VARIANT NUCLEIC ACID LIBRARIES FOR TIGIT

Abstract
Provided herein are methods and compositions relating to TIGIT libraries having nucleic acids encoding for a scaffold comprising a TIGIT domain. TIGIT libraries described herein encode for immunoglobulins such as antibodies.
Description
CROSS-REFERENCE

This application claims the benefit of U.S. Provisional Patent Application No. 63/165,651 filed on Mar. 24, 2021, which is incorporated by reference in its entirety.


SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on May 5, 2022, is named 44854-819_201_SL.txt and is 1,459,676 bytes in size.


BACKGROUND

TIGIT (formally known as T cell immunoreceptor with immunoglobulin and ITIM domains) regulates T-cell mediated immunity. TIGIT has been implicated in various diseases and disorders and therapeutic antibodies targeting TIGIT have clinical significance. Antibodies possess the capability to bind with high specificity and affinity to biological targets. However, the design of therapeutic antibodies is challenging due to balancing of immunological effects with efficacy. Thus, there is a need to develop compositions and methods for generation of antibodies for use in therapeutics.


INCORPORATION BY REFERENCE

All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.


BRIEF SUMMARY

Provided herein are antibodies or antibody fragments comprising an amino acid sequence at least about 90% identical to that set forth in any one of SEQ ID NOs: 35-44 or 62-2238. In some embodiments, the antibody or antibody fragment comprises an amino acid sequence at least about 95% identical to that set forth in any one of SEQ ID NOs: 35-44 or 62-2238. In some embodiments, the antibody or antibody fragment comprises an amino acid sequence as set forth in any one of SEQ ID NOs: 35-44. In some embodiments, the antibody is a monoclonal antibody, a polyclonal antibody, a bi-specific antibody, a multispecific antibody, a grafted antibody, a human antibody, a humanized antibody, a synthetic antibody, a chimeric antibody, a camelized antibody, a single-chain Fvs (scFv), a single chain antibody, a Fab fragment, a F(ab')2 fragment, a Fd fragment, a Fv fragment, a single-domain antibody, an isolated complementarity determining region (CDR), a diabody, a fragment comprised of only a single monomeric variable domain, disulfide-linked Fvs (sdFv), an intrabody, an anti-idiotypic (anti-Id) antibody, or ab antigen-binding fragments thereof. In some embodiments, the antibody or antibody fragment binds to TIGIT with a KD of less than 75 nM. In some embodiments, the antibody or antibody fragment binds to TIGIT with a KD of less than 50 nM. In some embodiments, the antibody or antibody fragment binds to TIGIT with a KD of less than 25 nM. In some embodiments, the antibody or antibody fragment binds to TIGIT with a KD of less than 10 nM.


Provided herein are antibodies or antibody fragments that binds TIGIT, comprising an immunoglobulin heavy chain comprising an amino acid sequence at least about 90% identical to that set forth in any one of SEQ ID NOs: 35-44. In some embodiments, the immunoglobulin heavy chain comprises an amino acid sequence at least about 95% identical to that set forth in any one of SEQ ID NOs: 35-44. In some embodiments, the immunoglobulin heavy chain comprises an amino acid sequence as set forth in any one of SEQ ID NOs: 35-44 or 62-2238. In some embodiments, the antibody is a monoclonal antibody, a polyclonal antibody, a bi-specific antibody, a multispecific antibody, a grafted antibody, a human antibody, a humanized antibody, a synthetic antibody, a chimeric antibody, a camelized antibody, a single-chain Fvs (scFv), a single chain antibody, a Fab fragment, a F(ab')2 fragment, a Fd fragment, a Fv fragment, a single-domain antibody, an isolated complementarity determining region (CDR), a diabody, a fragment comprised of only a single monomeric variable domain, disulfide-linked Fvs (sdFv), an intrabody, an anti-idiotypic (anti-Id) antibody, or ab antigen-binding fragments thereof. In some embodiments, the antibody or antibody fragment thereof is chimeric or humanized. In some embodiments, the antibody or antibody fragment binds to TIGIT with a KD of less than 75 nM. In some embodiments, the antibody or antibody fragment binds to TIGIT with a KD of less than 50 nM. In some embodiments, the antibody or antibody fragment binds to TIGIT with a KD of less than 25 nM. In some embodiments, the antibody or antibody fragment binds to TIGIT with a KD of less than 10 nM.


Provided herein are methods of treating cancer comprising administering the antibodies or antibody fragments described herein.


Provided herein are methods of treating a viral infection comprising administering the antibodies or antibody fragments described herein.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 presents a diagram of steps demonstrating an exemplary process workflow for gene synthesis as disclosed herein.



FIG. 2 illustrates an example of a computer system.



FIG. 3 is a block diagram illustrating an architecture of a computer system.



FIG. 4 is a diagram demonstrating a network configured to incorporate a plurality of computer systems, a plurality of cell phones and personal data assistants, and Network Attached Storage (NAS).



FIG. 5 is a block diagram of a multiprocessor computer system using a shared virtual address memory space.



FIGS. 6-7 depicts a graph of TIGIT affinity distribution for the VHH libraries, depicting either the affinity threshold from 20 to 4000 (FIG. 6) or the affinity threshold from 20 to 1000 (FIG. 7). Out of 140 VHH binders, 51 variants were <100 nM and 90 variants were <200 nM.



FIGS. 8A-8C depict graphs of CDR3 counts per length for ‘VHH library,’ (FIG. 8A) ‘VHH shuffle’ library (FIG. 8B), and ‘VHH hShuffle library’ (FIG. 8C).



FIG. 9 depicts a graph of a TIGIT:CD155 blockade assay for TIGIT VHH Fc binders. Concentration of the TIGIT VHH Fc binders in nanomolar (nM) is on the x-axis and relative HRP signal is on the y-axis.



FIG. 10A depicts a schema of the VHH libraries described herein. Figure discloses SEQ ID NO: 2244.



FIG. 10B depicts a schema of design of phage-displayed hyperimmune libraries generated herein.



FIGS. 11A-11B depict heavy chain CDR length distribution of the hyperimmune libraries as assessed by next generation sequencing. FIG. 11A depicts a graph of CDR3 counts per length. FIG. 11B depicts graphs of CDRH1, CDRH2, and CDRH3 lengths.



FIG. 12 depicts a schema of the workflow of selection of soluble protein targets.



FIGS. 13A-13D depict graphs of data from hTIGIT ELISA after Round 3 and Round 4 of panning.



FIGS. 13E-13F depict schemas of CDRH3 length, yield, and affinity (KD ) for the hTIGIT immunoglobulins.



FIGS. 14A-14AA depict median fluorescence intensity from flow cytometry data.





DETAILED DESCRIPTION

The present disclosure employs, unless otherwise indicated, conventional molecular biology techniques, which are within the skill of the art. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as is commonly understood by one of ordinary skill in the art.


Definitions

Throughout this disclosure, various embodiments are presented in a range format. It should be understood that the description in range format is merely for convenience and brevity and should not be construed as an inflexible limitation on the scope of any embodiments. Accordingly, the description of a range should be considered to have specifically disclosed all the possible subranges as well as individual numerical values within that range to the tenth of the unit of the lower limit unless the context clearly dictates otherwise. For example, description of a range such as from 1 to 6 should be considered to have specifically disclosed subranges such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6 etc., as well as individual values within that range, for example, 1.1, 2, 2.3, 5, and 5.9. This applies regardless of the breadth of the range. The upper and lower limits of these intervening ranges may independently be included in the smaller ranges, and are also encompassed within the disclosure, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the disclosure, unless the context clearly dictates otherwise.


The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of any embodiment. As used herein, the singular forms “a,” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.


Unless specifically stated or obvious from context, as used herein, the term “about” in reference to a number or range of numbers is understood to mean the stated number and numbers +/− 10% thereof, or 10% below the lower listed limit and 10% above the higher listed limit for the values listed for a range.


Unless specifically stated, as used herein, the term “nucleic acid” encompasses double- or triple-stranded nucleic acids, as well as single-stranded molecules. In double- or triple-stranded nucleic acids, the nucleic acid strands need not be coextensive (i.e., a double-stranded nucleic acid need not be double-stranded along the entire length of both strands). Nucleic acid sequences, when provided, are listed in the 5′ to 3′ direction, unless stated otherwise. Methods described herein provide for the generation of isolated nucleic acids. Methods described herein additionally provide for the generation of isolated and purified nucleic acids. A “nucleic acid” as referred to herein can comprise at least 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, or more bases in length. Moreover, provided herein are methods for the synthesis of any number of polypeptide-segments encoding nucleotide sequences, including sequences encoding non-ribosomal peptides (NRPs), sequences encoding non-ribosomal peptide-synthetase (NRPS) modules and synthetic variants, polypeptide segments of other modular proteins, such as antibodies, polypeptide segments from other protein families, including non-coding DNA or RNA, such as regulatory sequences e.g. promoters, transcription factors, enhancers, siRNA, shRNA, RNAi, miRNA, small nucleolar RNA derived from microRNA, or any functional or structural DNA or RNA unit of interest. The following are non-limiting examples of polynucleotides: coding or non-coding regions of a gene or gene fragment, intergenic DNA, loci (locus) defined from linkage analysis, exons, introns, messenger RNA (mRNA), transfer RNA, ribosomal RNA, short interfering RNA (siRNA), short-hairpin RNA (shRNA), micro-RNA (miRNA), small nucleolar RNA, ribozymes, complementary DNA (cDNA), which is a DNA representation of mRNA, usually obtained by reverse transcription of messenger RNA (mRNA) or by amplification; DNA molecules produced synthetically or by amplification, genomic DNA, recombinant polynucleotides, branched polynucleotides, plasmids, vectors, isolated DNA of any sequence, isolated RNA of any sequence, nucleic acid probes, and primers. cDNA encoding for a gene or gene fragment referred herein may comprise at least one region encoding for exon sequences without an intervening intron sequence in the genomic equivalent sequence.


Antibody Libraries

Provided herein are methods, compositions, and systems for generation of antibodies for TIGIT. Methods, compositions, and systems described herein for the optimization of antibodies comprise a ratio-variant approach that mirror the natural diversity of antibody sequences. In some instances, libraries of optimized antibodies comprise variant antibody sequences. In some instances, the variant antibody sequences are designed comprising variant CDR regions. In some instances, the variant antibody sequences comprising variant CDR regions are generated by shuffling the natural CDR sequences in a llama, humanized, or chimeric framework. In some instances, such libraries are synthesized, cloned into expression vectors, and translation products (antibodies) evaluated for activity. In some instances, fragments of sequences are synthesized and subsequently assembled. In some instances, expression vectors are used to display and enrich desired antibodies, such as phage display. In some instances, the phage vector is a Fab phagemid vector. Selection pressures used during enrichment in some instances includes binding affinity, toxicity, immunological tolerance, stability, or other factor. Such expression vectors allow antibodies with specific properties to be selected (“panning”), and subsequent propagation or amplification of such sequences enriches the library with these sequences. Panning rounds can be repeated any number of times, such as 1, 2, 3, 4, 5, 6, 7, or more than 7 rounds. In some instances, each round of panning involves a number of washes. In some instances, each round of panning involves at least or about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, or more than 16 washes.


Described herein are methods and systems of in-silico library design. Libraries as described herein, in some instances, are designed based on a database comprising a variety of antibody sequences. In some instances, the database comprises a plurality of variant antibody sequences against various targets. In some instances, the database comprises at least 100, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, or more than 5000 antibody sequences. An exemplary database is an iCAN database. In some instances, the database comprises naïve and memory B-cell receptor sequences. In some instances, the naïve and memory B-cell receptor sequences are human, mouse, or primate sequences. In some instances, the naïve and memory B-cell receptor sequences are human sequences. In some instances, the database is analyzed for position specific variation. In some instances, antibodies described herein comprise position specific variations in CDR regions. In some instances, the CDR regions comprise multiple sites for variation.


Described herein are libraries comprising variation in a CDR region. In some instances, the CDR is CDR1, CDR2, or CDR3 of a variable domain of heavy chain. In some instances, the CDR is CDR1, CDR2, or CDR3 of a variable domain of light chain. In some instances, the libraries comprise multiple variants encoding for CDR1, CDR2, or CDR3. In some instances, the libraries as described herein encode for at least 50, 100, 200, 300, 400, 500, 1000, 1200, 1500, 1700, 2000, 2500, 3000, 3500, 4000, 4500, 5000, or more than 5000 CDR1 sequences. In some instances, the libraries as described herein encode for at least 50, 100, 200, 300, 400, 500, 1000, 1200, 1500, 1700, 2000, 2500, 3000, 3500, 4000, 4500, 5000, or more than 5000 CDR2 sequences. In some instances, the libraries as described herein encode for at least 50, 100, 200, 300, 400, 500, 1000, 1200, 1500, 1700, 2000, 2500, 3000, 3500, 4000, 4500, 5000, or more than 5000 CDR3 sequences. In-silico antibodies libraries are in some instances synthesized, assembled, and enriched for desired sequences.


Following synthesis of CDR1 variants, CDR2 variants, and CDR3 variants, in some instances, the CDR1 variants, the CDR2 variants, and the CDR3 variants are shuffled to generate a diverse library. In some instances, the diversity of the libraries generated by methods described herein have a theoretical diversity of at least or about 107, 108, 109, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, or more than 1018 sequences. In some instances, the library has a final library diversity of at least or about 107, 108, 109, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, or more than 1018 sequences.


The germline sequences corresponding to a variant sequence may also be modified to generate sequences in a library. For example, sequences generated by methods described herein comprise at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, or more than 16 mutations from the germline sequence. In some instances, sequences generated comprise no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, or no more than 18 mutations from the germline sequence. In some instances, sequences generated comprise about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, or about 18 mutations relative to the germline sequence.


Antibody Libraries


Provided herein are libraries generated from methods described herein. Antibodies described herein result in improved functional activity, structural stability, expression, specificity, or a combination thereof. In some instances, the antibody is a single domain antibody. In some instances, the single domain antibody comprises one variable domain of heavy chain. In some instances, the single domain antibody is a VHH antibody.


As used herein, the term antibody will be understood to include proteins having the characteristic two-armed, Y-shape of a typical antibody molecule as well as one or more fragments of an antibody that retain the ability to specifically bind to an antigen. Exemplary antibodies include, but are not limited to, a monoclonal antibody, a polyclonal antibody, a bi-specific antibody, a multispecific antibody, a grafted antibody, a human antibody, a humanized antibody, a synthetic antibody, a chimeric antibody, a camelized antibody, a single-chain Fvs (scFv) (including fragments in which the VL and VH are joined using recombinant methods by a synthetic or natural linker that enables them to be made as a single protein chain in which the VL and VH regions pair to form monovalent molecules, including single chain Fab and scFab), a single chain antibody, a Fab fragment (including monovalent fragments comprising the VL, VH, CL, and CH1 domains), a F(ab')2 fragment (including bivalent fragments comprising two Fab fragments linked by a disulfide bridge at the hinge region), a Fd fragment (including fragments comprising the VH and CH1 fragment), a Fv fragment (including fragments comprising the VL and VH domains of a single arm of an antibody), a single-domain antibody (dAb or sdAb) (including fragments comprising a VH domain), an isolated complementarity determining region (CDR), a diabody (including fragments comprising bivalent dimers such as two VL and VH domains bound to each other and recognizing two different antigens), a fragment comprised of only a single monomeric variable domain, disulfide-linked Fvs (sdFv), an intrabody, an anti-idiotypic (anti-Id) antibody, or ab antigen-binding fragments thereof. In some instances, the libraries disclosed herein comprise nucleic acids encoding for an antibody, wherein the antibody is a Fv antibody, including Fv antibodies comprised of the minimum antibody fragment which contains a complete antigen-recognition and antigen-binding site. In some embodiments, the Fv antibody consists of a dimer of one heavy chain and one light chain variable domain in tight, non-covalent association, and the three hypervariable regions of each variable domain interact to define an antigen-binding site on the surface of the VH-VL dimer. In some embodiments, the six hypervariable regions confer antigen-binding specificity to the antibody. In some embodiments, a single variable domain (or half of an Fv comprising only three hypervariable regions specific for an antigen, including single domain antibodies isolated from camelid animals comprising one variable domain of heavy chain such as VHH antibodies or nanobodies) has the ability to recognize and bind antigen. In some instances, the libraries disclosed herein comprise nucleic acids encoding for an antibody, wherein the antibody is a single-chain Fv or scFv, including antibody fragments comprising a VH, a VL, or both a VH and VL domain, wherein both domains are present in a single polypeptide chain. In some embodiments, the Fv polypeptide further comprises a polypeptide linker between the VH and VL domains allowing the scFv to form the desired structure for antigen binding. In some instances, a scFv is linked to the Fc fragment or a VHH is linked to the Fc fragment (including minibodies). In some instances, the antibody comprises immunoglobulin molecules and immunologically active fragments of immunoglobulin molecules, e.g., molecules that contain an antigen binding site. Immunoglobulin molecules are of any type (e.g., IgG, IgE, IgM, IgD, IgA and IgY), class (e.g., IgG 1, IgG 2, IgG 3, IgG 4, IgA 1 and IgA 2) or subclass.


In some embodiments, libraries comprise immunoglobulins that are adapted to the species of an intended therapeutic target. Generally, these methods include “mammalization” and comprises methods for transferring donor antigen-binding information to a less immunogenic mammal antibody acceptor to generate useful therapeutic treatments. In some instances, the mammal is mouse, rat, equine, sheep, cow, primate (e.g., chimpanzee, baboon, gorilla, orangutan, monkey), dog, cat, pig, donkey, rabbit, and human. In some instances, provided herein are libraries and methods for felinization and caninization of antibodies.


“Humanized” forms of non-human antibodies can be chimeric antibodies that contain minimal sequence derived from the non-human antibody. A humanized antibody is generally a human antibody (recipient antibody) in which residues from one or more CDRs are replaced by residues from one or more CDRs of a non-human antibody (donor antibody). The donor antibody can be any suitable non-human antibody, such as a mouse, rat, rabbit, chicken, or non-human primate antibody having a desired specificity, affinity, or biological effect. In some instances, selected framework region residues of the recipient antibody are replaced by the corresponding framework region residues from the donor antibody. Humanized antibodies may also comprise residues that are not found in either the recipient antibody or the donor antibody. In some instances, these modifications are made to further refine antibody performance.


“Caninization” can comprise a method for transferring non-canine antigen-binding information from a donor antibody to a less immunogenic canine antibody acceptor to generate treatments useful as therapeutics in dogs. In some instances, caninized forms of non-canine antibodies provided herein are chimeric antibodies that contain minimal sequence derived from non-canine antibodies. In some instances, caninized antibodies are canine antibody sequences (“acceptor” or “recipient” antibody) in which hypervariable region residues of the recipient are replaced by hypervariable region residues from a non-canine species (“donor” antibody) such as mouse, rat, rabbit, cat, dogs, goat, chicken, bovine, horse, llama, camel, dromedaries, sharks, non-human primates, human, humanized, recombinant sequence, or an engineered sequence having the desired properties. In some instances, framework region (FR) residues of the canine antibody are replaced by corresponding non-canine FR residues. In some instances, caninized antibodies include residues that are not found in the recipient antibody or in the donor antibody. In some instances, these modifications are made to further refine antibody performance. The caninized antibody may also comprise at least a portion of an immunoglobulin constant region (Fc) of a canine antibody.


“Felinization” can comprise a method for transferring non-feline antigen-binding information from a donor antibody to a less immunogenic feline antibody acceptor to generate treatments useful as therapeutics in cats. In some instances, felinized forms of non-feline antibodies provided herein are chimeric antibodies that contain minimal sequence derived from non-feline antibodies. In some instances, felinized antibodies are feline antibody sequences (“acceptor” or “recipient” antibody) in which hypervariable region residues of the recipient are replaced by hypervariable region residues from a non-feline species (“donor” antibody) such as mouse, rat, rabbit, cat, dogs, goat, chicken, bovine, horse, llama, camel, dromedaries, sharks, non-human primates, human, humanized, recombinant sequence, or an engineered sequence having the desired properties. In some instances, framework region (FR) residues of the feline antibody are replaced by corresponding non-feline FR residues. In some instances, felinized antibodies include residues that are not found in the recipient antibody or in the donor antibody. In some instances, these modifications are made to further refine antibody performance. The felinized antibody may also comprise at least a portion of an immunoglobulin constant region (Fc) of a felinize antibody.


Methods as described herein may be used for generation of libraries encoding a non-immunoglobulin. In some instances, the libraries comprise antibody mimetics. Exemplary antibody mimetics include, but are not limited to, anticalins, affilins, affibody molecules, affimers, affitins, alphabodies, avimers, atrimers, DARPins, fynomers, Kunitz domain-based proteins, monobodies, anticalins, knottins, armadillo repeat protein-based proteins, and bicyclic peptides.


Libraries described herein comprising nucleic acids encoding for an antibody comprise variations in at least one region of the antibody. Exemplary regions of the antibody for variation include, but are not limited to, a complementarity-determining region (CDR), a variable domain, or a constant domain. In some instances, the CDR is CDR1, CDR2, or CDR3. In some instances, the CDR is a heavy domain including, but not limited to, CDRH1, CDRH2, and CDRH3. In some instances, the CDR is a light domain including, but not limited to, CDRL1, CDRL2, and CDRL3. In some instances, the variable domain is variable domain of light chain (VL) or variable domain of heavy chain (VH). In some instances, the CDR1, CDR2, or CDR3 is of a variable domain of light chain (VL). CDR1, CDR2, or CDR3 of a variable domain of light chain (VL) can be referred to as CDRL1, CDRL2, or CDRL3, respectively. CDR1, CDR2, or CDR3 of a variable domain of heavy chain (VH) can be referred to as CDRH1, CDRH2, or CDRH3, respectively. In some instances, the VL domain comprises kappa or lambda chains. In some instances, the constant domain is constant domain of light chain (CL) or constant domain of heavy chain (CH).


Provided herein are libraries comprising nucleic acids encoding for an antibody comprising variation in at least one region of the antibody, wherein the region is the CDR region. In some instances, the antibody is a single domain antibody comprising one variable domain of heavy chain such as a VHH antibody. In some instances, the VHH antibody comprises variation in one or more CDR regions. In some instances, the VHH libraries described herein comprise at least or about 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000, 2400, 2600, 2800, 3000, or more than 3000 sequences of a CDR1, CDR2, or CDR3. For example, the libraries comprise at least 2000 sequences of a CDR1, at least 1200 sequences for CDR2, and at least 1600 sequences for CDR3. In some instances, each sequence is non-identical.


Libraries as described herein may comprise varying lengths of a CDRH1, CDRH2, CDRH3, CDRL1, CDRL2, CDRL3, or combinations thereof of amino acids when translated. In some instances, the length of the CDRH1, CDRH2, CDRH3, CDRL1, CDRL2, CDRL3, or combinations thereof of amino acids when translated is at least or about 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, or more than 30 amino acids.


Libraries comprising nucleic acids encoding for antibodies having variant CDR sequences as described herein comprise various lengths of amino acids when translated. In some instances, the length of each of the amino acid fragments or average length of the amino acid synthesized may be at least or about 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, or more than 150 amino acids. In some instances, the length of the amino acid is about 15 to 150, 20 to 145, 25 to 140, 30 to 135, 35 to 130, 40 to 125, 45 to 120, 50 to 115, 55 to 110, 60 to 110, 65 to 105, 70 to 100, or 75 to 95 amino acids. In some instances, the length of the amino acid is about 22 amino acids to about 75 amino acids. In some instances, the antibodies comprise at least or about 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, 5000, or more than 5000 amino acids. In some instances, the library is a VHH library. In some instances, the library is an antibody library.


Libraries as described herein encoding for a VHH antibody comprise variant CDR sequences that are shuffled to generate a library with a theoretical diversity of at least or about 107, 108, 109, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, or more than 1018 sequences. In some instances, the library has a final library diversity of at least or about 107, 108, 109, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, or more than 1018 sequences.


Libraries as described herein encoding for an antibody or immunoglobulin comprise variant CDR sequences that are shuffled to generate a library with a theoretical diversity of at least or about 107, 108, 109, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, or more than 1018 sequences. In some instances, the library has a final library diversity of at least or about 107, 108, 109, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, or more than 1018 sequences.


Methods described herein provide for synthesis of libraries comprising nucleic acids encoding an antibody or immunoglobulin, wherein each nucleic acid encodes for a predetermined variant of at least one predetermined reference nucleic acid sequence. In some cases, the predetermined reference sequence is a nucleic acid sequence encoding for a protein, and the variant library comprises sequences encoding for variation of at least a single codon such that a plurality of different variants of a single residue in the subsequent protein encoded by the synthesized nucleic acid are generated by standard translation processes. In some instances, the antibody library comprises varied nucleic acids collectively encoding variations at multiple positions. In some instances, the variant library comprises sequences encoding for variation of at least a single codon of a CDRH1, CDRH2, CDRH3, CDRL1, CDRL2, CDRL3, VL, or VH domain. In some instances, the variant library comprises sequences encoding for variation of multiple codons of a CDRH1, CDRH2, CDRH3, CDRL1, CDRL2, CDRL3, VL, or VH domain. In some instances, the variant library comprises sequences encoding for variation of multiple codons of framework element 1 (FW1), framework element 2 (FW2), framework element 3 (FW3), or framework element 4 (FW4). An exemplary number of codons for variation include, but are not limited to, at least or about 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 125, 150, 175, 225, 250, 275, 300, or more than 300 codons.


In some instances, the at least one region of the antibody for variation is from heavy chain V-gene family, heavy chain D-gene family, heavy chain J-gene family, light chain V-gene family, or light chain J-gene family. In some instances, the light chain V-gene family comprises immunoglobulin kappa (IGK) gene or immunoglobulin lambda (IGL). Exemplary regions of the antibody for variation include, but are not limited to, IGHV1-18, IGHV1-69, IGHV1-8, IGHV3-21, IGHV3-23, IGHV3-30/33rn, IGHV3-28, IGHV1-69, IGHV3-74, IGHV4-39, IGHV4-59/61, IGKV1-39, IGKV1-9, IGKV2-28, IGKV3-11, IGKV3-15, IGKV3-20, IGKV4-1, IGLV1-51, IGLV2-14, IGLV1-40, and IGLV3-1. In some instances, the gene is IGHV1-69, IGHV3-30, IGHV3-23, IGHV3, IGHV1-46, IGHV3-7, IGHV1, or IGHV1-8. In some instances, the gene is IGHV1-69 and IGHV3-30. In some instances, the region of the antibody for variation is IGHJ3, IGHJ6, IGHJ, IGHJ4, IGHJ5, IGHJ2, or IGH1. In some instances, the region of the antibody for variation is IGHJ3, IGHJ6, IGHJ, or IGHJ4. In some instances, the at least one region of the antibody for variation is IGHV1-69, IGHV3-23, IGKV3-20, IGKV1-39 or combinations thereof. In some instances, the at least one region of the antibody for variation is IGHV1-69 or IGHV3-23. In some instances, the at least one region of the antibody for variation is IGKV3-20 or IGKV1-39. In some instances, the at least one region of the antibody for variation is IGHV1-69 and IGKV3-20, In some instances, the at least one region of the antibody for variation is IGHV1-69 and IGKV1-39. In some instances, the at least one region of the antibody for variation is IGHV3-23 and IGKV3-20. In some instances, the at least one region of the antibody for variation is IGHV3-23 and IGKV1-39.


Provided herein are libraries comprising nucleic acids encoding for antibodies, wherein the libraries are synthesized with various numbers of fragments. In some instances, the fragments comprise the CDRH1, CDRH2, CDRH3, CDRL1, CDRL2, CDRL3, VL, or VH domain. In some instances, the fragments comprise framework element 1 (FW1), framework element 2 (FW2), framework element 3 (FW3), or framework element 4 (FW4). In some instances, the antibody libraries are synthesized with at least or about 2 fragments, 3 fragments, 4 fragments, 5 fragments, or more than 5 fragments. The length of each of the nucleic acid fragments or average length of the nucleic acids synthesized may be at least or about 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 525, 550, 575, 600, or more than 600 base pairs. In some instances, the length is about 50 to 600, 75 to 575, 100 to 550, 125 to 525, 150 to 500, 175 to 475, 200 to 450, 225 to 425, 250 to 400, 275 to 375, or 300 to 350 base pairs.


Libraries comprising nucleic acids encoding for antibodies or immunoglobulins as described herein comprise various lengths of amino acids when translated. In some instances, the length of each of the amino acid fragments or average length of the amino acid synthesized may be at least or about 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, or more than 150 amino acids. In some instances, the length of the amino acid is about 15 to 150, 20 to 145, 25 to 140, 30 to 135, 35 to 130, 40 to 125, 45 to 120, 50 to 115, 55 to 110, 60 to 110, 65 to 105, 70 to 100, or 75 to 95 amino acids. In some instances, the length of the amino acid is about 22 amino acids to about 75 amino acids. In some instances, the antibodies comprise at least or about 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, 5000, or more than 5000 amino acids.


A number of variant sequences for the at least one region of the antibody for variation are de novo synthesized using methods as described herein. In some instances, a number of variant sequences is de novo synthesized for CDRH1, CDRH2, CDRH3, CDRL1, CDRL2, CDRL3, VL, VH, or combinations thereof. In some instances, a number of variant sequences is de novo synthesized for framework element 1 (FW1), framework element 2 (FW2), framework element 3 (FW3), or framework element 4 (FW4). The number of variant sequences may be at least or about 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, or more than 500 sequences. In some instances, the number of variant sequences is at least or about 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, or more than 8000 sequences. In some instances, the number of variant sequences is about 10 to 500, 25 to 475, 50 to 450, 75 to 425, 100 to 400, 125 to 375, 150 to 350, 175 to 325, 200 to 300, 225 to 375, 250 to 350, or 275 to 325 sequences.


Variant sequences for the at least one region of the antibody, in some instances, vary in length or sequence. In some instances, the at least one region that is de novo synthesized is for CDRH1, CDRH2, CDRH3, CDRL1, CDRL2, CDRL3, VL, VH, or combinations thereof In some instances, the at least one region that is de novo synthesized is for framework element 1 (FW1), framework element 2 (FW2), framework element 3 (FW3), or framework element 4 (FW4). In some instances, the variant sequence comprises at least or about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, or more than 50 variant nucleotides or amino acids as compared to wild-type. In some instances, the variant sequence comprises at least or about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, or 50 additional nucleotides or amino acids as compared to wild-type. In some instances, the variant sequence comprises at least or about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, or 50 less nucleotides or amino acids as compared to wild-type. In some instances, the libraries comprise at least or about 101, 102, 103, 104, 105, 106, 107, 108, 109, 1010, or more than 1010 variants.


Following synthesis of antibody libraries, antibody libraries may be used for screening and analysis. For example, antibody libraries are assayed for library displayability and panning. In some instances, displayability is assayed using a selectable tag. Exemplary tags include, but are not limited to, a radioactive label, a fluorescent label, an enzyme, a chemiluminescent tag, a colorimetric tag, an affinity tag or other labels or tags that are known in the art. In some instances, the tag is histidine, polyhistidine, myc, hemagglutinin (HA), or FLAG. For example, as seen in FIG. 2B. In some instances, antibody libraries are assayed by sequencing using various methods including, but not limited to, single-molecule real-time (SMRT) sequencing, Polony sequencing, sequencing by ligation, reversible terminator sequencing, proton detection sequencing, ion semiconductor sequencing, nanopore sequencing, electronic sequencing, pyrosequencing, Maxam-Gilbert sequencing, chain termination (e.g., Sanger) sequencing, +S sequencing, or sequencing by synthesis. In some instances, antibody libraries are displayed on the surface of a cell or phage. In some instances, antibody libraries are enriched for sequences with a desired activity using phage display.


In some instances, the antibody libraries are assayed for functional activity, structural stability (e.g., thermal stable or pH stable), expression, specificity, or a combination thereof. In some instances, the antibody libraries are assayed for antibody capable of folding. In some instances, a region of the antibody is assayed for functional activity, structural stability, expression, specificity, folding, or a combination thereof. For example, a VH region or VL region is assayed for functional activity, structural stability, expression, specificity, folding, or a combination thereof


Antibodies or IgGs generated by methods as described herein comprise improved binding affinity. In some instances, the antibody comprises a binding affinity (e.g., KD ) of less than 1 nM, less than 1.2 nM, less than 2 nM, less than 5 nM, less than 10 nM, less than 11 nm, less than 13.5 nM, less than 15 nM, less than 20 nM, less than 25 nM, or less than 30 nM. In some instances, the antibody comprises a KD of less than 400 nM, less than 350 nM, less than 300 nM, less than 250 nM, less than 200 nM, less than 150 nm, less than 100 nM, less than 50 nM, less than 25 nM, less than 15 nM, or less than 10 nM. In some instances, the antibody comprises a KD of less than 1 nM. In some instances, the antibody comprises a KD of less than 1.2 nM. In some instances, the antibody comprises a KD of less than 2 nM. In some instances, the antibody comprises a KD of less than 5 nM. In some instances, the antibody comprises a KD of less than 10 nM. In some instances, the antibody comprises a KD of less than 13.5 nM. In some instances, the antibody comprises a KD of less than 15 nM. In some instances, the antibody comprises a KD of less than 20 nM. In some instances, the antibody comprises a KD of less than 25 nM. In some instances, the antibody comprises a KD of less than 30 nM.


In some instances, the affinity of antibodies or IgGs generated by methods as described herein is at least or about 1.5×, 2.0×, 5×, 10×, 20×, 30×, 40×, 50×, 60×, 70×, 80×, 90×, 100×, 200×, or more than 200× improved binding affinity as compared to a comparator antibody. In some instances, the affinity of antibodies or IgGs generated by methods as described herein is at least or about 1.5×, 2.0×, 5×, 10×, 20×, 30×, 40×, 50×, 60×, 70×, 80×, 90×, 100×, 200×, or more than 200× improved function as compared to a comparator antibody. In some instances, the comparator antibody is an antibody with similar structure, sequence, or antigen target.


Methods as described herein, in some instances, result in increased yield of antibodies or IgGs. In some instances, the yield is at least or about 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, or more than 80 micrograms (ug). In some instances, the yield is in a range of about 5 to about 80, about 10 to about 75, about 15 to about 60, about 20 to about 50, or about 30 to about 40 micrograms (ug).


Expression Systems


Provided herein are libraries comprising nucleic acids encoding for antibody comprising binding domains, wherein the libraries have improved specificity, stability, expression, folding, or downstream activity. In some instances, libraries described herein are used for screening and analysis.


Provided herein are libraries comprising nucleic acids encoding for antibody comprising binding domains, wherein the nucleic acid libraries are used for screening and analysis. In some instances, screening and analysis comprises in vitro, in vivo, or ex vivo assays. Cells for screening include primary cells taken from living subjects or cell lines. Cells may be from prokaryotes (e.g., bacteria and fungi) or eukaryotes (e.g., animals and plants). Exemplary animal cells include, without limitation, those from a mouse, rabbit, primate, and insect. In some instances, cells for screening include a cell line including, but not limited to, Chinese Hamster Ovary (CHO) cell line, human embryonic kidney (HEK) cell line, or baby hamster kidney (BHK) cell line. In some instances, nucleic acid libraries described herein may also be delivered to a multicellular organism. Exemplary multicellular organisms include, without limitation, a plant, a mouse, rabbit, primate, and insect.


Nucleic acid libraries described herein may be screened for various pharmacological or pharmacokinetic properties. In some instances, the libraries are screened using in vitro assays, in vivo assays, or ex vivo assays. For example, in vitro pharmacological or pharmacokinetic properties that are screened include, but are not limited to, binding affinity, binding specificity, and binding avidity. Exemplary in vivo pharmacological or pharmacokinetic properties of libraries described herein that are screened include, but are not limited to, therapeutic efficacy, activity, preclinical toxicity properties, clinical efficacy properties, clinical toxicity properties, immunogenicity, potency, and clinical safety properties.


