any of the agents described in Section 7.12.


1360. The conjugate of embodiment 1358, wherein the agent is any of the agents described in Section 7.13.


1361. The conjugate of any one of embodiments 1357 to 1360, wherein the CD2 binding molecule is conjugated to a radionuclide.


1362. The conjugate of any one of embodiments 1357 to 1360, wherein the CD2 binding molecule is conjugated to an alkylating agent.


1363. The conjugate of any one of embodiments 1357, wherein the CD2 binding molecule is conjugated to a topoisomerase inhibitor, which is optionally a topoisomerase I inhibitor or a topoisomerase II inhibitor.


1364. The conjugate of any one of embodiments 1357 to 1360, wherein the CD2 binding molecule is conjugated to a DNA damaging agent.


1365. The conjugate of any one of embodiments 1357 to 1360, wherein the CD2 binding molecule is conjugated to a DNA intercalating agent, optionally a groove binding agent such as a minor groove binding agent.


1366. The conjugate of any one of embodiments 1357 to 1360, wherein the CD2 binding molecule is conjugated to a RNA/DNA antimetabolite.


1367. The conjugate of any one of embodiments 1357 to 1360, wherein the CD2 binding molecule is conjugated to a kinase inhibitor.


1368. The conjugate of any one of embodiments 1357 to 1360, wherein the CD2 binding molecule is conjugated to a protein synthesis inhibitor.


1369. The conjugate of any one of embodiments 1357 to 1360, wherein the CD2 binding molecule is conjugated to a histone deacetylase (HDAC) inhibitor.


1370. The conjugate of any one of embodiments 1357 to 1360, wherein the CD2 binding molecule is conjugated to a mitochondrial inhibitor, which is optionally an inhibitor of a phosphoryl transfer reaction in mitochondria.


1371. The conjugate of any one of embodiments 1357 to 1360, wherein the CD2 binding molecule is conjugated to an antimitotic agent.


1372. The conjugate of any one of embodiments 1357 to 1360, wherein the CD2 binding molecule is conjugated to a maytansinoid.


1373. The conjugate of any one of embodiments 1357 to 1360, wherein the CD2 binding molecule is conjugated to a kinesin inhibitor.


1374. The conjugate of any one of embodiments 1357 to 1360, wherein the CD2 binding molecule is conjugated to a kinesin-like protein KIF11 inhibitor.


1375. The conjugate of any one of embodiments 1357 to 1360, wherein the CD2 binding molecule is conjugated to a V-ATPase (vacuolar-type H+-ATPase) inhibitor.


1376. The conjugate of any one of embodiments 1357 to 1360, wherein the CD2 binding molecule is conjugated to a pro-apoptotic agent.


1377. The conjugate of any one of embodiments 1357 to 1360, wherein the CD2 binding molecule is conjugated to a Bcl2 (B-cell lymphoma 2) inhibitor.


1378. The conjugate of any one of embodiments 1357 to 1360, wherein the CD2 binding molecule is conjugated to an MCL1 (myeloid cell leukemia 1) inhibitor.


1379. The conjugate of any one of embodiments 1357 to 1360, wherein the CD2 binding molecule is conjugated to a HSP90 (heat shock protein 90) inhibitor.


1380. The conjugate of any one of embodiments 1357 to 1360, wherein the CD2 binding molecule is conjugated to an IAP (inhibitor of apoptosis) inhibitor.


1381. The conjugate of any one of embodiments 1357 to 1360, wherein the CD2 binding molecule is conjugated to an mTOR (mechanistic target of rapamycin) inhibitor.


1382. The conjugate of any one of embodiments 1357 to 1360, wherein the CD2 binding molecule is conjugated to a microtubule stabilizer.


1383. The conjugate of any one of embodiments 1357 to 1360, wherein the CD2 binding molecule is conjugated to a microtubule destabilizer.


1384. The conjugate of any one of embodiments 1357 to 1360, wherein the CD2 binding molecule is conjugated to an auristatin.


1385. The conjugate of any one of embodiments 1357 to 1360, wherein the CD2 binding molecule is conjugated to a dolastatin.


1386. The conjugate of any one of embodiments 1357 to 1360, wherein the CD2 binding molecule is conjugated to a MetAP (methionine aminopeptidase).


1387. The conjugate of any one of embodiments 1357 to 1360, wherein the CD2 binding molecule is conjugated to a CRM1 (chromosomal maintenance 1) inhibitor.


1388. The conjugate of any one of embodiments 1357 to 1360, wherein the CD2 binding molecule is conjugated to a DPPIV (dipeptidyl peptidase IV) inhibitor.


1389. The conjugate of any one of embodiments 1357 to 1360, wherein the CD2 binding molecule is conjugated to a proteasome inhibitor.


1390. The conjugate of any one of embodiments 1357 to 1360, wherein the CD2 binding molecule is conjugated to a protein synthesis inhibitor.


1391. The conjugate of any one of embodiments 1357 to 1360, wherein the CD2 binding molecule is conjugated to a CDK2 (cyclin-dependent kinase 2) inhibitor.


1392. The conjugate of any one of embodiments 1357 to 1360, wherein the CD2 binding molecule is conjugated to a CDK9 (cyclin-dependent kinase 9) inhibitor.


1393. The conjugate of any one of embodiments 1357 to 1360, wherein the CD2 binding molecule is conjugated to a RNA polymerase inhibitor.


1394. The conjugate of any one of embodiments 1357 to 1360, wherein the CD2 binding molecule is conjugated to a DHFR (dihydrofolate reductase) inhibitor.


1395. The conjugate of any one of embodiments 1357 to 1394, wherein the agent is attached to the TBM with a linker, which is optionally a cleavable linker or a non-cleavable linker.


1396. A pharmaceutical composition comprising the CD2 binding molecule of any one of embodiments 1 to 29 and a pharmaceutically acceptable excipient.


1397. A method of treating an immune or inflammatory disorder, comprising administering to a subject in need thereof the CD2 binding molecule of any one of embodiments 1 to 29 or the pharmaceutical composition of embodiment 1396.


1398. The method of embodiment 1397, wherein the subject has an immune disorder.


1399. The method of embodiment 1398, wherein the immune disorder is an autoimmune disorder.


1400. The method of embodiment 1399, wherein the autoimmune disorder is characterized by increased infiltration of lymphocytes into dermal or epidermal tissues.


1401. The method of embodiment 1399 or embodiment 1400, wherein the autoimmune disorder is characterized by increased T cell activation or abnormal antigen presentation.


1402. The method of any one of embodiments 1399 to 1401, wherein the autoimmune disease is rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, Reiter's Syndrome, systemic lupus erythematosus, dermatomyositis, Sjogren's syndrome, lupus erythematosus, multiple sclerosis, myasthenia gravis, psoriasis or transplant rejection.


1403. The method of embodiment 1402, wherein the autoimmune disease is rheumatoid arthritis.


1404. The method of embodiment 1402, wherein the autoimmune disease is psoriatic arthritis.


1405. The method of embodiment 1402, wherein the autoimmune disease is ankylosing spondylitis.


1406. The method of embodiment 1402, wherein the autoimmune disease is Reiter's Syndrome.


1407. The method of embodiment 1402, wherein the autoimmune disease is systemic lupus erythematosus.


1408. The method of embodiment 1402, wherein the autoimmune disease is dermatomyositis.


1409. The method of embodiment 1402, wherein the autoimmune disease is Sjogren's syndrome.


1410. The method of embodiment 1402, wherein the autoimmune disease is lupus erythematosus.


1411. The method of embodiment 1402, wherein the autoimmune disease is multiple sclerosis.


1412. The method of embodiment 1402, wherein the autoimmune disease is myasthenia gravis.


1413. The method of embodiment 1402, wherein the autoimmune disease is psoriasis.


1414. The method of embodiment 1402, wherein the autoimmune disease is transplant rejection.


1415. The method of embodiment 1397, wherein the subject has an inflammatory disease.


1416. The method of embodiment 1402, wherein the inflammatory disorder is Crohn's disease, lupus nephritis, ulcerative colitis, asthma, encephilitis, inflammatory bowel disease, chronic obstructive pulmonary disease (COPD), arthritis, an allergic disorder.


1417. The method of embodiment 1416, wherein the inflammatory disorder is Crohn's disease.


1418. The method of embodiment 1416, wherein the inflammatory disorder is lupus nephritis.


1419. The method of embodiment 1416, wherein the inflammatory disorder is ulcerative colitis.


1420. The method of embodiment 1416, wherein the inflammatory disorder is asthma.


1421. The method of embodiment 1416, wherein the inflammatory disorder is encephalitis.


1422. The method of embodiment 1416, wherein the inflammatory disorder is inflammatory bowel disease.


1423. The method of embodiment 1416, wherein the inflammatory disorder is chronic obstructive pulmonary disease (COPD).


1424. The method of embodiment 1416, wherein the inflammatory disorder is arthritis.


1425. The method of embodiment 1416, wherein the inflammatory disorder is an allergic disorder.


1426. The method of any one of embodiments 1397 to 1425, wherein the CD2 binding molecule is administered parenterally.


1427. A pharmaceutical composition comprising the CD2 binding molecule of any one of embodiments to 1 to 1356 or the conjugate of any one of embodiments 1357 to 1395 and (b) a pharmaceutically acceptable excipient.


1428. A method of treating a subject with cancer, comprising administering to a subject suffering from cancer an effective amount of the CD2 binding molecule of any one of embodiments 1 to 1356, the conjugate of any one of embodiments 1357 to 1395, or the pharmaceutical composition of embodiment 1427.