Provided herein are nucleic acid libraries, wherein the nucleic acid libraries may be expressed in a vector. Expression vectors for inserting nucleic acid libraries disclosed herein may comprise eukaryotic or prokaryotic expression vectors. Exemplary expression vectors include, without limitation, mammalian expression vectors: pSF-CMV-NEO-NH2-PPT-3XFLAG, pSF-CMV-NEO-COOH-3XFLAG, pSF-CMV-PURO-NH2-GST-TEV, pSF-OXB20-COOH-TEV-FLAG(R)-6His (“6His” disclosed as SEQ ID NO: 2243), pCEP4 pDEST27, pSF-CMV-Ub-KrYFP, pSF-CMV-FMDV-daGFP, pEF1a-mCherry-N1 Vector, pEF1a-tdTomato Vector, pSF-CMV-FMDV-Hygro, pSF-CMV-PGK-Puro, pMCP-tag(m), and pSF-CMV-PURO-NH2-CMYC; bacterial expression vectors: pSF-OXB20-BetaGal, pSF-OXB20-Fluc, pSF-OXB20, and pSF-Tac; plant expression vectors: pRI 101-AN DNA and pCambia2301; and yeast expression vectors: pTYB21 and pKLAC2, and insect vectors: pAc5.1/V5-His A and pDEST8. In some instances, the vector is pcDNA3 or pcDNA3.1.


Described herein are nucleic acid libraries that are expressed in a vector to generate a construct comprising an antibody. In some instances, a size of the construct varies. In some instances, the construct comprises at least or about 500, 600, 700, 800, 900, 1000, 1100, 1300, 1400, 1500, 1600, 1700, 1800, 2000, 2400, 2600, 2800, 3000, 3200, 3400, 3600, 3800, 4000, 4200, 4400, 4600, 4800, 5000, 6000, 7000, 8000, 9000, 10000, or more than 10000 bases. In some instances, a the construct comprises a range of about 300 to 1,000, 300 to 2,000, 300 to 3,000, 300 to 4,000, 300 to 5,000, 300 to 6,000, 300 to 7,000, 300 to 8,000, 300 to 9,000, 300 to 10,000, 1,000 to 2,000, 1,000 to 3,000, 1,000 to 4,000, 1,000 to 5,000, 1,000 to 6,000, 1,000 to 7,000, 1,000 to 8,000, 1,000 to 9,000, 1,000 to 10,000, 2,000 to 3,000, 2,000 to 4,000, 2,000 to 5,000, 2,000 to 6,000, 2,000 to 7,000, 2,000 to 8,000, 2,000 to 9,000, 2,000 to 10,000, 3,000 to 4,000, 3,000 to 5,000, 3,000 to 6,000, 3,000 to 7,000, 3,000 to 8,000, 3,000 to 9,000, 3,000 to 10,000, 4,000 to 5,000, 4,000 to 6,000, 4,000 to 7,000, 4,000 to 8,000, 4,000 to 9,000, 4,000 to 10,000, 5,000 to 6,000, 5,000 to 7,000, 5,000 to 8,000, 5,000 to 9,000, 5,000 to 10,000, 6,000 to 7,000, 6,000 to 8,000, 6,000 to 9,000, 6,000 to 10,000, 7,000 to 8,000, 7,000 to 9,000, 7,000 to 10,000, 8,000 to 9,000, 8,000 to 10,000, or 9,000 to 10,000 bases.


Provided herein are libraries comprising nucleic acids encoding for antibodies, wherein the nucleic acid libraries are expressed in a cell. In some instances, the libraries are synthesized to express a reporter gene. Exemplary reporter genes include, but are not limited to, acetohydroxyacid synthase (AHAS), alkaline phosphatase (AP), beta galactosidase (LacZ), beta glucoronidase (GUS), chloramphenicol acetyltransferase (CAT), green fluorescent protein (GFP), red fluorescent protein (RFP), yellow fluorescent protein (YFP), cyan fluorescent protein (CFP), cerulean fluorescent protein, citrine fluorescent protein, orange fluorescent protein , cherry fluorescent protein, turquoise fluorescent protein, blue fluorescent protein, horseradish peroxidase (HRP), luciferase (Luc), nopaline synthase (NOS), octopine synthase (OCS), luciferase, and derivatives thereof. Methods to determine modulation of a reporter gene are well known in the art, and include, but are not limited to, fluorometric methods (e.g. fluorescence spectroscopy, Fluorescence Activated Cell Sorting (FACS), fluorescence microscopy), and antibiotic resistance determination.


Diseases and Disorders

Provided herein are libraries comprising nucleic acids encoding for antibodies or immunoglobulins including VHH antibodies that may have therapeutic effects. In some instances, the antibodies or immunoglobulin result in protein when translated that is used to treat a disease or disorder in a subject. Exemplary diseases include, but are not limited to, cancer, inflammatory diseases or disorders, a metabolic disease or disorder, a cardiovascular disease or disorder, a respiratory disease or disorder, pain, a digestive disease or disorder, a reproductive disease or disorder, an endocrine disease or disorder, or a neurological disease or disorder. In some instances, the cancer is a solid cancer or a hematologic cancer. In some instances, the subject is a mammal. In some instances, the subject is a mouse, rabbit, dog, or human. Subjects treated by methods described herein may be infants, adults, or children. Pharmaceutical compositions comprising antibodies or antibody fragments as described herein may be administered intravenously or subcutaneously.


In some instances, the disease or disorder is associated with TIGIT dysfunction. In some instances, the disease or disorder is associated with aberrant signaling via TIGIT.


Provided herein are libraries comprising nucleic acids encoding for antibodies or immunoglobulins that may be designed for various protein targets. In some instances, the protein is an ion channel, G protein-coupled receptor, tyrosine kinase receptor, an immune receptor, a membrane protein, or combinations thereof. In some instances, the protein is a receptor. In some instances, the protein is T cell immunoreceptor with Ig and ITIM domains (TIGIT).


Described herein, in some embodiments, are antibodies or immunoglobulins that bind to the TIGIT. In some instances, the TIGIT antibody or immunoglobulin sequence comprises a sequence comprising at least or about 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to any one of SEQ ID NOs: 1-2238. In some instances, the TIGIT antibody or immunoglobulin sequence comprises a sequence comprising at least or about 95% sequence identity to any one of SEQ ID NOs: 1-2238. In some instances, the TIGIT antibody or immunoglobulin sequence comprises a sequence comprising at least or about 97% sequence identity to any one of SEQ ID NOs: 1-2238. In some instances, the TIGIT antibody or immunoglobulin sequence comprises a sequence comprising at least or about 99% sequence identity to any one of SEQ ID NOs: 1-2238. In some instances, the TIGIT antibody or immunoglobulin sequence comprises a sequence comprising at least or about 100% sequence identity to any one of SEQ ID NOs: 1-2238. In some instances, the TIGIT antibody or immunoglobulin sequence comprises a sequence comprising at least a portion having at least or about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, or more than 20 amino acids of any one of SEQ ID NOs: 1-17. In some instances, the TIGIT antibody or immunoglobulin sequence comprises a sequence comprising at least a portion having at least or about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, or more than 150 amino acids of any one of SEQ ID NOs: 18-61.


In some instances, the TIGIT antibody or immunoglobulin sequence comprises a sequence comprising at least or about 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to any one of SEQ ID NOs: 35-44 or 62-2238. In some instances, the TIGIT antibody or immunoglobulin sequence comprises a sequence comprising at least or about 95% sequence identity to any one of SEQ ID NOs: 35-44 or 62-2238. In some instances, the TIGIT antibody or immunoglobulin sequence comprises a sequence comprising at least or about 97% sequence identity to any one of SEQ ID NOs: 35-44 or 62-2238. In some instances, the TIGIT antibody or immunoglobulin sequence comprises a sequence comprising at least or about 99% sequence identity to any one of SEQ ID NOs: 35-44 or 62-2238. In some instances, the TIGIT antibody or immunoglobulin sequence comprises a sequence comprising at least or about 100% sequence identity to any one of SEQ ID NOs: 35-44 or 62-2238. In some instances, the TIGIT antibody or immunoglobulin sequence comprises a sequence comprising at least a portion having at least or about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, or more than 150 amino acids of any one of SEQ ID NOs: 35-44 or 62-2238.


In some instances, the TIGIT antibody or immunoglobulin sequence comprises a variable domain of heavy chain comprising at least or about 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to any one of SEQ ID NOs: 18-44, 1367-1548, or 2141-2189. In some instances, the TIGIT antibody or immunoglobulin sequence comprises a variable domain of heavy chain comprising at least or about 95% sequence identity to any one of SEQ ID NOs: 18-44, 1367-1548, or 2141-2189. In some instances, the TIGIT antibody or immunoglobulin sequence comprises a variable domain of heavy chain comprising at least or about 97% sequence identity to any one of SEQ ID NOs: 18-44, 1367-1548, or 2141-2189. In some instances, the TIGIT antibody or immunoglobulin sequence comprises a variable domain of heavy chain comprising at least or about 99% sequence identity to any one of SEQ ID NOs: 18-44, 1367-1548, or 2141-2189. In some instances, the TIGIT antibody or immunoglobulin sequence comprises a variable domain of heavy chain comprising at least or about 100% sequence identity to any one of SEQ ID NOs: 18-44, 1367-1548, or 2141-2189. In some instances, the TIGIT antibody or immunoglobulin sequence comprises a variable domain of heavy chain comprising at least a portion having at least or about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, or more than 150 amino acids of any one of SEQ ID NOs: 18-44, 1367-1548, or 2141-2189.


In some instances, the TIGIT antibody or immunoglobulin sequence comprises a variable domain of heavy chain comprising at least or about 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to any one of SEQ ID NOs: 35-44, 1367-1548, or 2141-2189. In some instances, the TIGIT antibody or immunoglobulin sequence comprises a variable domain of heavy chain comprising at least or about 95% sequence identity to any one of SEQ ID NOs: 35-44, 1367-1548, or 2141-2189. In some instances, the TIGIT antibody or immunoglobulin sequence comprises a variable domain of heavy chain comprising at least or about 97% sequence identity to any one of SEQ ID NOs: 35-44, 1367-1548, or 2141-2189. In some instances, the TIGIT antibody or immunoglobulin sequence comprises a variable domain of heavy chain comprising at least or about 99% sequence identity to any one of SEQ ID NOs: 35-44, 1367-1548, or 2141-2189. In some instances, the TIGIT antibody or immunoglobulin sequence comprises a variable domain of heavy chain comprising at least or about 100% sequence identity to any one of SEQ ID NOs: 35-44, 1367-1548, or 2141-2189. In some instances, the TIGIT antibody or immunoglobulin sequence comprises a variable domain of heavy chain comprising at least a portion having at least or about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, or more than 150 amino acids of any one of SEQ ID NOs: 35-44, 1367-1548, or 2141-2189.


In some instances, the TIGIT antibody or immunoglobulin sequence comprises a variable domain of light chain comprising at least or about 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to any one of SEQ ID NOs: 45-61, 1549-1685, or 2190-2238. In some instances, the TIGIT antibody or immunoglobulin sequence comprises a variable domain of light chain comprising at least or about 95% sequence identity to any one of SEQ ID NOs: 45-61, 1549-1685, or 2190-2238. In some instances, the TIGIT antibody or immunoglobulin sequence comprises a variable domain of light chain comprising at least or about 97% sequence identity to any one of SEQ ID NOs: 45-61,1549-1685, or 2190-2238. In some instances, the TIGIT antibody or immunoglobulin sequence comprises a variable domain of light chain comprising at least or about 99% sequence identity to any one of SEQ ID NOs: 45-61, 1549-1685, or 2190-2238. In some instances, the TIGIT antibody or immunoglobulin sequence comprises a variable domain of light chain comprising at least or about 100% sequence identity to any one of SEQ ID NOs: 45-61, 1549-1685, or 2190-2238. In some instances, the TIGIT antibody or immunoglobulin sequence comprises a variable domain of light chain comprising at least a portion having at least or about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, or more than 120 amino acids of any one of SEQ ID NOs: 45-61, 1549-1685, or 2190-2238.


In some instances, the TIGIT antibody or immunoglobulin sequence comprises a variable domain of heavy chain comprising at least or about 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to any one of SEQ ID NOs: 35-44, 1367-1548, or 2141-2189 and a variable domain of light chain comprising at least or about 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to any one of SEQ ID NOs: 45-61, 1549-1685, or 2190-2238. In some instances, the TIGIT antibody or immunoglobulin sequence comprises a variable domain of heavy chain comprising at least or about 95% sequence identity to any one of SEQ ID NOs: 35-44, 1367-1548, or 2141-2189 and a variable domain of light chain comprising at least or about 95% sequence identity to any one of SEQ ID NOs: 45-61, 1549-1685, or 2190-2238. In some instances, the TIGIT antibody or immunoglobulin sequence comprises a variable domain of heavy chain comprising at least or about 97% sequence identity to any one of SEQ ID NOs: 35-44, 1367-1548, or 2141-2189 and a variable domain of light chain comprising at least or about 97% sequence identity to any one of SEQ ID NOs: 45-61, 1549-1685, or 2190-2238. In some instances, the TIGIT antibody or immunoglobulin sequence comprises a variable domain of heavy chain comprising at least or about 99% sequence identity to any one of SEQ ID NOs: 35-44, 1367-1548, or 2141-2189 and a variable domain of light chain comprising at least or about 99% sequence identity to any one of SEQ ID NOs: 45-61, 1549-1685, or 2190-2238. In some instances, the TIGIT antibody or immunoglobulin sequence comprises a variable domain of heavy chain comprising at least or about 100% sequence identity to any one of SEQ ID NOs: 35-44, 1367-1548, or 2141-2189 and a variable domain of light chain comprising at least or about 100% sequence identity to any one of SEQ ID NOs: 45-61,1549-1685, or 2190-2238. In some instances, the TIGIT antibody or immunoglobulin sequence comprises a variable domain of heavy chain comprising at least a portion having at least or about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, or more than 150 amino acids of any one of SEQ ID NOs: 35-44, 1367-1548, or 2141-2189 and a variable domain of light chain comprising at least a portion having at least or about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, or more than 120 amino acids of any one of SEQ ID NOs: 45-61, 1549-1685, or 2190-2238.


In some embodiments, the TIGIT antibody or immunoglobulin sequence comprises complementarity determining regions (CDRs) comprising at least or about 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to any one of SEQ ID NOs: 62-1366 or 1847-2140. In some instances, the antibody or immunoglobulin sequence comprises complementarity determining regions (CDRs) comprising at least or about 95% homology to any one of SEQ ID NOs: 62-1366 or 1847-2140. In some instances, the antibody or immunoglobulin sequence comprises complementarity determining regions (CDRs) comprising at least or about 97% homology to any one of SEQ ID NOs: 62-1366 or 1847-2140. In some instances, the antibody or immunoglobulin sequence comprises complementarity determining regions (CDRs) comprising at least or about 99% homology to any one of SEQ ID NOs: 62-1366 or 1847-2140. In some instances, the antibody or immunoglobulin sequence comprises complementarity determining regions (CDRs) comprising at least or about 100% homology to any one of SEQ ID NOs: 62-1366 or 1847-2140. In some instances, the antibody or immunoglobulin sequence comprises complementarity determining regions (CDRs) comprising at least a portion having at least or about 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, or more than 16 amino acids of any one of SEQ ID NOs: 62-1366 or 1847-2140.


In some embodiments, the TIGIT antibody or immunoglobulin sequence comprises a CDR1 comprising at least or about 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to any one of SEQ ID NOs:62-359, 956-1092, 1847-1895, or 1994-2042. In some instances, the antibody or immunoglobulin sequence comprises CDR1 comprising at least or about 95% homology of any one of SEQ ID NOs: 62-359, 956-1092, 1847-1895, or 1994-2042. In some instances, the antibody or immunoglobulin sequence comprises CDR1 comprising at least or about 97% homology to any one of SEQ ID NOs: 62-359, 956-1092, 1847-1895, or 1994-2042. In some instances, the antibody or immunoglobulin sequence comprises CDR1 comprising at least or about 99% homology to any one of SEQ ID NOs: 62-359, 956-1092, 1847-1895, or 1994-2042. In some instances, the antibody or immunoglobulin sequence comprises CDR1 comprising at least or about 100% homology to any one of SEQ ID NOs: 62-359, 956-1092, 1847-1895, or 1994-2042. In some instances, the antibody or immunoglobulin sequence comprises CDR1 comprising at least a portion having at least or about 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, or more than 16 amino acids of any one of SEQ ID NOs: 62-359, 956-1092, 1847-1895, or 1994-2042.


In some embodiments, the TIGIT antibody or immunoglobulin sequence comprises a CDR2 comprising at least or about 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to any one of SEQ ID NOs: 360-657, 1093-1229, 1896-1944, or 2043-2091. In some instances, the antibody or immunoglobulin sequence comprises CDR2 comprising at least or about 95% homology to any one of SEQ ID NOs: 360-657, 1093-1229, 1896-1944, or 2043-2091. In some instances, the antibody or immunoglobulin sequence comprises CDR2 comprising at least or about 97% homology to any one of SEQ ID NOs: 360-657, 1093-1229, 1896-1944, or 2043-2091. In some instances, the antibody or immunoglobulin sequence comprises CDR2 comprising at least or about 99% homology to any one of SEQ ID NOs: 360-657, 1093-1229, 1896-1944, or 2043-2091. In some instances, the antibody or immunoglobulin sequence comprises CDR2 comprising at least or about 100% homology to any one of SEQ ID NOs: 360-657, 1093-1229, 1896-1944, or 2043-2091. In some instances, the antibody or immunoglobulin sequence comprises CDR2 comprising at least a portion having at least or about 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, or more than 16 amino acids of any one of SEQ ID NOs: 360-657, 1093-1229, 1896-1944, or 2043-2091.


In some embodiments, the TIGIT antibody or immunoglobulin sequence comprises a CDR3 comprising at least or about 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to any one of SEQ ID NOs: 658-955, 1230-1366, 1945-1993, or 2092-2140. In some instances, the antibody or immunoglobulin sequence comprises CDR3 comprising at least or about 95% homology to any one of SEQ ID NOs: 658-955, 1230-1366, 1945-1993, or 2092-2140. In some instances, the antibody or immunoglobulin sequence comprises CDR3 comprising at least or about 97% homology to any one of SEQ ID NOs: 658-955, 1230-1366, 1945-1993, or 2092-2140. In some instances, the antibody or immunoglobulin sequence comprises CDR3 comprising at least or about 99% homology to any one of SEQ ID NOs: 658-955, 1230-1366, 1945-1993, or 2092-2140. In some instances, the antibody or immunoglobulin sequence comprises CDR3 comprising at least or about 100% homology to any one of SEQ ID NOs: 658-955, 1230-1366, 1945-1993, or 2092-2140. In some instances, the antibody or immunoglobulin sequence comprises CDR3 comprising at least a portion having at least or about 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, or more than 16 amino acids of any one of SEQ ID NOs: 658-955, 1230-1366, 1945-1993, or 2092-2140.


In some embodiments, the TIGIT antibody or immunoglobulin sequence comprises a CDRH1 comprising at least or about 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to any one of SEQ ID NOs: 62-359 or 1847-1895. In some instances, the antibody or immunoglobulin sequence comprises CDRH1 comprising at least or about 95% homology of any one of SEQ ID NOs: 62-359 or 1847-1895. In some instances, the antibody or immunoglobulin sequence comprises CDRH1 comprising at least or about 97% homology to any one of SEQ ID NOs: 62-359 or 1847-1895. In some instances, the antibody or immunoglobulin sequence comprises CDRH1 comprising at least or about 99% homology to any one of SEQ ID NOs: 62-359 or 1847-1895. In some instances, the antibody or immunoglobulin sequence comprises CDRH1 comprising at least or about 100% homology to any one of SEQ ID NOs: 62-359 or 1847-1895. In some instances, the antibody or immunoglobulin sequence comprises CDRH1 comprising at least a portion having at least or about 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, or more than 16 amino acids of any one of SEQ ID NOs: 62-359 or 1847-1895.


In some embodiments, the TIGIT antibody or immunoglobulin sequence comprises a CDRH2 comprising at least or about 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to any one of SEQ ID NOs: 360-657 or 1896-1944. In some instances, the antibody or immunoglobulin sequence comprises CDRH2 comprising at least or about 95% homology to any one of SEQ ID NOs: 360-657 or 1896-1944. In some instances, the antibody or immunoglobulin sequence comprises CDRH2 comprising at least or about 97% homology to any one of SEQ ID NOs: 360-657 or 1896-1944. In some instances, the antibody or immunoglobulin sequence comprises CDRH2 comprising at least or about 99% homology to any one of SEQ ID NOs: 360-657 or 1896-1944. In some instances, the antibody or immunoglobulin sequence comprises CDRH2 comprising at least or about 100% homology to any one of SEQ ID NOs: 360-657 or 1896-1944. In some instances, the antibody or immunoglobulin sequence comprises CDRH2 comprising at least a portion having at least or about 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, or more than 16 amino acids of any one of SEQ ID NOs: 360-657 or 1896-1944.


In some embodiments, the TIGIT antibody or immunoglobulin sequence comprises a CDRH3 comprising at least or about 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to any one of SEQ ID NOs: 658-955 or 1945-1993. In some instances, the antibody or immunoglobulin sequence comprises CDRH3 comprising at least or about 95% homology to any one of SEQ ID NOs: 658-955 or 1945-1993. In some instances, the antibody or immunoglobulin sequence comprises CDRH3 comprising at least or about 97% homology to any one of SEQ ID NOs: 658-955 or 1945-1993. In some instances, the antibody or immunoglobulin sequence comprises CDRH3 comprising at least or about 99% homology to any one of SEQ ID NOs: 658-955 or 1945-1993. In some instances, the antibody or immunoglobulin sequence comprises CDRH3 comprising at least or about 100% homology to any one of SEQ ID NOs: 658-955 or 1945-1993. In some instances, the antibody or immunoglobulin sequence comprises CDRH3 comprising at least a portion having at least or about 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, or more than 16 amino acids of any one of SEQ ID NOs: 658-955 or 1945-1993.


In some embodiments, the TIGIT antibody or immunoglobulin sequence comprises a CDRL1 comprising at least or about 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to any one of SEQ ID NOs: 956-1092 or 1994-2042. In some instances, the antibody or immunoglobulin sequence comprises CDRL1 comprising at least or about 95% homology of any one of SEQ ID NOs: 956-1092 or 1994-2042. In some instances, the antibody or immunoglobulin sequence comprises CDRL1 comprising at least or about 97% homology to any one of SEQ ID NOs: 956-1092 or 1994-2042. In some instances, the antibody or immunoglobulin sequence comprises CDRL1 comprising at least or about 99% homology to any one of SEQ ID NOs: 956-1092 or 1994-2042. In some instances, the antibody or immunoglobulin sequence comprises CDRL1 comprising at least or about 100% homology to any one of SEQ ID NOs956-1092 or 1994-2042. In some instances, the antibody or immunoglobulin sequence comprises CDRL1 comprising at least a portion having at least or about 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, or more than 16 amino acids of any one of SEQ ID NOs: 956-1092 or 1994-2042.


In some embodiments, the TIGIT antibody or immunoglobulin sequence comprises a CDRL2 comprising at least or about 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to any one of SEQ ID NOs: 1093-1229 or 2043-2091. In some instances, the antibody or immunoglobulin sequence comprises CDRL2 comprising at least or about 95% homology to any one of SEQ ID NOs: 1093-12291093-1229 or 2043-2091. In some instances, the antibody or immunoglobulin sequence comprises CDRL2 comprising at least or about 97% homology to any one of SEQ ID NOs: 1093-12291093-1229 or 2043-2091. In some instances, the antibody or immunoglobulin sequence comprises CDRL2 comprising at least or about 99% homology to any one of SEQ ID NOs: 1093-12291093-1229 or 2043-2091. In some instances, the antibody or immunoglobulin sequence comprises CDRL2 comprising at least or about 100% homology to any one of SEQ ID NOs: 1093-12291093-1229 or 2043-2091. In some instances, the antibody or immunoglobulin sequence comprises CDRL2 comprising at least a portion having at least or about 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, or more than 16 amino acids of any one of SEQ ID NOs: 1093-12291093-1229 or 2043-2091.


In some embodiments, the TIGIT antibody or immunoglobulin sequence comprises a CDRL3 comprising at least or about 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to any one of SEQ ID NOs: 1230-1366 or 2092-2140. In some instances, the antibody or immunoglobulin sequence comprises CDRL3 comprising at least or about 95% homology to any one of SEQ ID NOs: 1230-1366 or 2092-2140. In some instances, the antibody or immunoglobulin sequence comprises CDRL3 comprising at least or about 97% homology to any one of SEQ ID NOs: 1230-1366 or 2092-2140. In some instances, the antibody or immunoglobulin sequence comprises CDRL3 comprising at least or about 99% homology to any one of SEQ ID NOs: 1230-1366 or 2092-2140. In some instances, the antibody or immunoglobulin sequence comprises CDRL3 comprising at least or about 100% homology to any one of SEQ ID NOs: 1230-1366 or 2092-2140. In some instances, the antibody or immunoglobulin sequence comprises CDRL3 comprising at least a portion having at least or about 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, or more than 16 amino acids of any one of SEQ ID NOs: 1230-1366 or 2092-2140.


In some embodiments, the TIGIT antibody or immunoglobulin sequence comprises a CDRH1 comprising at least or about 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to any one of SEQ ID NOs: 62-359 or 1847-1895 and a CDRL1 comprising at least or about 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to any one of SEQ ID NOs: 956-1092 or 1994-2042. In some instances, the antibody or immunoglobulin sequence comprises CDRH1 comprising at least or about 95% homology of any one of SEQ ID NOs: 62-359 or 1847-1895 and a CDRL1 comprising at least or about 95% homology of any one of SEQ ID NOs: 956-1092 or 1994-2042. In some instances, the antibody or immunoglobulin sequence comprises CDRH1 comprising at least or about 97% homology to any one of SEQ ID NOs: 62-359 or 1847-1895 and a CDRL1 comprising at least or about 97% homology to any one of SEQ ID NOs: 956-1092 or 1994-2042. In some instances, the antibody or immunoglobulin sequence comprises CDRH1 comprising at least or about 99% homology to any one of SEQ ID NOs: 62-359 or 1847-1895 and a CDRL1 comprising at least or about 99% homology to any one of SEQ ID NOs: 956-1092 or 1994-2042. In some instances, the antibody or immunoglobulin sequence comprises CDRH1 comprising at least or about 100% homology to any one of SEQ ID NOs: 62-359 or 1847-1895 and a CDRL1 comprising at least or about 100% homology to any one of SEQ ID NOs: 956-1092 or 1994-2042. In some instances, the antibody or immunoglobulin sequence comprises CDRH1 comprising at least a portion having at least or about 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, or more than 16 amino acids of any one of SEQ ID NOs: 62-359 or 1847-1895 and a CDRL1 comprising at least a portion having at least or about 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, or more than 16 amino acids of any one of SEQ ID NOs: 956-1092 or 1994-2042.


In some embodiments, the TIGIT antibody or immunoglobulin sequence comprises a CDRH2 comprising at least or about 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to any one of SEQ ID NOs: 360-657 or 1896-1944 and a CDRL2 comprising at least or about 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to any one of SEQ ID NOs: 1093-1229 or 2043-2091. In some instances, the antibody or immunoglobulin sequence comprises CDRH2 comprising at least or about 95% homology to any one of SEQ ID NOs: 360-657 or 1896-1944 and a CDRL2 comprising at least or about 95% homology to any one of SEQ ID NOs: 1093-1229 or 2043-2091. In some instances, the antibody or immunoglobulin sequence comprises CDRH2 comprising at least or about 97% homology to any one of SEQ ID NOs: 360-657 or 1896-1944 and a CDRL2 comprising at least or about 97% homology to any one of SEQ ID NOs: 1093-1229 or 2043-2091. In some instances, the antibody or immunoglobulin sequence comprises CDRH2 comprising at least or about 99% homology to any one of SEQ ID NOs: 360-657 or 1896-1944 and a CDRL2 comprising at least or about 99% homology to any one of SEQ ID NOs: 1093-1229 or 2043-2091. In some instances, the antibody or immunoglobulin sequence comprises CDRH2 comprising at least or about 100% homology to any one of SEQ ID NOs: 360-657 or 1896-1944 and a CDRL2 comprising at least or about 100% homology to any one of SEQ ID NOs: 1093-1229 or 2043-2091. In some instances, the antibody or immunoglobulin sequence comprises CDRH2 comprising at least a portion having at least or about 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, or more than 16 amino acids of any one of SEQ ID NOs: 360-657 or 1896-1944 and a CDRL2 comprising at least a portion having at least or about 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, or more than 16 amino acids of any one of SEQ ID NOs: 1093-1229 or 2043-2091.


In some embodiments, the TIGIT antibody or immunoglobulin sequence comprises a CDRH3 comprising at least or about 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to any one of SEQ ID NOs: 658-955 or 1945-1993 and a CDRL3 comprising at least or about 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to any one of SEQ ID NOs: 1230-1366 or 2092-2140. In some instances, the antibody or immunoglobulin sequence comprises CDRH3 comprising at least or about 95% homology to any one of SEQ ID NOs: 658-955 or 1945-1993 and a CDRL3 comprising at least or about 95% homology to any one of SEQ ID NOs: 1230-1366 or 2092-2140. In some instances, the antibody or immunoglobulin sequence comprises CDRH3 comprising at least or about 97% homology to any one of SEQ ID NOs: 658-955 or 1945-1993 and a CDRL3 comprising at least or about 97% homology to any one of SEQ ID NOs: 1230-1366 or 2092-2140. In some instances, the antibody or immunoglobulin sequence comprises CDRH3 comprising at least or about 99% homology to any one of SEQ ID NOs: 658-955 or 1945-1993 and a CDRL3 comprising at least or about 99% homology to any one of SEQ ID NOs: 1230-1366 or 2092-2140. In some instances, the antibody or immunoglobulin sequence comprises CDRH3 comprising at least or about 100% homology to any one of SEQ ID NOs: 658-955 or 1945-1993 and a CDRL3 comprising at least or about 100% homology to any one of SEQ ID NOs: 1230-1366 or 2092-2140. In some instances, the antibody or immunoglobulin sequence comprises CDRH3 comprising at least a portion having at least or about 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, or more than 16 amino acids of any one of SEQ ID NOs: 658-955 or 1945-1993 and a CDRL3 comprising at least a portion having at least or about 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, or more than 16 amino acids of any one of SEQ ID NOs: 1230-1366 or 2092-2140.


Variant Libraries

Codon Variation


Variant nucleic acid libraries described herein may comprise a plurality of nucleic acids, wherein each nucleic acid encodes for a variant codon sequence compared to a reference nucleic acid sequence. In some instances, each nucleic acid of a first nucleic acid population contains a variant at a single variant site. In some instances, the first nucleic acid population contains a plurality of variants at a single variant site such that the first nucleic acid population contains more than one variant at the same variant site. The first nucleic acid population may comprise nucleic acids collectively encoding multiple codon variants at the same variant site. The first nucleic acid population may comprise nucleic acids collectively encoding up to 19 or more codons at the same position. The first nucleic acid population may comprise nucleic acids collectively encoding up to 60 variant triplets at the same position, or the first nucleic acid population may comprise nucleic acids collectively encoding up to 61 different triplets of codons at the same position. Each variant may encode for a codon that results in a different amino acid during translation. Table 1 provides a listing of each codon possible (and the representative amino acid) for a variant site.









TABLE 1







List of codons and amino acids











One
Three




letter
letter


Amino Acids
code
code
Codons
















Alanine
A
Ala
GCA
GCC
GCG
GCT











Cysteine
C
Cys
TGC
TGT


Aspartic acid
D
Asp
GAC
GAT


Glutamic acid
E
Glu
GAA
GAG


Phenylalanine
F
Phe
TTC
TTT













Glycine
G
Gly
GGA
GGC
GGG
GGT











Histidine
H
His
CAC
CAT












Isoleucine
I
Iso
ATA
ATC
ATT











Lysine
K
Lys
AAA
AAG















Leucine
L
Leu
TTA
TTG
CTA
CTC
CTG
CTT










Methionine
M
Met
ATG











Asparagine
N
Asn
AAC
AAT













Proline
P
Pro
CCA
CCC
CCG
CCT











Glutamine
Q
Gln
CAA
CAG















Arginine
R
Arg
AGA
AGG
CGA
CGC
CGG
CGT


Serine
S
Ser
AGC
AGT
TCA
TCC
TCG
TCT













Threonine
T
Thr
ACA
ACC
ACG
ACT


Valine
V
Val
GTA
GTC
GTG
GTT










Tryptophan
W
Trp
TGG











Tyrosine
Y
Tyr
TAC
TAT









A nucleic acid population may comprise varied nucleic acids collectively encoding up to 20 codon variations at multiple positions. In such cases, each nucleic acid in the population comprises variation for codons at more than one position in the same nucleic acid. In some instances, each nucleic acid in the population comprises variation for codons at 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 or more codons in a single nucleic acid. In some instances, each variant long nucleic acid comprises variation for codons at 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 or more codons in a single long nucleic acid. In some instances, the variant nucleic acid population comprises variation for codons at 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 or more codons in a single nucleic acid. In some instances, the variant nucleic acid population comprises variation for codons in at least about 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 or more codons in a single long nucleic acid.


Highly Parallel Nucleic Acid Synthesis

Provided herein is a platform approach utilizing miniaturization, parallelization, and vertical integration of the end-to-end process from polynucleotide synthesis to gene assembly within nanowells on silicon to create a revolutionary synthesis platform. Devices described herein provide, with the same footprint as a 96-well plate, a silicon synthesis platform is capable of increasing throughput by a factor of up to 1,000 or more compared to traditional synthesis methods, with production of up to approximately 1,000,000 or more polynucleotides, or 10,000 or more genes in a single highly-parallelized run.


With the advent of next-generation sequencing, high resolution genomic data has become an important factor for studies that delve into the biological roles of various genes in both normal biology and disease pathogenesis. At the core of this research is the central dogma of molecular biology and the concept of “residue-by-residue transfer of sequential information.” Genomic information encoded in the DNA is transcribed into a message that is then translated into the protein that is the active product within a given biological pathway.


Another exciting area of study is on the discovery, development and manufacturing of therapeutic molecules focused on a highly-specific cellular target. High diversity DNA sequence libraries are at the core of development pipelines for targeted therapeutics. Gene mutants are used to express proteins in a design, build, and test protein engineering cycle that ideally culminates in an optimized gene for high expression of a protein with high affinity for its therapeutic target. As an example, consider the binding pocket of a receptor. The ability to test all sequence permutations of all residues within the binding pocket simultaneously will allow for a thorough exploration, increasing chances of success. Saturation mutagenesis, in which a researcher attempts to generate all possible mutations at a specific site within the receptor, represents one approach to this development challenge. Though costly and time and labor-intensive, it enables each variant to be introduced into each position. In contrast, combinatorial mutagenesis, where a few selected positions or short stretch of DNA may be modified extensively, generates an incomplete repertoire of variants with biased representation.


To accelerate the drug development pipeline, a library with the desired variants available at the intended frequency in the right position available for testing—in other words, a precision library, enables reduced costs as well as turnaround time for screening. Provided herein are methods for synthesizing nucleic acid synthetic variant libraries which provide for precise introduction of each intended variant at the desired frequency. To the end user, this translates to the ability to not only thoroughly sample sequence space but also be able to query these hypotheses in an efficient manner, reducing cost and screening time. Genome-wide editing can elucidate important pathways, libraries where each variant and sequence permutation can be tested for optimal functionality, and thousands of genes can be used to reconstruct entire pathways and genomes to re-engineer biological systems for drug discovery.


In a first example, a drug itself can be optimized using methods described herein. For example, to improve a specified function of an antibody, a variant polynucleotide library encoding for a portion of the antibody is designed and synthesized. A variant nucleic acid library for the antibody can then be generated by processes described herein (e.g., PCR mutagenesis followed by insertion into a vector). The antibody is then expressed in a production cell line and screened for enhanced activity. Example screens include examining modulation in binding affinity to an antigen, stability, or effector function (e.g., ADCC, complement, or apoptosis). Exemplary regions to optimize the antibody include, without limitation, the Fc region, Fab region, variable region of the Fab region, constant region of the Fab region, variable domain of the heavy chain or light chain (VH or VL), and specific complementarity-determining regions (CDRs) of VH or VL.