1429. The method of embodiment 1428, wherein the cancer is selected from HER2+ cancer, acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), adrenocortical carcinoma, anal cancer, appendix cancer, astrocytoma, basal cell carcinoma, brain tumor, bile duct cancer, bladder cancer, bone cancer, breast cancer, bronchial tumor, Burkitt Lymphoma, carcinoma of unknown primary origin, cardiac tumor, cervical cancer, chordoma, chronic lymphocytic leukemia (CLL), chronic myelogenous leukemia (CML), chronic myeloproliferative neoplasm, colon cancer, colorectal cancer, craniopharyngioma, cutaneous T-cell lymphoma, ductal carcinoma, embryonal tumor, endometrial cancer, ependymoma, esophageal cancer, esthesioneuroblastoma, fibrous histiocytoma, Ewing sarcoma, eye cancer, germ cell tumor, gallbladder cancer, gastric cancer, gastrointestinal carcinoid tumor, gastrointestinal stromal tumor, gestational trophoblastic disease, glioma, head and neck cancer, hairy cell leukemia, hepatocellular cancer, histiocytosis, Hodgkin lymphoma, hypopharyngeal cancer, intraocular melanoma, islet cell tumor, Kaposi sarcoma, kidney cancer, Langerhans cell histiocytosis, laryngeal cancer, leukemia, lip and oral cavity cancer, liver cancer, lobular carcinoma in situ, lung cancer, lymphoma, macroglobulinemia, malignant fibrous histiocytoma, melanoma, Merkel cell carcinoma, mesothelioma, metastatic squamous neck cancer with occult primary, midline tract carcinoma involving NUT gene, mouth cancer, multiple endocrine neoplasia syndrome, multiple myeloma, mycosis fungoides, myelodysplastic syndrome, myelodysplastic/myeloproliferative neoplasm, nasal cavity and para-nasal sinus cancer, nasopharyngeal cancer, neuroblastoma, non-Hodgkin lymphoma, non-small cell lung cancer, oropharyngeal cancer, osteosarcoma, ovarian cancer, pancreatic cancer, papillomatosis, paraganglioma, parathyroid cancer, penile cancer, pharyngeal cancer, pheochromocytomas, pituitary tumor, pleuropulmonary blastoma, primary central nervous system lymphoma, prostate cancer, rectal cancer, renal cell cancer, renal pelvis and ureter cancer, retinoblastoma, rhabdoid tumor, salivary gland cancer, Sezary syndrome, skin cancer, small cell lung cancer, small intestine cancer, soft tissue sarcoma, spinal cord tumor, stomach cancer, T-cell lymphoma, teratoid tumor, testicular cancer, throat cancer, thymoma and thymic carcinoma, thyroid cancer, urethral cancer, uterine cancer, vaginal cancer, vulvar cancer, and Wilms tumor.


1430. The method of embodiment 1429, wherein the cancer is HER2+ cancer.


1431. The method of embodiment 1429, wherein the cancer is acute lymphoblastic leukemia (ALL).


1432. The method of embodiment 1429, wherein the cancer is acute myeloid leukemia (AML).


1433. The method of embodiment 1429, wherein the cancer is adrenocortical carcinoma.


1434. The method of embodiment 1429, wherein the cancer is anal cancer.


1435. The method of embodiment 1429, wherein the cancer is appendix cancer.


1436. The method of embodiment 1429, wherein the cancer is astrocytoma.


1437. The method of embodiment 1429, wherein the cancer is basal cell carcinoma.


1438. The method of embodiment 1429, wherein the cancer is brain tumor.


1439. The method of embodiment 1429, wherein the cancer is bile duct cancer.


1440. The method of embodiment 1429, wherein the cancer is bladder cancer.


1441. The method of embodiment 1429, wherein the cancer is bone cancer.


1442. The method of embodiment 1429, wherein the cancer is breast cancer.


1443. The method of embodiment 1429, wherein the cancer is bronchial tumor.


1444. The method of embodiment 1429, wherein the cancer is Burkitt Lymphoma.


1445. The method of embodiment 1429, wherein the cancer is carcinoma of unknown primary origin.


1446. The method of embodiment 1429, wherein the cancer is cardiac tumor.


1447. The method of embodiment 1429, wherein the cancer is cervical cancer.


1448. The method of embodiment 1429, wherein the cancer is chordoma.


1449. The method of embodiment 1429, wherein the cancer is chronic lymphocytic leukemia (CLL).


1450. The method of embodiment 1429, wherein the cancer is chronic myelogenous leukemia (CML).


1451. The method of embodiment 1429, wherein the cancer is chronic myeloproliferative neoplasm.


1452. The method of embodiment 1429, wherein the cancer is colon cancer.


1453. The method of embodiment 1429, wherein the cancer is colorectal cancer.


1454. The method of embodiment 1429, wherein the cancer is craniopharyngioma.


1455. The method of embodiment 1429, wherein the cancer is cutaneous T-cell lymphoma.


1456. The method of embodiment 1429, wherein the cancer is ductal carcinoma.


1457. The method of embodiment 1429, wherein the cancer is embryonal tumor.


1458. The method of embodiment 1429, wherein the cancer is endometrial cancer.


1459. The method of embodiment 1429, wherein the cancer is ependymoma.


1460. The method of embodiment 1429, wherein the cancer is esophageal cancer.


1461. The method of embodiment 1429, wherein the cancer is esthesioneuroblastoma.


1462. The method of embodiment 1429, wherein the cancer is fibrous histiocytoma.


1463. The method of embodiment 1429, wherein the cancer is Ewing sarcoma.


1464. The method of embodiment 1429, wherein the cancer is eye cancer.


1465. The method of embodiment 1429, wherein the cancer is germ cell tumor.


1466. The method of embodiment 1429, wherein the cancer is gallbladder cancer.


1467. The method of embodiment 1429, wherein the cancer is gastric cancer.


1468. The method of embodiment 1429, wherein the cancer is gastrointestinal carcinoid tumor.


1469. The method of embodiment 1429, wherein the cancer is gastrointestinal stromal tumor.


1470. The method of embodiment 1429, wherein the cancer is gestational trophoblastic disease.


1471. The method of embodiment 1429, wherein the cancer is glioma.


1472. The method of embodiment 1429, wherein the cancer is head and neck cancer.


1473. The method of embodiment 1429, wherein the cancer is hairy cell leukemia.


1474. The method of embodiment 1429, wherein the cancer is hepatocellular cancer.


1475. The method of embodiment 1429, wherein the cancer is histiocytosis.


1476. The method of embodiment 1429, wherein the cancer is Hodgkin lymphoma.


1477. The method of embodiment 1429, wherein the cancer is hypopharyngeal cancer.


1478. The method of embodiment 1429, wherein the cancer is intraocular melanoma.


1479. The method of embodiment 1429, wherein the cancer is islet cell tumor.


1480. The method of embodiment 1429, wherein the cancer is Kaposi sarcoma.


1481. The method of embodiment 1429, wherein the cancer is kidney cancer.


1482. The method of embodiment 1429, wherein the cancer is Langerhans cell histiocytosis.


1483. The method of embodiment 1429, wherein the cancer is laryngeal cancer.


1484. The method of embodiment 1429, wherein the cancer is leukemia.


1485. The method of embodiment 1429, wherein the cancer is lip cancer.


1486. The method of embodiment 1429, wherein the cancer is oral cavity cancer.


1487. The method of embodiment 1429, wherein the cancer is liver cancer.


1488. The method of embodiment 1429, wherein the cancer is lobular carcinoma in situ.


1489. The method of embodiment 1429, wherein the cancer is lung cancer.


1490. The method of embodiment 1429, wherein the cancer is lymphoma.


1491. The method of embodiment 1429, wherein the cancer is macroglobulinemia.


1492. The method of embodiment 1429, wherein the cancer is malignant fibrous histiocytoma.


1493. The method of embodiment 1429, wherein the cancer is melanoma.


1494. The method of embodiment 1429, wherein the cancer is Merkel cell carcinoma.


1495. The method of embodiment 1429, wherein the cancer is mesothelioma.


1496. The method of embodiment 1429, wherein the cancer is metastatic squamous neck cancer with occult primary.


1497. The method of embodiment 1429, wherein the cancer is midline tract carcinoma involving NUT gene.


1498. The method of embodiment 1429, wherein the cancer is mouth cancer.


1499. The method of embodiment 1429, wherein the cancer is multiple endocrine neoplasia syndrome.


1500. The method of embodiment 1429, wherein the cancer is multiple myeloma.


1501. The method of embodiment 1429, wherein the cancer is mycosis fungoides.


1502. The method of embodiment 1429, wherein the cancer is myelodysplastic syndrome.


1503. The method of embodiment 1429, wherein the cancer is myelodysplastic/myeloproliferative neoplasm.


1504. The method of embodiment 1429, wherein the cancer is nasal cavity cancer.


1505. The method of embodiment 1429, wherein the cancer is para-nasal sinus cancer.


1506. The method of embodiment 1429, wherein the cancer is nasopharyngeal cancer.


1507. The method of embodiment 1429, wherein the cancer is neuroblastoma.


1508. The method of embodiment 1429, wherein the cancer is non-Hodgkin lymphoma.


1509. The method of embodiment 1429, wherein the cancer is non-small cell lung cancer.


1510. The method of embodiment 1429, wherein the cancer is oropharyngeal cancer.


1511. The method of embodiment 1429, wherein the cancer is osteosarcoma.


1512. The method of embodiment 1429, wherein the cancer is ovarian cancer.


1513. The method of embodiment 1429, wherein the cancer is pancreatic cancer.


1514. The method of embodiment 1429, wherein the cancer is papillomatosis.


1515. The method of embodiment 1429, wherein the cancer is paraganglioma.


1516. The method of embodiment 1429, wherein the cancer is parathyroid cancer.


1517. The method of embodiment 1429, wherein the cancer is penile cancer.


1518. The method of embodiment 1429, wherein the cancer is pharyngeal cancer.


1519. The method of embodiment 1429, wherein the cancer is pheochromocytomas.


1520. The method of embodiment 1429, wherein the cancer is pituitary tumor.


1521. The method of embodiment 1429, wherein the cancer is pleuropulmonary blastoma.


1522. The method of embodiment 1429, wherein the cancer is primary central nervous system lymphoma.


1523. The method of embodiment 1429, wherein the cancer is prostate cancer.


1524. The method of embodiment 1429, wherein the cancer is rectal cancer.


1525. The method of embodiment 1429, wherein the cancer is renal cell cancer.


1526. The method of embodiment 1429, wherein the cancer is renal pelvis cancer.


1527. The method of embodiment 1429, wherein the cancer is ureter cancer.


1528. The method of embodiment 1429, wherein the cancer is retinoblastoma.


1529. The method of embodiment 1429, wherein the cancer is rhabdoid tumor.


1530. The method of embodiment 1429, wherein the cancer is salivary gland cancer.


1531. The method of embodiment 1429, wherein the cancer is Sezary syndrome.


1532. The method of embodiment 1429, wherein the cancer is skin cancer.


1533. The method of embodiment 1429, wherein the cancer is small cell lung cancer.


1534. The method of embodiment 1429, wherein the cancer is small intestine cancer.


1535. The method of embodiment 1429, wherein the cancer is soft tissue sarcoma.


1536. The method of embodiment 1429, wherein the cancer is spinal cord tumor.


1537. The method of embodiment 1429, wherein the cancer is stomach cancer.


1538. The method of embodiment 1429, wherein the cancer is T-cell lymphoma.


1539. The method of embodiment 1429, wherein the cancer is teratoid tumor.


1540. The method of embodiment 1429, wherein the cancer is testicular cancer.


1541. The method of embodiment 1429, wherein the cancer is throat cancer.


1542. The method of embodiment 1429, wherein the cancer is thymoma.


1543. The method of embodiment 1429, wherein the cancer is thymic carcinoma.


1544. The method of embodiment 1429, wherein the cancer is thyroid cancer.


1545. The method of embodiment 1429, wherein the cancer is urethral cancer.


1546. The method of embodiment 1429, wherein the cancer is uterine cancer.


1547. The method of embodiment 1429, wherein the cancer is vaginal cancer.


1548. The method of embodiment 1429, wherein the cancer is vulvar cancer.


1549. The method of embodiment 1429, wherein the cancer is Wilms tumor.


1550. The method of any one of embodiments 1428 to 1549, further comprising administering at least one further agent to the subject.


1551. A nucleic acid or plurality of nucleic acids encoding the CD2 binding molecule of any one embodiments 1 to 1335.


1552. The nucleic acid or plurality of nucleic acids of embodiment 1551 which is a DNA (are DNAs).


1553. The nucleic acid or plurality of nucleic acids of embodiment 1552 which are in the form of one or more vectors, optionally expression vectors.


1554. The nucleic acid or plurality of nucleic acids of embodiment 1551 which is a mRNA (are mRNAs).


1555. A cell engineered to express the CD2 binding molecule of any one embodiments 1 to 1335.


1556. A cell transfected with one or more expression vectors comprising one or more nucleic acid sequences encoding the CD2 binding molecule of any one embodiments 1 to 1335 under the control of one or more promoters.


1557. The cell of embodiment 1555 or embodiment 1556, wherein expression of the CD2 binding molecule is under the control of an inducible promoter.


1558. The cell of any one of embodiments 1555 to 1557, wherein the CD2 binding molecule is produced in secretable form.


1559. A method of producing a CD2 binding molecule, comprising:

    • (a) culturing the cell of any one of embodiments 1555 to 1558 in conditions under which the CD2 binding molecule is expressed; and
    • (b) recovering the CD2 binding molecule from the cell culture.


1560. A CD3 binding molecule comprising the CDR sequences of CD3-129.


1561. The CD3 binding molecule of embodiment 1560, wherein the CDRs are defined by Kabat numbering, as set forth in Table 12B.


1562. The CD3 binding molecule of embodiment 1560, which comprises the heavy and light chain variable sequences of CD3-129 as set forth in Table 12A.


1563. The CD3 binding molecule of embodiment 1562, comprising the CD3-129 scFv sequence set forth in Table 12A.


1564. A CD3 binding molecule comprising the CDR sequences of CD3-130.


1565. The CD3 binding molecule of embodiment 1564, wherein the CDRs are defined by Kabat numbering, as set forth in Table 12B.


1566. The CD3 binding molecule of embodiment 1564, which comprises the heavy and light chain variable sequences of CD3-130 as set forth in Table 12A.


1567. The CD3 binding molecule of embodiment 1566, comprising the CD3-130 scFv sequence set forth in Table 12A.


1568. The CD3 binding molecule of any one of embodiments 1560 to 1567, which is an antibody fragment.


1569. The CD3 binding molecule of embodiment 1568, wherein the antibody fragment is a scFv.


1570. The CD3 binding molecule of any one of embodiments 1560 to 1567, which is in the form of an antibody.


1571. The CD3 binding molecule of any one of embodiments 1560 to 1567, which is a monospecific antibody.


1572. The CD3 binding molecule of any one of embodiments 1560 to 1567, which is a multispecific binding molecule (MBM) comprising:

    • (a) an antigen-binding module 1 (ABM1) that binds specifically to CD3; and
    • (b) an antigen-binding module 2 (ABM2) that binds specifically to a different target molecule.


1573. The CD3 binding molecule of embodiment 1572, wherein ABM2 specifically binds to a tumor associated antigen (TAA).


1574. The CD3 binding molecule of embodiment 1573, wherein ABM2 is an anti-TAA antibody or an antigen-binding domain thereof.


1575. The CD3 binding molecule of embodiment 1574, wherein the TAA is TSHR, CD171, CS-1, CLL-1, GD3, Tn Ag, FLT3, CD38, CD44v6, B7H3, KIT, IL-13Ra2, IL-11Ra, PSCA, PRSS21, VEGFR2, LewisY, CD24, PDGFR-beta, SSEA-4, MUC1, EGFR, NCAM, CAIX, LMP2, EphA2, fucosyl GM1, sLe, GM3, TGS5, HMWMAA, o-acetyl-GD2, GD2, folate receptor alpha, folate receptor beta, TEM1/CD248, TEM7R, CLDN6, GPRC5D, CXORF61, CD97, CD179a, ALK, polysialic acid, PLAC1, GloboH, NY-BR-1, UPK2, HAVCR1, ADRB3, PANX3, GPR20, LY6K, OR51E2, TAARP, WT1, ETV6-AML, sperm protein 17, XAGE1, Tie 2, MAD-CT-1, MAD-CT-2, Fos-related antigen 1, p53 mutant, hTERT, sarcoma translocation breakpoints, ML-IAP, ERG (TMPRSS2 ETS fusion gene), NA17, PAX3, Androgen receptor, Cyclin B1, MYCN, RhoC, CYP1B1, BORIS, SART3, PAX5, OY-TES1, LCK, AKAP-4, SSX2, CD79a, CD79b, CD72, LAIR1, FCAR, LILRA2, CD300LF, CLEC12A, BST2, EMR2, LY75, GPC3, FCRL5, IGLL1, CD19, CD20, CD30, ERBB2, ROR1, FLT3, TAAG72, CD22, CD33, GD2, BCMA, gp100Tn, FAP, tyrosinase, EPCAM, CEA, Igf-I receptor, EphB2, mesothelin, Cadherin17, CD32b, EGFRvIII, GPNMB, GPR64, HER3, LRP6, LYPD8, NKG2D, SLC34A2, SLC39A6, SLITRK6, or TACSTD2.


1576. The CD3 binding molecule of embodiment 1574, wherein the anti-TAA antibody or antigen-binding domain thereof has the CDR sequences of an antibody set forth in Table 14A or Table 14B.


1577. The CD3 binding molecule of embodiment 1574, wherein the anti-TAA antibody or antigen-binding domain thereof has the heavy and light chain variable region sequences of an antibody set forth in Table 14A or Table 14B.


1578. The CD3 binding molecule of embodiment 1574, wherein the TAA is CD19.


1579. The CD3 binding molecule of embodiment 1578, wherein the anti-TAA antibody or antigen-binding domain thereof comprises heavy chain CDRs having the amino acid sequences of CD19-H1, CD19-H2A, and CD19-H3 as set forth in Table 16 and light chain CDRs having the amino acid sequences of CD19-L1, CD19-L2, and CD19-L3 as set forth in Table 16.


1580. The CD3 binding molecule of embodiment 1578, wherein the anti-TAA antibody or antigen-binding domain thereof comprises a heavy chain variable region having the amino acid sequences of VHA as set forth in Table 16 and a light chain variable region having the amino acid sequences of VLA as set forth in Table 16.


1581. The CD3 binding molecule of embodiment 1578, wherein the anti-TAA antibody or antigen-binding domain thereof comprises heavy chain CDRs having the amino acid sequences of CD19-H1, CD19-H2B, and CD19-H3 as set forth in Table 16 and light chain CDRs having the amino acid sequences of CD19-L1, CD19-L2, and CD19-L3 as set forth in Table 16.


1582. The CD3 binding molecule of embodiment 1578, wherein the anti-TAA antibody or antigen-binding domain thereof comprises a heavy chain variable region having the amino acid sequences of VHB as set forth in Table 16 and a light chain variable region having the amino acid sequences of VLB as set forth in Table 16.


1583. The CD3 binding molecule of embodiment 1578, wherein the anti-TAA antibody or antigen-binding domain thereof comprises heavy chain CDRs having the amino acid sequences of CD19-H1, CD19-H2C, and CD19-H3 as set forth in Table 16 and light chain CDRs having the amino acid sequences of CD19-L1, CD19-L2, and CD19-L3 as set forth in Table 16.


1584. The CD3 binding molecule of embodiment 1578, wherein the anti-TAA antibody or antigen-binding domain thereof comprises a heavy chain variable region having the amino acid sequences of VHC as set forth in Table 16 and a light chain variable region having the amino acid sequences of VLB as set forth in Table 16.


1585. The CD3 binding molecule of embodiment 1578, wherein the anti-TAA antibody or antigen-binding domain thereof comprises heavy chain CDRs having the amino acid sequences of CD19-H1, CD19-H2D, and CD19-H3 as set forth in Table 16 and light chain CDRs having the amino acid sequences of CD19-L1, CD19-L2, and CD19-L3 as set forth in Table 16.


1586. The CD3 binding molecule of embodiment 1578, wherein the anti-TAA antibody or antigen-binding domain thereof comprises a heavy chain variable region having the amino acid sequences of VHD as set forth in Table 16 and a light chain variable region having the amino acid sequences of VLB as set forth in Table 16.


1587. The CD3 binding molecule of embodiment 1574, wherein the TAA is Her2.


1588. The CD3 binding molecule of embodiment 1574, wherein the TAA is mesothelin.


1589. The CD3 binding molecule of embodiment 1574, wherein the TAA is BCMA.


1590. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the CDR sequences of BCMA-1.


1591. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the CDR sequences of BCMA-2.


1592. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the CDR sequences of BCMA-3.


1593. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the CDR sequences of BCMA-4.