Nucleic acid libraries synthesized by methods described herein may be expressed in various cells associated with a disease state. Cells associated with a disease state include cell lines, tissue samples, primary cells from a subject, cultured cells expanded from a subject, or cells in a model system. Exemplary model systems include, without limitation, plant and animal models of a disease state.


To identify a variant molecule associated with prevention, reduction or treatment of a disease state, a variant nucleic acid library described herein is expressed in a cell associated with a disease state, or one in which a cell a disease state can be induced. In some instances, an agent is used to induce a disease state in cells. Exemplary tools for disease state induction include, without limitation, a Cre/Lox recombination system, LPS inflammation induction, and streptozotocin to induce hypoglycemia. The cells associated with a disease state may be cells from a model system or cultured cells, as well as cells from a subject having a particular disease condition. Exemplary disease conditions include a bacterial, fungal, viral, autoimmune, or proliferative disorder (e.g., cancer). In some instances, the variant nucleic acid library is expressed in the model system, cell line, or primary cells derived from a subject, and screened for changes in at least one cellular activity. Exemplary cellular activities include, without limitation, proliferation, cycle progression, cell death, adhesion, migration, reproduction, cell signaling, energy production, oxygen utilization, metabolic activity, and aging, response to free radical damage, or any combination thereof


Substrates

Devices used as a surface for polynucleotide synthesis may be in the form of substrates which include, without limitation, homogenous array surfaces, patterned array surfaces, channels, beads, gels, and the like. Provided herein are substrates comprising a plurality of clusters, wherein each cluster comprises a plurality of loci that support the attachment and synthesis of polynucleotides. In some instances, substrates comprise a homogenous array surface. For example, the homogenous array surface is a homogenous plate. The term “locus” as used herein refers to a discrete region on a structure which provides support for polynucleotides encoding for a single predetermined sequence to extend from the surface. In some instances, a locus is on a two dimensional surface, e.g., a substantially planar surface. In some instances, a locus is on a three-dimensional surface, e.g., a well, microwell, channel, or post. In some instances, a surface of a locus comprises a material that is actively functionalized to attach to at least one nucleotide for polynucleotide synthesis, or preferably, a population of identical nucleotides for synthesis of a population of polynucleotides. In some instances, polynucleotide refers to a population of polynucleotides encoding for the same nucleic acid sequence. In some cases, a surface of a substrate is inclusive of one or a plurality of surfaces of a substrate. The average error rates for polynucleotides synthesized within a library described here using the systems and methods provided are often less than 1 in 1000, less than about 1 in 2000, less than about 1 in 3000 or less often without error correction.


Provided herein are surfaces that support the parallel synthesis of a plurality of polynucleotides having different predetermined sequences at addressable locations on a common support. In some instances, a substrate provides support for the synthesis of more than 50, 100, 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2,000; 5,000; 10,000; 20,000; 50,000; 100,000; 200,000; 300,000; 400,000; 500,000; 600,000; 700,000; 800,000; 900,000; 1,000,000; 1,200,000; 1,400,000; 1,600,000; 1,800,000; 2,000,000; 2,500,000; 3,000,000; 3,500,000; 4,000,000; 4,500,000; 5,000,000; 10,000,000 or more non-identical polynucleotides. In some cases, the surfaces provide support for the synthesis of more than 50, 100, 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2,000; 5,000; 10,000; 20,000; 50,000; 100,000; 200,000; 300,000; 400,000; 500,000; 600,000; 700,000; 800,000; 900,000; 1,000,000; 1,200,000; 1,400,000; 1,600,000; 1,800,000; 2,000,000; 2,500,000; 3,000,000; 3,500,000; 4,000,000; 4,500,000; 5,000,000; 10,000,000 or more polynucleotides encoding for distinct sequences. In some instances, at least a portion of the polynucleotides have an identical sequence or are configured to be synthesized with an identical sequence. In some instances, the substrate provides a surface environment for the growth of polynucleotides having at least 80, 90, 100, 120, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500 bases or more.


Provided herein are methods for polynucleotide synthesis on distinct loci of a substrate, wherein each locus supports the synthesis of a population of polynucleotides. In some cases, each locus supports the synthesis of a population of polynucleotides having a different sequence than a population of polynucleotides grown on another locus. In some instances, each polynucleotide sequence is synthesized with 1, 2, 3, 4, 5, 6, 7, 8, 9 or more redundancy across different loci within the same cluster of loci on a surface for polynucleotide synthesis. In some instances, the loci of a substrate are located within a plurality of clusters. In some instances, a substrate comprises at least 10, 500, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 11000, 12000, 13000, 14000, 15000, 20000, 30000, 40000, 50000 or more clusters. In some instances, a substrate comprises more than 2,000; 5,000; 10,000; 100,000; 200,000; 300,000; 400,000; 500,000; 600,000; 700,000; 800,000; 900,000; 1,000,000; 1,100,000; 1,200,000; 1,300,000; 1,400,000; 1,500,000; 1,600,000; 1,700,000; 1,800,000; 1,900,000; 2,000,000; 300,000; 400,000; 500,000; 600,000; 700,000; 800,000; 900,000; 1,000,000; 1,200,000; 1,400,000; 1,600,000; 1,800,000; 2,000,000; 2,500,000; 3,000,000; 3,500,000; 4,000,000; 4,500,000; 5,000,000; or 10,000,000 or more distinct loci. In some instances, a substrate comprises about 10,000 distinct loci. The amount of loci within a single cluster is varied in different instances. In some cases, each cluster includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 130, 150, 200, 300, 400, 500 or more loci. In some instances, each cluster includes about 50-500 loci. In some instances, each cluster includes about 100-200 loci. In some instances, each cluster includes about 100-150 loci. In some instances, each cluster includes about 109, 121, 130 or 137 loci. In some instances, each cluster includes about 19, 20, 61, 64 or more loci. Alternatively or in combination, polynucleotide synthesis occurs on a homogenous array surface.


In some instances, the number of distinct polynucleotides synthesized on a substrate is dependent on the number of distinct loci available in the substrate. In some instances, the density of loci within a cluster or surface of a substrate is at least or about 1, 10, 25, 50, 65, 75, 100, 130, 150, 175, 200, 300, 400, 500, 1,000 or more loci per mm2. In some cases, a substrate comprises 10-500, 25-400, 50-500, 100-500, 150-500, 10-250, 50-250, 10-200, or 50-200 mm2. In some instances, the distance between the centers of two adjacent loci within a cluster or surface is from about 10-500, from about 10-200, or from about 10-100 um. In some instances, the distance between two centers of adjacent loci is greater than about 10, 20, 30, 40, 50, 60, 70, 80, 90 or 100 um. In some instances, the distance between the centers of two adjacent loci is less than about 200, 150, 100, 80, 70, 60, 50, 40, 30, 20 or 10 um. In some instances, each locus has a width of about 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90 or 100 um. In some cases, each locus has a width of about 0.5-100, 0.5-50, 10-75, or 0.5-50 um.


In some instances, the density of clusters within a substrate is at least or about 1 cluster per 100 mm2, 1 cluster per 10 mm2, 1 cluster per 5 mm2, 1 cluster per 4 mm2, 1 cluster per 3 mm2, 1 cluster per 2 mm2, 1 cluster per 1 mm2, 2 clusters per 1 mm2, 3 clusters per 1 mm2, 4 clusters per 1 mm2, 5 clusters per 1 mm2, 10 clusters per 1 mm2, 50 clusters per 1 mm2 or more. In some instances, a substrate comprises from about 1 cluster per 10 mm2 to about 10 clusters per 1 mm2. In some instances, the distance between the centers of two adjacent clusters is at least or about 50, 100, 200, 500, 1000, 2000, or 5000 um. In some cases, the distance between the centers of two adjacent clusters is between about 50-100, 50-200, 50-300, 50-500, and 100-2000 um. In some cases, the distance between the centers of two adjacent clusters is between about 0.05-50, 0.05-10, 0.05-5, 0.05-4, 0.05-3, 0.05-2, 0.1-10, 0.2-10, 0.3-10, 0.4-10, 0.5-10, 0.5-5, or 0.5-2 mm. In some cases, each cluster has a cross section of about 0.5 to about 2, about 0.5 to about 1, or about 1 to about 2 mm. In some cases, each cluster has a cross section of about 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9 or 2 mm. In some cases, each cluster has an interior cross section of about 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.15, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9 or 2 mm.


In some instances, a substrate is about the size of a standard 96 well plate, for example between about 100 and about 200 mm by between about 50 and about 150 mm. In some instances, a substrate has a diameter less than or equal to about 1000, 500, 450, 400, 300, 250, 200, 150, 100 or 50 mm. In some instances, the diameter of a substrate is between about 25-1000, 25-800, 25-600, 25-500, 25-400, 25-300, or 25-200 mm. In some instances, a substrate has a planar surface area of at least about 100; 200; 500; 1,000; 2,000; 5,000; 10,000; 12,000; 15,000; 20,000; 30,000; 40,000; 50,000 mm2 or more. In some instances, the thickness of a substrate is between about 50-2000, 50- 1000, 100-1000, 200-1000, or 250-1000 mm.


Surface Materials


Substrates, devices, and reactors provided herein are fabricated from any variety of materials suitable for the methods, compositions, and systems described herein. In certain instances, substrate materials are fabricated to exhibit a low level of nucleotide binding. In some instances, substrate materials are modified to generate distinct surfaces that exhibit a high level of nucleotide binding. In some instances, substrate materials are transparent to visible and/or UV light. In some instances, substrate materials are sufficiently conductive, e.g., are able to form uniform electric fields across all or a portion of a substrate. In some instances, conductive materials are connected to an electric ground. In some instances, the substrate is heat conductive or insulated. In some instances, the materials are chemical resistant and heat resistant to support chemical or biochemical reactions, for example polynucleotide synthesis reaction processes. In some instances, a substrate comprises flexible materials. For flexible materials, materials can include, without limitation: nylon, both modified and unmodified, nitrocellulose, polypropylene, and the like. In some instances, a substrate comprises rigid materials. For rigid materials, materials can include, without limitation: glass; fuse silica; silicon, plastics (for example polytetraflouroethylene, polypropylene, polystyrene, polycarbonate, and blends thereof, and the like); metals (for example, gold, platinum, and the like). The substrate, solid support or reactors can be fabricated from a material selected from the group consisting of silicon, polystyrene, agarose, dextran, cellulosic polymers, polyacrylamides, polydimethylsiloxane (PDMS), and glass. The substrates/solid supports or the microstructures, reactors therein may be manufactured with a combination of materials listed herein or any other suitable material known in the art.


Surface Architecture

Provided herein are substrates for the methods, compositions, and systems described herein, wherein the substrates have a surface architecture suitable for the methods, compositions, and systems described herein. In some instances, a substrate comprises raised and/or lowered features. One benefit of having such features is an increase in surface area to support polynucleotide synthesis. In some instances, a substrate having raised and/or lowered features is referred to as a three-dimensional substrate. In some cases, a three-dimensional substrate comprises one or more channels. In some cases, one or more loci comprise a channel. In some cases, the channels are accessible to reagent deposition via a deposition device such as a material deposition device. In some cases, reagents and/or fluids collect in a larger well in fluid communication one or more channels. For example, a substrate comprises a plurality of channels corresponding to a plurality of loci with a cluster, and the plurality of channels are in fluid communication with one well of the cluster. In some methods, a library of polynucleotides is synthesized in a plurality of loci of a cluster.


Provided herein are substrates for the methods, compositions, and systems described herein, wherein the substrates are configured for polynucleotide synthesis. In some instances, the structure is configured to allow for controlled flow and mass transfer paths for polynucleotide synthesis on a surface. In some instances, the configuration of a substrate allows for the controlled and even distribution of mass transfer paths, chemical exposure times, and/or wash efficacy during polynucleotide synthesis. In some instances, the configuration of a substrate allows for increased sweep efficiency, for example by providing sufficient volume for a growing polynucleotide such that the excluded volume by the growing polynucleotide does not take up more than 50, 45, 40, 35,30, 25, 20, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1%, or less of the initially available volume that is available or suitable for growing the polynucleotide. In some instances, a three-dimensional structure allows for managed flow of fluid to allow for the rapid exchange of chemical exposure.


Provided herein are substrates for the methods, compositions, and systems described herein, wherein the substrates comprise structures suitable for the methods, compositions, and systems described herein. In some instances, segregation is achieved by physical structure. In some instances, segregation is achieved by differential functionalization of the surface generating active and passive regions for polynucleotide synthesis. In some instances, differential functionalization is achieved by alternating the hydrophobicity across the substrate surface, thereby creating water contact angle effects that cause beading or wetting of the deposited reagents. Employing larger structures can decrease splashing and cross-contamination of distinct polynucleotide synthesis locations with reagents of the neighboring spots. In some cases, a device, such as a material deposition device, is used to deposit reagents to distinct polynucleotide synthesis locations. Substrates having three-dimensional features are configured in a manner that allows for the synthesis of a large number of polynucleotides (e.g., more than about 10,000) with a low error rate (e.g., less than about 1:500, 1:1000, 1:1500, 1:2,000, 1:3,000, 1:5,000, or 1:10,000). In some cases, a substrate comprises features with a density of about or greater than about 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 300, 400 or 500 features per mm2.


A well of a substrate may have the same or different width, height, and/or volume as another well of the substrate. A channel of a substrate may have the same or different width, height, and/or volume as another channel of the substrate. In some instances, the diameter of a cluster or the diameter of a well comprising a cluster, or both, is between about 0.05-50, 0.05-10, 0.05-5, 0.05-4, 0.05-3, 0.05-2, 0.05-1, 0.05-0.5, 0.05-0.1, 0.1-10, 0.2-10, 0.3-10, 0.4-10, 0.5-10, 0.5-5, or 0.5-2 mm. In some instances, the diameter of a cluster or well or both is less than or about 5, 4, 3, 2, 1, 0.5, 0.1, 0.09, 0.08, 0.07, 0.06, or 0.05 mm. In some instances, the diameter of a cluster or well or both is between about 1.0 and 1.3 mm. In some instances, the diameter of a cluster or well, or both is about 1.150 mm. In some instances, the diameter of a cluster or well, or both is about 0.08 mm. The diameter of a cluster refers to clusters within a two-dimensional or three-dimensional substrate.


In some instances, the height of a well is from about 20-1000, 50-1000, 100- 1000, 200-1000, 300-1000, 400-1000, or 500-1000 um. In some cases, the height of a well is less than about 1000, 900, 800, 700, or 600 um.


In some instances, a substrate comprises a plurality of channels corresponding to a plurality of loci within a cluster, wherein the height or depth of a channel is 5-500, 5-400, 5-300, 5-200, 5-100, 5-50, or 10-50 um. In some cases, the height of a channel is less than 100, 80, 60, 40, or 20 um.


In some instances, the diameter of a channel, locus (e.g., in a substantially planar substrate) or both channel and locus (e.g., in a three-dimensional substrate wherein a locus corresponds to a channel) is from about 1-1000, 1-500, 1-200, 1-100, 5-100, or 10-100 um, for example, about 90, 80, 70, 60, 50, 40, 30, 20 or 10 um. In some instances, the diameter of a channel, locus, or both channel and locus is less than about 100, 90, 80, 70, 60, 50, 40, 30, 20 or 10 um. In some instances, the distance between the center of two adjacent channels, loci, or channels and loci is from about 1-500, 1-200, 1-100, 5-200, 5-100, 5-50, or 5-30, for example, about 20 um.


Surface Modifications

Provided herein are methods for polynucleotide synthesis on a surface, wherein the surface comprises various surface modifications. In some instances, the surface modifications are employed for the chemical and/or physical alteration of a surface by an additive or subtractive process to change one or more chemical and/or physical properties of a substrate surface or a selected site or region of a substrate surface. For example, surface modifications include, without limitation, (1) changing the wetting properties of a surface, (2) functionalizing a surface, i.e., providing, modifying or substituting surface functional groups, (3) defunctionalizing a surface, i.e., removing surface functional groups, (4) otherwise altering the chemical composition of a surface, e.g., through etching, (5) increasing or decreasing surface roughness, (6) providing a coating on a surface, e.g., a coating that exhibits wetting properties that are different from the wetting properties of the surface, and/or (7) depositing particulates on a surface.


In some cases, the addition of a chemical layer on top of a surface (referred to as adhesion promoter) facilitates structured patterning of loci on a surface of a substrate. Exemplary surfaces for application of adhesion promotion include, without limitation, glass, silicon, silicon dioxide and silicon nitride. In some cases, the adhesion promoter is a chemical with a high surface energy. In some instances, a second chemical layer is deposited on a surface of a substrate. In some cases, the second chemical layer has a low surface energy. In some cases, surface energy of a chemical layer coated on a surface supports localization of droplets on the surface. Depending on the patterning arrangement selected, the proximity of loci and/or area of fluid contact at the loci are alterable.


In some instances, a substrate surface, or resolved loci, onto which nucleic acids or other moieties are deposited, e.g., for polynucleotide synthesis, are smooth or substantially planar (e.g., two-dimensional) or have irregularities, such as raised or lowered features (e.g., three-dimensional features). In some instances, a substrate surface is modified with one or more different layers of compounds. Such modification layers of interest include, without limitation, inorganic and organic layers such as metals, metal oxides, polymers, small organic molecules and the like.


In some instances, resolved loci of a substrate are functionalized with one or more moieties that increase and/or decrease surface energy. In some cases, a moiety is chemically inert. In some cases, a moiety is configured to support a desired chemical reaction, for example, one or more processes in a polynucleotide synthesis reaction. The surface energy, or hydrophobicity, of a surface is a factor for determining the affinity of a nucleotide to attach onto the surface. In some instances, a method for substrate functionalization comprises: (a) providing a substrate having a surface that comprises silicon dioxide; and (b) silanizing the surface using, a suitable silanizing agent described herein or otherwise known in the art, for example, an organofunctional alkoxysilane molecule. Methods and functionalizing agents are described in U.S. Pat. No. 5,474,796, which is herein incorporated by reference in its entirety.


In some instances, a substrate surface is functionalized by contact with a derivatizing composition that contains a mixture of silanes, under reaction conditions effective to couple the silanes to the substrate surface, typically via reactive hydrophilic moieties present on the substrate surface. Silanization generally covers a surface through self-assembly with organofunctional alkoxysilane molecules. A variety of siloxane functionalizing reagents can further be used as currently known in the art, e.g., for lowering or increasing surface energy. The organofunctional alkoxysilanes are classified according to their organic functions.


Polynucleotide Synthesis

Methods of the current disclosure for polynucleotide synthesis may include processes involving phosphoramidite chemistry. In some instances, polynucleotide synthesis comprises coupling a base with phosphoramidite. Polynucleotide synthesis may comprise coupling a base by deposition of phosphoramidite under coupling conditions, wherein the same base is optionally deposited with phosphoramidite more than once, i.e., double coupling. Polynucleotide synthesis may comprise capping of unreacted sites. In some instances, capping is optional. Polynucleotide synthesis may also comprise oxidation or an oxidation step or oxidation steps. Polynucleotide synthesis may comprise deblocking, detritylation, and sulfurization. In some instances, polynucleotide synthesis comprises either oxidation or sulfurization. In some instances, between one or each step during a polynucleotide synthesis reaction, the device is washed, for example, using tetrazole or acetonitrile. Time frames for any one step in a phosphoramidite synthesis method may be less than about 2 min, 1 min, 50 sec, 40 sec, 30 sec, 20 sec and 10 sec.


Polynucleotide synthesis using a phosphoramidite method may comprise a subsequent addition of a phosphoramidite building block (e.g., nucleoside phosphoramidite) to a growing polynucleotide chain for the formation of a phosphite triester linkage. Phosphoramidite polynucleotide synthesis proceeds in the 3′ to 5′ direction. Phosphoramidite polynucleotide synthesis allows for the controlled addition of one nucleotide to a growing nucleic acid chain per synthesis cycle. In some instances, each synthesis cycle comprises a coupling step. Phosphoramidite coupling involves the formation of a phosphite triester linkage between an activated nucleoside phosphoramidite and a nucleoside bound to the substrate, for example, via a linker. In some instances, the nucleoside phosphoramidite is provided to the device activated. In some instances, the nucleoside phosphoramidite is provided to the device with an activator. In some instances, nucleoside phosphoramidites are provided to the device in a 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100-fold excess or more over the substrate-bound nucleosides. In some instances, the addition of nucleoside phosphoramidite is performed in an anhydrous environment, for example, in anhydrous acetonitrile. Following addition of a nucleoside phosphoramidite, the device is optionally washed. In some instances, the coupling step is repeated one or more additional times, optionally with a wash step between nucleoside phosphoramidite additions to the substrate. In some instances, a polynucleotide synthesis method used herein comprises 1, 2, 3 or more sequential coupling steps. Prior to coupling, in many cases, the nucleoside bound to the device is de-protected by removal of a protecting group, where the protecting group functions to prevent polymerization. A common protecting group is 4,4′-dimethoxytrityl (DMT).


Following coupling, phosphoramidite polynucleotide synthesis methods optionally comprise a capping step. In a capping step, the growing polynucleotide is treated with a capping agent. A capping step is useful to block unreacted substrate-bound 5′-OH groups after coupling from further chain elongation, preventing the formation of polynucleotides with internal base deletions. Further, phosphoramidites activated with 1H-tetrazole may react, to a small extent, with the O6 position of guanosine. Without being bound by theory, upon oxidation with I2/water, this side product, possibly via O6-N7 migration, may undergo depurination. The apurinic sites may end up being cleaved in the course of the final deprotection of the polynucleotide thus reducing the yield of the full-length product. The O6 modifications may be removed by treatment with the capping reagent prior to oxidation with I2/water. In some instances, inclusion of a capping step during polynucleotide synthesis decreases the error rate as compared to synthesis without capping. As an example, the capping step comprises treating the substrate-bound polynucleotide with a mixture of acetic anhydride and 1-methylimidazole. Following a capping step, the device is optionally washed.


In some instances, following addition of a nucleoside phosphoramidite, and optionally after capping and one or more wash steps, the device bound growing nucleic acid is oxidized. The oxidation step comprises the phosphite triester is oxidized into a tetracoordinated phosphate triester, a protected precursor of the naturally occurring phosphate diester intemucleoside linkage. In some instances, oxidation of the growing polynucleotide is achieved by treatment with iodine and water, optionally in the presence of a weak base (e.g., pyridine, lutidine, collidine). Oxidation may be carried out under anhydrous conditions using, e.g. tert-Butyl hydroperoxide or (1S)-(+)-(10-camphorsulfonyl)-oxaziridine (CSO). In some methods, a capping step is performed following oxidation. A second capping step allows for device drying, as residual water from oxidation that may persist can inhibit subsequent coupling. Following oxidation, the device and growing polynucleotide is optionally washed. In some instances, the step of oxidation is substituted with a sulfurization step to obtain polynucleotide phosphorothioates, wherein any capping steps can be performed after the sulfurization. Many reagents are capable of the efficient sulfur transfer, including but not limited to 3-(Dimethylaminomethylidene)amino)-3H-1,2,4-dithiazole-3-thione, DDTT, 3H-1,2-benzodithiol-3-one 1,1-dioxide, also known as Beaucage reagent, and N,N,N′N′-Tetraethylthiuram disulfide (TETD).


In order for a subsequent cycle of nucleoside incorporation to occur through coupling, the protected 5′ end of the device bound growing polynucleotide is removed so that the primary hydroxyl group is reactive with a next nucleoside phosphoramidite. In some instances, the protecting group is DMT and deblocking occurs with trichloroacetic acid in dichloromethane. Conducting detritylation for an extended time or with stronger than recommended solutions of acids may lead to increased depurination of solid support-bound polynucleotide and thus reduces the yield of the desired full-length product. Methods and compositions of the disclosure described herein provide for controlled deblocking conditions limiting undesired depurination reactions. In some instances, the device bound polynucleotide is washed after deblocking. In some instances, efficient washing after deblocking contributes to synthesized polynucleotides having a low error rate.


Methods for the synthesis of polynucleotides typically involve an iterating sequence of the following steps: application of a protected monomer to an actively functionalized surface (e.g., locus) to link with either the activated surface, a linker or with a previously deprotected monomer; deprotection of the applied monomer so that it is reactive with a subsequently applied protected monomer; and application of another protected monomer for linking. One or more intermediate steps include oxidation or sulfurization. In some instances, one or more wash steps precede or follow one or all of the steps.


Methods for phosphoramidite-based polynucleotide synthesis comprise a series of chemical steps. In some instances, one or more steps of a synthesis method involve reagent cycling, where one or more steps of the method comprise application to the device of a reagent useful for the step. For example, reagents are cycled by a series of liquid deposition and vacuum drying steps. For substrates comprising three-dimensional features such as wells, microwells, channels and the like, reagents are optionally passed through one or more regions of the device via the wells and/or channels.


Methods and systems described herein relate to polynucleotide synthesis devices for the synthesis of polynucleotides. The synthesis may be in parallel. For example, at least or about at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 1000, 10000, 50000, 75000, 100000 or more polynucleotides can be synthesized in parallel. The total number polynucleotides that may be synthesized in parallel may be from 2-100000, 3-50000, 4-10000, 5-1000, 6-900, 7-850, 8-800, 9-750, 10-700, 11-650, 12-600, 13-550, 14-500, 15-450, 16-400, 17-350, 18-300, 19-250, 20-200, 21-150,22-100, 23-50, 24-45, 25-40, 30-35. Those of skill in the art appreciate that the total number of polynucleotides synthesized in parallel may fall within any range bound by any of these values, for example 25-100. The total number of polynucleotides synthesized in parallel may fall within any range defined by any of the values serving as endpoints of the range. Total molar mass of polynucleotides synthesized within the device or the molar mass of each of the polynucleotides may be at least or at least about 10, 20, 30, 40, 50, 100, 250, 500, 750, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 25000, 50000, 75000, 100000 picomoles, or more. The length of each of the polynucleotides or average length of the polynucleotides within the device may be at least or about at least 10, 15, 20, 25, 30, 35, 40, 45, 50, 100, 150, 200, 300, 400, 500 nucleotides, or more. The length of each of the polynucleotides or average length of the polynucleotides within the device may be at most or about at most 500, 400, 300, 200, 150, 100, 50, 45, 35, 30, 25, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10 nucleotides, or less. The length of each of the polynucleotides or average length of the polynucleotides within the device may fall from 10-500, 9-400, 11-300, 12-200, 13-150, 14-100, 15-50, 16-45, 17-40, 18-35, 19-25. Those of skill in the art appreciate that the length of each of the polynucleotides or average length of the polynucleotides within the device may fall within any range bound by any of these values, for example 100-300. The length of each of the polynucleotides or average length of the polynucleotides within the device may fall within any range defined by any of the values serving as endpoints of the range.


Methods for polynucleotide synthesis on a surface provided herein allow for synthesis at a fast rate. As an example, at least 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 70, 80, 90, 100, 125, 150, 175, 200 nucleotides per hour, or more are synthesized. Nucleotides include adenine, guanine, thymine, cytosine, uridine building blocks, or analogs/modified versions thereof. In some instances, libraries of polynucleotides are synthesized in parallel on substrate. For example, a device comprising about or at least about 100; 1,000; 10,000; 30,000; 75,000; 100,000; 1,000,000; 2,000,000; 3,000,000; 4,000,000; or 5,000,000 resolved loci is able to support the synthesis of at least the same number of distinct polynucleotides, wherein polynucleotide encoding a distinct sequence is synthesized on a resolved locus. In some instances, a library of polynucleotides is synthesized on a device with low error rates described herein in less than about three months, two months, one month, three weeks, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2 days, 24 hours or less. In some instances, larger nucleic acids assembled from a polynucleotide library synthesized with low error rate using the substrates and methods described herein are prepared in less than about three months, two months, one month, three weeks, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2 days, 24 hours or less.


In some instances, methods described herein provide for generation of a library of nucleic acids comprising variant nucleic acids differing at a plurality of codon sites. In some instances, a nucleic acid may have 1 site, 2 sites, 3 sites, 4 sites, 5 sites, 6 sites, 7 sites, 8 sites, 9 sites, 10 sites, 11 sites, 12 sites, 13 sites, 14 sites, 15 sites, 16 sites, 17 sites 18 sites, 19 sites, 20 sites, 30 sites, 40 sites, 50 sites, or more of variant codon sites.


In some instances, the one or more sites of variant codon sites may be adjacent. In some instances, the one or more sites of variant codon sites may not be adjacent and separated by 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more codons.


In some instances, a nucleic acid may comprise multiple sites of variant codon sites, wherein all the variant codon sites are adjacent to one another, forming a stretch of variant codon sites. In some instances, a nucleic acid may comprise multiple sites of variant codon sites, wherein none the variant codon sites are adjacent to one another. In some instances, a nucleic acid may comprise multiple sites of variant codon sites, wherein some the variant codon sites are adjacent to one another, forming a stretch of variant codon sites, and some of the variant codon sites are not adjacent to one another.


Referring to the Figures, FIG. 1 illustrates an exemplary process workflow for synthesis of nucleic acids (e.g., genes) from shorter nucleic acids. The workflow is divided generally into phases: (1) de novo synthesis of a single stranded nucleic acid library, (2) joining nucleic acids to form larger fragments, (3) error correction, (4) quality control, and (5) shipment. Prior to de novo synthesis, an intended nucleic acid sequence or group of nucleic acid sequences is preselected. For example, a group of genes is preselected for generation.


Once large nucleic acids for generation are selected, a predetermined library of nucleic acids is designed for de novo synthesis. Various suitable methods are known for generating high density polynucleotide arrays. In the workflow example, a device surface layer is provided. In the example, chemistry of the surface is altered in order to improve the polynucleotide synthesis process. Areas of low surface energy are generated to repel liquid while areas of high surface energy are generated to attract liquids. The surface itself may be in the form of a planar surface or contain variations in shape, such as protrusions or microwells which increase surface area. In the workflow example, high surface energy molecules selected serve a dual function of supporting DNA chemistry, as disclosed in International Patent Application Publication WO/2015/021080, which is herein incorporated by reference in its entirety.


In situ preparation of polynucleotide arrays is generated on a solid support and utilizes single nucleotide extension process to extend multiple oligomers in parallel. A deposition device, such as a material deposition device, is designed to release reagents in a step wise fashion such that multiple polynucleotides extend, in parallel, one residue at a time to generate oligomers with a predetermined nucleic acid sequence 102. In some instances, polynucleotides are cleaved from the surface at this stage. Cleavage includes gas cleavage, e.g., with ammonia or methylamine.


The generated polynucleotide libraries are placed in a reaction chamber. In this exemplary workflow, the reaction chamber (also referred to as “nanoreactor”) is a silicon coated well, containing PCR reagents and lowered onto the polynucleotide library 103. Prior to or after the sealing 104 of the polynucleotides, a reagent is added to release the polynucleotides from the substrate. In the exemplary workflow, the polynucleotides are released subsequent to sealing of the nanoreactor 105. Once released, fragments of single stranded polynucleotides hybridize in order to span an entire long range sequence of DNA. Partial hybridization 105 is possible because each synthesized polynucleotide is designed to have a small portion overlapping with at least one other polynucleotide in the pool.


After hybridization, a PCA reaction is commenced. During the polymerase cycles, the polynucleotides anneal to complementary fragments and gaps are filled in by a polymerase. Each cycle increases the length of various fragments randomly depending on which polynucleotides find each other. Complementarity amongst the fragments allows for forming a complete large span of double stranded DNA 106.


After PCA is complete, the nanoreactor is separated from the device 107 and positioned for interaction with a device having primers for PCR 108. After sealing, the nanoreactor is subject to PCR 109 and the larger nucleic acids are amplified. After PCR 110, the nanochamber is opened 111, error correction reagents are added 112, the chamber is sealed 113 and an error correction reaction occurs to remove mismatched base pairs and/or strands with poor complementarity from the double stranded PCR amplification products 114. The nanoreactor is opened and separated 115. Error corrected product is next subject to additional processing steps, such as PCR and molecular bar coding, and then packaged 122 for shipment 123.


In some instances, quality control measures are taken. After error correction, quality control steps include for example interaction with a wafer having sequencing primers for amplification of the error corrected product 116, sealing the wafer to a chamber containing error corrected amplification product 117, and performing an additional round of amplification 118. The nanoreactor is opened 119 and the products are pooled 120 and sequenced 121. After an acceptable quality control determination is made, the packaged product 122 is approved for shipment 123.


In some instances, a nucleic acid generated by a workflow such as that in FIG. 1 is subject to mutagenesis using overlapping primers disclosed herein. In some instances, a library of primers are generated by in situ preparation on a solid support and utilize single nucleotide extension process to extend multiple oligomers in parallel. A deposition device, such as a material deposition device, is designed to release reagents in a step wise fashion such that multiple polynucleotides extend, in parallel, one residue at a time to generate oligomers with a predetermined nucleic acid sequence 102.


Computer Systems

Any of the systems described herein, may be operably linked to a computer and may be automated through a computer either locally or remotely. In various instances, the methods and systems of the disclosure may further comprise software programs on computer systems and use thereof. Accordingly, computerized control for the synchronization of the dispense/vacuum/refill functions such as orchestrating and synchronizing the material deposition device movement, dispense action and vacuum actuation are within the bounds of the disclosure. The computer systems may be programmed to interface between the user specified base sequence and the position of a material deposition device to deliver the correct reagents to specified regions of the substrate.


The computer system 200 illustrated in FIG. 2 may be understood as a logical apparatus that can read instructions from media 211 and/or a network port 205, which can optionally be connected to server 209 having fixed media 212. The system, such as shown in FIG. 2 can include a CPU 201, disk drives 203, optional input devices such as keyboard 215 and/or mouse 216 and optional monitor 207. Data communication can be achieved through the indicated communication medium to a server at a local or a remote location. The communication medium can include any means of transmitting and/or receiving data. For example, the communication medium can be a network connection, a wireless connection or an internet connection. Such a connection can provide for communication over the World Wide Web. It is envisioned that data relating to the present disclosure can be transmitted over such networks or connections for reception and/or review by a party 222 as illustrated in FIG. 2.


As illustrated in FIG. 3, a high speed cache 304 can be connected to, or incorporated in, the processor 302 to provide a high speed memory for instructions or data that have been recently, or are frequently, used by processor 302. The processor 302 is connected to a north bridge 306 by a processor bus 308. The north bridge 306 is connected to random access memory (RAM) 310 by a memory bus 312 and manages access to the RAM 310 by the processor 302. The north bridge 306 is also connected to a south bridge 314 by a chipset bus 316. The south bridge 314 is, in turn, connected to a peripheral bus 318. The peripheral bus can be, for example, PCI, PCI-X, PCI Express, or other peripheral bus. The north bridge and south bridge are often referred to as a processor chipset and manage data transfer between the processor, RAM, and peripheral components on the peripheral bus 318. In some alternative architectures, the functionality of the north bridge can be incorporated into the processor instead of using a separate north bridge chip. In some instances, system 300 can include an accelerator card 322 attached to the peripheral bus 318. The accelerator can include field programmable gate arrays (FPGAs) or other hardware for accelerating certain processing. For example, an accelerator can be used for adaptive data restructuring or to evaluate algebraic expressions used in extended set processing.


Software and data are stored in external storage 324 and can be loaded into RAM 310 and/or cache 304 for use by the processor. The system 300 includes an operating system for managing system resources; non-limiting examples of operating systems include: Linux, WindowsTM, MACOSTM, BlackBerry OSTM, iOSTM, and other functionally-equivalent operating systems, as well as application software running on top of the operating system for managing data storage and optimization in accordance with example instances of the present disclosure. In this example, system 300 also includes network interface cards (NICs) 320 and 321 connected to the peripheral bus for providing network interfaces to external storage, such as Network Attached Storage (NAS) and other computer systems that can be used for distributed parallel processing.



FIG. 4 is a diagram showing a network 400 with a plurality of computer systems 402a, and 402b, a plurality of cell phones and personal data assistants 402c, and Network Attached Storage (NAS) 404a, and 404b. In example instances, systems 402a, 402b, and 402c can manage data storage and optimize data access for data stored in Network Attached Storage (NAS) 404a and 404b. A mathematical model can be used for the data and be evaluated using distributed parallel processing across computer systems 402a, and 402b, and cell phone and personal data assistant systems 402c. Computer systems 402a, and 402b, and cell phone and personal data assistant systems 402c can also provide parallel processing for adaptive data restructuring of the data stored in Network Attached Storage (NAS) 404a and 404b. FIG. 4 illustrates an example only, and a wide variety of other computer architectures and systems can be used in conjunction with the various instances of the present disclosure. For example, a blade server can be used to provide parallel processing. Processor blades can be connected through a back plane to provide parallel processing. Storage can also be connected to the back plane or as Network Attached Storage (NAS) through a separate network interface. In some example instances, processors can maintain separate memory spaces and transmit data through network interfaces, back plane or other connectors for parallel processing by other processors. In other instances, some or all of the processors can use a shared virtual address memory space.



FIG. 5 is a block diagram of a multiprocessor computer system 500 using a shared virtual address memory space in accordance with an example instance. The system includes a plurality of processors 502a-f that can access a shared memory subsystem 504. The system incorporates a plurality of programmable hardware memory algorithm processors (MAPs) 506a-f in the memory subsystem 504. Each MAP 506a-f can comprise a memory 508a-f and one or more field programmable gate arrays (FPGAs) 510a-f. The MAP provides a configurable functional unit and particular algorithms or portions of algorithms can be provided to the FPGAs 510a-f for processing in close coordination with a respective processor. For example, the MAPs can be used to evaluate algebraic expressions regarding the data model and to perform adaptive data restructuring in example instances. In this example, each MAP is globally accessible by all of the processors for these purposes. In one configuration, each MAP can use Direct Memory Access (DMA) to access an associated memory 508a-f, allowing it to execute tasks independently of, and asynchronously from the respective microprocessor 502a-f In this configuration, a MAP can feed results directly to another MAP for pipelining and parallel execution of algorithms.


The above computer architectures and systems are examples only, and a wide variety of other computer, cell phone, and personal data assistant architectures and systems can be used in connection with example instances, including systems using any combination of general processors, co-processors, FPGAs and other programmable logic devices, system on chips (SOCs), application specific integrated circuits (ASICs), and other processing and logic elements. In some instances, all or part of the computer system can be implemented in software or hardware. Any variety of data storage media can be used in connection with example instances, including random access memory, hard drives, flash memory, tape drives, disk arrays, Network Attached Storage (NAS) and other local or distributed data storage devices and systems.


In example instances, the computer system can be implemented using software modules executing on any of the above or other computer architectures and systems. In other instances, the functions of the system can be implemented partially or completely in firmware, programmable logic devices such as field programmable gate arrays (FPGAs) as referenced in FIG. 3, system on chips (SOCs), application specific integrated circuits (ASICs), or other processing and logic elements. For example, the Set Processor and Optimizer can be implemented with hardware acceleration through the use of a hardware accelerator card, such as accelerator card 322 illustrated in FIG. 3.


The following examples are set forth to illustrate more clearly the principle and practice of embodiments disclosed herein to those skilled in the art and are not to be construed as limiting the scope of any claimed embodiments. Unless otherwise stated, all parts and percentages are on a weight basis.


EXAMPLES

The following examples are given for the purpose of illustrating various embodiments of the disclosure and are not meant to limit the present disclosure in any fashion. The present examples, along with the methods described herein are presently representative of preferred embodiments, are exemplary, and are not intended as limitations on the scope of the disclosure. Changes therein and other uses which are encompassed within the spirit of the disclosure as defined by the scope of the claims will occur to those skilled in the art.


Example 1: Functionalization of a Device Surface

A device was functionalized to support the attachment and synthesis of a library of polynucleotides. The device surface was first wet cleaned using a piranha solution comprising 90% H2SO4 and 10% H2O2 for 20 minutes. The device was rinsed in several beakers with DI water, held under a DI water gooseneck faucet for 5 min, and dried with N2. The device was subsequently soaked in NH4OH (1:100; 3 mL:300 mL) for 5 min, rinsed with DI water using a handgun, soaked in three successive beakers with DI water for 1 min each, and then rinsed again with DI water using the handgun. The device was then plasma cleaned by exposing the device surface to O2 . A SAMCO PC-300 instrument was used to plasma etch O2 at 250 watts for 1 min in downstream mode.


The cleaned device surface was actively functionalized with a solution comprising N-(3-triethoxysilylpropyl)-4-hydroxybutyramide using a YES-1224P vapor deposition oven system with the following parameters: 0.5 to 1 torr, 60 min, 70° C., 135° C. vaporizer. The device surface was resist coated using a Brewer Science 200X spin coater. SPR™ 3612 photoresist was spin coated on the device at 2500 rpm for 40 sec. The device was pre-baked for 30 min at 90° C. on a Brewer hot plate. The device was subjected to photolithography using a Karl Suss MA6 mask aligner instrument. The device was exposed for 2.2 sec and developed for 1 min in MSF 26A. Remaining developer was rinsed with the handgun and the device soaked in water for 5 min. The device was baked for 30 min at 100° C. in the oven, followed by visual inspection for lithography defects using a Nikon L200. A descum process was used to remove residual resist using the SAMCO PC-300 instrument to O2 plasma etch at 250 watts for 1 min.


The device surface was passively functionalized with a 100 μL solution of perfluorooctyltrichlorosilane mixed with 10 μL light mineral oil. The device was placed in a chamber, pumped for 10 min, and then the valve was closed to the pump and left to stand for 10 min. The chamber was vented to air. The device was resist stripped by performing two soaks for 5 min in 500 mL NMP at 70° C. with ultrasonication at maximum power (9 on Crest system). The device was then soaked for 5 min in 500 mL isopropanol at room temperature with ultrasonication at maximum power. The device was dipped in 300 mL of 200 proof ethanol and blown dry with N2. The functionalized surface was activated to serve as a support for polynucleotide synthesis.


Example 2: Synthesis of a 50-mer Sequence on an oligonucleotide Synthesis Device

A two-dimensional oligonucleotide synthesis device was assembled into a flowcell, which was connected to a flowcell (Applied Biosystems (ABI394 DNA Synthesizer“). The two-dimensional oligonucleotide synthesis device was uniformly functionalized with N-(3-TRIETHOXYSILYLPROPYL)-4-HYDROXYBUTYRAMIDE (Gelest) was used to synthesize an exemplary polynucleotide of 50 bp (“50-mer polynucleotide”) using polynucleotide synthesis methods described herein.


The sequence of the 50-mer was as described in SEQ ID NO.: 2239. 5′AGACAATCAACCATTTGGGGTGGACAGCCTTGACCTCTAGACTTCGGCAT##TTTTTTT TTT3′ (SEQ ID NO.: 2239), where # denotes Thymidine-succinyl hexamide CED phosphoramidite (CLP-2244 from ChemGenes), which is a cleavable linker enabling the release of oligos from the surface during deprotection.


The synthesis was done using standard DNA synthesis chemistry (coupling, capping, oxidation, and deblocking) according to the protocol in Table 2 and an ABI synthesizer.









TABLE 2







Synthesis protocols








General DNA Synthesis
Table 2









Process Name
Process Step
Time (sec)












WASH (Acetonitrile Wash
Acetonitrile System Flush
4


Flow)
Acetonitrile to Flowcell
23



N2 System Flush
4



Acetonitrile System Flush
4


DNA BASE ADDITION
Activator Manifold Flush
2


(Phosphoramidite +
Activator to Flowcell
6


Activator Flow)
Activator +
6



Phosphoramidite to




Flowcell




Activator to Flowcell
0.5



Activator +
5



Phosphoramidite to




Flowcell




Activator to Flowcell
0.5



Activator +
5



Phosphoramidite to




Flowcell




Activator to Flowcell
0.5



Activator +
5



Phosphoramidite to




Flowcell




Incubate for 25 sec
25


WASH (Acetonitrile Wash
Acetonitrile System Flush
4


Flow)
Acetonitrile to Flowcell
15



N2 System Flush
4



Acetonitrile System Flush
4


DNA BASE ADDITION
Activator Manifold Flush
2


(Phosphoramidite +
Activator to Flowcell
5


Activator Flow)
Activator +
18



Phosphoramidite to




Flowcell




Incubate for 25 sec
25


WASH (Acetonitrile Wash
Acetonitrile System Flush
4


Flow)
Acetonitrile to Flowcell
15



N2 System Flush
4



Acetonitrile System Flush
4


CAPPING (CapA + B, 1:1,
CapA + B to Flowcell
15


Flow)




WASH (Acetonitrile Wash
Acetonitrile System Flush
4


Flow)
Acetonitrile to Flowcell
15



Acetonitrile System Flush
4


OXIDATION (Oxidizer
Oxidizer to Flowcell
18


Flow)




WASH (Acetonitrile Wash
Acetonitrile System Flush
4


Flow)
N2 System Flush
4



Acetonitrile System Flush
4



Acetonitrile to Flowcell
15



Acetonitrile System Flush
4



Acetonitrile to Flowcell
15



N2 System Flush
4



Acetonitrile System Flush
4



Acetonitrile to Flowcell
23



N2 System Flush
4



Acetonitrile System Flush
4


DEBLOCKING (Deblock
Deblock to Flowcell
36


Flow)




WASH (Acetonitrile Wash
Acetonitrile System Flush
4


Flow)
N2 System Flush
4



Acetonitrile System Flush
4



Acetonitrile to Flowcell
18



N2 System Flush
4.13



Acetonitrile System Flush
4.13



Acetonitrile to Flowcell
15









The phosphoramidite/activator combination was delivered similar to the delivery of bulk reagents through the flowcell. No drying steps were performed as the environment stays “wet” with reagent the entire time.


The flow restrictor was removed from the ABI 394 synthesizer to enable faster flow. Without flow restrictor, flow rates for amidites (0.1 M in ACN), Activator, (0.25 M Benzoylthiotetrazole (“BTT”; 30-3070-xx from GlenResearch) in ACN), and Ox (0.02 M I2 in 20% pyridine, 10% water, and 70% THF) were roughly ˜100 uL/sec, for acetonitrile (“ACN”) and capping reagents (1:1 mix of CapA and CapB, wherein CapA is acetic anhydride in THF/Pyridine and CapB is 16% 1-methylimidizole in THF), roughly ˜200 uL/sec, and for Deblock (3% dichloroacetic acid in toluene), roughly ˜300 uL/sec (compared to ˜50 uL/sec for all reagents with flow restrictor). The time to completely push out Oxidizer was observed, the timing for chemical flow times was adjusted accordingly and an extra ACN wash was introduced between different chemicals. After polynucleotide synthesis, the chip was deprotected in gaseous ammonia overnight at 75 psi. Five drops of water were applied to the surface to recover polynucleotides. The recovered polynucleotides were then analyzed on a BioAnalyzer small RNA chip.


Example 3: Synthesis of a 100-mer Sequence on an Oligonucleotide Synthesis Device

The same process as described in Example 2 for the synthesis of the 50-mer sequence was used for the synthesis of a 100-mer polynucleotide (“100-mer polynucleotide”; 5′ CGGGATCCTTATCGTCATCGTCGTACAGATCCCGACCCATTTGCTGTCCACCAGTCATG CTAGCCATACCATGATGATGATGATGATGAGAACCCCGCAT##TTTTTTTTTT3′, where # denotes Thymidine-succinyl hexamide CED phosphoramidite (CLP-2244 from ChemGenes); SEQ ID NO.: 2240) on two different silicon chips, the first one uniformly functionalized with N-(3-TRIETHOXYSILYLPROPYL)-4-HYDROXYBUTYRAMIDE and the second one functionalized with 5/95 mix of 11-acetoxyundecyltriethoxysilane and n-decyltriethoxysilane, and the polynucleotides extracted from the surface were analyzed on a BioAnalyzer instrument.


All ten samples from the two chips were further PCR amplified using a forward (5′ATGCGGGGTTCTCATCATC3′; SEQ ID NO.: 2241) and a reverse (5′CGGGATCCTTATCGTCATCG3′; SEQ ID NO.: 2242) primer in a 50 uL PCR mix (25 uL NEB Q5 mastermix, 2.5 uL 10 uM Forward primer, 2.5 uL 10 uM Reverse primer, luL polynucleotide extracted from the surface, and water up to 50 uL) using the following thermalcycling program:

    • 98° C., 30 sec
    • 98° C., 10 sec; 63° C., 10 sec; 72° C., 10 sec; repeat 12 cycles
    • 72° C., 2 min


The PCR products were also run on a BioAnalyzer, demonstrating sharp peaks at the 100-mer position. Next, the PCR amplified samples were cloned, and Sanger sequenced. Table 3 summarizes the results from the Sanger sequencing for samples taken from spots 1-5 from chip 1 and for samples taken from spots 6-10 from chip 2.









TABLE 3







Sequencing results












Spot

Error rate
Cycle efficiency















1
1/763
bp
99.87%



2
1/824
bp
99.88%



3
1/780
bp
99.87%



4
1/429
bp
99.77%



5
1/1525
bp
99.93%



6
1/1615
bp
99.94%



7
1/531
bp
99.81%



8
1/1769
bp
99.94%



9
1/854
bp
99.88%



10
1/1451
bp
99.93%









Thus, the high quality and uniformity of the synthesized polynucleotides were repeated on two chips with different surface chemistries. Overall, 89% of the 100-mers that were sequenced were perfect sequences with no errors, corresponding to 233 out of 262.


Table 4 summarizes error characteristics for the sequences obtained from the polynucleotide samples from spots 1-10.









TABLE 4





Error characteristics




















Sample ID/Spot no.
OSA_0046/1
OSA_0047/2
OSA_0048/3
OSA_0049/4
OSA_0050/5





Total Sequences
32
32
32
32
32


Sequencing Quality
25 of 28
27 of 27
26 of 30
21 of 23
25 of 26


Oligo Quality
23 of 25
25 of 27
22 of 26
18 of 21
24 of 25


ROI Match Count
2500
2698
2561
2122
2499


ROI Mutation
2
2
1
3
1


ROI Multi Base Deletion
0
0
0
0
0


ROI Small Insertion
1
0
0
0
0


ROI Single Base Deletion
0
0
0
0
0


Large Deletion Count
0
0
1
0
0


Mutation: G > A
2
2
1
2
1


Mutation: T > C
0
0
0
1
0


ROI Error Count
3
2
2
3
1


ROI Error Rate
Err: ~1 in 834
Err: ~1 in 1350
Err: ~1 in 1282
Err: ~1 in 708
Err: ~1 in 2500


ROI Minus Primer Error Rate
MP Err: ~1 in 763
MP Err: ~1 in 824
MP Err: ~1 in 780
MP Err: ~1 in 429
MP Err: ~1 in 1525





Sample ID/Spot no.
OSA_0051/6
OSA_0052/7
OSA_0053/8
OSA_0054/9
OSA_0055/10





Total Sequences
32
32
32
32
32


Sequencing Quality
29 of 30
27 of 31
29 of 31
28 of 29
25 of 28


Oligo Quality
25 of 29
22 of 27
28 of 29
26 of 28
20 of 25


ROI Match Count
2666
2625
2899
2798
2348


ROI Mutation
0
2
1
2
1


ROI Multi Base Deletion
0
0
0
0
0


ROI Small Insertion
0
0
0
0
0


ROI Single Base Deletion
0
0
0
0
0


Large Deletion Count
1
1
0
0
0


Mutation: G > A
0
2
1
2
1


Mutation: T > C
0
0
0
0
0


ROI Error Count
1
3
1
2
1


ROI Error Rate
Err: ~1 in 2667
Err: ~1 in 876
Err: ~1 in 2900
Err: ~1 in 1400
Err: ~1 in 2349


ROI Minus Primer Error Rate
MP Err: ~1 in 1615
MP Err: ~1 in 531
MP Err: ~1 in 1769
MP Err: ~1 in 854
MP Err: ~1 in 1451









Example 4: VHH Libraries

Synthetic VHH libraries were developed. For the ‘VHH Ratio’ library with tailored CDR diversity, 2391 VHH sequences (iCAN database) were aligned using Clustal Omega to determine the consensus at each position and the framework was derived from the consensus at each position. The CDRs of all of the 2391 sequences were analyzed for position-specific variation, and this diversity was introduced in the library design. For the ‘VHH Shuffle’ library with shuffled CDR diversity, the iCAN database was scanned for unique CDRs in the nanobody sequences. 1239 unique CDR1′s, 1600 unique CDR2′s, and 1608 unique CDR3′s were identified and the framework was derived from the consensus at each framework position amongst the 2391 sequences in the iCAN database. Each of the unique CDR's was individually synthesized and shuffled in the consensus framework to generate a library with theoretical diversity of 3.2×10{circumflex over ( )}9. The library was then cloned in the phagemid vector using restriction enzyme digest. For the ‘VHH hShuffle’ library (a synthetic “human” VHH library with shuffled CDR diversity), the iCAN database was scanned for unique CDRs in the nanobody sequences. 1239 unique CDR1's, 1600 unique CDR2′s, and 1608 unique CDR3′s were identified and framework 1, 3, and 4 was derived from the human germline DP-47 framework. Framework 2 was derived from the consensus at each framework position amongst the 2391 sequences in the iCAN database. Each of the unique CDR's was individually synthesized and shuffled in the partially humanized framework using the NUGE tool to generate a library with theoretical diversity of 3.2×10{circumflex over ( )}9. The library was then cloned in the phagemid vector using the NUGE tool.


The Carterra SPR system was used to assess binding affinity and affinity distribution for VHH-Fc variants. VHH-Fc demonstrate a range of affinities for TIGIT, with a low end of 12 nM KD and a high end of 1685 nM KD (data not shown). Table 5A provides specific values for the VHH-Fc clones for ELISA, Protein A (mg/ml), and KD (nM). FIG. 7A and FIG. 7B depict TIGIT affinity distribution for the VHH libraries, over the 20- 4000 affinity threshold (FIG. 7A; monovalent KD) and the 20- 1000 affinity threshold (FIG. 7B; monovalent KD). Out of the 140 VHH binders tested, 51 variants had affinity <100 nM, and 90 variants had affinity <200 nM. FIG. 8 shows data of CDR3 counts per length for the ‘VHH ratio’ library, the ‘VHH shuffle library,’ and the ‘VHH hShuffle library.’ Table 5B shows number of TIGIT unique clones and TIGIT binders for the ‘VHH ratio’ library, the NM shuffle library,' and the ‘VHH hShuffle library.’














TABLE 5A









ProA
KD



Clone
ELISA
Library
(mg/m1)
(nM)





















31-1 
5.7
VHH hShuffle
0.29
12



31-6 
9.6
VHH hShuffle
0.29
14



31-26
5.1
VHH hShuffle
0.31
19



30-30
8.0
VHH Shuffle
0.11
23



31-32
8.0
VHH hShuffle
0.25
27



29-10
5.0
VHH Ratio
0.19
32



29-7 
7.3
VHH Ratio
0.28
41



30-43
13.5
VHH Shuffle
0.18
44



31-8 
12.7
VHH hShuffle
0.29
45



31-56
11.7
VHH hShuffle
0.26
46



30-52
4.2
VHH Shuffle
0.22
49



31-47
8.8
VHH hShuffle
0.23
53



30-15
9.3
VHH Shuffle
0.26
55



30-54
5.5
VHH Shuffle
0.30
58



30-49
10.3
VHH Shuffle
0.26
62



29-22
3.4
VHH Ratio
0.27
65



29-30
9.2
VHH Ratio
0.28
65



31-35
5.7
VHH hShuffle
0.24
66



29-1 
10.4
VHH Ratio
0.09
68



29-6 
6.8
VHH Ratio
0.29
69



31-34
6.0
VHH hShuffle
0.32
70



29-12
6.2
VHH Ratio
0.23
70



30-1 
5.4
VHH Shuffle
0.39
71



29-33
3.9
VHH Ratio
0.15
74



30-20
4.6
VHH Shuffle
0.19
74



31-20
6.6
VHH hShuffle
0.37
74



31-24
3.1
VHH hShuffle
0.15
75



30-14
9.9
VHH Shuffle
0.19
75



30-53
7.6
VHH Shuffle
0.24
78



31-39
9.9
VHH hShuffle
0.32
78



29-18
10.9
VHH Ratio
0.19
78



30-9 
8.0
VHH Shuffle
0.40
79



29-34
8.6
VHH Ratio
0.21
80



−29-27 
8.6
VHH Ratio
0.18
82



29-20
5.9
VHH Ratio
0.26
83



30-55
6.0
VHH Shuffle
0.41
85



30-39
6.1
VHH Shuffle
0.07
88



31-15
6.2
VHH hShuffle
0.32
88



29-21
4.3
VHH Ratio
0.23
88



29-37
5.3
VHH Ratio
0.26
89



29-40
6.6
VHH Ratio
0.31
90



31-30
3.2
VHH hShuffle
0.33
93



31-10
12.3
VHH hShuffle
0.31
94



29-3 
13.6
VHH Ratio
0.11
94



30-57
5.2
VHH Shuffle
0.24
95



29-31
4.4
VHH Ratio
0.18
96



31-27
8.1
VHH hShuffle
0.31
96



31-33
6.0
VHH hShuffle
0.32
96



30-40
7.1
VHH Shuffle
0.21
99



31-18
4.1
VHH hShuffle
0.36
99



30-5 
9.3
VHH Shuffle
0.05
100
















TABLE 5B







TIGIT unique clones and TIGIT binders











Library
Unique Phage
VHH-Fc binders






VHH Ratio
47
36



VHH Shuffle
58
45



VHH hShuffle
56
53









Thermostability and competition analysis of the VHH-Fc TIGIT clones is seen in FIG. 9 and Table 6. For the competition assays, 4 ug/mL TIGIT was immobilized and incubated with 0.05-100 nM VHH-Fc followed by incubation with 2 ug/mL biotin-CD155 and 1:5000 streptavidin-HRP.









TABLE 6







Thermostability of VHH-Fc TIGIT clones
















KD


IC50



Variant
Library
(nM)
Tm1
Tm2
(nM)

















TIGIT-29-10
Ratio
32
72
87
17.65



TIGIT-29-7
Ratio
41
82
90
9.24



TIGIT-30-30
Shuffle
23
76
87
5.67



TIGIT-30-43
Shuffle
44
82
90
2.32



TIGIT-31-1
hShuffle
12
79
89
17.89



TIGIT-31-6
hShuffle
14
77
87
4.00



TIGIT-31-26
hShuffle
19
79
89
8.20



TIGIT-31-32
hShuffle
27
80
86
2.85



TIGIT-31-8
hShuffle
45
76
84
3.92



TIGIT-31-56
hShuffle
46
74
83
1.52









Example 5. Hyperimmune Immunoglobulin Library

A hyperimmune immunoglobulin (IgG) library was created using similar methods as described in Example 4. Briefly, the hyperimmune IgG library was generated from analysis of databases of human naive and memory B-cell receptor sequences consisting of more than 37 million unique IgH sequences from each of 3 healthy donors. More than two million CDRH3 sequences were gathered from the analysis and individually constructed using methods similar to Examples 1-3. Any duplicate CDRH3′s and potential liability motifs that frequently pose problems in development were removed during the library synthesis step including unpaired C- and N-glycosylation, deamination, and hydrolysis sites. These CDRH3 sequence diversities were then combinatorially assembled and incorporated onto the DP47 human framework to construct a highly functional antibody Fab library with 1×1010 size. A schematic of the design can be seen in FIG. 10.


The heavy chain CDR length distribution of the hyperimmune antibody libraries were assessed by next generation sequencing (NGS). The data of CDR length distribution is shown in FIGS. 11A-11B. Generally, selection of soluble protein targets undergo five rounds of selection involving a PBST wash three times in Round 1, a PBST wash five times in Round 2, a PBST wash seven times in Round 3, a PBST wash nine times in Round 4, and a PBST wash twelve times in Round 5. A non-fat milk block was used. See FIG. 12.


For human TIGIT (hTIGIT), 1 uM biotinylated antigen was mixed with 300 ul Dynabead M-280 at 10 mg/mL to generate a concentration of 100 pmol per 100 ul. The details of the various rounds of selection are seen in Table 7.









TABLE 7







Protein panning selection










Round
Washes
Antigen Amount
Concentration










Manual












1
3
100
pmol
1
uM


2
6
20
pmol
200
nM


3
9
10
pmol
100
nM


4
12
5
pmol
50
nM


5
12
5
pmol
50
nM







Kingfisher (KF)












1
2
100
pmol
1
uM


2
4
20
pmol
200
nM


3
6
10
pmol
100
nM


4
8
5
pmol
50
nM


5
8
5
pmol
50
nM









After various rounds of selection, hTIGIT IgGs were analyzed. Data is seen in FIGS. 13A-13F and Table 8. FIGS. 13A-13D show ELISA data from Round 3 and Round 4. FIGS. 13E-13F show data of CDRH3 length, yield (ug), and KD (nM) for the hTIGIT IgGs analyzed.









TABLE 8







Protein panning data

















KF




Round
Target
Antigen
Washes
Washes
Titer
KF liter





1
hTIGIT
100 pmol 
3

4.40E+06



2
hTIGIT
50 pmol
5
4
4.40E+07
6.80E+06


3
hTIGIT
20 pmol
7
4
6.00E+08
2.80E+09


4
hTIGIT
10 pmol
9
5
5.00E+08
6.00E+08


5
hTIGIT
10 pmol













Seventeen non-identical hTIGIT immunoglobulins were identified with monovalent affinity ranging from 16 nM to over 300 nM. Most of these immunoglobulins expressed well and produced over 20 ug purified protein at 1 ml expression volume.


Example 6. Natural Antibody Library

An antibody library of TIGIT variant immunoglobulins was generated and assessed for pharmacokinetic characteristics.


Data is seen in Tables 9A-9B from the Carterra SPR system used to assess binding affinity and affinity distribution for the TIGIT variant immunoglobulins. Flow cytometry data for the TIGIT variant immunoglobulins can be found in FIG. 14A-AA.

















VHH-Fc

VHH-V5-His SPR (8-22-19)














IgG
ka

VHH-V5-His

TIGIT:CD155





















yield
(M−1
kd
KD
ProA





Blockade


Variant
ELISA
(mg/ml)
s−1)
(s−1)
(nM)
(mg/ml)
Tm
ka
kd
kD
RU
IC50 (nM)






















TIGIT-29-01
10.4
0.09
1.0E+09
6.8E+01
68
0.74
55.9
3E+04
1E−02
365
88



TIGIT-29-02
4.1
0.24
4.2E+07
8.5E+00
204
0.36
57.9


TIGIT-29-03
13.6
0.11
1.2E+06
1.1E−01
94
0.77
63.3


TIGIT-29-4
7.7
0.21
1.9E+08
2.0E+01
109


TIGIT-29-5
3.1
0.10
2.0E+05
3.4E−01
1681


TIGIT-29-06
6.8
0.29
9.9E+04
6.8E−03
69
0.56
73.1
5E+01
2E−02
432954
26131


TIGIT-29-07
7.3
0.28
1.1E+05
4.7E−03
41
0.41
55.7
8E+03
4E−03
465
26
9.2


TIGIT-29-8
3.1
0.19
1.8E+05
2.7E−01
1458


TIGIT-29-9
6.0
0.19
1.0E+09
1.8E+02
176


TIGIT-29-10
5.0
0.19
1.5E+05
4.9E−03
32
0.74
55.9
1E+04
3E−03
323
36
17.7


TIGIT-29-11
10.4
0.20
4.3E+08
4.4E+01
103


TIGIT-29-12
6.2
0.23
1.0E+09
7.0E+01
70
0.49
55.8
1E+04
1E−01
8579
464


TIGIT-29-13
4.8
0.14
1.0E+09
2.2E+02
221


TIGIT-29-14
5.2
0.15
2.5E+05
5.7E−02
231


TIGIT-29-15
9.3
0.20
1.0E+09
1.5E+02
145


TIGIT-29-16
4.2
0.32
2.1E+08
5.3E+01
246


TIGIT-29-17
3.2
0.21


TIGIT-29-18
10.9
0.19
6.4E+05
5.0E−02
78
0.90
69.0
2E+04
7E−03
352
157


TIGIT-29-19
9.0
0.20


TIGIT-29-20
5.9
0.26
1.0E+09
8.3E+01
83


TIGIT-29-21
4.3
0.23
2.8E+04
2.4E−03
88


TIGIT-29-22
3.4
0.27
2.9E+05
1.9E−02
65
0.36
57.9
6E+03
3E−03
500
123


TIGIT-29-23
4.7
0.29
8.9E+08
6.7E+02
759


TIGIT-29-24
3.2
0.28
5.0E+05
4.1E−01
822


TIGIT-29-25
6.3
0.14
3.0E+08
4.2E+01
138


TIGIT-29-26
11.4
0.14
8.2E+08
8.7E+01
105


TIGIT-29-27
8.6
0.18
1.3E+05
1.1E−02
82


TIGIT-29-28
3.6
0.24
2.7E+08
9.4E+01
352


TIGIT-29-29
11.1
0.24
1.0E+09
1.1E+02
108


TIGIT-29-30
9.2
0.28
1.5E+06
9.6E−02
65
0.77
63.3
3E+05
8E−02
232
77


TIGIT-29-31
4.4
0.18
9.5E+04
9.0E−03
96


TIGIT-29-32
3.7
0.32


TIGIT-29-33
3.9
0.15
1.0E+09
7.4E+01
74
0.47
55.3
2E+04
4E−02
1519
202


TIGIT-29-34
8.6
0.21
1.6E+08
1.3E+01
80
0.74
67.0
3E+04
3E−02
967
167


TIGIT-29-35
3.1
0.17
4.9E+02
2.0E−02


TIGIT-29-36
3.5
0.19
8.6E+08
1.4E+02
165


TIGIT-29-37
5.3
0.26
1.0E+09
8.9E+01
89


TIGIT-29-38
3.4
0.22


TIGIT-29-39
3.4
0.26
2.0E+08
6.4E+01
314


TIGIT-29-40
6.6
0.31
7.6E+08
6.9E+01
90


TIGIT-29-41
7.7
0.13


TIGIT-29-42
10.0
0.11
5.8E+08
6.6E+01
114


TIGIT-29-43
4.8
0.18


TIGIT-29-44
7.4
0.16
7.3E+08
1.3E+02
183


TIGIT-29-45
10.6
0.09
5.7E+05
6.8E−02
119


TIGIT-29-46
7.4
0.26
9.4E+05
2.3E−01
250


TIGIT-29-47
4.9
0.28
5.2E+07
1.6E+01
304


TIGIT-30-01
5.4
0.39
1.4E+06
1.0E−01
71
0.63
54.5
1E+04
8E−02
7464
664


TIGIT-30-02
6.4
0.19
1.8E+08
8.9E+01
496
0.52
68.9


TIGIT-30-03
4.3
0.08
1.0E+09
2.7E+02
273
0.04
60.0


TIGIT-30-04
4.7
0.17
6.2E+08
1.5E+02
240
0.69
57.1


TIGIT-30-5
9.3
0.05
1.0E+09
1.0E+02
100
0.49
65.6


TIGIT-30-6
3.8
0.16
1.5E+04
8.7E−03
567


TIGIT-30-7
3.1
0.20
3.5E+05
9.9E−02
285


TIGIT-30-8
6.2
0.31
3.3E+05
6.9E−02
209


TIGIT-30-9
8.0
0.40
1.3E+05
1.1E−02
79


TIGIT-30-10
4.2
0.10
1.2E+05
3.9E−02
336


TIGIT-30-11
7.2
0.11
2.5E+05
5.6E−02
221


TIGIT-30-12
3.8
0.03
1.6E+07
5.7E+00
350


TIGIT-30-13
3.2
0.28
7.7E+08
8.2E+01
106


TIGIT-30-14
9.9
0.19
1.4E+05
1.0E−02
75


TIGIT-30-15
9.3
0.26
1.3E+05
7.0E−03
55
0.63
54.5
2E+04
4E−03
215
66


TIGIT-30-16
7.9
0.21
4.8E+05
5.6E−02
116


TIGIT-30-17
6.7
0.30
4.3E+08
1.3E+02
311


TIGIT-30-18
4.1
0.06
9.2E+04
6.8E−02
741


TIGIT-30-19
6.4
0.18
1.9E+08
7.9E+01
417


TIGIT-30-20
4.6
0.19
1.9E+06
1.4E−01
74
0.52
68.9
1E+04
2E−03
195
69


TIGIT-30-21
3.3
0.14
3.3E+07
1.3E+01
413


TIGIT-30-22
7.6
0.20
4.5E+04
3.7E−02
811


TIGIT-30-23
4.1
0.36
4.4E+02
2.9E−01


TIGIT-30-24
5.3
0.26
5.7E+08
7.6E+01
133


TIGIT-30-25
9.3
0.05
3.4E+04
4.0E−03
117


TIGIT-30-26
6.1
0.22
2.8E+04
9.9E−03
347


TIGIT-30-27
4.4
0.24
7.6E+05
1.1E−01
141


TIGIT-30-28
7.6
0.24
8.9E+08
1.3E+02
147


TIGIT-30-29
4.3
0.11
4.9E+05
7.3E−02
148


TIGIT-30-30
8.0
0.11
3.5E+05
8.0E−03
23
0.04
60.0
1E+04
6E−03
387
3
5.7


TIGIT-30-31
3.8
0.28
1.0E+09
4.5E+02
450


TIGIT-30-32
6.0
0.23
2.9E+05
6.0E−02
207


TIGIT-30-33
3.8
0.30
1.2E+05
1.8E−01
1546


TIGIT-30-34
7.2
0.16
4.9E+08
6.4E+01
130


TIGIT-30-35
3.3
#N/A


TIGIT-30-36
6.4
0.09
6.6E+05
1.2E−01
179


TIGIT-30-37
4.2
0.07
1.7E+05
4.1E−02
235


TIGIT-30-38
3.9
0.13
2.6E+08
9.2E+01
360


TIGIT-30-39
6.1
0.07
8.1E+04
7.1E−03
88


TIGIT-30-40
7.1
0.21
9.7E+04
9.6E−03
99
1.00
55.6
3E+04
6E−03
222
113


TIGIT-30-41
8.7
0.25
2.4E+08
7.4E+01
309


TIGIT-30-42
6.3
0.26


TIGIT-30-43
13.5
0.18
2.9E+05
1.3E−02
44
0.69
57.1
7E+04
8E−03
107
407
2.3


TIGIT-30-44
3.5
0.28
6.1E+08
3.6E+02
584


TIGIT-30-45
3.3
0.20
2.1E+06
1.5E+00
736


TIGIT-30-46
5.9
0.22
5.8E+08
1.2E+02
206


TIGIT-30-47
8.4
0.20
4.4E+04
1.9E−02
418


TIGIT-30-48
3.6
0.27


TIGIT-30-49
10.3
0.26
3.0E+08
1.8E+01
62
0.49
72.5
9E+04
8E−02
945
99


TIGIT-30-50
5.6
0.25


TIGIT-30-51
3.4
0.06
9.9E+08
8.9E+02
897


TIGIT-30-52
4.2
0.22
5.4E+06
2.7E−01
49
0.49
65.6
3E+04
1E−01
4245
270
n.d.