1594. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the CDR sequences of BCMA-5.


1595. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the CDR sequences of BCMA-6.


1596. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the CDR sequences of BCMA-7.


1597. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the CDR sequences of BCMA-8.


1598. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the CDR sequences of BCMA-9.


1599. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the CDR sequences of BCMA-10.


1600. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the CDR sequences of BCMA-11.


1601. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the CDR sequences of BCMA-12.


1602. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the CDR sequences of BCMA-13.


1603. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the CDR sequences of BCMA-14.


1604. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the CDR sequences of BCMA-15.


1605. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the CDR sequences of BCMA-16.


1606. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the CDR sequences of BCMA-17.


1607. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the CDR sequences of BCMA-18.


1608. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the CDR sequences of BCMA-19.


1609. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the CDR sequences of BCMA-20.


1610. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the CDR sequences of BCMA-21.


1611. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the CDR sequences of BCMA-22.


1612. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the CDR sequences of BCMA-23.


1613. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the CDR sequences of BCMA-24.


1614. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the CDR sequences of BCMA-25.


1615. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the CDR sequences of BCMA-26.


1616. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the CDR sequences of BCMA-27.


1617. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the CDR sequences of BCMA-28.


1618. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the CDR sequences of BCMA-29.


1619. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the CDR sequences of BCMA-30.


1620. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the CDR sequences of BCMA-31.


1621. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the CDR sequences of BCMA-32.


1622. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the CDR sequences of BCMA-33.


1623. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the CDR sequences of BCMA-34.


1624. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the CDR sequences of BCMA-35.


1625. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the CDR sequences of BCMA-36.


1626. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the CDR sequences of BCMA-37.


1627. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the CDR sequences of BCMA-38.


1628. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the CDR sequences of BCMA-39.


1629. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the CDR sequences of BCMA-40.


1630. The CD3 binding molecule of any one of embodiments 1590 to 1629, wherein the CDRs are defined by Kabat numbering, as set forth in Tables 15B and 15E.


1631. The CD3 binding molecule of any one of embodiments 1590 to 1629, wherein the CDRs are defined by Chothia numbering, as set forth in Tables 15C and 15F.


1632. CD3 binding molecule of any one of embodiments 1590 to 1629, wherein the CDRs are defined by a combination of Kabat and Chothia numbering, as set forth in Tables 15D and 15G.


1633. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-1, as set forth in Table 15A.


1634. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-2, as set forth in Table 15A.


1635. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-3, as set forth in Table 15A.


1636. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-4, as set forth in Table 15A.


1637. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-5, as set forth in Table 15A.


1638. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-6, as set forth in Table 15A.


1639. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-7, as set forth in Table 15A.


1640. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-8, as set forth in Table 15A.


1641. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-9, as set forth in Table 15A.


1642. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-10, as set forth in Table 15A.


1643. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-11, as set forth in Table 15A.


1644. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-12, as set forth in Table 15A.


1645. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-13, as set forth in Table 15A.


1646. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-14, as set forth in Table 15A.


1647. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-15, as set forth in Table 15A.


1648. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-16, as set forth in Table 15A.


1649. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-17, as set forth in Table 15A.


1650. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-18, as set forth in Table 15A.


1651. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-19, as set forth in Table 15A.


1652. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-20, as set forth in Table 15A.


1653. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-21, as set forth in Table 15A.


1654. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-22, as set forth in Table 15A.


1655. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-23, as set forth in Table 15A.


1656. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-24, as set forth in Table 15A.


1657. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-25, as set forth in Table 15A.


1658. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-26, as set forth in Table 15A.


1659. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-27, as set forth in Table 15A.


1660. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-28, as set forth in Table 15A.


1661. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-29, as set forth in Table 15A.


1662. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-30, as set forth in Table 15A.


1663. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-31, as set forth in Table 15A.


1664. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-32, as set forth in Table 15A.


1665. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-33, as set forth in Table 15A.


1666. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-34, as set forth in Table 15A.


1667. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-35, as set forth in Table 15A.


1668. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-36, as set forth in Table 15A.


1669. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-37, as set forth in Table 15A.


1670. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-38, as set forth in Table 15A.


1671. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-39, as set forth in Table 15A.


1672. The CD3 binding molecule of embodiment 1589, wherein ABM2 comprises the heavy and light chain variable sequences of BCMA-40, as set forth in Table 15A.


1673. The CD3 binding molecule of any one of embodiments 1572 to 1672, wherein ABM2 is an antibody, an antibody fragment, an scFv, a dsFv, a Fv, a Fab, an scFab, a (Fab′)2, a single domain antibody (SDAB), a VH or VL domain, or a camelid VHH domain.


1674. The CD3 binding molecule of embodiment 1673, wherein ABM2 is an scFv.


1675. The CD3 binding molecule of any of embodiment 1673, wherein ABM2 is a Fab.


1676. The CD3 binding molecule of embodiment 1572, wherein if TAA is a receptor, ABM2 comprises a receptor binding domain of a ligand of the receptor, and if TAA is a ligand, ABM2 comprises a ligand binding domain of a receptor of the ligand.


1677. The CD3 binding molecule of embodiment 1676, wherein the TAA is TSHR, CD171, CS-1, CLL-1, GD3, Tn Ag, FLT3, CD38, CD44v6, B7H3, KIT, IL-13Ra2, IL-11Ra, PSCA, PRSS21, VEGFR2, LewisY, CD24, PDGFR-beta, SSEA-4, MUC1, EGFR, NCAM, CAIX, LMP2, EphA2, fucosyl GM1, sLe, GM3, TGS5, HMWMAA, o-acetyl-GD2, GD2, folate receptor alpha, folate receptor beta, TEM1/CD248, TEM7R, CLDN6, GPRC5D, CXORF61, CD97, CD179a, ALK, polysialic acid, PLAC1, GloboH, NY-BR-1, UPK2, HAVCR1, ADRB3, PANX3, GPR20, LY6K, OR51E2, TAARP, WT1, ETV6-AML, sperm protein 17, XAGE1, Tie 2, MAD-CT-1, MAD-CT-2, Fos-related antigen 1, p53 mutant, hTERT, sarcoma translocation breakpoints, ML-IAP, ERG (TMPRSS2 ETS fusion gene), NA17, PAX3, Androgen receptor, Cyclin B1, MYCN, RhoC, CYP1B1, BORIS, SART3, PAX5, OY-TES1, LCK, AKAP-4, SSX2, CD79a, CD79b, CD72, LAIR1, FCAR, LILRA2, CD300LF, CLEC12A, BST2, EMR2, LY75, GPC3, FCRL5, IGLL1, CD19, CD20, CD30, ERBB2, ROR1, FLT3, TAAG72, CD22, CD33, GD2, BCMA, gp100Tn, FAP, tyrosinase, EPCAM, CEA, Igf-I receptor, EphB2, mesothelin, Cadherin17, CD32b, EGFRvIII, GPNMB, GPR64, HER3, LRP6, LYPD8, NKG2D, SLC34A2, SLC39A6, SLITRK6, or TACSTD2.


1678. The CD3 binding molecule of any one of embodiments 1572 to 1677, which is a bispecific binding molecule.


1679. The CD3 binding molecule of any one of embodiments 1572 to 1677, which is a trispecific binding molecule (TBM) further comprising a third antigen-binding module (ABM3).


1680. The CD3 binding molecule of embodiment 1679, wherein ABM3 specifically binds to human CD2.


1681. The CD3 binding molecule of embodiment 1680, wherein ABM3 is a CD58 moiety.


1682. The CD3 binding molecule of embodiment 1681, wherein the CD58 moiety comprises the amino acid sequence of CD58-1 as set forth in Table 1.


1683. The CD3 binding molecule of embodiment 1681, wherein the CD58 moiety comprises the amino acid sequence of CD58-2 as set forth in Table 1.


1684. The CD3 binding molecule of embodiment 1681, wherein the CD58 moiety comprises the amino acid sequence of CD58-3 as set forth in Table 1.


1685. The CD3 binding molecule of embodiment 1681, wherein the CD58 moiety comprises the amino acid sequence of CD58-4 as set forth in Table 1.


1686. The CD3 binding molecule of embodiment 1681, wherein the CD58 moiety comprises the amino acid sequence of CD58-5 as set forth in Table 1.


1687. The CD3 binding molecule of embodiment 1686, wherein the amino acid designated as B is a phenylalanine.


1688. The CD3 binding molecule of embodiment 1686, wherein the amino acid designated as B is a serine.


1689. The CD3 binding molecule of any one of embodiments 1686 to 1688, wherein the amino acid designated as J is a valine.


1690. The CD3 binding molecule of any one of embodiments 1686 to 1688, wherein the amino acid designated as J is a lysine.


1691. The CD3 binding molecule of any one of embodiments 1686 to 1690, wherein the amino acid designated as O is a valine.


1692. The CD3 binding molecule of any one of embodiments 1686 to 1690, wherein the amino acid designated as O is a glutamine.


1693. The CD3 binding molecule of any one of embodiments 1686 to 1692, wherein the amino acid designated as U is a valine.


1694. The CD3 binding molecule of any one of embodiments 1686 to 1692, wherein the amino acid designated as U is a lysine.


1695. The CD3 binding molecule of any one of embodiments 1686 to 1694, wherein the amino acid designated as X is a threonine.


1696. The CD3 binding molecule of any one of embodiments 1686 to 1694, wherein the amino acid designated as X is a serine.


1697. The CD3 binding molecule of any one of embodiments 1686 to 1696, wherein the amino acid designated as Z is a leucine.


1698. The CD3 binding molecule of any one of embodiments 1686 to 1696, wherein the amino acid designated as Z is a glycine.


1699. The CD3 binding molecule of embodiment 1686, wherein the CD58 moiety comprises the amino acid sequence of CD58-6 as set forth in Table 1.


1700. The CD3 binding molecule of embodiment 1686, wherein the CD58 moiety comprises the amino acid sequence of CD58-7 as set forth in Table 1.


1701. The CD3 binding molecule of embodiment 1700, wherein the amino acid designated as J is a valine.


1702. The CD3 binding molecule of embodiment 1700, wherein the amino acid designated as J is a lysine.


1703. The CD3 binding molecule of any one of embodiments 1700 to 1702, wherein the amino acid designated as O is a valine.