TIGIT-30-53
7.6
0.24
5.3E+08
4.1E+01
78


TIGIT-30-54
5.5
0.30
2.4E+05
1.4E−02
58
0.60
71.7
3E+04
4E−02
1090
130


TIGIT-30-55
6.0
0.41
3.5E+04
3.0E−03
85


TIGIT-30-56
4.6
0.40
7.5E+08
1.6E+02
214


TIGIT-30-57
5.2
0.24
1.0E+09
9.5E+01
95


TIGIT-30-58
3.3
0.30
1.7E+07
1.8E+01
1051
1.04
55.8
1E+04
1E−02
1059
120


TIGIT-31-01
5.7
0.29
2.8E+05
3.5E−03
12
0.68
55.7
2E+04
4E−03
169
122
17.8


TIGIT-31-02
8.4
0.40
2.5E+05
5.4E−02
216
0.73
61.2


TIGIT-31-03
9.5
0.34
2.6E+05
3.0E−02
116
0.95
56.0


TIGIT-31-04
3.2
0.36



0.89
49.7


TIGIT-31-05
3.8
0.28



0.40
63.5


TIGIT-31-06
9.6
0.29
2.4E+05
3.5E−03
14
0.76
62.9
2E+04
3E−03
145
107
4.0


TIGIT-31-7
7.9
0.40
9.1E+04
2.5E−02
275


TIGIT-31-08
12.7
0.29
3.8E+05
1.7E−02
45
0.74
52.6
4E+04
9E−03
210
178
3.9


TIGIT-31-9
9.7
0.26
1.9E+05
2.4E−02
131


TIGIT-31-10
12.3
0.31
1.3E+06
1.2E−01
94


TIGIT-31-11
4.5
0.34
3.6E+05
4.2E−02
118


TIGIT-31-12
5.3
0.16


TIGIT-31-13
7.3
0.33
8.0E+04
3.3E−02
409


TIGIT-31-14
5.8
0.26
1.0E+05
1.1E−02
114


TIGIT-31-15
6.2
0.32
2.2E+07
2.0E+00
88


TIGIT-31-16
9.2
0.22
2.4E+05
3.7E−02
151


TIGIT-31-17
8.7
0.26
1.5E+05
2.5E−02
166


TIGIT-31-18
4.1
0.36
5.4E+06
5.4E−01
99


TIGIT-31-19
6.7
0.23
1.0E+09
1.3E+02
125


TIGIT-31-20
6.6
0.37
1.2E+05
9.2E−03
74
1.18
67.0
1E+04
4E−03
281
45


TIGIT-31-21
9.4
0.46
1.6E+05
2.0E−02
122


TIGIT-31-22
7.4
0.56
6.1E+01
2.8E−04
4617


TIGIT-31-23
6.6
0.30
3.8E+05
4.9E−02
127


TIGIT-31-24
3.1
0.15
8.8E+05
6.6E−02
75


TIGIT-31-25
6.2
0.31
5.6E+08
8.6E+01
154


TIGIT-31-26
5.1
0.31
1.9E+05
3.6E−03
19
0.73
61.2
2E+04
3E−03
158
59
8.2


TIGIT-31-27
8.1
0.31
1.0E+09
9.6E+01
96


TIGIT-31-28
3.7
0.22
4.4E+05
1.0E−01
234


TIGIT-31-29
7.4
0.44
3.2E+02
5.4E−04
1685


TIGIT-31-30
3.2
0.33
1.0E+09
9.3E+01
93


TIGIT-31-31
6.7
0.30
5.2E+05
5.4E−02
104


TIGIT-31-32
8.0
0.25
5.6E+05
1.5E−02
27
0.95
56.0
6E+04
6E−03
102
145
2.9


TIGIT-31-33
6.0
0.32
5.3E+05
5.1E−02
96


TIGIT-31-34
6.0
0.32
5.5E+04
3.9E−03
70
0.35
63.0
4E+02
2E−01
473248
25265


TIGIT-31-35
5.7
0.24
4.8E+05
3.2E−02
66
1.07
60.9
3E+04
1E−02
346
78


TIGIT-31-36
5.6
0.30
4.1E+05
4.1E−02
102


TIGIT-31-37
5.7
0.41


TIGIT-31-38
4.8
0.25
3.6E+05
6.2E−02
172


TIGIT-31-39
9.9
0.32
1.0E+05
8.2E−03
78


TIGIT-31-40
9.4
0.07


TIGIT-31-41
5.8
0.23
1.3E+06
1.0E+00
750


TIGIT-31-42
9.6
0.29
6.5E+08
2.4E+02
371


TIGIT-31-43
4.9
0.17


TIGIT-31-44
9.2
0.33
3.5E+05
4.9E−02
140


TIGIT-31-45
8.6
0.37
1.5E+05
3.0E−02
193


TIGIT-31-46
7.6
0.22
2.1E+05
2.7E−02
132


TIGIT-31-47
8.8
0.23
1.1E+05
5.9E−03
53
0.89
49.7
2E+04
4E−03
186
119
n.d.


TIGIT-31-48
3.3
0.25
1.1E+08
1.9E+01
175


TIGIT-31-49
7.3
0.03


TIGIT-31-50
6.7
0.27
6.6E+04
3.6E−02
551


TIGIT-31-51
12.1
0.26
8.5E+04
6.7E−02
784


TIGIT-31-52
6.5
0.24
8.4E+08
2.6E+02
308


TIGIT-31-53
3.2
0.43


TIGIT-31-54
9.0
0.29
1.7E+05
1.8E−02
107


TIGIT-31-55
7.9
0.35
2.1E+05
3.3E−02
154


TIGIT-31-56
11.7
0.26
4.6E+05
2.1E−02
46
0.40
63.5
3E+04
1E−02
382
301
1.5


TIGIT-471-001


3.59E+05 
2.20E−02 
6.13E−08





175.3
9.6


TIGIT-471-009


TIGIT-471-017


TIGIT-471-025


TIGIT-471-033


TIGIT-471-041


TIGIT-471-049


TIGIT-471-005


TIGIT-471-013


TIGIT-471-021


TIGIT-471-029


TIGIT-471-037


TIGIT-471-045


TIGIT-471-002


TIGIT-471-010


TIGIT-471-018


TIGIT-471-026


TIGIT-471-034


TIGIT-471-042


TIGIT-471-006


TIGIT-471-014


TIGIT-471-022


TIGIT-471-030


TIGIT-471-038


2.21E+05 
1.22E−02 
5.54E−08





78.0
5.9


TIGIT-471-046


TIGIT-471-003


TIGIT-471-011


3.69E+04 
2.69E−01 
7.29E−06





1077.7
14.4


TIGIT-471-019


3.44E+05 
5.65E−02 
1.64E−07





155.9
13.6


TIGIT-471-027


1.54E+05 
9.26E−03 
6.00E−08





57.5
13.5


TIGIT-471-035


1.23E+05 
4.84E−02 
3.95E−07





93.7
3.2


TIGIT-471-043


TIGIT-471-007


TIGIT-471-015


TIGIT-471-023


TIGIT-471-031


TIGIT-471-039


TIGIT-471-047


TIGIT-471-004


TIGIT-471-012


TIGIT-471-020


TIGIT-471-028


8.31E+02 
2.34E−01 
2.82E−04





35239.4
3.6


TIGIT-471-036


TIGIT-471-044


TIGIT-471-008


TIGIT-471-016


TIGIT-471-024


TIGIT-471-032


TIGIT-471-040


TIGIT-471-048


3.73E+05 
1.92E−02 
5.14E−08





122.3
9.8

















TABLE 9B








SPR Kinetics











Variant
ELISA
ka (1/Ms)
kd (1/s)
KD (nM)














TIGIT-211-1
6.7





TIGIT-211-2
7.1





TIGIT-211-3
8.9





TIGIT-211-4
8.4





TIGIT-211-5
7.7





TIGIT-211-6
6.4





TIGIT-211-7
9.7





TIGIT-211-8
6.7





TIGIT-211-9
11.7





TIGIT-211-10
12.1





TIGIT-211-11
10.4





TIGIT-211-12
10.7





TIGIT-211-13
15.0
1.48E+06
3.26E−01
220.73


TIGIT-211-14
6.9





TIGIT-211-15
11.3
2.36E+04
7.12E−03
301.49


TIGIT-211-16
6.9





TIGIT-211-17
13.2
2.66E+05
1.26E−01
472.42


TIGIT-211-18
9.7
3.11E+03
8.32E−04
267.70


TIGIT-211-19
10.7





TIGIT-211-20
13.3





TIGIT-211-21
11.1





TIGIT-211-22
6.5





TIGIT-211-23
12.3





TIGIT-211-24
10.2





TIGIT-211-25
8.4





TIGIT-211-26
10.2





TIGIT-211-27
6.6





TIGIT-211-28
7.2
2.54E+04
1.60E−03
63.13


TIGIT-211-29
6.8





TIGIT-211-30
8.0
3.05E+04
6.81E−02
2230.80


TIGIT-211-31
7.0





TIGIT-211-32
8.6





TIGIT-211-33
7.1





TIGIT-211-34
8.2





TIGIT-211-35
8.8
6.71E+04
4.06E−02
605.31


TIGIT-211-36
6.8





TIGIT-211-37
6.6





TIGIT-211-38
9.7





TIGIT-211-39
10.4





TIGIT-211-40
10.2
1.03E+05
4.05E−02
391.73


TIGIT-211-41
9.6





TIGIT-211-42
8.0
9.74E+03
6.43E−04
66.06


TIGIT-211-43
12.0
1.43E+03
1.17E−03
818.60


TIGIT-211-44
8.4





TIGIT-211-45
8.8
1.19E+04
1.25E−03
104.78


TIGIT-211-46
7.7





TIGIT-211-47
8.2





TIGIT-211-48
15.8





TIGIT-211-49
11.5





TIGIT-211-50
9.9





TIGIT-211-51
10.7
3.47E+05
3.35E−02
96.54


TIGIT-211-52
8.6





TIGIT-211-53
6.8





TIGIT-211-54
8.7





TIGIT-211-55
7.9





TIGIT-211-56
10.6





TIGIT-211-57
12.4
3.08E+04
1.05E−01
3403.11


TIGIT-211-58
7.2





TIGIT-211-59
6.8





TIGIT-211-60
9.7





TIGIT-211-61
11.7





TIGIT-211-62
8.8





TIGIT-211-63
7.9





TIGIT-211-64
9.1





TIGIT-211-65
9.0





TIGIT-211-66
7.8





TIGIT-211-67
6.8





TIGIT-211-68
10.1





TIGIT-211-69
7.9
2.04E+04
6.22E−02
3043.20


TIGIT-211-77

6.10E+04
4.17E−02
682.57


TIGIT-211-93

2.27E+04
2.81E−02
1240.31


TIGIT-211-95

2.13E+05
7.56E−02
354.74


TIGIT-211-98

1.71E+02
9.80E−02
574119.69


TIGIT-211-116

3.89E+02
1.05E−01
269379.61









Example 7. Exemplary Sequences

Sequences for hTIGIT immunoglobulins are seen in Tables 10-15.