1704. The CD3 binding molecule of any one of embodiments 1700 to 1702, wherein the amino acid designated as O is a glutamine.


1705. The CD3 binding molecule of embodiment 1686, wherein the CD58 moiety comprises the amino acid sequence of CD58-8 as set forth in Table 1.


1706. The CD3 binding molecule of embodiment 1686, wherein the CD58 moiety comprises the amino acid sequence of CD58-9 as set forth in Table 1.


1707. The CD3 binding molecule of embodiment 1686, wherein the CD58 moiety comprises the amino acid sequence of CD58-10 as set forth in Table 1.


1708. The CD3 binding molecule of embodiment 1686, wherein the CD58 moiety comprises the amino acid sequence of CD58-11 as set forth in Table 1.


1709. The CD3 binding molecule of any one of embodiments 1679 to 1708, which is a trispecific binding molecule.


10. INCORPORATION BY REFERENCE

All publications, patents, patent applications and other documents cited in this application are hereby incorporated by reference in their entireties for all purposes to the same extent as if each individual publication, patent, patent application or other document were individually indicated to be incorporated by reference for all purposes. In the event that there are any inconsistencies between the teachings of one or more of the references incorporated herein and the present disclosure, the teachings of the present specification are intended.

Claims
  • 1. A CD2 binding molecule comprising a variant CD58 domain having a pair of cysteine substitutions as compared to the corresponding domain in SEQ ID NO:1, the cysteine substitutions selected from: (a) a V45C substitution and a M105C substitution;(b) a V54C substitution and a G88C substitution;(c) a V45C substitution and a M114C substitution; or(d) a W56C substitution and a L900 substitution.
  • 2. The CD2 binding molecule of claim 1, wherein the variant CD58 domain comprises an amino acid sequence having at least 90% sequence identity to a CD2-binding portion of SEQ ID NO:1.
  • 3. The CD2 binding molecule of claim 1 or claim 2, wherein the CD2-binding portion of SEQ ID NO:1 comprises the amino acid sequence of SEQ ID NO:6.
  • 4. The CD2 binding molecule of any one of claims 1 to 3, which comprises an amino acid sequence having at least 90% sequence identity to the amino acid sequence of SEQ ID NO:6.
  • 5. The CD2 binding molecule of claim 4, which comprises an amino acid sequence having at least 95% sequence identity to the amino acid sequence of SEQ ID NO:6.
  • 6. The CD2 binding molecule of claim 5, which comprises an amino acid sequence having at least 97% sequence identity to the amino acid sequence of SEQ ID NO:6.
  • 7. The CD2 binding molecule of claim 6, which comprises an amino acid sequence having at least 98% sequence identity to the amino acid sequence of SEQ ID NO:6.
  • 8. The CD2 binding molecule of claim 1 or claim 2, wherein the CD2-binding portion of SEQ ID NO:1 comprises the amino acid sequence of SEQ ID NO:4.
  • 9. The CD2 binding molecule of claim 8, which comprises an amino acid sequence having at least 90% sequence identity to the amino acid sequence of SEQ ID NO:4.
  • 10. The CD2 binding molecule of claim 9, which comprises an amino acid sequence having at least 95% sequence identity to the amino acid sequence of SEQ ID NO:4.
  • 11. The CD2 binding molecule of claim 10, which comprises an amino acid sequence having at least 97% sequence identity to the amino acid sequence of SEQ ID NO:4.
  • 12. The CD2 binding molecule of claim 11, which comprises an amino acid sequence having at least 98% sequence identity to the amino acid sequence of SEQ ID NO:4.
  • 13. The CD2 binding molecule of any one of claims 1 to 12, which comprises a V45C substitution and a M105C substitution as compared to the amino acid sequence of SEQ ID NO:1.
  • 14. The CD2 binding molecule of claim 13, wherein the amino acid sequence comprises the amino acid sequence of SEQ ID NO:8.
  • 15. The CD2 binding molecule of any one of claims 1 to 12, which comprises a V54C substitution and a G88C substitution as compared to the amino acid sequence of SEQ ID NO:1.
  • 16. The CD2 binding molecule of claim 15, wherein the amino acid sequence comprises the amino acid sequence of SEQ ID NO:9.
  • 17. The CD2 binding molecule of any one of claims 1 to 12, which comprises a V45C substitution and a M114C substitution as compared to the amino acid sequence of SEQ ID NO:1.
  • 18. The CD2 binding molecule of claim 17, wherein the amino acid sequence comprises the amino acid sequence of SEQ ID NO:10.
  • 19. The CD2 binding molecule of any one of claims 1 to 12, which comprises a W56C substitution and a L900 substitution as compared to the amino acid sequence of SEQ ID NO:1.
  • 20. The CD2 binding molecule of claim 19, wherein the amino acid sequence comprises the amino acid sequence of SEQ ID NO:11.
  • 21. The CD2 binding molecule of any one of claims 1 to 20, which exhibits increased thermostability as compared to the corresponding CD2 binding molecule without the cysteine substitutions.
  • 22. The CD2 binding molecule of any one of claims 1 to 21, in which the CD2-binding portion exhibits at least a 10% increase in its Tm as compared to the corresponding CD2-binding portion without the cysteine substitutions.
  • 23. The CD2 binding molecule of claim 22, in which the CD2-binding portion exhibits at least a 20% increase in its Tm as compared to the corresponding CD2-binding portion without the cysteine substitutions.
  • 24. The CD2 binding molecule of claim 23, in which the CD2-binding portion exhibits at least a 30% increase in its Tm as compared to the corresponding CD2-binding portion without the cysteine substitutions.
  • 25. The CD2 binding molecule of any one of claims 22 to 24, wherein Tm is measured by differential scanning fluorimetry.
  • 26. The CD2 binding molecule of any one of claims 22 to 24, wherein Tm is measured by differential scanning calorimetry.
  • 27. The CD2 binding molecule of any one of claims 1 to 26, which is a fusion polypeptide.
  • 28. The CD2 binding molecule of claim 27, in which the CD2-binding portion is operably linked to an Fc domain.
  • 29. The CD2 binding molecule of any one of claims 1 to 28, which is a soluble polypeptide.
  • 30. The CD2 binding molecule of any one of claims 1 to 26, which is a multispecific binding molecule (MBM) comprising the variant CD58 domain as a first antigen-binding module (ABM1) and a second antigen-binding module (ABM2), optionally wherein ABM2 binds specifically to a component of a human T-cell receptor (TCR) complex or a tumor associated antigen (TAA).
  • 31. The CD2 binding molecule of claim 30, wherein ABM2 binds specifically to a component of a human T-cell receptor (TCR) complex.
  • 32. The CD2 binding molecule of claim 31, wherein the component of the TCR complex is CD3.
  • 33. The CD2 binding molecule of claim 32, wherein ABM2 is an anti-CD3 antibody or an antigen-binding domain thereof.
  • 34. The CD2 binding molecule of claim 32, wherein ABM2 comprises the CDR sequences of any one of CD3-1 to CD3-130.
  • 35. The CD2 binding molecule of claim 32, wherein ABM2 comprises the heavy and light chain variable sequences of any one of CD3-1 to CD3-28 or CD3-129 to CD3-130, as set forth in Table 12A.
  • 36. The CD2 binding molecule of claim 31, wherein the component of the TCR complex is TCR-α, TCR-β, or a TCR-α/β dimer.
  • 37. The CD2 binding molecule of claim 31, wherein the component of the TCR complex is TCR-γ, TCR-δ, or a TCR-γ/δ dimer.
  • 38. The CD2 binding molecule of claim 30, wherein ABM2 binds specifically to a TAA.
  • 39. The CD2 binding molecule of claim 38, wherein ABM2 is an anti-TAA antibody or an antigen-binding domain thereof.
  • 40. The CD2 binding molecule of claim 39, wherein the TAA is TSHR, CD171, CS-1, CLL-1, GD3, Tn Ag, FLT3, CD38, CD44v6, B7H3, KIT, IL-13Ra2, IL-11Ra, PSCA, PRSS21, VEGFR2, LewisY, CD24, PDGFR-beta, SSEA-4, MUC1, EGFR, NCAM, CAIX, LMP2, EphA2, fucosyl GM1, sLe, GM3, TGS5, HMWMAA, o-acetyl-GD2, GD2, folate receptor alpha, folate receptor beta, TEM1/CD248, TEM7R, CLDN6, GPRC5D, CXORF61, CD97, CD179a, ALK, polysialic acid, PLAC1, GloboH, NY-BR-1, UPK2, HAVCR1, ADRB3, PANX3, GPR20, LY6K, OR51E2, TAARP, WT1, ETV6-AML, sperm protein 17, XAGE1, Tie 2, MAD-CT-1, MAD-CT-2, Fos-related antigen 1, p53 mutant, hTERT, sarcoma translocation breakpoints, ML-IAP, ERG (TMPRSS2 ETS fusion gene), NA17, PAX3, Androgen receptor, Cyclin B1, MYCN, RhoC, CYP1B1, BORIS, SART3, PAX5, OY-TES1, LCK, AKAP-4, SSX2, CD79a, CD79b, CD72, LAIR1, FCAR, LILRA2, CD300LF, CLEC12A, BST2, EMR2, LY75, GPC3, FCRL5, IGLL1, CD19, CD20, CD30, ERBB2, ROR1, FLT3, TAAG72, CD22, CD33, GD2, BCMA, gp100Tn, FAP, tyrosinase, EPCAM, CEA, Igf-I receptor, EphB2, mesothelin, Cadherin17, CD32b, EGFRvIII, GPNMB, GPR64, HER3, LRP6, LYPD8, NKG2D, SLC34A2, SLC39A6, SLITRK6, or TACSTD2.
  • 41. The CD2 binding molecule of claim 39, wherein the TAA is CD19.
  • 42. The CD2 binding molecule of claim 41, wherein the anti-TAA antibody or antigen-binding domain thereof comprises the CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequence of the anti-CD19 antibody NEG258 as defined by Kabat and set forth in Table 17A.