TABLE 10







TIGIT sequences


CDRH3









SEQ ID




NO:
IgG
Amino Acid Sequence





 1
TIGIT-55-01
CARVAGSSGWAFDYW





 2
TIGIT-55-02
CATLRLYSSGGGIDYW





 3
TIGIT-55-03
CARIVGATTRTYYYYGMDVW





 4
TIGIT-55-04
CARVRNRASDIW





 5
TIGIT-55-05
CARAPYSSSSWFDYW





 6
TIGIT-55-06
CARNSYGPPRSFGMDVW





 7
TIGIT-55-07
CARTPYRSGWADYW





 8
TIGIT-55-08
CTRSWYYYYGMDVW





 9
TIGIT-55-09
CARGYGGYGYW





10
TIGIT-55-10
CAKAGDYDYYFDYW





11
TIGIT-55-11
CASVKRWGYYFNWW





12
TIGIT-55-12
CARVRVGAYDAFDIW





13
TIGIT-55-13
CARNSGWFMPFDYW





14
TIGIT-55-14
CARRGSGWYIDSW





15
TIGIT-55-15
CARREGDYMGPNWFDPW





16
TIGIT-55-16
CASIRERRFDFW





17
TIGIT-55-17
CARHSLTPYNFWSGYYSRSFDIW










Variable Domain of Heavy Chain









18
TIGIT-55-01
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYGMSWVRQAPGKGLEW




VSSISGSGSTTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC




ARVAGSSGWAFDYWGQGTLVTVSS





19
TIGIT-55-02
EVQLLESGGGLVQPGGSLRLSCAASGLTFSNYAMTWVRQAPGKGLEW




VSGISRSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC




ATLRLYSSGGGIDYWGQGTLVTVSS





20
TIGIT-55-03
EVQLLESGGGLVQPGGSLRLSCAASGFTFHNYAMTWVRQAPGKGLEW




VSAITGSGTSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC




ARIVGATTRTYYYYGMDVWGQGTLVTVSS





21
TIGIT-55-04
EVQLLESGGGLVQPGGSLRLSCAASGFRFGNYAMSWVRQAPGKGLEW




VSAITGSGGNTFYADSVKGRFTISRDNSKNTLYLQINSLRAEDTAVYYC




ARVRNRASDIWGQGTLVTVSS





22
TIGIT-55-05
EVQLLESGGGLVQPGGSLRLSCAASGFVFSSYAMNWVRQAPGKGLEW




VSTVSGSGGTTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYY




CARAPYSSSSWFDYWGQGTLVTVSS





23
TIGIT-55-06
EVQLLESGGGLVQPGGSLRLSCAASGFTFSRYTMNWVRQAPGKGLEW




VSGISGSGGGAYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYY




CARNSYGPPRSFGMDVWGQGTLVTVSS





24
TIGIT-55-07
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYGMTWVRQAPGKGLEW




VSAISGRGSSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC




ARTPYRSGWADYWGQGTLVTVSS





25
TIGIT-55-08
EVQLLESGGGLVQPGGSLRLSCAASGFMFSDYAMSWVRQAPGKGLEW




VSGISGSGGYTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYY




CTRSWYYYYGMDVWGQGTLVTVSS





26
TIGIT-55-09
EVQLLESGGGLVQPGGSLRLSCAASGFAFRSYAMGWVRQAPGKGLEW




VSTISGGGGNTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYY




CARGYGGYGYWGQGTLVTVSS





27
TIGIT-55-10
EVQLLESGGGLVQPGGSLRLSCAASGFTFSKSAMSWVRQAPGKGLEW




VSAISGSGGLTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYY




CAKAGDYDYYFDYWGQGTLVTVSS





28
TIGIT-55-11
EVQLLESGGGLVQPGGSLRLSCAASGFTFTNYGMSWVRQAPGKGLEW




VSSISGSGSTTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC




ASVKRWGYYFNWWGQGTLVTVSS





29
TIGIT-55-12
EVQLLESGGGLVQPGGSLRLSCAASGFTLSSYAMAWVRQAPGKGLEW




VSTLSGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYY




CARVRVGAYDAFDIWGQGTLVTVSS





30
TIGIT-55-13
EVQLLESGGGLVQPGGSLRLSCAASGFTFSTYGMNWVRQAPGKGLEW




VSTISGSGGSTYFADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC




ARNSGWFMPFDYWGQGTLVTVSS





31
TIGIT-55-14
EVQLLESGGGLVQPGGSLRLSCAASGFMFSRYAMSWVRQAPGKGLEW




VSSISGSGGTTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC




ARRGSGWYIDSWGQGTLVTVSS





32
TIGIT-55-15
EVQLLESGGGLVQPGGSLRLSCAASGFTFSDYAMGWVRQAPGKGLEW




VSTISGSGSRTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC




ARREGDYMGPNWFDPWGQGTLVTVSS





33
TIGIT-55-16
EVQLLESGGGLVQPGGSLRLSCAASGFAFSSYAMGWVRQAPGKGLEW




VSAITSSGGGTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYY




CASIRERRFDFWGQGTLVTVSS





34
TIGIT-55-17
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNHAMAWVRQAPGKGLEW




VSGISGSGGYTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYY




CARHSLTPYNFWSGYYSRSFDIWGQGTLVTVSS





35
TIGIT-29-7
EVQLVESGGGLVQAGGSLRLSCAASGSIFSNYAMGWFRQAPGKEREFV




ATISRGGTRTNYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYC




AAAAWTIYAYNYWGQGTQVTVSS





36
TIGIT-29-10
EVQLVESGGGLVQAGGSLRLSCAASGRTFSNYGMGWFRQAPGKEREF




VSGISGSGGRTSYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYY




CAANLWYPVDRLNTGFNYWGQGTQVTVSS





37
TIGIT-30-30
EVQLVESGGGLVQAGGSLRLSCAASGGTFSGRGMGWFRQAPGKEREW




VSSVYIFGGSTYYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYY




CANSNKPKFDWGQGTQVTVSS





38
TIGIT-30-43
EVQLVESGGGLVQAGGSLRLSCAASGFTFSTSWMGWFRQAPGKEREL




VAARNSGGNTNYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYY




CAADVWYGSTWRNWGQGTQVTVSS





39
TIGIT-31-1
EVQLVESGGGLVQPGGSLRLSCAASGFTFDRSWMGWFRQAPGKEREV




VASITSGGSTYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYC




AADVWYGSTWRNWGQGTLVTVSS





40
TIGIT-31-6
EVQLVESGGGLVQPGGSLRLSCAASGFTFSTSWMGWFRQAPGKERELV




ASITSGGSTYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCA




ADVWYGSTWRNWGQGTLVTVSS





41
TIGIT-31-8
EVQLVESGGGLVQPGGSLRLSCAASGFTFSTSWMGWFRQAPGKERELV




AARNSGGNTNYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYC




AADVWYGSTWRNWGQGTLVTVSS





42
TIGIT-31-26
EVQLVESGGGLVQPGGSLRLSCAASGFTFDRSWMGWFRQAPGKEREL




VAAITSGGSTYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYC




AADVWYGSTWRNWGQGTLVTVSS





43
TIGIT-31-32
EVQLVESGGGLVQPGGSLRLSCAASGFTFSTSWMGWFRQAPGKERELV




AAMTSGGGTNYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYC




AADVWYGSTWRNWGQGTLVTVSS





44
TIGIT-31-56
EVQLVESGGGLVQPGGSLRLSCAASGRIFRRNSMGWFRQAPGKEREFV




AVITRSGGGEVTTYADSVKGRFTINADNSKNTAYLQMNSLKPEDTAVY




YCAMSSVTRGSSDWGQGTLVTVST










Variable Domain of Light Chain









45
TIGIT-55-01
DIQMTQSPSSLSASVGDRVTITCRASQAISNYLNWYQQKPGKAPKLLIY




AASRLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQESYSTPFTFGG




GTKVEIK





46
TIGIT-55-02
DIQMTQSPSSLSASVGDRVTITCRASQYISTYLNWYQQKPGKAPKLLIY




AASSLQGGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQNYITPLTFG




GGTKVEIK





47
TIGIT-55-03
DIQMTQSPSSLSASVGDRVTITCRASQYISSYLNWYQQKPGKAPKLLIY




GAFSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYITPYTFGG




GTKVEIK





48
TIGIT-55-04
DIQMTQSPSSLSASVGDRVTITCRASQTIITYLNWYQQKPGKAPKLLIYA




ASNLRSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSLPWTFGG




GTKVEIK





49
TIGIT-55-05
DIQMTQSPSSLSASVGDRVTITCRASQSVRSYLNWYQQKPGKAPKLLIY




TATSLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYGLPRTFG




GGTKVEIK





50
TIGIT-55-06
DIQMTQSPSSLSASVGDRVTITCRASQSISKYLNWYQQKPGKAPKLLIY




GASSLRGGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYRPPLTFG




GGTKVEIK





51
TIGIT-55-07
DIQMTQSPSSLSASVGDRVTITCRASQNIKTYLNWYQQKPGKAPKLLIY




AASSLHTGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQTYSIPQTFGG




GTKVEIK





52
TIGIT-55-08
DIQMTQSPSSLSASVGDRVTITCRAGQSIRSYLNWYQQKPGKAPKLLIY




ASSNLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPLLTFG




GGTKVEIK





53
TIGIT-55-09
DIQMTQSPSSLSASVGDRVTITCRASQSIRRYLNWYQQKPGKAPKLLIY




AASTLQIGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQTYSSPYTFGG




GTKVEIK





54
TIGIT-55-10
DIQMTQSPSSLSASVGDRVTITCRTSQSIRRYLNWYQQKPGKAPKLLIYR




ASRLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYNTLRTFGG




GTKVEIK





55
TIGIT-55-11
DIQMTQSPSSLSASVGDRVTITCRASQNINYYLNWYQQKPGKAPKLLIY




GASSLQNGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYITPYTGG




GTKVEIK





56
TIGIT-55-12 
DIQMTQSPYSLSASVGDRVTITCRASQSIRRYLNWYQQKPGKAPKLLIY




RASTLQTGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQTYSSPFTFGG




GTKVEIK





57
TIGIT-55-13
DIQMTQSPSSLSASVGDRVTITCRTSQSISTYLNWYQQKPGKAPKLLIYA




TSRLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYTTPLTFGG




GTKVEIK





58
TIGIT-55-14
DIQMTQSPSSLSASVGDRVTITCRASQSVSRYLNWYQQKPGKAPKLLIY




GSSNLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQESYSTPFTFGG




GTKVEIK





59
TIGIT-55-15
DIQMTQSPSSLSASVGDRVTITCRASQAISRNLNWYQQKPGKAPKLLIY




GASNLQTGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSHSTPVTFG




GGTKVEIK





60
TIGIT-55-16
DIQMTQSPSSLSASVGDRVTITCRASQRISTYLNWYQQKPGKAPKLLIY




GTSSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYIIPWTFGG




GTKVEIK





61
TIGIT-55-17
DIQMTQSPSSLSASVGDRVTITCRASQSISSYVNWYQQKPGKAPKLLIYG




ASRLQDGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYITPYTFGG




GTKVEIK
















TABLE 11







Variable Domain of Heavy Chain CDR Sequences














SEQ

SEQ

SEQ




ID

ID

ID



Variant
NO
CDR1
NO
CDR2
NO
CDR3





TIGIT-29-01
 62
RTFSNYAMG
360
AAITWSGTRTDYA
658
CAAAAWTIYEYDYW





TIGIT-29-02
 63
RTFDIYAMG
361
STISWSGGRTYYA
659
CAARPVYRTYGSW





TIGIT-29-03
 64
FTFSSYAMG
362
AAITWSGTRTDYA
660
CAAAAWRYSEYDYW





TIGIT-29-4
 65
STFDTYVMG
363
STISSDGDSTYYA
661
CAAGTRRGRNYW





TIGIT-29-5
 66
RTFSIYAMG
364
ATISSSGDRTYYA
662
CAARRYGRRYDYW





TIGIT-29-06
 67
GTFRSYVMG
365
ATINSSGSRTYYA
663
CAARPNYRDYEYW





TIGIT-29-07
 68
SIFSNYAMG
366
ATISRGGTRTNYA
664
CAAAAWTIYAYNYW





TIGIT-29-8
 69
RTLDDYVMG
367
ATISGGGDTTYYA
665
CAAVPWRWTTRRDYW





TIGIT-29-9
 70
FTFDNYAMG
368
SSITWSGGRTSYA
666
CAANAWTIYRYDYW





TIGIT-29-10
 71
RTFSNYGMG
369
SGISGSGGRTSYA
667
CAANLWYPVDRLNTGFNYW





TIGIT-29-11
 72
RTLSSYAMG
370
ASITWGGGRTYYA
668
CATRLWGTWTAGDYDYW





TIGIT-29-12
 73
STFSSYAMG
371
AAITWSGTRTNYA
669
CAAAAWTIYTYDSW





TIGIT-29-13
 74
FIFSNYAMG
372
AAITWSGGRTYYA
670
CAAAAWTIYEYDYW





TIGIT-29-14
 75
FTFSDYVMG
373
SAISWSGTNTNYA
671
CATRALRDGRGYW





TIGIT-29-15
 76
RTFDSYAMG
374
ATISGSGGRTYYA
672
CAAAAWTIYEFDSW





TIGIT-29-16
 77
SIFSIYAMG
375
ATISWGGNSTYYA
673
CAARPRFRTYGYW





TIGIT-29-17
 78
STLSIYAMG
376
ATISSGGGSTYYA
674
CAAGSVYGRNYW





TIGIT-29-18
 79
STFSNYAMG
377
SAINSSGSRTYYA
675
CAARLWGTWTAGDYDYW





TIGIT-29-19
 80
RTFSSYAMG
378
ATISGSFGRTYYA
676
CAAGAWTIYEYDYW





TIGIT-29-20
 81
STFSIYAMG
379
ASISWSGDTTNYA
677
CAAGSVYGRNSW





TIGIT-29-21
 82
STFSNYAMG
380
SAITWSSSRTYYA
678
CAAAAWTIYNFEYW





TIGIT-29-22
 83
SILSSYTMG
381
STISRSSTRTYYA
679
CAARLWGTWTAGDYDYW





TIGIT-29-23
 84
STFDIYAMG
382
ASISSGDTNTNYA
680
CAAGRYSGYNSW





TIGIT-29-24
 85
RTFDTYAMG
383
SAISTGDGSTNYA
681
CAAARRSGRGSW





TIGIT-29-25
 86
FTFDNYAMG
384
AAITWSGGRTYYA
682
CAAAAWTIYEYDSW





TIGIT-29-26
 87
FTFDNYAMG
385
ATITWSGTRTNYA
683
CAAAAWTIYDYDYW





TIGIT-29-27
 88
RTFSNNVMG
386
AAISWGGASTNYA
684
CAAGPKTPDTRNYW





TIGIT-29-28
 89
FIFDSYAMG
387
AAISWGGSNTNYA
685
CAAVRITDGRDYW





TIGIT-29-29
 90
RTFSNYAMG
388
AAITWSGTRTDYA
686
CAAAAWTIYEYDYW





TIGIT-29-30
 91
FTFSSYAMG
389
AAITWSGTRTDYA
687
CAAAAWRYSEYDYW





TIGIT-29-31
 92
FTFSIYAMG
390
STISWSGGNTYYA
688
CATRPRFRRYDSW





TIGIT-29-32
 93
STFDSYAMG
391
AAITTSGSSTYYA
689
CAARGGVRSGSPGTYNYW





TIGIT-29-33
 94
FIFSTYAMG
392
SAITRSGITTYYA
690
CAAAAWTIYEYDYW





TIGIT-29-34
 95
FTFRNYAMG
393
SSISSSSSRTSYA
691
CAARLWGTWTAGDYDYW





TIGIT-29-35
 96
RIFSIYTMG
394
ATINSSGSRTYYA
692
CAARPSYNRYDSW





TIGIT-29-36
 97
FTFSSYAMG
395
ASITWSGTSTNYA
693
CAAAAWTIYAYDYW





TIGIT-29-37
 98
RTFSNYAMG
396
AGISWSGTRTYYA
694
CAAAAWTIYEYDYW





TIGIT-29-38
 99
STFSSYAMG
397
SAISRNGASTSYA
695
CAAAGTRFDYW





TIGIT-29-39
100
RTLDDYVMG
398
ATISGGGDTTYYA
696
CAAVPWRWTTRRDYW





TIGIT-29-40
101
FTFDNYAMG
399
ATITWSGTRTNYA
697
CAAAAWTIYDYDYW





TIGIT-29-41
102
RTFSTNAMG
400
TAITTSGGNTYYA
698
CAARDETYGTYDYW





TIGIT-29-42
103
STFSTYAMG
401
ATISTSSSRTYYA
699
CAARLWGTWTAGDYDYW





TIGIT-29-43
104
RTFDSYAMG
402
SAISWSGSSTYYA
700
CAARGGYGRYDSW





TIGIT-29-44
105
FTFDNYAMG
403
ATITWSGTTTNYA
701
CAAAAWTIYDYDYW





TIGIT-29-45
106
FTFSSYAMG
404
ASITWSGTRTDYA
702
CAAAAWTIYGYEYW





TIGIT-29-46
107
STFDIYAMG
405
ASISSGDTNTYYA
703
CAAGRYSGYNSW





TIGIT-29-47
108
STLSSYAMG
406
AAITGSGGRTYYA
704
CAANRRYSFPYWSFWYDDFDYW





TIGIT-30-01
109
FAFSSYWMG
407
AARNSGGNTNYA
705
CAADVWYGSTWRNW





TIGIT-30-02
110
RTFGDYIMG
408
ATISGGGSTNYA
706
CAAVFSRGPLTW





TIGIT-30-03
111
NIFSRYIMG
409
AGISNGGTTKYA
707
CAQGWKIRPTIW





TIGIT-30-04
112
FTFSTHWMG
410
AARNSGGNTNYA
708
CAADVWYGSTWRNW





TIGIT-30-5
113
GIFRNYGMG
411
AAISWSGVSTIYA
709
CASSPYGPLYRSTHYYDW





TIGIT-30-6
114
RFSRINSMG
412
AHIFRSGITSYASYA
710
CAIGRGSW





TIGIT-30-7
115
IPASIRTMG
413
SLITSDDGSTYYA
711
CAWTTNRGMDW





TIGIT-30-8
116
FTMSSSWMG
414
ATLTSGGSTNYA
712
CAADVWYGSTWRNW





TIGIT-30-9
117
PISGINRMG
415
STITFNGDHTYYA
713
CAARPYTRPGSMWVSSLYDW





TIGIT-30-10
118
RTFSLSDMG
416
GAINWLSESTYYA
714
CAAQGGVLSGWDW





TIGIT-30-11
119
SITSIRSMG
417
SSVYIFGGSTYYA
715
CANSNKPKFDW





TIGIT-30-12
120
RTFGDYIMG
418
ASVSGGGNSDYA
716
CAAVFSRGPLTW





TIGIT-30-13
121
RTFSNYFMG
419
AAINWDSARTYYA
717
CASAGRW





TIGIT-30-14
122
PTFSIYDMG
420
AAITWNSGRTNYA
718
CAAGAWSSLRKTAASW





TIGIT-30-15
123
FTFSGNWMG
421
SGISSGGGRTYYA
719
CAADVWYGSTWRNW





TIGIT-30-16
124
FPFSEYPMG
422
AVVNWNGDSTYYA
720
CANFNRDW





TIGIT-30-17
125
SIFNIGMG
423
SSIYSNGHTYYA
721
CANSNKPKFDW





TIGIT-30-18
126
RAFSLRTMG
424
SLITSDDGSTYYA
722
CAWTTNRGMDW





TIGIT-30-19
127
RTFSSYAMMG
425
AIITDGSKTLYA
723
CAAQFTLARHLVW





TIGIT-30-20
128
PTFSIYDMG
426
AVINWSRGSTFYA
724
CAAGVWSSLRHTAANW





TIGIT-30-21
129
FTFSTSWMG
427
ATINSGGGTNYA
725
CAADVWYGSTWRNW





TIGIT-30-22
130
FTLSGNWMG
428
ASISSSGVSKHYA
726
CAADVWYGSTWRNW





TIGIT-30-23
131
RAFRRYTMG
429
AAIRWSGGTTFYA
727
CAAEWAAMKDW





TIGIT-30-24
132
NIFSRYIMG
430
AGISNGGTTKYA
728
CAQGWKIIPTDW





TIGIT-30-25
133
PTFSIYDMG
431
ASTIWSRGDTYYA
729
CAAGVWSSLRHTAANW





TIGIT-30-26
134
RTYYAMG
432
AIITDGSKTLYA
730
CAAQFTLARHLVW





TIGIT-30-27
135
FTFSTSWMG
433
AGILSDGRELYA
731
CAADVWYGSTWRNW





TIGIT-30-28
136
RTFESYRMG
434
GGINWSGRTYYA
732
CAARRLYSGSYLDW





TIGIT-30-29
137
SSLSFNAMG
435
SSVYIFGGSTYYA
733
CANSNKPKFDW





TIGIT-30-30
138
GTFSGRGMG
436
SSVYIFGGSTYYA
734
CANSNKPKFDW





TIGIT-30-31
139
PTFSWTMMG
437
AIITDGSKTLYA
735
CAAQFTLARHLVW





TIGIT-30-32
140
IIGTIRTMG
438
SLITSDDGSTYYA
736
CAWTTNRGMDW





TIGIT-30-33
141
FTLENNMMG
439
SAIGWSGASTYYA
737
CAANLRGDNW





TIGIT-30-34
142
NIFSRYIMG
440
AGISSGGTTKYA
738
CAQGWKIVPTNW





TIGIT-30-35
143
NIDRLYAMG
441
SLITSDDGSTYYA
739
CASSGPADARNGERWAW





TIGIT-30-36
144
SIASIHAIG
442
SSVYIFGGSTYYA
740
CANSNKPKFDW





TIGIT-30-37
145
RTFSSKAMG
443
SSVYIFGGSTYYA
741
CANSNKPKFDW





TIGIT-30-38
146
SIASFNAMG
444
SSVYIFGGSTYYA
742
CANSNKPKFDW





TIGIT-30-39
147
FTFSTSWMG
445
VGISSGGSTHYA
743
CAADVWYGSTWRNW





TIGIT-30-40
148
FTFSGNWMG
446
VGISSGGSTHYA
744
CAADVWYGSTWRNW





TIGIT-30-41
149
RTFSSYAMMG
447
AIITDGSKTLYA
745
CAAQFILARHLVW





TIGIT-30-42
150
ITITTEVMG
448
AAIHWNGDSTAYA
746
CAQVSQWRAW





TIGIT-30-43
151
FTFSTSWMG
449
AARNSGGNTNYA
747
CAADVWYGSTWRNW





TIGIT-30-44
152
VTLDLYAMG
450
AGIWRSGGSTVYA
748
CATWTTTWGRNRDW





TIGIT-30-45
153
GTFSGGFMG
451
ASVLRGGYTWYA
749
CANGGSSYW





TIGIT-30-46
154
RTFSTYASMW
452
AIITDGSKTLYA
750
CAGSWSYPGLTW





TIGIT-30-47
155
FTMSSSWMG
453
VGISSGGSTHYA
751
CAADVWYGSTWRNW





TIGIT-30-48
156
FPVNRYSMG
454
SAIGWSGASTYYA
752
CAADFWLARLRVADDYDW





TIGIT-30-49
157
NIFSRYIMG
455
AGISNGGTTKYA
753
CAQGWKIVPTNW





TIGIT-30-50
158
RSFSNYVMG
456
ATITSGGLTVYA
754
CALYRVNW





TIGIT-30-51
159
SIFSISDMG
457
GAINWLSESTYYA
755
CAAQGGVLSGWDW





TIGIT-30-52
160
RTFSNYFMG
458
ATVTWRDNITYYA
756
CASAGRW





TIGIT-30-53
161
LTFSNYVMG
459
AAINWDSARTYYA
757
CASAGRW





TIGIT-30-54
162
FTFRSFGMG
460
ASTIWSRGDTYYA
758
CASSPYGPLYRSTHYYDW





TIGIT-30-55
163
NTFSGGFMG
461
ASVLRGGYTWYA
759
CATGWQSTTKSQGW





TIGIT-30-56
164
LTISTYPMG
462
AAVNWSGRRELYA
760
CAAFREYHW





TIGIT-30-57
165
PTFSIYDMG
463
AAITWNSGRIGYA
761
CAAGVWSSLRHTAANW





TIGIT-30-58
166
FAFGDSWMG
464
SGISSGGGRTYYA
762
CAADVWYGSTWRNW





TIGIT-31-01
167
FTFDRSWMG
465
ASITSGGSTYYA
763
CAADVWYGSTWRNW





TIGIT-31-02
168
RTFGDYIMG
466
AEITRSGRTNYA
764
CAAVFSRGPLTW





TIGIT-31-03
169
FTFSGNWMG
467
ASISSSGISTYYA
765
CAADVWYGSTWRNW





TIGIT-31-04
170
FPVNRYWMG
468
ATITSGGSTNYA
766
CAADVWYGSTWRNW





TIGIT-31-05
171
RTFGDYIMG
469
ATISRGGGSTYV
767
CAAVFSRGPLTW





TIGIT-31-06
172
FTFSTSWMG
470
ASITSGGSTYYA
768
CAADVWYGSTWRNW





TIGIT-31-7
173
STFSINRMG
471
ATIVHSGGHSGGTSYYA
769
CAARPYTRPGSMWVSSLYDW





TIGIT-31-08
174
FTFSTSWMG
472
AARNSGGNTNYA
770
CAADVWYGSTWRNW





TIGIT-31-9
175
GTLSGNAMG
473
ASIYWSSGNTYYA
771
CANSNKPKFDW





TIGIT-31-10
176
HTFSSYGMG
474
AAISWSGISTIYA
772
CASSPYGPLYRSTHYYDW





TIGIT-31-11
177
FTFSTSWMG
475
ASISTSGNTFYA
773
CAADVWYGSTWRNW





TIGIT-31-12
178
FTFSRYWMG
476
ASITSGGSTYYA
774
CAADVWYGSTWRNW





TIGIT-31-13
179
FTFDRSWMG
477
ASITSGGTTNYA
775
CAADVWYGSTWRNW





TIGIT-31-14
180
YTFRAYVMG
478
AVINYRGSSLKYA
776
CAASEWGGSDYDHDYDW





TIGIT-31-15
181
FTFSTYGMG
479
AAISWSGVSKHYA
777
CASSPYGPLYRSTHYYDW





TIGIT-31-16
182
FTFSTSWMG
480
VSVTSGGYTNYA
778
CAADVWYGSTWRNW





TIGIT-31-17
183
FTMSSSWMG
481
ASINSGGTRNYA
779
CAADVWYGSTWRNW





TIGIT-31-18
184
FTFSGNWMG
482
ASISSGSAINYA
780
CAADVWYGSTWRNW





TIGIT-31-19
185
RTFGNYAMG
483
ADIRSSAGRTYYA
781
CAASEWGGSDYDHDYDW





TIGIT-31-20
186
FTFSGNWMG
484
AGILSDGRELYA
782
CAADVWYGSTWRNW





TIGIT-31-21
187
FTLSGNWMG
485
ASISSSGISTYYA
783
CAADVWYGSTWRNW





TIGIT-31-22
188
RTFSTHAMG
486
AAITPINWGGRGTHYA
784
CAAKRLRSGRWTW





TIGIT-31-23
189
FTFSNSGMG
487
ASIYWSSGNTYYA
785
CANSNKPKFDW





TIGIT-31-24
190
RTFSMG
488
ATVRWGTSSTYYA
786
CAAETFGSGSSLMSEYDW





TIGIT-31-25
191
NIFSRYIMG
489
AGISNGGTTKYA
787
CAQGWKIVPTNW





TIGIT-31-26
192
FTFDRSWMG
490
AAITSGGSTYYA
788
CAADVWYGSTWRNW





TIGIT-31-27
193
FTFGHYAMG
491
AAISWSGVSTYYA
789
CASSPYGPLYRSTHYYDW





TIGIT-31-28
194
RTFSSYHMG
492
ALISRVGVTSYA
790
CAAVRTYGSATYDW





TIGIT-31-29
195
RSRMG
493
ATISWSGSAVYA
791
CAAGGRYSARVW





TIGIT-31-30
196
RTYNMG
494
ATIYSRSGGSTTYYA
792
CATYGYDSGRYYSW





TIGIT-31-31
197
FTLSGNWMG
495
ASISSGGGTNYA
793
CAADVWYGSTWRNW





TIGIT-31-32
198
FTFSTSWMG
496
AAMTSGGGTNYA
794
CAADVWYGSTWRNW





TIGIT-31-33
199
FTFSTSWMG
497
ASITSGGSTNYA
795
CAADVWYGSTWRNW





TIGIT-31-34
200
RSRYGMG
498
SAISWSGISTYYA
796
CAATQWGSSGWKQARWYDW





TIGIT-31-35
201
FTFSTSWMG
499
ASITSGGTTNYA
797
CAADVWYGSTWRNW





TIGIT-31-36
202
FTFDRSWMG
500
ASVTSGGTTNYA
798
CAADVWYGSTWRNW





TIGIT-31-37
203
SIFSINSMG
501
AALSWIIGSTYYA
799
CAVNGRWRSWSSQRDW





TIGIT-31-38
204
FTFDRSWMG
502
ASITSGGSTSYA
800
CAADVWYGSTWRNW





TIGIT-31-39
205
FTFSTSWMG
503
AGVNSNGYINYA
801
CAADVWYGSTWRNW





TIGIT-31-40
206
STLRDYVMG
504
SSISRSGTTMFA
802
CAAVFSRGLLTC





TIGIT-31-41
207
GTLSSYIMG
505
AAISGWSGGTTNYA
803
CAAARFAPGSRGYDW





TIGIT-31-42
208
FTFSTHWMG
506
ASIGSSGIIRYA
804
CAADVWYGSTWRNW





TIGIT-31-43
209
GTFSAFPMG
507
AAISSGGTTYYA
805
CAAQGGVLSAW





TIGIT-31-44
210
FTFSGNWMG
508
ASISSGGTTNYA
806
CAADVWYGSTWRNW





TIGIT-31-45
211
FTFSGNWMG
509
AGVNSNGYINYA
807
CAADVWYGSTWRNW





TIGIT-31-46
212
FTFDRSWMG
510
ASITSGGTTSYA
808
CAADVWYGSTWRNW





TIGIT-31-47
213
FTFSGNWMG
511
VGISSGGTPHYA
809
CAADVWYGSTWRNW





TIGIT-31-48
214
FTLSSNWMG
512
AGVNSNGYINYA
810
CAADVWYGSTWRNW





TIGIT-31-49
215
FDFSVSWMG
513
ARISSGGELPYYA
811
CAARPNTRPGSMW





TIGIT-31-50
216
FTMSSSWMG
514
GGISSGGSTYYA
812
CAADVWYGSTWRNW





TIGIT-31-51
217
RNFRRNSMG
515
AVITRSGGGEVTTYA
813
CAMSSVTRGSSDW





TIGIT-31-52
218
FTFDRSWMG
516
AGITSSGIPNYA
814
CAADVWYGSTWRNW





TIGIT-31-53
219
LTISTYNMG
517
SAIGWSGASTYYA
815
CAAFRGRMYDW





TIGIT-31-54
220
FTFSTSWMG
518
AAVTSGGNTNYA
816
CAADVWYGSTWRNW





TIGIT-31-55
221
RTFGDYIMG
519
AEITRVGNTNYA
817
CAAVFSRGPLTW





TIGIT-31-56
222
RIFRRNSMG
520
AVITRSGGGEVTTYA
818
CAMSSVTRGSSDW





TIGIT-211-1
223
FTFGNYGVA
521
SYICRAGGPTYYA
819
CARSWPYFFYCW





TIGIT-211-2
224
FTFDKYRMM
522
GVIWGGGGTYYA
820
CARIFSYALDYW





TIGIT-211-3
225
FTFPSYTMG
523
STIWPRGHKTYYA
821
CAKDQWPFDYW





TIGIT-211-4
226
FTFSNYGVS
524
SGISSGGDTYYV
822
CAKYTGRWEPYDYW





TIGIT-211-5
227
FTFNNFSMT
525
SSISPSGGWTEYA
823
CAKAFSTFDYW





TIGIT-211-6
228
FTFSAYGMN
526
SGISPNGGITTYA
824
CASLSRGYW





TIGIT-211-7
229
FTFSDYTMN
527
SSIDWHGGVTYYA
825
CARSYGGGFDYW





TIGIT-211-8
230
FTFNNYGMS
528
TGISSGGDTYYV
826
CAKYTGRWEPYDYW





TIGIT-211-9
231
FTFNKYPMM
529
SGITRSGSTNYR
827
CAKKLSNGFDYW





TIGIT-211-10
232
FTFNSYAMS
530
SGIVSSGGLTGYA
828
CAKGWFGGFNYW





TIGIT-211-11
233
FTFGNYKMT
531
SQISQTGRITYYA
829
CARSSFYYYALDYW





TIGIT-211-12
234
FTFTNYGVS
532
SGISSGGDTYYV
830
CAKYTGRWEPYDYW





TIGIT-211-13
235
FTFNKYPMM
533
SYISSSGSSTYYA
831
CARVIAAAGAFDYW





TIGIT-211-14
236
FTFADEGMM
534
SSIGRHGGRTYYA
832
CAKSGRRFDYW





TIGIT-211-15
237
FTFSSAAMS
535
SGISPSGGITTYA
833
CASLSRGYW





TIGIT-211-16
238
FTFDRYRMM
536
SAISGSGDKTYYA
834
CAKKLSNGFDYW





TIGIT-211-17
239
FTFAEYSMN
537
SWISPHGALTYYA
835
CARSYGGGFDYW





TIGIT-211-18
240
FTFGTIPMS
538
GVIWGGGGTYYA
836
CAKAHGNPVSDLSFDYW





TIGIT-211-19
241
FTFLYYRMA
539
TAISRSGDKTYYA
837
CAKWFSRNFDYC





TIGIT-211-20
242
FTFTNYGVS
540
GYINPSGGYTYYA
838
CARSYGGGFDYW





TIGIT-211-21
243
FTFSNYGVS
541
GYINPSRGYTYYA
839
CARSYGGGFDYW





TIGIT-211-22
244
FTFEGYPMS
542
SSISGYGSTTYYA
840
CAKSSFDKYNFDYW





TIGIT-211-23
245
FTFSRYFMG
543
SSISSTGFKTYYA
841
CARGGRLYDILTGQGAPFDYW





TIGIT-211-24
246
FTFNNYGVS
544
TWISPHGALTYYA
842
CAKGRRRFDYW





TIGIT-211-25
247
FTFGTIPMS
545
SVIHQSGTPTYYA
843
CARGPYGRYAALDYW





TIGIT-211-26
248
FTFGNYRMT
546
SQISETGRRTYYA
844
CARSSFYYYALDYW





TIGIT-211-27
249
FTFVWYGMG
547
SAISGRGDNSYYA
845
CAKAGPRGFDYW





TIGIT-211-28
250
FTFSTYAMS
548
SEISPSGGYTYYA
846
CAKVKLGGGPNFDYW





TIGIT-211-29
251
FTFSYYRMY
549
SGISPSGGITTYA
847
CAKGNSRYVFDYW





TIGIT-211-30
252
FTFKSYGMH
550
SAISGSGGGTSYA
848
CARAGQWLGDFDYW





TIGIT-211-31
253
FTFVAYNMG
551
SAISREGRATYYA
849
CAKSGTRIKQGFDYW





TIGIT-211-32
254
FTFEQYDMR
552
SYITPKGDHTYYA
850
CAKDRIPNLHFDYW





TIGIT-211-33
255
FTFNKYPMM
553
SAISGSGGGTSYA
851
CARGGYYYALDYW





TIGIT-211-34
256
FTFSVYSMN
554
SGISPSGGITTYA
852
CAKIRNLHWDVGRQFDYW





TIGIT-211-35
257
FTFNAYPMT
555
SAITGSGGSTYYA
853
CARDGSYSSSWYGYW





TIGIT-211-36
258
FTFSNYGMT
556
GVIWGGGGTYYA
854
CAKHWNRFDYW





TIGIT-211-37
259
FTFPVYNMA
557
SSISGYGSTTYYA
855
CARDAYLHFDYW





TIGIT-211-38
260
FTFSPYLVS
558
SSISDHGFNTYYA
856
CAKSPLVRNNGQFDYW





TIGIT-211-39
261
FTFKSYVMG
559
SAINGSGGGTYYA
857
CARGGSWEEDFDYW





TIGIT-211-40
262
FTFSRYAMN
560
SEISPSGKKKYYA
858
CAKSSFDKYNFDYW





TIGIT-211-41
263
FTFNKYPMM
561
SSIVSSGGLTLYA
859
CAKGGGLPYLSFDYW





TIGIT-211-42
264
FTFNHYGMG
562
SYISSSGSSTYYA
860
CAKGWLGNFDYW





TIGIT-211-43
265
FTFYDYTMD
563
SAISGSGGGTSYA
861
CARRHWPGGFDYW





TIGIT-211-44
266
FTFGNYAMA
564
SSIGRHGGRTYYA
862
CARDTYLHFDYW





TIGIT-211-45
267
FTFRRYVMG
565
SEISPSGGYTYYA
863
CAKRWTFNTAFDYW





TIGIT-211-46
268
FTFSSYFMS
566
TTIGPNGTTTYYA
864
CAREWQHGPVAYW





TIGIT-211-47
269
FMFSWYDMG
567
SQISNTGDRRYYA
865
CAKSPSSLLATYFDYW





TIGIT-211-48
270
FTFTNYGMS
568
CGIYPNGGSTYYA
866
CARAGGGGFDYC





TIGIT-211-49
271
FTFPNYGMS
569
GYINPTGGYTYYA
867
CARSYGGGFDYW





TIGIT-211-50
272
FTFPNYGMA
570
SGIYPSGGSTLYA
868
CAKAYYGGFDYW





TIGIT-211-51
273
FTFHKYGMA
571
STISSGGGYTYYP
869
CARDTYLHFDYW





TIGIT-211-52
274
FTFSRYHMG
572
STISPYGPVTYYA
870
CARVWRNHLDYW





TIGIT-211-53
275
STFTEYRMW
573
SGISPSGGITTYA
871
CARVWRNSLDYW





TIGIT-211-54
276
FTFEDTEMD
574
SKIGPHGRLTYYA
872
CARAPRGYSYGYYYW





TIGIT-211-55
277
FTFGSSAMS
575
SAISGGGSNKYYA
873
CAKSGRRFDYW





TIGIT-211-56
278
FTFSTAAMT
576
SGISPTGGITTYA
874
CASLSRGYC





TIGIT-211-57
279
LTFPNYGMG
577
SAISREGRATYYA
875
CARVIAAAGAFDYW





TIGIT-211-58
280
FTFLWYDMG
578
SAISGRGDNTYYA
876
CAKAVPKGFDYW





TIGIT-211-59
281
FTFSPYLMA
579
SSISAPGFTTYYA
877
CARSPLVHYNRGFQYC





TIGIT-211-60
282
FTFSDYTMN
580
SGISPSGGITYYA
878
CAKQAPGEKWLARGRLDYW





TIGIT-211-61
283
FTFSNYGVS
581
SYINPSGGYTYYA
879
CARSYGGGFDYW





TIGIT-211-62
284
FTFYKYLMS
582
SAISGNGGSTFYA
880
CAKGTRTFDYW





TIGIT-211-63
285
FTFSAYPMY
583
SSITSTGDQTYYA
881
CARVITPLDILTYW





TIGIT-211-64
286
FTLADYTMN
584
TWITPSGGLTYYA
882
CARSYGGGFDYW





TIGIT-211-65
287
FTFSYYGMY
585
SPITNAGDRPYYA
883
CARHGAGYFGWYNDCC





TIGIT-211-66
288
FTFVWYDMG
586
SSIPSSGFNTYYA
884
CAKSSLPSGQGHFDYW





TIGIT-211-67
289
FTFNKYPMM
587
SAITGSGGGTSYA
885
CARGGYYYALDYW





TIGIT-211-68
290
FTFSSASMS
588
SGISPTGGITTYA
886
CANLSPGYW





TIGIT-211-69
291
FTFGNYRMT
589
GVIWGGGGTYYA
887
CARIFSYALDYW





TIGIT-211-70
292
FTFSSYFMS
590
GVIWGGGGTYYA
888
CPKGGTSFDYW





TIGIT-211-71
293
FTFSTAAMS
591
SAISPRGGITTYA
889
CARLSRGYW





TIGIT-211-72
294
FTFRSYTMG
592
SSIWPRGQKTYYA
890
CAKGFRLFPRTFDYW





TIGIT-211-73
295
FTFGTYYMG
593
SSISSSGGYTGYA
891
CAKGFRLFPRTFDYW





TIGIT-211-74
296
FTFSSYVMI
594
SGINRTGGVTSYA
892
CAKVASDRSVLYDYW





TIGIT-211-75
297
FTFGTIPMS
595
SSIGPHGGKTYYA
893
CAKVRPFWGTFDYW





TIGIT-211-76
298
FTFSYYRVY
596
SGISPSGGITTYA
894
CAKGNSRYVFDYW





TIGIT-211-77
299
FTFGNYAMA
597
SSIWPSGGQTWYA
895
CAKGGTSFDYW





TIGIT-211-78
300
FTFTNYGVS
598
GYINPNGGYTYYA
896
CARSYGGGFDYW





TIGIT-211-79
301
FTFSNYGVS
599
SYISHGGGDTYYA
897
CARSGPYYFDYW





TIGIT-211-80
302
FAFAAYDMG
600
SYITPKGDHTYYA
898
CAKSSFDKYNFDYW





TIGIT-211-81
303
FTLSSYPMS
601
SAITREGRATYYA
899
CARDTYLHFDYW





TIGIT-211-82
304
FTFTYYRMD
602
SIITPSGGITYYA
900
CAKGNSRYMFDYW





TIGIT-211-83
305
FTFADEGMM
603
SLIPHTGNPTYYA
901
CATAESYKGYDYW





TIGIT-211-84
306
FTFKDYGVN
604
RVIWGGGDTYYV
902
CAKYTGRWEPYDYW





TIGIT-211-85
307
FTFSRYAMT
605
GVIWGGGNTTYY
903
CAKGGTRFDYW





TIGIT-211-86
308
FTFSSYFMS
606
GVIWGGGGTYYA
904
CAKGGTSFDYW





TIGIT-211-87
309
FTFNKYPMM
607
STISHGGEHTYYA
905
CAKKLSNGFDYW





TIGIT-211-88
310
FTFSNYGMS
608
SSIVSSGGLTLYA
906
CAKVWRNHLDYW





TIGIT-211-89
311
FTFSNYGVS
609
GYINPSRGNTYYA
907
CARSYRGGFDYW





TIGIT-211-90
312
FIFSSAAMS
610
SAISGRGDNTYYA
908
CARVWRNHLDYW





TIGIT-211-91
313
FTFSYYRMY
611
SAITGTGGETYYA
909
CARVIAAAGAFDYW





TIGIT-211-92
314
FTFSRYFMG
612
TSISSTGFNTYYA
910
CARGGRLYDILTGQGAPFDYW





TIGIT-211-93
315
FTFSRYFMG
613
SEISPSGKKKYYA
911
CAKSSFDKYNFDYW





TIGIT-211-94
316
FTFSYYRMY
614
SGISPTGCITYYA
912
CAKGHSLCVFYYW





TIGIT-211-95
317
FTFPKYGMA
615
STISSGGGYTYYP
913
CARDTYLHFDYW





TIGIT-211-96
318
FTFKDYGMN
616
SEISPSGGYTYYA
914
CARGSYIIWSALDYW





TIGIT-211-97
319
FTFNAYPMT
617
SAITGSGGSTYYA
915
CARVWRNHLDYW





TIGIT-211-98
320
FTFETYAMS
618
SVISGSGGRPNYA
916
CAREGLWAFDYW





TIGIT-211-99
321
FTFSPYPMM
619
SAITGTGGETYYA
917
CAKWSSRAFDYW





TIGIT-211-100
322
FTFSTYPVS
620
SGISSGGDTYYV
918
CAKYTGRWEPYDYW





TIGIT-211-101
323
FTFGNYAMS
621
SGISPSGGHTWYA
919
CAKGGTSYDYW





TIGIT-211-102
324
FTFTYYRMY
622
SGISPSGGITTYA
920
CAKGNSRYVFDYW





TIGIT-211-103
325
FTFTSYDMG
623
SAIVSSGSLTLYA
921
CARRHWPGGFDYW





TIGIT-211-104
326
FTFSPRRMS
624
SGISPSGGITTYA
922
CARHNRAIGTFDYW





TIGIT-211-105
327
FTFGNYRMT
625
SSINRHGWVTYYA
923
CARSVLLDYW





TIGIT-211-106
328
FTFGNYGMT
626
SYINRNGGITYYA
924
CARSDRVGFCCW





TIGIT-211-107
329
FTFSPYPMM
627
SAIIGTGSNTYYA
925
CAKVRTFRLNYC





TIGIT-211-108
330
FTFSSYFVT
628
GVIWGGGDTYYV
926
CAKYTGRWEPYDYW





TIGIT-211-109
331
FTFSDYTMN
629
SGISPSGGITTYA
927
CAKQAPGEKWLARGRLHYW





TIGIT-211-110
332
FTFFPYAMG
630
SSIDDRGRYTYYA
928
CAKVRPFWGTFDYW





TIGIT-211-111
333
FTFVWYDMG
631
SAISGRGDNTYYA
929
CAKAVPKGFDYW





TIGIT-211-112
334
FTFSSYFMT
632
SSISSTGCNTYYA
930
CAKTPRKFDYW





TIGIT-211-113
335
LIFAWYDMG
633
STIGSSGYPTYYA
931
CAKAVPKGFDYW





TIGIT-211-114
336
FTFEGYPMS
634
STISSGGGYTYYP
932
CAKQAPGEKWLARGRLDYW





TIGIT-211-115
337
FTFSNYGVS
635
GYINPSGGYTYYA
933
CARSYGGGFDYW





TIGIT-211-116
338
FTFSRYFMG
636
SAISGSGGNTYYA
934
CARVWRNHLDYW





TIGIT-269-1
339
GIFSSYAIS
637
GGIIPTNYA
935
CARWRGGLSAFDVW





TIGIT-269-2
340
GTYTTHGIS
638
GGIIPINYA
936
CARAFGLASGKGPGVFDYW





TIGIT-269-3
341
FSFGSYAMS
639
SAITGSYYA
937
CARVLGNSGRGLDYW





TIGIT-269-4
342
GPFNKYAIS
640
GGIIPMNYA
938
CARGSHQLYYAFEYW





TIGIT-269-5
343
FTFSTYLMI
641
SAISGSYYA
939
CARDVEGQVGHFFDPW





TIGIT-269-6
344
FTLSSYSMS
642
SAINPSYYA
940
CAKGIKAFGGTRLPLYFDSW





TIGIT-269-7
345
FTFGNYAMS
643
SAITGSYYA
941
CAKHLLSRSRGLDVW





TIGIT-269-8
346
FTFGTYSMS
644
SAITGSYYA
942
CAKHLLARSGGMHLW





TIGIT-269-9
347
FSFSNHAMS
645
SAISGSYYA
943
CARSTRDRAFDYW





TIGIT-269-10
348
FSFSSSGMS
646
SAISGSYYA
944
CVKVGDYFAFDHW





TIGIT-269-11
349
GTFRRHAIS
647
GGIIPMNYA
945
CARGTALVRRAFDIW





TIGIT-269-12
350
GTYTTHGIS
648
GGIIPINYA
946
CARAFGLASGKGPGVFDYW





TIGIT-269-13
351
FTFSNYAMS
649
SAISGGYYA
947
CAKHRVGARAFDVW





TIGIT-269-14
352
FTFSNYAMS
650
SAISGNYYA
948
CAKHRVGARAFDVW





TIGIT-269-15
353
GTFNIYAIS
651
GGIIPINYA
949
CARHPRDFGIHGLDVW





TIGIT-269-16
354
GTFSRYGIS
652
GGIIPINYA
950
CARVRGGYYYDTW





TIGIT-269-17
355
GTFTNHAIS
653
GGINPLNYA
951
CATGGGHFRSGRDVW





TIGIT-269-18
356
FTFASYAMS
654
SAITNSYYA
952
CARHLRLGRGFDSW





TIGIT-269-19
357
GTFTYYPIS
655
GGIIPFNYA
953
CATPSGGIGRRLDVW





TIGIT-269-20
358
GTYTTHGIS
656
GGIIPINYA
954
CAKAFGLASGKGPGVFDYW





TIGIT-269-21
359
GTFSQYAIS
657
GGIIPMNYA
955
CARESRTLFGVPNAFDIW





TIGIT-471-001
1847 
FTFSNYGVS
1896 
GYINPSRGYTYYA
1945 
CARSYGGGFDYW





TIGIT-471-009
1848 
FTFVRYDMA
1897 
STISSGGDYTYYP
1946 
CAKDTYNHFDYW





TIGIT-471-017
1849 
FTFSKYGMS
1898 
SYINSSRGYTYYA
1947 
CARSSGGGFDYW





TIGIT-471-025
1850 
FTFSRYFMG
1899 
SEISPSGKKKYYA
1948 
CAKSSFDKYNFDYW





TIGIT-471-033
1851 
FTFHKYGMT
1900 
SAISSGGGYTYYP
1949 
CARDTYLHFDYW





TIGIT-471-041
1852 
FTFSRYVMG
1901 
SEISPSGKKKYYA
1950 
CAKSSFDKYNFDYW





TIGIT-471-049
1853 
FTFSTYAMN
1902 
TEISPSGKKKYYA
1951 
CAKSSFDKYNFDYW





TIGIT-471-005
1854 
CTFSSYLMS
1903 
GVIWGGGGTYYA
1952 
CAKGGTSFDYW





TIGIT-471-013
1855 
FTFNAYPMT
1904 
SGITGSGGSTYYA
1953 
CARDGSYSSSWYGYW





TIGIT-471-021
1856 
FTFHKYGMA
1905 
STISSGGGYTYYP
1954 
CARDTYLHFEYW





TIGIT-471-029
1857 
FTFHKYGMA
1906 
STISSGGGYTYYP
1955 
CARDTYLHFDYW





TIGIT-471-037
1858 
FTFSPYSMS
1907 
SEISPSGKKKYYA
1956 
CARSSFDKYNFDYW





TIGIT-471-045
1859 
FTFSRYFMG
1908 
SEISPSGKKKYYA
1957 
CAKSSFDKYNFDYW





TIGIT-471-002
1860 
FTFSSYFMS
1909 
GVIWGGGGTYYA
1958 
CAKGGTSFDYW





TIGIT-471-010
1861 
FTFSRYIMG
1910 
SEISLIGKKKYYA
1959 
CAKSSFDKYNFDYW





TIGIT-471-018
1862 
FTFSNYGVS
1911 
GYINRSREYTYYA
1960 
CARSYGGGFDYW





TIGIT-471-026
1863 
FTFSRYAMN
1912 
SEISPSGKKKYYA
1961 
CAKSSFDKYNFDYW





TIGIT-471-034
1864 
FTFSRYFMG
1913 
SEISPSGKKKYYA
1962 
CAKSSFDKYNFDYW





TIGIT-471-042
1865 
FTFHKYGMA
1914 
STISGGGGYTYYP
1963 
CARDTYLHFDYW





TIGIT-471-006
1866 
FTFSKYGVS
1915 
CYINSGSGYTYYA
1964 
CARASYVHFDYW





TIGIT-471-014
1867 
FTFSSYFMS
1916 
GVIWGGGGTYYA
1965 
CAKGGTSFDYW





TIGIT-471-022
1868 
FTFSSYLMS
1917 
GVIWGGGGTYYA
1966 
CAKGGTSFDYW





TIGIT-471-030
1869 
FTFSRYVMN
1918 
SEISPSGKKKYYA
1967 
CAKSSFDKYNFDYW





TIGIT-471-038
1870 
FTFSNYGVS
1919 
GYINPSRGYTYYA
1968 
CARSYGGGFDYW





TIGIT-471-046
1871 
FTFEDETMS
1920 
SAISGSGGGTSYA
1969 
CARDVIAGPFDYW





TIGIT-471-003
1872 
FTFSNYGVS
1921 
SWISPHGALTYYA
1970 
CAKGRRRFDYW





TIGIT-471-011
1873 
FTFSNYGVS
1922 
SSIDWHGWVTYYA
1971 
CVKNALRFDYW





TIGIT-471-019
1874 
FTFSNYGVS
1923 
VYINPSRGYTYYA
1972 
CARSYGGGFDYW





TIGIT-471-027
1875 
FTFSNYGVS
1924 
SWISPHGALTYYA
1973 
CAKGRRRFDYW





TIGIT-471-035
1876 
FTFNAYPMT
1925 
SAITGSGGSTYYA
1974 
CARVWRNHLDYW





TIGIT-471-043
1877 
FTFEHNDMH
1926 
SGISPSGGITTYA
1975 
CAKQAPGEKWLARGRLDYW





TIGIT-471-007
1878 
LHSRSYVMG
1927 
SEISRSGKKKYYA
1976 
CAKSSFGEYNFDYW





TIGIT-471-015
1879 
FTFDKYDMA
1928 
STICSGGDYTYYP
1977 
CARDTYIHFDYW





TIGIT-471-023
1880 
FTFNKYPMM
1929 
STIGPSGTSTYYA
1978 
CARRSYFRRFDYW





TIGIT-471-031
1881 
FTFSRYAMN
1930 
SEISPSGKKKYYA
1979 
CAKSSFDKYNFDYW





TIGIT-471-039
1882 
FTFNADPMS
1931 
SAITGSGGSTYYA
1980 
CARDGSYSSSWYGYW





TIGIT-471-047
1883 
FTFEVYTMA
1932 
SSIHPKGYPTRYA
1981 
CAKGWFGNFDYW





TIGIT-471-004
1884 
FTFHKYGMT
1933 
SSISSGGGYTYYP
1982 
CARDTYLHFDYW





TIGIT-471-012
1885 
FTFNKYPMM
1934 
SGITRSGSTNYR
1983 
CAKKLSNGFDYW





TIGIT-471-020
1886 
SSVSRYVMG
1935 
SEISRIGKKKCYA
1984 
CEKSSFDKYNFDYW





TIGIT-471-028
1887 
FTFPVYNMA
1936 
SGIYPSGGSTVYA
1985 
CARHRAGSSGWYSDYW





TIGIT-471-036
1888 
FTFSSYFMS
1937 
GVIWGGGGTYYA
1986 
CAKGGTSFDYW





TIGIT-471-044
1889 
FTFSRYFMG
1938 
SEISPSGKKKYYA
1987 
CAKSSFDKYNFHYW





TIGIT-471-008
1890 
FTFEPVIMG
1939 
SSISPNGWDTYYA
1988 
CATETSPNDYW





TIGIT-471-016
1891 
FTFHKYGMA
1940 
STISSGGGYTYYP
1989 
CARDTYLHFDYW





TIGIT-471-024
1892 
FTFEPVIMG
1941 
SSISPNGWDTYYA
1990 
CATETSPNDYW





TIGIT-471-032
1893 
FTFHKYGMA
1942 
STISSGGGYTYYP
1991 
CARDTYLHFDYW





TIGIT-471-040
1894 
FTFHKYGMA
1943 
STISSGGGYTYYP
1992 
CARDTYLHFDYW





TIGIT-471-048
1895 
FTFSNYGVS
1944 
GYINPSRGYTYYA
1993 
CARSYGGGFDYW
















TABLE 12







Variable Domain of Light Chain CDR Sequences














SEQ

SEQ

SEQ




ID

ID

ID



Variant
NO
CDR1
NO
CDR2
NO
CDR3
















TIGIT-211-1
 956
RSSQSLVHSTGNTYLH
1093
AASDLES
1230
CQQGHTLPWTF





TIGIT-211-2
 957
RTSQDIGNYLN
1094
PKHNRPP
1231
CQQSYNSPWTF





TIGIT-211-3
 958
RSSQSLVHSTGNTYLH
1095
AASDLES
1232
CQQGHTLPWTF





TIGIT-211-4
 959
RSSQSLVHSTGNTYLH
1096
AASDLES
1233
CQQGHTLPWTF





TIGIT-211-5
 960
RSSQSLVHSTGNTYLH
1097
AASDLES
1234
CQQGHTLPWTF





TIGIT-211-6
 961
RSSQSLVHSTGNTYLH
1098
AASDLES
1235
CQQGHTLPWTF





TIGIT-211-7
 962
SGDKLRNKYAS
1099
GQHNRPS
1236
CQGSYYSGSGWYYAF





TIGIT-211-8
 963
RSSQSLVHSTGNTYLH
1100
AASDLES
1237
CQQGHTLPWTF





TIGIT-211-9
 964
RSSQSLVHSTGNTYLH
1101
AASDLES
1238
CQQGHTLPWTF





TIGIT-211-10
 965
RSSQSLVHSTGNTYLH
1102
AASDLES
1239
CQQGHTLPWTF





TIGIT-211-11
 966
RSSQSLVHSTGNTYLH
1103
AASDLES
1240
CQQGHTLPWTF





TIGIT-211-12
 967
SGDKLGHTYTS
1104
YTSSLHS
1241
CATRAVRGNPHVLF





TIGIT-211-13
 968
RASQSIREYLH
1105
FGSELRK
1242
CGQGVLWPATF





TIGIT-211-14
 969
SGDTLGGKYAW
1106
QNDKRPS
1243
CHQWSSYPTF





TIGIT-211-15
 970
QSSQSVYSNNELS
1107
GTSYRYS
1244
CSSWAGSRSGTVF





TIGIT-211-16
 971
SGDKLGHTYTS
1108
RTSWLQS
1245
CQQYHSYPPTF





TIGIT-211-17
 972
RASQTIERRLN
1109
QNDKRPS
1246
CQQSYSIPPTF





TIGIT-211-18
 973
SGDKLGDKYTS
1110
HTSRLQD
1247
CQQSYNLPLTF





TIGIT-211-19
 974
RSSQSLVHSTGNTYLH
1111
AASDLES
1248
CQQGHTLPWTF





TIGIT-211-20
 975
RSSQSLVHSTGNTYLH
1112
AASDLES
1249
CQQGHTLPWTF





TIGIT-211-21
 976
RSSQSLVHSTGNTYLH
1113
AASDLES
1250
CQQGHTLPWTF





TIGIT-211-22
 977
RASQGVRTSLA
1114
AKNNRPS
1251
CQQSYHTPQTF





TIGIT-211-23
 978
RSSQSLVHSTGNTYLH
1115
AASDLES
1252
CQQGHTLPWTF





TIGIT-211-24
 979
RSSQSLVHSTGNTYLH
1116
AASDLES
1253
CQQGHTLPWTF





TIGIT-211-25
 980
RASQTIERRLN
1117
AKNNRPS
1254
CQQTALVPYTF





TIGIT-211-26
 981
RASQTIGDYLN
1118
GASSRAT
1255
CAQGAALPRTF





TIGIT-211-27
 982
RSSQSLVHSTGNTYLH
1119
AASDLES
1256
CQQGHTLPWTF





TIGIT-211-28
 983
QGASLRNYYAS
1120
DTSKVAS
1257
CFQGSHIPYTF





TIGIT-211-29
 984
RASQSISNNLN
1121
AKNNRPS
1258
CQQSYTTPPTF





TIGIT-211-30
 985
RASQPIGPDLL
1122
RKSNRPS
1259
CQQSYSTPYTF





TIGIT-211-31
 986
RASQSIRRFLN
1123
WASDRES
1260
CQQTATWPFTF





TIGIT-211-32
 987
RSSQSLVHSTGNTYLH
1124
AASDLES
1261
CQQGHTLPWTF





TIGIT-211-33
 988
RSSQSLVHSTGNTYLH
1125
AASDLES
1262
CQQGHTLPWTF





TIGIT-211-34
 989
RANQNIGNFLN
1126
QDFKRPS
1263
CHQRSSYPWTF





TIGIT-211-35
 990
SGNKLGDKYAS
1127
RTSWLQS
1264
CVARAVRGNPHVLF





TIGIT-211-36
 991
RSSQSLVHSTGNTYLH
1128
AASDLES
1265
CQQGHTLPWTF





TIGIT-211-37
 992
RSSQSLVHSTGNTYLH
1129
AASDLES
1266
CQQGHTLPWTF





TIGIT-211-38
 993
RSSQSLVHSTGNTYLH
1130
AASDLES
1267
CQQGHTLPWTF





TIGIT-211-39
 994
RSSQSLVHSTGNTYLH
1131
AASDLES
1268
CQQGHTLPWTF





TIGIT-211-40
 995
RASQDIGNFLN
1132
RTSWLQS
1269
CQQRSSYPPTF





TIGIT-211-41
 996
RSSQSLVHSTGNTYLH
1133
AASDLES
1270
CQQGHTLPWTF





TIGIT-211-42
 997
RASQGVRTSLA
1134
GKNIRPS
1271
CQQSYSFPLTF





TIGIT-211-43
 998
RASQSIRRYLN
1135
WASDRES
1272
CQQSFSTPLTF





TIGIT-211-44
 999
RSSQSLVHSTGNTYLH
1136
AASDLES
1273
CQQGHTLPWTF





TIGIT-211-45
1000
RASQSIRRYLN
1137
DASNLQS
1274
CQQSYDFPRTF





TIGIT-211-46
1001
RSSQSLVHSTGNTYLH
1138
AASDLES
1275
CQQGHTLPWTF





TIGIT-211-47
1002
RSSQSLVHSTGNTYLH
1139
AASDLES
1276
CQQGHTLPWTF





TIGIT-211-48
1003
RSSQSLVHSTGNTYLH
1140
AASDLES
1277
CQQGHTLPWTF





TIGIT-211-49
1004
RSSQSLVHSTGNTYLH
1141
AASDLES
1278
CQQGHTLPWTF





TIGIT-211-50
1005
RSSQSLVHSTGNTYLH
1142
AASDLES
1279
CQQGHTLPWTF





TIGIT-211-51
1006
RASQGVRTSLA
1143
AKNNRPS
1280
CQQSYSAPYTF





TIGIT-211-52
1007
RSSQSLVHSTGNTYLH
1144
AASDLES
1281
CQQGHTLPWTF





TIGIT-211-53
1008
RASQTIGDYLN
1145
GQHNRPS
1282
CQQSFSIPWTF





TIGIT-211-54
1009
KASDHIGKFLT
1146
AASKLAS
1283
CQQVVWRPFTF





TIGIT-211-55
1010
RASQTIGDYLN
1147
HDNKRPS
1284
CQQDAFHPPTF





TIGIT-211-56
1011
RSSQSLVHSTGNTYLH
1148
AASDLES
1285
CQQGHTLPWTF





TIGIT-211-57
1012
RSSQSLVHSTGNTYLH
1149
GKNIRPS
1286
CQQSYTTPWTF





TIGIT-211-58
1013
RSSQSLVHSTGNTYLH
1150
AASDLES
1287
CQQGHTLPWTF





TIGIT-211-59
1014
RSSQSLVHSTGNTYLH
1151
AASDLES
1288
CQQGHTLPWTF





TIGIT-211-60
1015
RSSQSLVHSTGNTYLH
1152
AASDLES
1289
CQQGHTLPWTF





TIGIT-211-61
1016
RSSQSLVHSTGNTYLH
1153
AASDLES
1290
CQQGHTLPWTF





TIGIT-211-62
1017
RSSQSLVHSTGNTYLH
1154
AASDLES
1291
CQQGHTLPWTF





TIGIT-211-63
1018
RSSQSLVHSTGNTYLH
1155
AASDLES
1292
CQQGHTLPWTF





TIGIT-211-64
1019
RSSQSLVHSTGNTYLH
1156
AASDLES
1293
CQQGHTLPWTF





TIGIT-211-65
1020
RSSQSLVHSTGNTYLH
1157
AASDLES
1294
CQQGHTLPWTF





TIGIT-211-66
1021
RSSQSLVHSTGNTYLH
1158
AASDLES
1295
CQQGHTLPWTF





TIGIT-211-67
1022
RSSQSLVHSTGNTYLH
1159
AASDLES
1296
CQQGHTLPWTF





TIGIT-211-68
1023
RSSQSLVHSTGNTYLH
1160
AASDLES
1297
CQQGHTLPWTF





TIGIT-211-69
1024
RASQNIRSYLN
1161
GASTLQS
1298
CQQSYENPLTF





TIGIT-211-70
1025
RSSQSLVHSTGNTYLH
1162
AASDLES
1299
CQQGHTLPWTF





TIGIT-211-71
1026
RSSQSLVHSTGNTYLH
1163
AASDLES
1300
CQQGHTLPWTF





TIGIT-211-72
1027
RASHNINSYLN
1164
GKNIRPS
1301
CQQSYIIPPTF





TIGIT-211-73
1028
RSSQSLVHSTGNTYLH
1165
AASDLES
1302
CQQGHTLPWTF





TIGIT-211-74
1029
RSSQSLVHSTGNTYLH
1166
AASDLES
1303
CQQGHTLPWTF





TIGIT-211-75
1030
RSSQSLVHSTGNTYLH
1167
AASDLES
1304
CQQGHTLPWTF





TIGIT-211-76
1031
RSSQSLVHSTGNTYLH
1168
AASDLES
1305
CQQGHTLPWTF





TIGIT-211-77
1032
RASQSVRSYLN
1169
AASSLYS
1306
CQQYASVPVTF





TIGIT-211-78
1033
RSSQSLVHSTGNTYLH
1170
AASDLES
1307
CQQGHTLPWTF





TIGIT-211-79
1034
RASQSVRSYLN
1171
AATTLQS
1308
CQQSYIIPPTF





TIGIT-211-80
1035
RASQGVRTSLA
1172
GKNIRPS
1309
CQQGYRWPVTF





TIGIT-211-81
1036
RSSQSLVHSTGNTYLH
1173
AASDLES
1310
CQQGHTLPWTF





TIGIT-211-82
1037
RSSQSLVHSTGNTYLH
1174
AASDLES
1311
CQQGHTLPWTF





TIGIT-211-83
1038
SGDKLGDKYTS
1175
GASSRAT
1312
CMSRSIWGNPHVLF





TIGIT-211-84
1039
SGDKLGHTYTS
1176
YTSSLHS
1313
CATRAVRGNPHVLF





TIGIT-211-85
1040
RSSQSLVHSTGNTYLH
1177
AASDLES
1314
CQQGHTLPWTF





TIGIT-211-86
1041
RSSQSLVHSTGNTYLH
1178
AASDLES
1315
CQQGHTLPWTF





TIGIT-211-87
1042
RASQTIGDYLN
1179
QDFKRPS
1316
CQQYHDFPLTF





TIGIT-211-88
1043
RSSQSLVHSTGNTYLH
1180
AASDLES
1317
CQQGHTLPWTF





TIGIT-211-89
1044
RSSQSLVHSTGNTYLH
1181
AASDLES
1318
CQQGHTLPWTF





TIGIT-211-90
1045
SGDRLGEKYVS
1182
GTTSLES
1319
CQQGYTLPWTF





TIGIT-211-91
1046
RASQSIREYLH
1183
FGSELRK
1320
CQNGHSFPLTF





TIGIT-211-92
1047
RSSQSLVHSTGNTYLH
1184
AASDLES
1321
CQQGHTLPWTF





TIGIT-211-93
1048
SASQDINKYLN
1185
HTSRLQS
1322
CQQFAYFPATF





TIGIT-211-94
1049
RSSQSLVHSTGNTYLH
1186
AASDLES
1323
CQQGHTLPWTF





TIGIT-211-95
1050
RASQGVRTSLA
1187
AKNNRPS
1324
CQQSYSAPYTF





TIGIT-211-96
1051
RSSQSLVHSTGNTYLH
1188
AASDLES
1325
CQQGHTLPWTF





TIGIT-211-97
1052
RSSQSLVHSTGNTYLH
1189
AASDLES
1326
CQQGHTLPWTF





TIGIT-211-98
1053
RASHFIGSLLS
1190
ETSKLAS
1327
CQQSYSYPRTF





TIGIT-211-99
1054
RSSQSLVHSTGNTYLH
1191
AASDLES
1328
CQQGHTLPWTF





TIGIT-211-100
1055
RSSQSLVHSTGNTYLH
1192
AASDLES
1329
CQQGHTLPWTF





TIGIT-211-101
1056
RSSQSLVHSTGNTYLH
1193
AASDLES
1330
CQQGHTLPWTF





TIGIT-211-102
1057
RASQSISNNLN
1194
AKNNRPS
1331
CQQSYTTPPTF





TIGIT-211-103
1058
RSSQSLVHSTGNTYLH
1195
AASDLES
1332
CQQGHTLPWTF





TIGIT-211-104
1059
RASQSISNNLN
1196
DASSSQS
1333
CQQSSSTPWTF





TTGIT-211-105
1060
RSSQSLVHSTGNTYLH
1197
AASDLES
1334
CQQGHTLPWTF





TIGIT-211-106
1061
RSSQSLVHSTGNTYLH
1198
AASDLES
1335
CQQGHTLPWTF





TIGIT-211-107
1062
RSSQSLVHSTGNTYLH
1199
AASDLES
1336
CQQGHTLPWTF





TIGIT-211-108
1063
RSSQSLVHSTGNTYLH
1200
AASDLES
1337
CQQGHTLPWTF





TIGIT-211-109
1064
RSSQSLVHSTGNTYLH
1201
AASDLES
1338
CQQGHTLPWTF





TIGIT-2ll-llO
1065
RASQTIERRLN
1202
GTTSLES
1339
CQQSYTTLWTF





TTGIT-211-111
1066
SGDNLRGYYAS
1203
GTSYRYS
1340
CQQNLAPPYTF





TIGIT-211-112
1067
RSSQSLVHSTGNTYLH
1204
AASDLES
1341
CQQGHTLPWTF





TIGIT-211-113
1068
SGDKLGHTYTS
1205
GKNIRPS
1342
CQQNLAPPYTF





TIGIT-211-114
1069
RASQSISNNLN
1206
TASNLQN
1343
CQQSNSWPYTF





TIGIT-211-115
1070
RSSQSLVHSTGNTYLH
1207
AASDLES
1344
CQQGHTLPWTF





TIGIT-211-116
1071
RASQTIERRLN
1208
HDNKRPS
1345
CQQGYTLPWTF





TIGIT-269-1
1072
RASQSVSSGYLA
1209
STSSRAT
1346
CQQSASAHPGWTF





TIGIT-269-2
1073
RASQSINTFLN
1210
GASSLQS
1347
CQQGYRAPWTF





TIGIT-269-3
1074
RASQSVSSYLN
1211
AATSLQS
1348
CQQGYSTPWTF





TIGIT-269-4
1075
RASQSIRTYLN
1212
GASSLQS
1349
CQQSYRVPRSF





TIGIT-269-5
1076
RASQSVSSGYLA
1213
DASSRAT
1350
CQHFGGSPLLTF





TIGIT-269-6
1077
RASQHIGKYLN
1214
GASSLQS
1351
CQQTYSPVTF





TIGIT-269-7
1078
RASQSIGGYLN
1215
AVSSLQS
1352
CQQGFYTPWTF





TIGIT-269-8
1079
RASQSINTFLN
1216
GASSLQS
1353
CQQGYRAPWTF





TIGIT-269-9
1080
RASQNIGKYLN
1217
AASSLQS
1354
CHQSYGIPWTF





TIGIT-269-10
1081
RASQNIRNYLN
1218
GASSLQS
1355
CQQSYRSFFTF





TIGIT-269-11
1082
RASQSIKNYLN
1219
TASSLQS
1356
CQQSYGNVWTF





TIGIT-269-12
1083
RASQSINTFLN
1220
GASSLQS
1357
CQQGYRAPWTF





TIGIT-269-13
1084
RASQSITRYLN
1221
TTSSLQS
1358
CLQAYSTPWTF





TIGIT-269-14
1085
RASEKISTYLN
1222
AASSLQS
1359
CQQSHQTPWTF





TIGIT-269-15
1086
RASQSVNSNHLA
1223
STSSRAT
1360
CQQSGSSSLTF





TIGIT-269-16
1087
RASQSISNYLN
1224
GATSLQS
1361
CQQSYIMSQWTF





TIGIT-269-17
1088
RASQSITRYLN
1225
GASSLQS
1362
CQQGFRAPRTF





TIGIT-269-18
1089
RASQSVGSYLN
1226
SASSLQS
1363
CQQSHATPWTF





TIGIT-269-19
1090
RASHSVSNNYLA
1227
GASSRAT
1364
CQLFDRSRPGYTF





TIGIT-269-20
1091
RASQSINTFLN
1228
GASSLQS
1365
CQQGYRAPWTF





TIGIT-269-21
1092
RASQSVSGTYLA
1229
GASSRAT
1366
CQQYKRSSGFTF





TIGIT-471-001
1994
RASQTIERRLN
2043
DASSLHT
2092
CQQSYIIPPTF





TIGIT-471-009
1995
RASHGVRTSLA
2044
GKNNRPT
2093
CQQSLAPPYTF





TIGIT-471-017
1996
RATQAIERRLK
2045
DNSSRQT
2094
CQQSYIIPYTF





TIGIT-471-025
1997
SASQDINKYLN
2046
HTSRLQS
2095
CQQYTYFPATF





TIGIT-471-033
1998
RASQGVRTSLA
2047
AKNNRPS
2096
CQQSYSAPYTF





TIGIT-471-041
1999
SASHDINEYLN
2048
HTSRLQS
2097
CQQFAYFPATF





TIGIT-471-049
2000
RPAHNIGNFLN
2049
KTTWLHS
2098
CRHRSSYLPTF





TIGIT-471-005
2001
RASQNIRSYLN
2050
GKNIRPS
2099
CQQYASVPVTF





TIGIT-471-013
2002
SGNKLGDKYAS
2051
RISWLQS
2100
CVARPLRGNPHVLF





TIGIT-471-021
2003
RASQGVRTSLA
2052
AKNNRPS
2101
CQQSYSAPYTF





TIGIT-471-029
2004
RASQGVRTSLA
2053
AINNRPS
2102
CQQSYSAPYTF





TIGIT-471-037
2005
SASQDIRRYLN
2054
HTSTLQS
2103
CQQYRLF





TIGIT-471-045
2006
SASQDINKYLN
2055
HTSRLQS
2104
CQQYTYFF





TIGIT-471-002
2007
RASQNIRSYLN
2056
GKNIRPS
2105
CQQYASVPVTF





TIGIT-471-010
2008
SAYQDINKYLN
2057
HKSRLQS
2106
CQQFAYFPATF





TIGIT-471-018
2009
RASQTIERRLN
2058
DTSSRHT
2107
CQQSYIIPPTF





TIGIT-471-026
2010
RASQDIGNFLN
2059
RTSWLQS
2108
CQQRSSYPPTF





TIGIT-471-034
2011
RASQSISSYVN
2060
RASTLAS
2109
CQQFAYFPATF





TIGIT-471-042
2012
RASQVVSTSLS
2061
ANNNRAS
2110
CQQSYTAPYTF





TIGIT-471-006
2013
RATQTIETSLK
2062
DKNSLQT
2111
CQQSYSTPHTF





TIGIT-471-014
2014
RASQNIRSYLN
2063
GKNIRPS
2112
CQQYASVPVTF





TIGIT-471-022
2015
RASQNIRSYLN
2064
GKNIRPS
2113
CQQYASVPVTF





TIGIT-471-030
2016
CASQDINKFLN
2065
HTSRLQS
2114
CQQFASFPATF





TIGIT-471-038
2017
RASQTIERRLN
2066
DASSLHT
2115
CQQSYIIPPTF





TIGIT-471-046
2018
AASGFNIKDTYIH
2067
GTTSLES
2116
CQQSYSTPRTF





TIGIT-471-003
2019
RASQTISSYLN
2068
ENNNRPS
2117
CQQSYIIPPTF





TIGIT-471-011
2020
SASQDINKYLN
2069
HTSRLQS
2118
CQQVVWRPFTF





TIGIT-471-019
2021
RASQTIERRLN
2070
DASSLHT
2119
CQQSYIIPPTF





TIGIT-471-027
2022
RASQTISSYLN
2071
ENNNRPS
2120
CQQSYIIPPTF





TIGIT-471-035
2023
SGDKLGHTYTS
2072
RASTLAS
2121
CQQGYTLPWTF





TIGIT-471-043
2024
RANQNIGNFLN
2073
HTSRLQD
2122
CQQLAF





TIGIT-471-007
2025
SASQDINKYLN
2074
HTSRLQS
2123
CQQFAYFPATF





TIGIT-471-015
2026
RASHGVRTSLA
2075
GKNNRPT
2124
CQQSYSAPYTF





TIGIT-471-023
2027
RATQSIRSFLN
2076
KVSNRFS
2125
CQQYDAYPPTL





TIGIT-471-031
2028
RASQDIGNFLN
2077
RTSWLQS
2126
CQQRSSYSATF





TIGIT-471-039
2029
SGNKLGDKYAS
2078
RTTWLQS
2127
CVARAVRGNPLVLF





TIGIT-471-047
2030
RASQGVRTSLA
2079
GKNIRPI
2128
CGQSYRYRLTF





TIGIT-471-004
2031
RASQGVRTSLA
2080
AKNNRPS
2129
CQQSYSAPYTF





TIGIT-471-012
2032
RASQRISSFLN
2081
GKNIRPS
2130
CQQSYELPLTF





TIGIT-471-020
2033
CASQDINKYLN
2082
HTSRLQS
2131
CQQFAYFPATF





TIGIT-471-028
2034
RASQSVDRYFN
2083
AASSLYS
2132
CQQSYRTPLTF





TIGIT-471-036
2035
RASQNERSYLN
2084
GKNIRPS
2133
CQQYASVPVTF





TIGIT-471-044
2036
SASQDINKYLN
2085
HTSTLQS
2134
CQQFAYFPATF





TIGIT-471-008
2037
RSSQSLVHSTGNTYLH
2086
QMSHLAS
2135
CQQSYSAPTF





TIGIT-471-016
2038
RASQGVRTSLA
2087
AKNNRPS
2136
CQQSYSAPYTF





TIGIT-471-024
2039
RSSQSLVHSTGNTYLH
2088
QMSHLAS
2137
CQQSYSAPTF





TIGIT-471-032
2040
RASQGVRTSLA
2089
AKNNRPS
2138
CQQSYSVPYTF





TIGIT-471-040
2041
RASQGVRTSLA
2090
ALNNRPS
2139
CQQSYSAPYTF





TIGIT-471-048
2042
GASQTIERRLN
2091
DASSLHT
2140
CQQSYIIPPTF
















TABLE 13







Variable Domain of Heavy Chain Sequences










SEQ



Variant
ID NO
Variable Domain of Heavy Chain





TIGIT-29-01
1367
EVQLVESGGGLVQAGGSLRLSCAASGRTFSNYAMGWFRQAPGKEREFVAAITWSGT




RTDYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAAAAWTIYEYDYWGQ




GTQVTVSS





TIGIT-29-02
1368
EVQLVESGGGLVQAGGSLRLSCAASGRTFDIYAMGWFRQAPGKEREWVSTISWSGG




RTYYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAARPVYRTYGSWGQG




TQVTVSS





TIGIT-29-03
1369
EVQLVESGGGLVQAGGSLRLSCAASGFTFSSYAMGWFRQAPGKEREFVAAITWSGT




RTDYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAAAAWRYSEYDYWG




QGTQVTVSS





TIGIT-29-4
1370
EVQLVESGGGLVQAGGSLRLSCAASGSTFDTYVMGWFRQAPGKERELVSTISSDGDS




TYYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAAGTRRGRNYWGQGTQ




VTVSS





TIGIT-29-5
1371
EVQLVESGGGLVQAGGSLRLSCAASGRTFSIYAMGWFRQAPGKEREWVATISSSGD




RTYYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAARRYGRRYDYWGQ




GTQVTVSS





TIGIT-29-06
1372
EVQLVESGGGLVQAGGSLRLSCAASGGTFRSYVMGWFRQAPGKEREWVATINSSGS




RTYYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAARPNYRDYEYWGQG




TQVTVSS





TIGIT-29-07
1373
EVQLVESGGGLVQAGGSLRLSCAASGSIFSNYAMGWFRQAPGKEREFVATISRGGTR




TNYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAAAAWTIYAYNYWGQ




GTQVTVSS





TIGIT-29-8
1374
EVQLVESGGGLVQAGGSLRLSCAASGRTLDDYVMGWFRQAPGKEREGVATISGGG




DTTYYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAAVPWRWTTRRDY




WGQGTQVTVSS





TIGIT-29-9
1375
EVQLVESGGGLVQAGGSLRLSCAASGFTFDNYAMGWFRQAPGKEREFVSSITWSGG




RTSYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAANAWTIYRYDYWGQ




GTQVTVSS





TIGIT-29-10
1376
EVQLVESGGGLVQAGGSLRLSCAASGRTFSNYGMGWFRQAPGKEREFVSGISGSGG




RTSYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAANLWYPVDRLNTGF




NYWGQGTQVTVSS





TIGIT-29-11
1377
EVQLVESGGGLVQAGGSLRLSCAASGRTLSSYAMGWFRQAPGKEREFVASITWGGG




RTYYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCATRLWGTWTAGDYD




YWGQGTQVTVSS





TIGIT-29-12
1378
EVQLVESGGGLVQAGGSLRLSCAASGSTFSSYAMGWFRQAPGKEREFVAAITWSGT




RTNYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAAAAWTIYTYDSWGQ




GTQVTVSS





TIGIT-29-13
1379
EVQLVESGGGLVQAGGSLRLSCAASGFIFSNYAMGWFRQAPGKEREFVAAITWSGG




RTYYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAAAAWTIYEYDYWGQ




GTQVTVSS





TIGIT-29-14
1380
EVQLVESGGGLVQAGGSLRLSCAASGFTFSDYVMGWFRQAPGKEREFVSAISWSGT




NTNYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCATRALRDGRGYWGQG




TQVTVSS





TIGIT-29-15
1381
EVQLVESGGGLVQAGGSLRLSCAASGRTFDSYAMGWFRQAPGKEREGVATISGSGG




RTYYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAAAAWTIYEFDSWGQ




GTQVTVTS





TIGIT-29-16
1382
EVQLVESGGGLVQAGGSLRLSCAASGSIFSIYAMGWFRQAPGKEREWVATISWGGN




STYYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAARPRFRTYGYWGQG




TQVTVSS





TIGIT-29-17
1383
EVQLVESGGGLVQAGGSLRLSCAASGSTLSIYAMGWFRQAPGKERELVATISSGGGS




TYYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAAGSVYGRNYWGQGT




QVTVSS





TIGIT-29-18
1384
EVQLVESGGGLVQAGGSLRLSCAASGSTFSNYAMGWFRQAPGKEREFVSAINSSGSR




TYYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAARLWGTWTAGDYDY




WGQGTQVTVSS





TIGIT-29-19
1385
EVQLVESGGGLVQAGGSLRLSCAASGRTFSSYAMGWFRQAPGKEREFVATISGSFGR




TYYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAAGAWTIYEYDYWGQG




TQVTVSS





TIGIT-29-20
1386
EVQLVESGGGLVQAGGSLRLSCAASGSTFSIYAMGWFRQAPGKERELVASISWSGDT




TNYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAAGSVYGRNSWGQGTQ




VTVTS





TIGIT-29-21
1387
EVQLVESGGGLVQAGGSLRLSCAASGSTFSNYAMGWFRQAPGKERELVSAITWSSS




RTYYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAAAAWTIYNFEYWGQ




GTQVTVSS





TIGIT-29-22
1388
EVQLVESGGGLVQAGGSLRLSCAASGSILSSYTMGWFRQAPGKEREFVSTISRSSTRT




YYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAARLWGTWTAGDYDYW




GQGTQVTVSS





TIGIT-29-23
1389
EVQLVESGGGLVQAGGSLRLSCAASGSTFDIYAMGWFRQAPGKEREFVASISSGDTN




TNYADSVKGRFTISADNAKNTVYLQMNSLKHEDTAVYYCAAGRYSGYNSWGQGT




QVTVSS





TIGIT-29-24
1390
EVQLVESGGGLVQAGGSLRLSCAASGRTFDTYAMGWLRQAPGKEREFVSAISTGDG




STNYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAAARRSGRGSWGQGT




QVTVTS





TIGIT-29-25
1391
EVQLVESGGGLVQAGGSLRLSCAASGFTFDNYAMGWFRQAPGKEREGVAAITWSG




GRTYYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAAAAWTIYEYDSWG




QGTQVTVTS





TIGIT-29-26
1392
EVQLVESGGGLVQAGGSLRLSCAASGFTFDNYAMGWFRQAPGKEREFVATITWSGT




RTNYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAAAAWTIYDYDYWG




QGTQVTVSS





TIGIT-29-27
1393
EVQLVESGGGLVQAGGSLRLSCAASGRTFSNNVMGWFRQAPGKEREFVAAISWGG




ASTNYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAAGPKTPDTRNYWG




QGTQVTVSS





TIGIT-29-28
1394
EVQLVESGGGLVQAGGSLRLSCAASGFIFDSYAMGWFRQAPGKEREFVAAISWGGS




NTNYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAAVRITDGRDYWGQG




TQVTVSS





TIGIT-29-29
1395
EVQLVESGGGLVQAGGSLRLSCAASGRTFSNYAMGWFRQAPGKEREFVAAITWSGT




RTDYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAAAAWTIYEYDYWGQ




GTQVTVSS





TIGIT-29-30
1396
EVQLVESGGGLVQAGGSLRLSCAASGFTFSSYAMGWFRQAPGKEREFVAAITWSGT




RTDYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAAAAWRYSEYDYWG




QGTQVTVSS





TIGIT-29-31
1397
EVQLVESGGGLVQAGGSLRLSCAASGFTFSIYAMGWFRQAPGKEREWVSTISWSGG




NTYYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCATRPRFRRYDSWGQG




TQVTVSS





TIGIT-29-32
1398
EVQLVESGGGLVQAGGSLRLSCAASGSTFDSYAMGWFRQAPGKEREGVAAITTSGS




STYYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAARGGVRSGSPGTYNY




WGQGTQVTVSS





TIGIT-29-33
1399
EVQLVESGGGLVQAGGSLRLSCAASGFIFSTYAMGWFRQAPGKERELVSAITRSGITT




YYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAAAAWTIYEYDYWGQGT




QVTVSS





TIGIT-29-34
1400
EVQLVESGGGLVQAGGSLRLSCAASGFTFRNYAMGWFRQAPGKEREFVSSISSSSSR




TSYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAARLWGTWTAGDYDY




WGQGTQVTVSS





TIGIT-29-35
1401
EVQLVESGGGLVQAGGSLRLSCAASGRIFSIYTMGWFRQAPGKEREWVATINSSGSR




TYYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAARPSYNRYDSWGQGT




QVTVSS





TIGIT-29-36
1402
EVQLVESGGGLVQAGGSLRLSCAASGFTFSSYAMGWFRQAPGKEREFVASITWSGTS




TNYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAAAAWTIYAYDYWGQ




GTQVTVSS





TIGIT-29-37
1403
EVQLVESGGGLVQAGGSLRLSCAASGRTFSNYAMGWFRQAPGKEREFVAGISWSGT




RTYYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAAAAWTIYEYDYWGQ




GTQVTVSS





TIGIT-29-38
1404
EVQLVESGGGLVQAGGSLRLSCAASGSTFSSYAMGWFRQAPGKEREFVSAISRNGAS




TSYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAAAGTRFDYWGQGTQV




TVSS





TIGIT-29-39
1405
EVQLVESGGGLVQAGGSLRLSCAASGRTLDDYVMGWFRQAPGKEREGVATISGGG




DTTYYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAAVPWRWTTRRDY




WGQGTQVTVSS





TIGIT-29-40
1406
EVQLVESGGGLVQAGGSLRLSCAASGFTFDNYAMGWFRQAPGKEREFVATITWSGT




RTNYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAAAAWTIYDYDYWG




QGTQVTVSS





TIGIT-29-41
1407
EVQLVESGGGLVQAGGSLRLSCAASGRTFSTNAMGWFRQAPGKEREWVTAITTSGG




NTYYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAARDETYGTYDYWGQ




GTQVTVSS





TIGIT-29-42
1408
EVQLVESGGGLVQAGGSLRLSCAASGSTFSTYAMGWFRQAPGKEREFVATISTSSSR




TYYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAARLWGTWTAGDYDY




WGQGTQVTVSL





TIGIT-29-43
1409
EVQLVESGGGLVQAGGSLRLSCAASGRTFDSYAMGWFRQAPGKEREWVSAISWSGS




STYYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAARGGYGRYDSWGQG




TQVTVTS





TIGIT-29-44
1410
EVQLVESGGGLVQAGGSLRLSCAASGFTFDNYAMGWFRQAPGKEREFVATITWSGT




TTNYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAAAAWTIYDYDYWGQ




GTQVTVSS





TIGIT-29-45
1411
EVQLVESGGGLVQAGGSLRLSCAASGFTFSSYAMGWFRQAPGKEREFVASITWSGT




RTDYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAAAAWTIYGYEYWGQ




GTQVTVSS





TIGIT-29-46
1412
EVQLVESGGGLVQAGGSLRLSCAASGSTFDIYAMGWFRQAPGKEREFVASISSGDTN




TYYADSVKGRFTISADNAKNTVYLQMNSLKHEDTAVYYCAAGRYSGYNSWGQGT




QVTVSS





TIGIT-29-47
1413
EVQLVESGGGLVQAGGSLRLSCAASGSTLSSYAMGWFRQAPGKERELVAAITGSGG




RTYYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAANRRYSFPYWSFWY




DDFDYWGQGTQVTVSS





TIGIT-30-01
1414
EVQLVESGGGLVQAGGSLRLSCAASGFAFSSYWMGWFRQAPGKERELVAARNSGG




NTNYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAADVWYGSTWRNWG




QGTQVTVSS





TIGIT-30-02
1415
EVQLVESGGGLVQAGGSLRLSCAASGRTFGDYIMGWFRQAPGKERELVATISGGGS




TNYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAAVFSRGPLTWGQGTQ




VTVSS





TIGIT-30-03
1416
EVQLVESGGGLVQAGGSLRLSCAASGNIFSRYIMGWFRQAPGKEREWVAGISNGGT




TKYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAQGWKIRPTIWGQGTQ




VTVSS





TIGIT-30-04
1417
EVQLVESGGGLVQAGGSLRLSCAASGFTFSTHWMGWFRQAPGKERELVAARNSGG




NTNYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAADVWYGSTWRNWG




QGTQVTVSS





TIGIT-30-5
1418
EVQLVESGGGLVQAGGSLRLSCAASGGTFRNYGMGWFRQAPGKERELVAAISWSG




VSTIYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCASSPYGPLYRSTHYYD




WGQGTQVTVSS





TIGIT-30-6
1419
EVQLVESGGGLVQAGGSLRLSCAASGRFSRINSMGWFRQAPGKERELVAHIFRSGITS




YASYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAIGRGSWGQGTQVTV




SS





TIGIT-30-7
1420
EVQLVESGGGLVQAGGSLRLSCAASGIPASIRTMGWFRQAPGKEREGISLITSDDGST




YYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAWTTNRGMDWGQGTQV




TVSS





TIGIT-30-8
1421
EVQLVESGGGLVQAGGSLRLSCAASGFTMSSSWMGWFRQAPGKEREFVATLTSGGS




TNYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAADVWYGSTWRNWGQ




GTQVTVSS





TIGIT-30-9
1422
EVQLVESGGGLVQAGGSLRLSCAASGPISGINRMGWFRQAPGKEREWVSTITFNGDH




TYYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAARPYTRPGSMWVSSL




YDWGQGTQVTVSS





TIGIT-30-10
1423
EVQLVESGGGLVQAGGSLRLSCAASVRTFSLSDMGWFRQAPGKEREFVGAINWLSE




STYYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAAQGGVLSGWDWGQ




GTQVTVSS





TIGIT-30-11
1424
EVQLVESGGGLVQAGGSLRLSCAASGSITSIRSMGWFRQAPGKEREWVSSVYIFGGS




TYYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCANSNKPKFDWGQGTQV




TVSS





TIGIT-30-12
1425
EVQLVESGGGLVQAGGSLRLSCAASGRTFGDYIMGWFRQAPGKERELVASVSGGGN




SDYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAAVFSRGPLTWGQGTQ




VTVSS





TIGIT-30-13
1426
EVQLVESGGGLVQAGGSLRLSCAASGRTFSNYFMGWFRQAPGKERESVAAINWDSA




RTYYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCASAGRWGQGTQVTVS




S





TIGIT-30-14
1427
EVQLVESGGGLVQAGGSLRLSCAASGPTFSIYDMGWFRQAPGKEREFVAAITWNSG




RTNYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAAGAWSSLRKTAASW




GQGTQVTVSS





TIGIT-30-15
1428
EVQLVESGGGLVQAGGSLRLSCAASGFTFSGNWMGWFRQAPGKEREWVSGISSGG




GRTYYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAADVWYGSTWRNW




GQGTQVTVSS





TIGIT-30-16
1429
EVQLVESGGGLVQAGGSLRLSCAASGFPFSEYPMGWFRQAPGKEREFVAVVNWNG




DSTYYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCANFNRDWGQGTQVT




VSS





TIGIT-30-17
1430
EVQLVESGGGLVQAGGSLRLSCAASGSIFNIGMGWFRQAPGKEREWVSSIYSNGHTY




YADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCANSNKPKFDWGQGTQVTV




SS





TIGIT-30-18
1431
EVQLVESGGGLVQAGGSLRLSCAASGRAFSLRTMGWFRQAPGKEREGISLITSDDGS




TYYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAWTTNRGMDWGQGTQ




VTVSS





TIGIT-30-19
1432
EVQLVESGGGLVQAGGSLRLSCAASGRTFSSYAMMGWFRQAPGKEREFLAIITDGSK




TLYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAAQFTLARHLVWGQGT




QVTVSS





TIGIT-30-20
1433
EVQLVESGGGLVQAGGSLRLSCAASGPTFSIYDMGWFRQAPGKEREFVAVINWSRG




STFYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAAGVWSSLRHTAANW




GQGTQVTVSS





TIGIT-30-21
1434
EVQLVESGGGLVQAGGSLRLSCAASGFTFSTSWMGWFRQAPGKERELVATINSGGG




TNYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAADVWYGSTWRNWGQ




GTQVTVSS





TIGIT-30-22
1435
EVQLVESGGGLVQAGGSLRLSCAASGFTLSGNWMGWFRQAPGKEREFVASISSSGV




SKHYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAADVWYGSTWRNWG




RGTQVTVSS





TIGIT-30-23
1436
EVQLVESGGGLVQAGGSLRLSCAASGRAFRRYTMGWFRQAPGKEREFVAAIRWSG




GTTFYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAAEWAAMKDWGQG




TQVTVSS





TIGIT-30-24
1437
EVQLVESGGGLVQAGGSLRLSCAASGNIFSRYIMGWFRQAPGKEREWVAGISNGGT




TKYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAQGWKIIPTDWGQGTQ




VTVSS





TIGIT-30-25
1438
EVQLVESGGGLVQAGGSLRLSCAASGPTFSIYDMGWFRQAPGKEREFVASTIWSRGD




TYYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAAGVWSSLRHTAANWG




QGTQVTVSS





TIGIT-30-26
1439
EVQLVESGGGLVQAGGSLRLSCAASGRTYYAMGWFRQAPGKEREFLAIITDGSKTL




YADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAAQFTLARHLVWGQGTQV




TVSS





TIGIT-30-27
1440
EVQLVESGGGLVQAGGSLRLSCAASGFTFSTSWMGWFRQAPGKEREFVAGILSDGR




ELYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAADVWYGSTWRNWGQ




GTQVTVSS





TIGIT-30-28
1441
EVQLVESGGGLVQAGGSLRLSCAASGRTFESYRMGWFRQAPGKEREFVGGINWSGR




TYYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAARRLYSGSYLDWGQG




TQVTVSS





TIGIT-30-29
1442