  • 43. The CD2 binding molecule of claim 41, wherein the anti-TAA antibody or antigen-binding domain thereof comprises the CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of the anti-CD19 antibody NEG258 as defined by Chothia and set forth in Table 17A.
  • 44. The CD2 binding molecule of claim 41, wherein the anti-TAA antibody or antigen-binding domain thereof comprises the CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequence of the anti-CD19 antibody NEG258 as defined by IMGT and set forth in Table 17A.
  • 45. The CD2 binding molecule of claim 41, wherein the anti-TAA antibody or antigen-binding domain thereof comprises the CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of the anti-CD19 antibody NEG258 as defined by the combination of Kabat and Chothia and set forth in Table 17A.
  • 46. The CD2 binding molecule of claim 41, wherein the anti-TAA antibody or antigen-binding domain thereof comprises the heavy chain and/or light chain variable sequences of the anti-CD19 antibody NEG258 as set forth in Table 17A.
  • 47. The CD2 binding molecule of claim 41, wherein the anti-TAA antibody or antigen-binding domain thereof comprises the CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequence of the anti-CD19 antibody NEG218 as defined by Kabat and set forth in Table 17B.
  • 48. The CD2 binding molecule of claim 41, wherein the anti-TAA antibody or antigen-binding domain thereof comprises the CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of the anti-CD19 antibody NEG218 as defined by Chothia and set forth in Table 17B.
  • 49. The CD2 binding molecule of claim 41, wherein the anti-TAA antibody or antigen-binding domain thereof comprises the CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequence of the anti-CD19 antibody NEG218 as defined by IMGT and set forth in Table 17B.
  • 50. The CD2 binding molecule of claim 41, wherein the anti-TAA antibody or antigen-binding domain thereof comprises the CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of the anti-CD19 antibody NEG218 as defined by the combination of Kabat and Chothia and set forth in Table 17B.
  • 51. The CD2 binding molecule of claim 41, wherein the anti-TAA antibody or antigen-binding domain thereof comprises the heavy chain and/or light chain variable sequences of the anti-CD19 antibody NEG218 as set forth in Table 17B.
  • 52. The CD2 binding molecule of any one of claims 30 to 51, wherein ABM2 is an antibody, an antibody fragment, an scFv, a dsFv, a Fv, a Fab, an scFab, a (Fab′)2, a single domain antibody (SDAB), a VH or VL domain, or a camelid VHH domain.
  • 53. The CD2 binding molecule of claim 38, wherein if TAA is a receptor, ABM2 comprises a receptor binding domain of a ligand of the receptor, and if TAA is a ligand, ABM2 comprises a ligand binding domain of a receptor of the ligand.
  • 54. The CD2 binding molecule of claim 53, wherein the TAA is TSHR, CD171, CS-1, CLL-1, GD3, Tn Ag, FLT3, CD38, CD44v6, B7H3, KIT, IL-13Ra2, IL-11Ra, PSCA, PRSS21, VEGFR2, LewisY, CD24, PDGFR-beta, SSEA-4, MUC1, EGFR, NCAM, CAIX, LMP2, EphA2, fucosyl GM1, sLe, GM3, TGS5, HMWMAA, o-acetyl-GD2, GD2, folate receptor alpha, folate receptor beta, TEM1/CD248, TEM7R, CLDN6, GPRC5D, CXORF61, CD97, CD179a, ALK, polysialic acid, PLAC1, GloboH, NY-BR-1, UPK2, HAVCR1, ADRB3, PANX3, GPR20, LY6K, OR51E2, TAARP, WT1, ETV6-AML, sperm protein 17, XAGE1, Tie 2, MAD-CT-1, MAD-CT-2, Fos-related antigen 1, p53 mutant, hTERT, sarcoma translocation breakpoints, ML-IAP, ERG (TMPRSS2 ETS fusion gene), NA17, PAX3, Androgen receptor, Cyclin B1, MYCN, RhoC, CYP1B1, BORIS, SART3, PAX5, OY-TES1, LCK, AKAP-4, SSX2, CD79a, CD79b, CD72, LAIR1, FCAR, LILRA2, CD300LF, CLEC12A, BST2, EMR2, LY75, GPC3, FCRL5, IGLL1, CD19, CD20, CD30, ERBB2, ROR1, FLT3, TAAG72, CD22, CD33, GD2, BCMA, gp100Tn, FAP, tyrosinase, EPCAM, CEA, Igf-I receptor, EphB2, mesothelin, Cadherin17, CD32b, EGFRvIII, GPNMB, GPR64, HER3, LRP6, LYPD8, NKG2D, SLC34A2, SLC39A6, SLITRK6, or TACSTD2.
  • 55. The CD2 binding molecule of any one of claims 30 to 54, which is a bispecific binding molecule (BBM).
  • 56. The CD2 binding molecule of claim 55, which is bivalent.
  • 57. The CD2 binding molecule of claim 55, which is trivalent.
  • 58. The CD2 binding molecule of claim 55, which is tetravalent.
  • 59. The CD2 binding molecule of any one of claims 30 to 54, which is a trispecific binding molecule (TBM) further comprising a third antigen-binding module (ABM3), optionally wherein ABM3 binds specifically to a human tumor-associated antigen (TAA).
  • 60. The CD2 binding molecule of claim 59, wherein ABM3 binds specifically to a human TAA, and wherein when ABM2 binds to a TAA, ABM2 and ABM3 bind specifically to different TAAs.
  • 61. The CD2 binding molecule of claim 60, wherein ABM3 is an anti-TAA antibody or an antigen-binding domain thereof.
  • 62. The CD2 binding molecule of claim 61, wherein ABM3 binds specifically to a TAA which is TSHR, CD171, CS-1, CLL-1, GD3, Tn Ag, FLT3, CD38, CD44v6, B7H3, KIT, IL-13Ra2, IL-11Ra, PSCA, PRSS21, VEGFR2, LewisY, CD24, PDGFR-beta, SSEA-4, MUC1, EGFR, NCAM, CAIX, LMP2, EphA2, fucosyl GM1, sLe, GM3, TGS5, HMWMAA, o-acetyl-GD2, GD2, folate receptor alpha, folate receptor beta, TEM1/CD248, TEM7R, CLDN6, GPRC5D, CXORF61, CD97, CD179a, ALK, polysialic acid, PLAC1, GloboH, NY-BR-1, UPK2, HAVCR1, ADRB3, PANX3, GPR20, LY6K, OR51E2, TAARP, WT1, ETV6-AML, sperm protein 17, XAGE1, Tie 2, MAD-CT-1, MAD-CT-2, Fos-related antigen 1, p53 mutant, hTERT, sarcoma translocation breakpoints, ML-IAP, ERG (TMPRSS2 ETS fusion gene), NA17, PAX3, Androgen receptor, Cyclin B1, MYCN, RhoC, CYP1B1, BORIS, SART3, PAX5, OY-TES1, LCK, AKAP-4, SSX2, CD79a, CD79b, CD72, LAIR1, FCAR, LILRA2, CD300LF, CLEC12A, BST2, EMR2, LY75, GPC3, FCRL5, IGLL1, CD19, CD20, CD30, ERBB2, ROR1, FLT3, TAAG72, CD22, CD33, GD2, BCMA, gp100Tn, FAP, tyrosinase, EPCAM, CEA, Igf-I receptor, EphB2, mesothelin, Cadherin17, CD32b, EGFRvIII, GPNMB, GPR64, HER3, LRP6, LYPD8, NKG2D, SLC34A2, SLC39A6, SLITRK6, or TACSTD2.
  • 63. The CD2 binding molecule of claim 61, wherein ABM3 binds to CD19.
  • 64. The CD2 binding molecule of claim 63, wherein ABM3 comprises the CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequence of the anti-CD19 antibody NEG258 as defined by Kabat and set forth in Table 17A.
  • 65. The CD2 binding molecule of claim 63, wherein ABM3 comprises the CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of the anti-CD19 antibody NEG258 as defined by Chothia and set forth in Table 17A.
  • 66. The CD2 binding molecule of claim 63, wherein ABM3 comprises the CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequence of the anti-CD19 antibody NEG258 as defined by IMGT and set forth in Table 17A.
  • 67. The CD2 binding molecule of claim 63, wherein ABM3 comprises the CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of the anti-CD19 antibody NEG258 as defined by the combination of Kabat and Chothia and set forth in Table 17A.
  • 68. The CD2 binding molecule of claim 63, wherein ABM3 comprises the heavy chain and/or light chain variable sequences of the anti-CD19 antibody NEG258 as set forth in Table 17A.
  • 69. The CD2 binding molecule of claim 63, wherein ABM3 comprises the CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequence of the anti-CD19 antibody NEG218 as defined by Kabat and set forth in Table 17B.
  • 70. The CD2 binding molecule of claim 63, wherein ABM3 comprises the CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of the anti-CD19 antibody NEG218 as defined by Chothia and set forth in Table 17B.
  • 71. The CD2 binding molecule of claim 63, wherein ABM3 comprises the CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequence of the anti-CD19 antibody NEG218 as defined by IMGT and set forth in Table 17B.
  • 72. The CD2 binding molecule of claim 63, wherein ABM3 comprises the CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 sequences of the anti-CD19 antibody NEG218 as defined by the combination of Kabat and Chothia and set forth in Table 17B.
  • 73. The CD2 binding molecule of claim 63, wherein ABM3 comprises the heavy chain and/or light chain variable sequences of the anti-CD19 antibody NEG218 as set forth in Table 17B.
  • 74. The CD2 binding molecule of any one of claims 59 to 73, wherein ABM3 is an antibody, an antibody fragment, an scFv, a dsFv, a Fv, a Fab, an scFab, a (Fab′)2, a single domain antibody (SDAB), a VH or VL domain, or a camelid VHH domain.
  • 75. The CD2 binding molecule of claim 60, wherein if ABM3 binds a TAA that is a receptor, ABM3 comprises a receptor binding domain of a ligand of the receptor, and if ABM3 binds a TAA that is a ligand, ABM3 comprises a ligand binding domain of a receptor of the ligand.
  • 76. The CD2 binding molecule of claim 75, wherein ABM3 binds a TAA which is TSHR, CD171, CS-1, CLL-1, GD3, Tn Ag, FLT3, CD38, CD44v6, B7H3, KIT, IL-13Ra2, IL-11Ra, PSCA, PRSS21, VEGFR2, LewisY, CD24, PDGFR-beta, SSEA-4, MUC1, EGFR, NCAM, CAIX, LMP2, EphA2, fucosyl GM1, sLe, GM3, TGS5, HMWMAA, o-acetyl-GD2, GD2, folate receptor alpha, folate receptor beta, TEM1/CD248, TEM7R, CLDN6, GPRC5D, CXORF61, CD97, CD179a, ALK, polysialic acid, PLAC1, GloboH, NY-BR-1, UPK2, HAVCR1, ADRB3, PANX3, GPR20, LY6K, OR51E2, TAARP, WT1, ETV6-AML, sperm protein 17, XAGE1, Tie 2, MAD-CT-1, MAD-CT-2, Fos-related antigen 1, p53 mutant, hTERT, sarcoma translocation breakpoints, ML-IAP, ERG (TMPRSS2 ETS fusion gene), NA17, PAX3, Androgen receptor, Cyclin B1, MYCN, RhoC, CYP1B1, BORIS, SART3, PAX5, OY-TES1, LCK, AKAP-4, SSX2, CD79a, CD79b, CD72, LAIR1, FCAR, LILRA2, CD300LF, CLEC12A, BST2, EMR2, LY75, GPC3, FCRL5, IGLL1, CD19, CD20, CD30, ERBB2, ROR1, FLT3, TAAG72, CD22, CD33, GD2, BCMA, gp100Tn, FAP, tyrosinase, EPCAM, CEA, Igf-I receptor, EphB2, mesothelin, Cadherin17, CD32b, EGFRvIII, GPNMB, GPR64, HER3, LRP6, LYPD8, NKG2D, SLC34A2, SLC39A6, SLITRK6, or TACSTD2.
  • 77. The CD2 binding molecule of any one of claims 59 to 76, which is trivalent.
  • 78. The CD2 binding molecule of any one of claims 59 to 76, which is tetravalent.
  • 79. The CD2 binding molecule of any one of claims 59 to 76, which is pentavalent.
  • 80. The CD2 binding molecule of any one of claims 59 to 76, which is hexavalent.
  • 81. The CD2 binding molecule of any one of claims 30 to 80, which comprises a first variant Fc region and a second variant Fc region that together form an Fc heterodimer.
  • 82. The CD2 binding molecule of any one of claims 59 to 73, which comprises: (a) a first monomer or half antibody comprising: (i) a first chain comprising a first variant Fc region and a first heavy chain variable domain;(ii) the variant CD58 domain; and(b) a second monomer or half antibody comprising: (i) a second chain comprising a second variant Fc region and first heavy chain variable domain;(ii) a second scFv domain; and(c) a third chain comprising a light chain constant domain and a light chain variable domain; whereinthe first and second variant Fc regions form a heterodimer,the first heavy chain variable domain and the light chain variable domain form ABM2, andthe second scFv domain forms ABM3.
  • 83. The CD2 binding molecule of any one of claims 59 to 73, which comprises: (a) a first monomer or half antibody comprising: (i) a first chain comprising a first variant Fc region and a first heavy chain variable domain;(ii) a first scFv domain; and(b) a second monomer or half antibody comprising: (i) a second chain comprising a second variant Fc region and first heavy chain variable domain;(ii) the variant CD58 domain; and(c) a third chain comprising a light chain constant domain and a light chain variable domain; whereinthe first and second variant Fc regions form a heterodimer,the first heavy chain variable domain and the light chain variable domain form ABM2, andthe first scFv domain forms ABM3.
  • 84. The CD2 binding molecule of any one of claims 59 to 73, which comprises: (a) a first monomer or half antibody comprising: (i) a first chain comprising a first variant Fc region and a first heavy chain variable domain;(ii) a first scFv domain; and(b) a second monomer or half antibody comprising: (i) a second chain comprising a second variant Fc region and first heavy chain variable domain;(ii) the variant CD58 domain; and(c) a third chain comprising a light chain constant domain and a light chain variable domain; wherein:the first and second variant Fc regions form a heterodimer,the first heavy chain variable domain and the light chain variable domain form ABM3, andthe first scFv domain forms ABM2.
  • 85. The CD2 binding molecule of any one of claims 59 to 73, which comprises: (a) a first monomer or half antibody comprising: (i) a first chain comprising a first variant Fc region and a first heavy chain variable domain;(ii) the variant CD58 domain; and(b) a second monomer or half antibody comprising: (i) a second chain comprising a second variant Fc region and first heavy chain variable domain;(ii) a second scFv domain; and(c) a third chain comprising a light chain constant domain and a light chain variable domain; whereinthe first and second variant Fc regions form a heterodimer,the first heavy chain variable domain and the light chain variable domain form ABM3, andthe second scFv domain forms ABM2.
  • 86. A conjugate comprising (a) the CD2 binding molecule of any one of claims 1 to 85, and (b) an agent.
  • 87. The conjugate of claim 86, wherein the agent is a therapeutic agent, a diagnostic agent, a masking moiety, a cleavable moiety, a stabilizing moiety or any combination thereof.
  • 88. A pharmaceutical composition comprising the CD2 binding molecule of any one of claims 1 to 29 and a pharmaceutically acceptable excipient.
  • 89. A method of treating an immune or inflammatory disorder, comprising administering to a subject in need thereof the CD2 binding molecule of any one of claims 1 to 29 or the pharmaceutical composition of claim 88.
  • 90. A pharmaceutical composition comprising the CD2 binding molecule of any one of claims to 1 to 85 or the conjugate of claim 85 or claim 86, and (b) a pharmaceutically acceptable excipient.
  • 91. A method of treating a subject with cancer, comprising administering to a subject suffering from cancer an effective amount of the CD2 binding molecule of any one of claims 1 to 85, the conjugate of claim 85 or claim 86, or the pharmaceutical composition of claim 90.
  • 92. The method of claim 91, wherein the cancer is HER2+ cancer, acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), adrenocortical carcinoma, anal cancer, appendix cancer, astrocytoma, basal cell carcinoma, brain tumor, bile duct cancer, bladder cancer, bone cancer, breast cancer, bronchial tumor, Burkitt Lymphoma, carcinoma of unknown primary origin, cardiac tumor, cervical cancer, chordoma, chronic lymphocytic leukemia (CLL), chronic myelogenous leukemia (CML), chronic myeloproliferative neoplasm, colon cancer, colorectal cancer, craniopharyngioma, cutaneous T-cell lymphoma, ductal carcinoma, embryonal tumor, endometrial cancer, ependymoma, esophageal cancer, esthesioneuroblastoma, fibrous histiocytoma, Ewing sarcoma, eye cancer, germ cell tumor, gallbladder cancer, gastric cancer, gastrointestinal carcinoid tumor, gastrointestinal stromal tumor, gestational trophoblastic disease, glioma, head and neck cancer, hairy cell leukemia, hepatocellular cancer, histiocytosis, Hodgkin lymphoma, hypopharyngeal cancer, intraocular melanoma, islet cell tumor, Kaposi sarcoma, kidney cancer, Langerhans cell histiocytosis, laryngeal cancer, leukemia, lip and oral cavity cancer, liver cancer, lobular carcinoma in situ, lung cancer, lymphoma, macroglobulinemia, malignant fibrous histiocytoma, melanoma, Merkel cell carcinoma, mesothelioma, metastatic squamous neck cancer with occult primary, midline tract carcinoma involving NUT gene, mouth cancer, multiple endocrine neoplasia syndrome, multiple myeloma, mycosis fungoides, myelodysplastic syndrome, myelodysplastic/myeloproliferative neoplasm, nasal cavity and para-nasal sinus cancer, nasopharyngeal cancer, neuroblastoma, non-Hodgkin lymphoma, non-small cell lung cancer, oropharyngeal cancer, osteosarcoma, ovarian cancer, pancreatic cancer, papillomatosis, paraganglioma, parathyroid cancer, penile cancer, pharyngeal cancer, pheochromocytomas, pituitary tumor, pleuropulmonary blastoma, primary central nervous system lymphoma, prostate cancer, rectal cancer, renal cell cancer, renal pelvis and ureter cancer, retinoblastoma, rhabdoid tumor, salivary gland cancer, Sezary syndrome, skin cancer, small cell lung cancer, small intestine cancer, soft tissue sarcoma, spinal cord tumor, stomach cancer, T-cell lymphoma, teratoid tumor, testicular cancer, throat cancer, thymoma and thymic carcinoma, thyroid cancer, urethral cancer, uterine cancer, vaginal cancer, vulvar cancer, or Wilms tumor.
  • 93. A nucleic acid or plurality of nucleic acids encoding the CD2 binding molecule of any one claims 1 to 85.
  • 94. A cell engineered to express the CD2 binding molecule of any one claims 1 to 85.
  • 95. A cell transfected with one or more expression vectors comprising one or more nucleic acid sequences encoding the CD2 binding molecule of any one claims 1 to 85 under the control of one or more promoters.
  • 96. A method of producing a CD2 binding molecule, comprising: (a) culturing the cell of claim 94 or claim 95 in conditions under which the CD2 binding molecule is expressed; and(b) recovering the CD2 binding molecule from the cell culture.
  • 97. A CD3 binding molecule comprising the CDR sequences of CD3-129.
  • 98. The CD3 binding molecule of claim 97, wherein the CDRs are defined by Kabat numbering, as set forth in Table 12B.
  • 99. The CD3 binding molecule of claim 97, which comprises the heavy and light chain variable sequences of CD3-129 as set forth in Table 12A.
  • 100. The CD3 binding molecule of claim 99, comprising the CD3-129 scFv sequence set forth in Table 12A.
  • 101. A CD3 binding molecule comprising the CDR sequences of CD3-130.
  • 102. The CD3 binding molecule of claim 101, wherein the CDRs are defined by Kabat numbering, as set forth in Table 12B.
  • 103. The CD3 binding molecule of claim 101, which comprises the heavy and light chain variable sequences of CD3-130 as set forth in Table 12A.
  • 104. The CD3 binding molecule of claim 103, comprising the CD3-130 scFv sequence set forth in Table 12A.
  • 105. The CD3 binding molecule of any one of claims 97 to 104, which is an antibody fragment.
  • 106. The CD3 binding molecule of claim 105, wherein the antibody fragment is a scFv.
  • 107. The CD3 binding molecule of any one of claims 97 to 104, which is in the form of an antibody.
  • 108. The CD3 binding molecule of any one of claims 97 to 104, which is a monospecific antibody.
  • 109. The CD3 binding molecule of any one of claims 97 to 104, which is a multispecific binding molecule (MBM) comprising: (a) an antigen-binding module 1 (ABM1) that binds specifically to CD3; and(b) an antigen-binding module 2 (ABM2) that binds specifically to a different target molecule.
  • 110. The CD3 binding molecule of claim 109, wherein ABM2 specifically binds to a tumor associated antigen (TAA).
  • 111. The CD3 binding molecule of claim 110, wherein ABM2 is an anti-TAA antibody or an antigen-binding domain thereof.
  • 112. The CD3 binding molecule of claim 111, wherein the TAA is TSHR, CD171, CS-1, CLL-1, GD3, Tn Ag, FLT3, CD38, CD44v6, B7H3, KIT, IL-13Ra2, IL-11Ra, PSCA, PRSS21, VEGFR2, LewisY, CD24, PDGFR-beta, SSEA-4, MUC1, EGFR, NCAM, CAIX, LMP2, EphA2, fucosyl GM1, sLe, GM3, TGS5, HMWMAA, o-acetyl-GD2, GD2, folate receptor alpha, folate receptor beta, TEM1/CD248, TEM7R, CLDN6, GPRC5D, CXORF61, CD97, CD179a, ALK, polysialic acid, PLAC1, GloboH, NY-BR-1, UPK2, HAVCR1, ADRB3, PANX3, GPR20, LY6K, OR51E2, TAARP, WT1, ETV6-AML, sperm protein 17, XAGE1, Tie 2, MAD-CT-1, MAD-CT-2, Fos-related antigen 1, p53 mutant, hTERT, sarcoma translocation breakpoints, ML-IAP, ERG (TMPRSS2 ETS fusion gene), NA17, PAX3, Androgen receptor, Cyclin B1, MYCN, RhoC, CYP1B1, BORIS, SART3, PAX5, OY-TES1, LCK, AKAP-4, SSX2, CD79a, CD79b, CD72, LAIR1, FCAR, LILRA2, CD300LF, CLEC12A, BST2, EMR2, LY75, GPC3, FCRL5, IGLL1, CD19, CD20, CD30, ERBB2, ROR1, FLT3, TAAG72, CD22, CD33, GD2, BCMA, gp100Tn, FAP, tyrosinase, EPCAM, CEA, Igf-I receptor, EphB2, mesothelin, Cadherin17, CD32b, EGFRvIII, GPNMB, GPR64, HER3, LRP6, LYPD8, NKG2D, SLC34A2, SLC39A6, SLITRK6, or TACSTD2.
  • 113. The CD3 binding molecule of claim 111, wherein the anti-TAA antibody or antigen-binding domain thereof has the CDR sequences of an antibody set forth in Table 14A or Table 14B.
  • 114. The CD3 binding molecule of claim 111, wherein the anti-TAA antibody or antigen-binding domain thereof has the heavy and light chain variable region sequences of an antibody set forth in Table 14A or Table 14B.
  • 115. The CD3 binding molecule of claim 111, wherein the TAA is CD19.
  • 116. The CD3 binding molecule of claim 115, wherein the anti-TAA antibody or antigen-binding domain thereof comprises heavy chain CDRs having the amino acid sequences of CD19-H1, CD19-H2A, and CD19-H3 as set forth in Table 16 and light chain CDRs having the amino acid sequences of CD19-L1, CD19-L2, and CD19-L3 as set forth in Table 16.
  • 117. The CD3 binding molecule of claim 115, wherein the anti-TAA antibody or antigen-binding domain thereof comprises a heavy chain variable region having the amino acid sequences of VHA as set forth in Table 16 and a light chain variable region having the amino acid sequences of VLA as set forth in Table 16.
  • 118. The CD3 binding molecule of claim 115, wherein the anti-TAA antibody or antigen-binding domain thereof comprises heavy chain CDRs having the amino acid sequences of CD19-H1, CD19-H2B, and CD19-H3 as set forth in Table 16 and light chain CDRs having the amino acid sequences of CD19-L1, CD19-L2, and CD19-L3 as set forth in Table 16.
  • 119. The CD3 binding molecule of claim 115, wherein the anti-TAA antibody or antigen-binding domain thereof comprises a heavy chain variable region having the amino acid sequences of VHB as set forth in Table 16 and a light chain variable region having the amino acid sequences of VLB as set forth in Table 16.
  • 120. The CD3 binding molecule of claim 115, wherein the anti-TAA antibody or antigen-binding domain thereof comprises heavy chain CDRs having the amino acid sequences of CD19-H1, CD19-H2C, and CD19-H3 as set forth in Table 16 and light chain CDRs having the amino acid sequences of CD19-L1, CD19-L2, and CD19-L3 as set forth in Table 16.
  • 121. The CD3 binding molecule of claim 115, wherein the anti-TAA antibody or antigen-binding domain thereof comprises a heavy chain variable region having the amino acid sequences of VHC as set forth in Table 16 and a light chain variable region having the amino acid sequences of VLB as set forth in Table 16.
  • 122. The CD3 binding molecule of claim 115, wherein the anti-TAA antibody or antigen-binding domain thereof comprises heavy chain CDRs having the amino acid sequences of CD19-H1, CD19-H2D, and CD19-H3 as set forth in Table 16 and light chain CDRs having the amino acid sequences of CD19-L1, CD19-L2, and CD19-L3 as set forth in Table 16.
  • 123. The CD3 binding molecule of claim 115, wherein the anti-TAA antibody or antigen-binding domain thereof comprises a heavy chain variable region having the amino acid sequences of VHD as set forth in Table 16 and a light chain variable region having the amino acid sequences of VLB as set forth in Table 16.
  • 124. The CD3 binding molecule of claim 111, wherein the TAA is BCMA.
  • 125. The CD3 binding molecule of claim 124, wherein ABM2 comprises the CDR sequences of any one of BCMA-1 to BCMA-40.
  • 126. The CD3 binding molecule of claim 125, wherein the CDRs are defined by Kabat numbering, as set forth in Tables 15B and 15E.
  • 127. The CD3 binding molecule of claim 125, wherein the CDRs are defined by Chothia numbering, as set forth in Tables 15C and 15F.
  • 128. CD3 binding molecule of claim 125, wherein the CDRs are defined by a combination of Kabat and Chothia numbering, as set forth in Tables 15D and 15G.
  • 129. The CD3 binding molecule of claim 124, wherein ABM2 comprises the heavy and light chain variable sequences of any one of BCMA-1 to BCMA-40, as set forth in Table 15A.
  • 130. The CD3 binding molecule of any one of claims 109 to 129, wherein ABM2 is an antibody, an antibody fragment, an scFv, a dsFv, a Fv, a Fab, an scFab, a (Fab′)2, a single domain antibody (SDAB), a VH or VL domain, or a camelid VHH domain.
  • 131. The CD3 binding molecule of claim 130, wherein ABM2 is an scFv.
  • 132. The CD3 binding molecule of claim 130, wherein ABM2 is a Fab.
  • 133. The CD3 binding molecule of claim 110, wherein if TAA is a receptor, ABM2 comprises a receptor binding domain of a ligand of the receptor, and if TAA is a ligand, ABM2 comprises a ligand binding domain of a receptor of the ligand.
  • 134. The CD3 binding molecule of claim 133, wherein the TAA is TSHR, CD171, CS-1, CLL-1, GD3, Tn Ag, FLT3, CD38, CD44v6, B7H3, KIT, IL-13Ra2, IL-11Ra, PSCA, PRSS21, VEGFR2, LewisY, CD24, PDGFR-beta, SSEA-4, MUC1, EGFR, NCAM, CAIX, LMP2, EphA2, fucosyl GM1, sLe, GM3, TGS5, HMWMAA, o-acetyl-GD2, GD2, folate receptor alpha, folate receptor beta, TEM1/CD248, TEM7R, CLDN6, GPRC5D, CXORF61, CD97, CD179a, ALK, polysialic acid, PLAC1, GloboH, NY-BR-1, UPK2, HAVCR1, ADRB3, PANX3, GPR20, LY6K, OR51E2, TAARP, WT1, ETV6-AML, sperm protein 17, XAGE1, Tie 2, MAD-CT-1, MAD-CT-2, Fos-related antigen 1, p53 mutant, hTERT, sarcoma translocation breakpoints, ML-IAP, ERG (TMPRSS2 ETS fusion gene), NA17, PAX3, Androgen receptor, Cyclin B1, MYCN, RhoC, CYP1B1, BORIS, SART3, PAX5, OY-TES1, LCK, AKAP-4, SSX2, CD79a, CD79b, CD72, LAIR1, FCAR, LILRA2, CD300LF, CLEC12A, BST2, EMR2, LY75, GPC3, FCRL5, IGLL1, CD19, CD20, CD30, ERBB2, ROR1, FLT3, TAAG72, CD22, CD33, GD2, BCMA, gp100Tn, FAP, tyrosinase, EPCAM, CEA, Igf-I receptor, EphB2, mesothelin, Cadherin17, CD32b, EGFRvIII, GPNMB, GPR64, HER3, LRP6, LYPD8, NKG2D, SLC34A2, SLC39A6, SLITRK6, or TACSTD2.
  • 135. The CD3 binding molecule of any one of claims 109 to 134, which is a bispecific binding molecule.
  • 136. The CD3 binding molecule of any one of claims 109 to 134, which is a trispecific binding molecule (TBM) further comprising a third antigen-binding module (ABM3).
  • 137. The CD3 binding molecule of claim 136, wherein ABM3 specifically binds to human CD2.
  • 138. The CD3 binding molecule of claim 137, wherein ABM3 is a CD58 moiety.
  • 139. The CD3 binding molecule of any one of claims 136 to 138, which is a trispecific binding molecule.
1. CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the priority benefit of U.S. provisional application Nos. 62/850,918, filed May 21, 2019, and 62/854,715, filed May 30, 2019, the contents of both of which are incorporated herein in their entireties by reference thereto.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2020/033566 5/19/2020 WO
Provisional Applications (2)
Number Date Country
62850918 May 2019 US
62854715 May 2019 US