EVQLVESGGGLVQAGGSLRLSCAASGSSLSFNAMGWFRQAPGKEREWVSSVYIFGG




STYYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCANSNKPKFDWGQGTQ




VTVSS





TIGIT-30-30
1443
EVQLVESGGGLVQAGGSLRLSCAASGGTFSGRGMGWFRQAPGKEREWVSSVYIFGG




STYYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCANSNKPKFDWGQGTQ




VTVSS





TIGIT-30-31
1444
EVQLVESGGGLVQAGGSLRLSCAASGPTFSWTMMGWFRQAPGKEREFLAIITDGSK




TLYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAAQFTLARHLVWGQGT




QVTVSS





TIGIT-30-32
1445
EVQLVESGGGLVQAGGSLRLSCAASGIIGTIRTMGWFRQAPGKEREGISLITSDDGST




YYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAWTTNRGMDWGQGTQV




TVSS





TIGIT-30-33
1446
EVQLVESGGGLVQAGGSLRLSCAASGFTLENNMMGWFRQAPGKERELVSAIGWSG




ASTYYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAANLRGDNWGQGTQ




VTVSS





TIGIT-30-34
1447
EVQLVESGGGLVQAGGSLRLSCAASGNIFSRYIMGWFRQAPGKEREWVAGISSGGTT




KYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAQGWKIVPTNWGQGTQV




TVSS





TIGIT-30-35
1448
EVQLVESGGGLVQAGGSLRLSCAASGNIDRLYAMGWFRQAPGKEREGISLITSDDGS




TYYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCASSGPADARNGERWAW




GQGTQVTVSS





TIGIT-30-36
1449
EVQLVESGGGLVQAGGSLRLSCAASGSIASIHAIGWFRQAPGKEREWVSSVYIFGGST




YYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCANSNKPKFDWGQGTQVT




VSS





TIGIT-30-37
1450
EVQLVESGGGLVQAGGSLRLSCAASGRTFSSKAMGWFRQAPGKEREWVSSVYIFGG




STYYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCANSNKPKFDWGQGTQ




VTVSS





TIGIT-30-38
1451
EVQLVESGGGLVQAGGSLRLSCAASGSIASFNAMGWFRQAPGKEREWVSSVYIFGG




STYYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCANSNKPKFDWGQGTQ




VTVSS





TIGIT-30-39
1452
EVQLVESGGGLVQAGGSLRLSCAASGFTFSTSWMGWFRQAPGKEREWVVGISSGGS




THYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAADVWYGSTWRNWGQ




GTQVTVSS





TIGIT-30-40
1453
EVQLVESGGGLVQAGGSLRLSCAASGFTFSGNWMGWFRQAPGKEREWVVGISSGG




STHYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAADVWYGSTWRNWG




QGTQVTVSS





TIGIT-30-41
1454
EVQLVESGGGLVQAGGSLRLSCAASGRTFSSYAMMGWFRQAPGKEREFLAIITDGSK




TLYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAAQFILARHLVWGQGT




QVTVSS





TIGIT-30-42
1455
EVQLVESGGGLVQAGGSLRLSCAASGITITTEVMGWFRQAPGKEREYVAAIHWNGD




STAYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAQVSQWRAWGQGTQ




VTVSS





TIGIT-30-43
1456
EVQLVESGGGLVQAGGSLRLSCAASGFTFSTSWMGWFRQAPGKERELVAARNSGG




NTNYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAADVWYGSTWRNWG




QGTQVTVSS





TIGIT-30-44
1457
EVQLVESGGGLVQAGGSLRLSCAASGVTLDLYAMGWFRQAPGKEREFVAGIWRSG




GSTVYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCATWTTTWGRNRDW




GQGTQVTVSS





TIGIT-30-45
1458
EVQLVESGGGLVQAGGSLRLSCAASGGTFSGGFMGWFRQAPGKEREWVASVLRGG




YTWYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCANGGSSYWGQGTQV




TVSS





TIGIT-30-46
1459
EVQLVESGGGLVQAGGSLRLSCAASGRTFSTYASMWWFRQAPGKEREFLAIITDGSK




TLYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAGSWSYPGLTWGQGTQ




VTVSS





TIGIT-30-47
1460
EVQLVESGGGLVQAGGSLRLSCAASGFTMSSSWMGWFRQAPGKEREWVVGISSGG




STHYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAADVWYGSTWRNWG




QGTQVTVSS





TIGIT-30-48
1461
EVQLVESGGGLVQAGGSLRLSCAASGFPVNRYSMGWFRQAPGKERELVSAIGWSGA




STYYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAADFWLARLRVADDY




DWGQGTQVTVSS





TIGIT-30-49
1462
EVQLVESGGGLVQAGGSLRLSCAASGNIFSRYIMGWFRQAPGKEREWVAGISNGGT




TKYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAQGWKIVPTNWGQGTQ




VTVSS





TIGIT-30-50
1463
EVQLVESGGGLVQAGGSLRLSCAASGRSFSNYVMGWFRQAPGKERERVATITSGGL




TVYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCALYRVNWGQGTQVTVS




S





TIGIT-30-51
1464
EVQLVESGGGLVQAGGSLRLSCAASGSIFSISDMGWFRQAPGKEREFVGAINWLSES




TYYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAAQGGVLSGWDWGQG




TQVTVSS





TIGIT-30-52
1465
EVQLVESGGGLVQAGGSLRLSCAASGRTFSNYFMGWFRQAPGKERESVATVTWRD




NITYYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCASAGRWGQGTQVTV




SS





TIGIT-30-53
1466
EVQLVESGGGLVQAGGSLRLSCAASGLTFSNYVMGWFRQAPGKERESVAAINWDS




ARTYYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCASAGRWGQGTQVTV




SS





TIGIT-30-54
1467
EVQLVESGGGLVQAGGSLRLSCAASGFTFRSFGMGWFRQAPGKEREFVASTIWSRG




DTYYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCASSPYGPLYRSTHYYD




WGQGTQVTVSS





TIGIT-30-55
1468
EVQLVESGGGLVQAGGSLRLSCAASGNTFSGGFMGWFRQAPGKEREWVASVLRGG




YTWYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCATGWQSTTKSQGWG




QGTQVTVSS





TIGIT-30-56
1469
EVQLVESGGGLVQAGGSLRLSCAASGLTISTYPMGWFRQAPGKEREFVAAVNWSGR




RELYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAAFREYHWGQGTQVT




VSS





TIGIT-30-57
1470
EVQLVESGGGLVQAGGSLRLSCAASGPTFSIYDMGWFRQAPGKEREFVAAITWNSG




RIGYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAAGVWSSLRHTAANW




GQGTQVTVSS





TIGIT-30-58
1471
EVQLVESGGGLVQAGGSLRLSCAASGFAFGDSWMGWFRQAPGKEREWVSGISSGG




GRTYYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVYYCAADVWYGSTWRNW




GQGTQVTVSS





TIGIT-31-01
1472
EVQLVESGGGLVQPGGSLRLSCAASGFTFDRSWMGWFRQAPGKEREVVASITSGGS




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADVWYGSTWRNWGQ




GTLVTVSS





TIGIT-31-02
1473
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKERELVAEITRSGRT




NYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAVFSRGPLTWGQGTLVT




VSS





TIGIT-31-03
1474
EVQLVESGGGLVQPGGSLRLSCAASGFTFSGNWMGWFRQAPGKEREFVASISSSGIS




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADVWYGSTWRNWGQ




GTLVTVSS





TIGIT-31-04
1475
EVQLVESGGGLVQPGGSLRLSCAASGFPVNRYWMGWFRQAPGKERELVATITSGGS




TNYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADVWYGSTWRNWGQ




GTLVTVSS





TIGIT-31-05
1476
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREFVATISRGGGS




TYVDSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAVFSRGPLTWGQGTLVT




VSS





TIGIT-31-06
1477
EVQLVESGGGLVQPGGSLRLSCAASGFTFSTSWMGWFRQAPGKERELVASITSGGST




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADVWYGSTWRNWGQG




TLVTVSS





TIGIT-31-7
1478
EVQLVESGGGLVQPGGSLRLSCAASGSTFSINRMGWFRQAPGKEREWVATIVHSGG




HSGGTSYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAARPYTRPGSM




WVSSLYDWGQGTLVTVSS





TIGIT-31-08
1479
EVQLVESGGGLVQPGGSLRLSCAASGFTFSTSWMGWFRQAPGKERELVAARNSGGN




TNYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADVWYGSTWRNWGQ




GTLVTVSS





TIGIT-31-9
1480
EVQLVESGGGLVQPGGSLRLSCAASGGTLSGNAMGWFRQAPGKEREWVASIYWSS




GNTYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCANSNKPKFDWGQGT




LVTVSS





TIGIT-31-10
1481
EVQLVESGGGLVQPGGSLRLSCAASGHTFSSYGMGWFRQAPGKERELVAAISWSGIS




TIYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCASSPYGPLYRSTHYYDW




GQGTLVTVSS





TIGIT-31-11
1482
EVQLVESGGGLVQPGGSLRLSCAASGFTFSTSWMGWFRQAPGKEREFVASISTSGNT




FYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADVWYGSTWRNWGQG




TLVTVSS





TIGIT-31-12
1483
EVQLVESGGGLVQPGGSLRLSCAASGFTFSRYWMGWFRQAPGKEREAVASITSGGS




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADVWYGSTWRNWGQ




GTLVTVSS





TIGIT-31-13
1484
EVQLVESGGGLVQPGGSLRLSCAASGFTFDRSWMGWFRQAPGKEREWVASITSGGT




TNYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADVWYGSTWRNWGQ




GTLVTVSS





TIGIT-31-14
1485
EVQLVESGGGLVQPGGSLRLSCAASGYTFRAYVMGWFRQAPGKERELVAVINYRGS




SLKYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAASEWGGSDYDHDYD




WGQGTLVTVSS





TIGIT-31-15
1486
EVQLVESGGGLVQPGGSLRLSCAASGFTFSTYGMGWFRQAPGKEREFVAAISWSGV




SKHYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCASSPYGPLYRSTHYYD




WGQGTLVTVSS





TIGIT-31-16
1487
EVQLVESGGGLVQPGGSLRLSCAASGFTFSTSWMGWFRQAPGKERELVVSVTSGGY




TNYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADVWYGSTWRNWGQ




GTLVTVSS





TIGIT-31-17
1488
EVQLVESGGGLVQPGGSLRLSCAASGFTMSSSWMGWFRQAPGKEREWVASINSGGT




RNYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADVWYGSTWRNWGQ




GTLVTVSS





TIGIT-31-18
1489
EVQLVESGGGLVQPGGSLRLSCAASGFTFSGNWMGWFRQAPGKEREFVASISSGSAI




NYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADVWYGSTWRNWGQG




TLVTVSS





TIGIT-31-19
1490
EVQLVESGGGLVQPGGSLRLSCAASGRTFGNYAMGWFRQAPGKEREFVADIRSSAG




RTYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAASEWGGSDYDHDYD




WGQGTLVTVSS





TIGIT-31-20
1491
EVQLVESGGGLVQPGGSLRLSCAASGFTFSGNWMGWFRQAPGKEREFVAGILSDGR




ELYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADVWYGSTWRNWGQ




GTLVTVSS





TIGIT-31-21
1492
EVQLVESGGGLVQPGGSLRLSCAASGFTLSGNWMGWFRQAPGKEREFVASISSSGIS




TYYADSVKGRFIISADNSKNTAYLQMNSLKPEDTAVYYCAADVWYGSTWRNWGQ




GTLVTVSS





TIGIT-31-22
1493
EVQLVESGGGLVQPGGSLRLSCAASGRTFSTHAMGWFRQAPGKEREFVAAITPINW




GGRGTHYADSVKGRFTISADNSKNTAYLQMNSLKPEDNAVYYCAAKRLRSGRWTW




GQGTLVTVSS





TIGIT-31-23
1494
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNSGMGWFRQAPGKEREWVASIYWSSG




NTYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCANSNKPKFDWGQGTL




VTVSS





TIGIT-31-24
1495
EVQLVESGGGLVQPGGSLRLSCAASGRTFSMGWFRQAPGKEREFVATVRWGTSSTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAETFGSGSSLMSEYDWGQ




GTLVTVSS





TIGIT-31-25
1496
EVQLVESGGGLVQPGGSLRLSCAASGNIFSRYIMGWFRQAPGKEREWVAGISNGGTT




KYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAQGWKIVPTNWGQGTLV




TVSS





TIGIT-31-26
1497
EVQLVESGGGLVQPGGSLRLSCAASGFTFDRSWMGWFRQAPGKERELVAAITSGGS




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADVWYGSTWRNWGQ




GTLVTVSS





TIGIT-31-27
1498
EVQLVESGGGLVQPGGSLRLSCAASGFTFGHYAMGWFRQAPGKEREFVAAISWSGV




STYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCASSPYGPLYRSTHYYD




WGQGTLVTVSS





TIGIT-31-28
1499
EVQLVESGGGLVQPGGSLRLSCAASGRTFSSYHMGWFRQAPGKERELVALISRVGV




TSYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAVRTYGSATYDWGQG




TLVTVSS





TIGIT-31-29
1500
EVQLVESGGGLVQPGGSLRLSCAASGRSRMGWFRQAPGKEREFVATISWSGSAVYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGGRYSARVWGQGTLVTVS




S





TIGIT-31-30
1501
EVQLVESGGGLVQPGGSLRLSCAASGRTYNMGWFRQAPGKEREWVATIYSRSGGST




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATYGYDSGRYYSWGQG




TLVTVSS





TIGIT-31-31
1502
EVQLVESGGGLVQPGGSLRLSCAASGFTLSGNWMGWFRQAPGKEREFVASISSGGG




TNYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADVWYGSTWRNWGQ




GTLVTVSS





TIGIT-31-32
1503
EVQLVESGGGLVQPGGSLRLSCAASGFTFSTSWMGWFRQAPGKERELVAAMTSGG




GTNYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADVWYGSTWRNWG




QGTLVTVSS





TIGIT-31-33
1504
EVQLVESGGGLVQPGGSLRLSCAASGFTFSTSWMGWFRQAPGKERELVASITSGGST




NYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADVWYGSTWRNWGQG




TLVTVSS





TIGIT-31-34
1505
EVQLVESGGGLVQPGGSLRLSCAASGRSRYGMGWFRQAPGKEREFVSAISWSGISTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAATQWGSSGWKQARWYD




WGQGTLVTVSS





TIGIT-31-35
1506
EVQLVESGGGLVQPGGSLRLSCAASGFTFSTSWMGWFRQAPGKERELVASITSGGTT




NYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADVWYGSTWRNWGQG




TLVTVSS





TIGIT-31-36
1507
EVQLVESGGGLVQPGGSLRLSCAASGFTFDRSWMGWFRQAPGKERELVASVTSGGT




TNYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADVWYGSTWRNWGQ




GTLVTVSS





TIGIT-31-37
1508
EVQLVESGGGLVQPGGSLRLSCAASGSIFSINSMGWFRQAPGKEREFVAALSWIIGST




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAVNGRWRSWSSQRDWG




QGTLVTVSS





TIGIT-31-38
1509
EVQLVESGGGLVQPGGSLRLSCAASGFTFDRSWMGWFRQAPGKERELVASITSGGST




SYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADVWYGSTWRNWGQG




TLVTVSS





TIGIT-31-39
1510
EVQLVESGGGLVQPGGSLRLSCAASGFTFSTSWMGWFRQAPGKERELVAGVNSNGY




INYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADVWYGSTWRNWGQ




GTLVTVSS





TIGIT-31-40
1511
EVQLVESGGGLVQPGGSLRLSCAASGSTLRDYVMGWFRQAPGKERELVSSISRSGTT




MFADSVKGRFTIIADNSKNTAYLLMNSLKPQDTAVYYCAAVFSRGLLTCGQGTLVT




VSS





TIGIT-31-41
1512
EVQLVESGGGLVQPGGSLRLSCAASGGTLSSYIMGWFRQAPGKEREFVAAISGWSG




GTTNYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAARFAPGSRGYDW




GQGTLVTVSS





TIGIT-31-42
1513
EVQLVESGGGLVQPGGSLRLSCAASGFTFSTHWMGWFRQAPGKEREFVASIGSSGTT




RYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADVWYGSTWRNWGQG




TLVTVSS





TIGIT-31-43
1514
EVQLVESGGGLVQPGGSLRLSCAASGGTFSAFPMGWFRQAPGKERELVAAISSGGTT




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAQGGVLSAWDWGQGT




LLTVSS





TIGIT-31-44
1515
EVQLVESGGGLVQPGGSLRLSCAASGFTFSGNWMGWFRQAPGKEREWVASISSGGT




TNYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADVWYGSTWRNWGQ




GTLVTVSS





TIGIT-31-45
1516
EVQLVESGGGLVQPGGSLRLSCAASGFTFSGNWMGWFRQAPGKEREFVAGVNSNG




YINYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADVWYGSTWRNWG




QGTLVTVSS





TIGIT-31-46
1517
EVQLVESGGGLVQPGGSLRLSCAASGFTFDRSWMGWFRQAPGKERELVASITSGGT




TSYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADVWYGSTWRNWGQ




GTLVTVSS





TIGIT-31-47
1518
EVQLVESGGGLVQPGGSLRLSCAASGFTFSGNWMGWFRQAPGKEREWVVGISSGGT




PHYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADVWYGSTWRNWGQ




GTLVTVSS





TIGIT-31-48
1519
EVQLVESGGGLVQPGGSLRLSCAASGFTLSSNWMGWFRQAPGKERELVAGVNSNG




YINYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADVWYGSTWRNWG




QGTLVTVSS





TIGIT-31-49
1520
EVQLVESGGGLVQPGGSLRLSCAASGFDFSVSWMGWFRQAPGKERELVARISSGGE




LPYYADSVKGRFTISADNSKNTAYLQMNSLKPKHTAVYYCAARPNTRPGSMWGQG




TLVTVSS





TIGIT-31-50
1521
EVQLVESGGGLVQPGGSLRLSCAASGFTMSSSWMGWFRQAPGKEREFVGGISSGGS




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADVWYGSTWRNWGQ




GTLVTVSS





TIGIT-31-51
1522
EVQLVESGGGLVQPGGSLRLSCAASGRNFRRNSMGWFRQAPGKEREFVAVITRSGG




GEVTTYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAMSSVTRGSSDWG




QGTLVTVSS





TIGIT-31-52
1523
EVQLVESGGGLVQPGGSLRLSCAASGFTFDRSWMGWFRQAPGKEREFVAGITSSGIP




NYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADVWYGSTWRNWGQG




TLVTVSS





TIGIT-31-53
1524
EVQLVESGGGLVQPGGSLRLSCAASGLTISTYNMGWFRQAPGKERELVSAIGWSGAS




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAFRGRMYDWGQGTLV




TVSS





TIGIT-31-54
1525
EVQLVESGGGLVQPGGSLRLSCAASGFTFSTSWMGWFRQAPGKERELVAAVTSGGN




TNYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADVWYGSTWRNWGQ




GTLVTVSS





TIGIT-31-55
1526
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKERELVAEITRVGN




TNYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAVFSRGPLTWGQGTLV




TVSS





TIGIT-31-56
1527
EVQLVESGGGLVQPGGSLRLSCAASGRIFRRNSMGWFRQAPGKEREFVAVITRSGGG




EVTTYADSVKGRFTINADNSKNTAYLQMNSLKPEDTAVYYCAMSSVTRGSSDWGQ




GTLVTVST





TIGIT-269-1
1528
QVQLVQSGAEVKKPGSSVKVSCKASGGIFSSYAISWVRQAPGQGLEWMGGIIPTNYA




QKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCARWRGGLSAFDVWGQGTLVTV




SS





TIGIT-269-2
1529
QVQLVQSGAEVKKPGSSVKVSCKASGGTYTTHGISWVRQAPGQGLEWMGGIIPINY




AQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCARAFGLASGKGPGVFDYWGQ




GTLVTVSS





TIGIT-269-3
1530
EVQLLESGGGLVQPGGSLRLSCAASGFSFGSYAMSWVRQAPGKGLEWVSAITGSYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARVLGNSGRGLDYWGQGTL




VTVSS





TIGIT-269-4
1531
QVQLVQSGAEVKKPGSSVKVSCKASGGPFNKYAISWVRQAPGQGLEWMGGIIPMN




YAQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCARGSHQLYYAFEYWGQGTL




VTVSS





TIGIT-269-5
1532
EVQLLESGGGLVQPGGSLRLSCAASGFTFSTYLMIWVRQAPGKGLEWVSAISGSYYA




DSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDVEGQVGHFFDPWGQGTL




VTVSS





TIGIT-269-6
1533
EVQLLESGGGLVQPGGSLRLSCAASGFTLSSYSMSWVRQAPGKGLEWVSAINPSYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKGIKAFGGTRLPLYFDSWG




QGTLVTVSS





TIGIT-269-7
1534
EVQLLESGGGLVQPGGSLRLSCAASGFTFGNYAMSWVRQAPGKGLEWVSAITGSYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKHLLSRSRGLDVWGQGTLV




TVSS





TIGIT-269-8
1535
EVQLLESGGGLVQPGGSLRLSCAASGFTFGTYSMSWVRQAPGKGLEWVSAITGSYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKHLLARSGGMHLWGQGTL




VTVSS





TIGIT-269-9
1536
EVQLLESGGGLVQPGGSLRLSCAASGFSFSNHAMSWVRQAPGKGLEWVSAISGSYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARSTRDRAFDYWGQGTLVT




VSS





TIGIT-269-
1537
EVQLLESGGGLVQPGGSLRLSCAASGFSFSSSGMSWVRQAPGKGLEWVSAISGSYYA


10

DSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCVKVGDYFAFDHWGQGTLVTV




SS





TIGIT-269-
1538
QVQLVQSGAEVKKPGSSVKVSCKASGGTFRRHAISWVRQAPGQGLEWMGGIIPMNY


11

AQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCARGTALVRRAFDIWGQGTLVT




VSS





TIGIT-269-
1539
QVQLVQSGAEVKKPGSSVKVSCKASGGTYTTHGISWVRQAPGQGLEWMGGIIPINY


12

AQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCARAFGLASGKGPGVFDYWGQ




GTLVTVSS





TIGIT-269-
1540
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYAMSWVRQAPGKGLEWVSAISGGYY


13

ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKHRVGARAFDVWGQGTLV




TVSS





TIGIT-269-
1541
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYAMSWVRQAPGKGLEWVSAISGNYY


14

ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKHRVGARAFDVWGQGTLV




TVSS





TIGIT-269-
1542
QVQLVQSGAEVKKPGSSVKVSCKASGGTFNIYAISWVRQAPGQGLEWMGGIIPINYA


15

QKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCARHPRDFGIHGLDVWGQGTLVT




VSS





TIGIT-269-
1543
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSRYGISWVRQAPGQGLEWMGGIIPINY


16

AQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCARVRGGYYYDTWGQGTLVTV




SS





TIGIT-269-
1544
QVQLVQSGAEVKKPGSSVKVSCKASGGTFTNHAISWVRQAPGQGLEWMGGINPLN


17

YAQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCATGGGHFRSGRDVWGQGTL




VTVSS





TIGIT-269-
1545
EVQLLESGGGLVQPGGSLRLSCAASGFTFASYAMSWVRQAPGKGLEWVSAITNSYY


18

ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARHLRLGRGFDSWGQGTLVT




VSS





TIGIT-269-
1546
QVQLVQSGAEVKKPGSSVKVSCKASGGTFTYYPISWVRQAPGQGLEWMGGIIPFNY


19

AQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCATPSGGIGRRLDVWGQGTLVT




VSS





TIGIT-269-
1547
QVQLVQSGAEVKKPGSSVKVSCKASGGTYTTHGISWVRQAPGQGLEWMGGIIPINY


20

AQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCAKAFGLASGKGPGVFDYWGQ




GTLVTVSS





TIGIT-269-
1548
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSQYAISWVRQAPGQGLEWMGGIIPMNY


21

AQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCARESRTLFGVPNAFDIWGQGT




LVTVSS





TIGIT-471-
2141
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGKGLEWVGYINPSRG


001

YTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARSYGGGFDYWGQGT




LVTVSS





TIGIT-471-
2142
EVQLLESGGGLVQPGGSLRLSCAASGFTFVRYDMAWVRQAPGKGLEWVSTISSGGD


009

YTYYPDSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDTYNHFDYWGQGT




LVTVSS





TIGIT-471-
2143
EVQLLESGGGLVQPGGSLRLSCAASGFTFSKYGMSWVRQAPGKGLEWVSYINSSRG


017

YTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARSSGGGFDYWGQGT




LVTVSS





TIGIT-471-
2144
EVQLLESGGGLVQPGGSLRLSCAASGFTFSRYFMGWVRQAPGKGLEWVSEISPSGKK


025

KYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKSSFDKYNFDYWGQG




TLVTVSS





TIGIT-471-
2145
EVQLLESGGGLVQPGGSLRLSCAASGFTFHKYGMTWVRQAPGKGLEWVSAISSGGG


033

YTYYPDSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDTYLHFDYWGQGT




LVTVSS





TIGIT-471-
2146
EVQLLESGGGLVQPGGSLRLSCAASGFTFSRYVMGWVRQAPGKGLEWVSEISPSGK


041

KKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKSSFDKYNFDYWGQ




GTLVTVSS





TIGIT-471-
2147
EVQLLESGGGLVQPGGSLRLSCAASGFTFSTYAMNWVRQAPGKGLEWVTEISPSGK


049

KKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKSSFDKYNFDYWGQ




GTLVTVSS





TIGIT-471-
2148
EVQLLESGGGLVQPGGSLRLSCAASGCTFSSYLMSWVRQAPVKGLEWVGVIWGGG


005

GTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKGGTSFDYWGQGTL




VTVSS





TIGIT-471-
2149
EVQLLESGGGLVQPGGSLRLSCAASGFTFNAYPMTWVRQAPGKGLEWVSGITGSGG


013

STYYADSVKGGFTISRVNSKNTLYLQMNSLRTEDTAVYYCARDGSYSSSWYGYWG




QGTLVTVSS





TIGIT-471-
2150
EVQLLESGGGLVQPGGSLRLSCAASGFTFHKYGMACVRQAHEKGLEWVSTISSGGG


021

YTYYPDSVKGRLTISRDNSKNTLYLQMNSLRAEDTAVYYCARDTYLHFEYWGQGTL




VTVSS





TIGIT-471-
2151
EVQLLESGGGLVQPGGSLRLSCAASGFTFHKYGMAWVRQAPGKGLEWVSTISSGGG


029

YTYYPDSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDTYLHFDYWGQGT




LVTVSS





TIGIT-471-
2152
EVQLLESGGGLVQPGGSLRLSCAASGFTFSPYSMSWVRQAPGKGLEWVSEISPSGKK


037

KYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARSSFDKYNFDYWGQG




TLVTVSS





TIGIT-471-
2153
EVQLLESGGGLVQPGGSLRLSCAASGFTFSRYFMGWVRQAPGKGLEWVSEISPSGKK


045

KYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKSSFDKYNFDYWGQG




TLVTVSS





TIGIT-471-
2154
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYFMSWVRQAPGKGLEWVGVIWGGGG


002

TYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKGGTSFDYWGQGTLV




TVSS





TIGIT-471-
2155
EVQLLESGGGLVQPGGSLRLSCAASGFTFSRYIMGWVRQAPRKGLKWVSEISLIGKK


010

KYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKSSFDKYNFDYWGQG




TLVTVSS





TIGIT-471-
2156
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGKGLEWVGYINRSRE


018

YTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARSYGGGFDYWGQGT




LVTVSS





TIGIT-471-
2157
EVQLLESGGGLVQPGGSLRLSCAASGFTFSRYAMNWVRQAPGKGLEWVSEISPSGK


026

KKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKSSFDKYNFDYWGQ




GTLVTVSS





TIGIT-471-
2158
EVQLLESGGGLVQPGGSLRLSCAASGFTFSRYFMGWVRQAPGKGLEWVSEISPSGKK


034

KYYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKSSFDKYNFDYWGQG




TLVTVSS





TIGIT-471-
2159
EVQLLESGGGLVQPGGSLRLSCAASGFTFHKYGMAWVRQAPGKGLEWVSTISGGGG


042

YTYYPDSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDTYLHFDYWGQGT




LVTVSS





TIGIT-471-
2160
EVQLLESGGGLVQPGGSLRLSCAASGFTFSKYGVSWVRQAPGKGLEWVCYINSGSG


006

YTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARASYVHFDYWGQGT




LVTVSS





TIGIT-471-
2161
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYFMSWVRQAPGKGLECVGVIWGGGG


014

TYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKGGTSFDYWGQGTLV




TVSS





TIGIT-471-
2162
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYLMSWIRQAPGKGLEWVGVIWGGGG


022

TYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKGGTSFDYWGQGTLV




TVSS





TIGIT-471-
2163
EVQLLESGGGLVQPGGSLRLSCAASGFTFSRYVMNWVRQAPGKGLEWVSEISPSGK


030

KKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKSSFDKYNFDYWGQ




GTLVTVSS





TIGIT-471-
2164
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGKGLEWVGYINPSRG


038

YTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARSYGGGFDYWGQGT




LVTVSS





TIGIT-471-
2165
EVQLLESGGGLVQPGGSLRLSCAASGFTFEDETMSWVRQAPGKGLEWVSAISGSGG


046

GTSYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDVIAGPFDYWGQGT




LVTVSS





TIGIT-471-
2166
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGKGLEWVSWISPHGA


003

LTYYADSVKGRFTISRDNSKNTLYLQMNSLKAEDTAVYYCAKGRRRFDYWGQGTL




VTVSS





TIGIT-471-
2167
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGKGLEWVSSIDWHG


011

WVTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCVKNALRFDYWGQGT




LVTVSS





TIGIT-471-
2168
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAHGKGLEWVVYINPSRG


019

YTYYADSVKGRFSISRDNSKNTLYLQMNSLRAEDTAVYYCARSYGGGFDYWGQGT




LVTVSS





TIGIT-471-
2169
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGKGLEWVSWISPHGA


027

LTYYADSVKGRFTISRDNSKNTLYLQMNSLKAEDTAVYYCAKGRRRFDYWGQGTL




VTVSS





TIGIT-471-
2170
EVQLLESGGGLVQPGGSLRLSCAASGFTFNAYPMTWVRQAPGKGLEWVSAITGSGG


035

STYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARVWRNHLDYWGQGT




LVTVSS





TIGIT-471-
2171
EVQLLESGGGLVQPGGSLRLSCAASGFTFEHNDMHWVRQAPGKGLEWVSGISPSGGI


043

TTYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKQAPGEKWLARGRLD




YWGQGTLVTVSS





TIGIT-471-
2172
EVQLLESGGGLVQPGGSLRLSCAASDLHSRSYVMGWVRQAPGKGLEWVSEISRSGK


007

KKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKSSFGEYNFDYWGQ




GTLVTVSS





TIGIT-471-
2173
EVQLLESGGGLVQPGGSLRLSCAASGFTFDKYDMAWVRQAPGKGLEWVSTICSGGD


015

YTYYPDSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDTYIHFDYWGQGTL




VTVSS





TIGIT-471-
2174
EVQLLESGGGLVQPGGSLRLSCAASGFTFNKYPMMWVRQAPGKGLEWVSTIGPSGT


023

STYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARRSYFRRFDYWGQGT




LVTVSS





TIGIT-471-
2175
EVQLLESGGGLVQPGGSLRLSCAASGFTFSRYAMNWVRQAPGKGLEWVSEISPSGK


031

KKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKSSFDKYNFDYWGQ




GTLVTVSS





TIGIT-471-
2176
EVQLLESGGGLVQPGGSLRLSCAASGFTFNADPMSWVRQAPGKGLEWVSAITGSGG


039

STYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDGSYSSSWYGYWG




QGTLVTVSS





TIGIT-471-
2177
EVQLLESGGGLVQPGGSLRLSCAASGFTFEVYTMAWVRQAPGKGLEWVSSIHPKGY


047

PTRYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKGWFGNFDYWGQGT




LVTVSS





TIGIT-471-
2178
EVQLLESGGGLVQPGGSLRLSCAASGFTFHKYGMTWVRQAPGKGLEWVSSISSGGG


004

YTYYPDSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDTYLHFDYWGQGT




LVTVSS





TIGIT-471-
2179
EVQLLESGGGLVQPGGSLRLSCAASGFTFNKYPMMWVRQAPGKGLEWVSGITRSGS


012

TNYRDSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKKLSNGFDYWGQGTL




VTVSS





TIGIT-471-
2180
EVQLLESGGGLVQPGGSLRLSCAASASSVSRYVMGCVGQARGKGLKWVSEISRIGK


020

KKCYADSVKGRFAISRDNCKNTLYLQMNSMRAEDTAVYYCEKSSFDKYNFDYWGQ




GTLVTVSS





TIGIT-471-
2181
EVQLLESGGGLVQPGGSLRLSCAASGFTFPVYNMAWVRQAPGKGLEWVSGIYPSGG


028

STVYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARHRAGSSGWYSDYW




GQGTLVTVSS





TIGIT-471-
2182
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYFMSWVRQAPGKGLEWVGVIWGGGG


036

TYYADSVKGRFTIYRDNSKNTLYLQMNSLRAEDTAVYYCAKGGTSFDYWGQGTLV




TVSS





TIGIT-471-
2183
EVQLLESGGGLVQPGGSLRLSCAASGFTFSRYFMGWVRQAPGKGLEWVSEISPSGKK


044

KYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKSSFDKYNFHYWGQG




TLVTVSS





TIGIT-471-
2184
EVQLLESGGGLVQPGGSLRLSCAASGFTFEPVIMGWVRQAPGKGLEWVSSISPNGW


008

DTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCATETSPNDYWGQGTLV




TVSS





TIGIT-471-
2185
EVQLLESGGGLVQPGGSLRLSCAASGFTFHKYGMAWVRQAPGKGLEWVSTISSGGG


016

YTYYPDSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYHCARDTYLHFDYWGQGT




LVTVSS





TIGIT-471-
2186
EVQLLESGGGLVQPGGSLRLSCAASGFTFEPVIMGWVRQAPGKGLEWVSSISPNGW


024

DTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCATETSPNDYWGQGTLV




TVSS





TIGIT-471-
2187
EVQLLESGGGLVQPGGSLRLSCAASGFTFHKYGMAWVRQAPGKGLEWVSTISSGGG


032

YTYYPDSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDTYLHFDYWGQGT




LVTVSS





TIGIT-471-
2188
EVQLLESGGGLVQPGGSLRLSCAASGFTFHKYGMAWVRQAPGKGLEWVSTISSGGG


040

YTYYPDSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDTYLHFDYWGQGT




LVTVSS





TIGIT-471-
2189
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGKGLEWVGYINPSRG


048

YTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARSYGGGFDYWGQGT




LVTVSS
















TABLE 14







Variable Domain of Light Chain Sequences










SEQ



Variant
ID NO
Variable Domain of Light Chain Sequence





TIGIT-211-1
1549
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS




DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-2
1550
DIQMTQSPSSLSASVGDRVTITCRTSQDIGNYLNWYQQKPGKAPKLLIYPKHNRPPGV




PSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYNSPWTFGQGTKVEIK





TIGIT-211-3
1551
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS




DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-4
1552
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS




DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-5
1553
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS




DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-6
1554
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS




DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-7
1555
DIQMTQSPSSLSASVGDRVTITCSGDKLRNKYASWYQQKPGKAPKLLIYGQHNRPSG




VPSRFSGSGSGTDFTLTISSLQPEDFATYYCQGSYYSGSGWYYAFGQGTKVEIK





TIGIT-211-8
1556
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS




DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-9
1557
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS




DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-
1558
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS


10

DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-
1559
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS


11

DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-
1560
DIQMTQSPSSLSASVGDRVTITCSGDKLGHTYTSWYQQKPGKAPKLLIYYTSSLHSGV


12

PSRFSGSGSGTDFTLTISSLQPEDFATYYCATRAVRGNPHVLFGQGTKVEIK





TIGIT-211-
1561
DIQMTQSPSSLSASVGDRVTITCRASQSIREYLHWYQQKPGKAPKLLIYFGSELRKGV


13

PSRFSGSGSGTDFTLTISSLQPEDFATYYCGQGVLWPATFGQGTKVEIK





TIGIT-211-
1562
DIQMTQSPSSLSASVGDRVTITCSGDTLGGKYAWWYQQKPGKAPKLLIYQNDKRPS


14

GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCHQWSSYPTFGQGTKVEIK





TIGIT-211-
1563
DIQMTQSPSSLSASVGDRVTITCQSSQSVYSNNELSWYQQKPGKAPKLLIYGTSYRYS


15

GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCSSWAGSRSGTVFGQGTKVEIK





TIGIT-211-
1564
DIQMTQSPSSLSASVGDRVTITCSGDKLGHTYTSWYQQKPGKAPKLLIYRTSWLQSG


16

VPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYHSYPPTFGQGTKVEIK





TIGIT-211-
1565
DIQMTQSPSSLSASVGDRVTITCRASQTIERRLNWYQQKPGKAPKLLIYQNDKRPSGV


17

PSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSIPPTFGQGTKVEIK





TIGIT-211-
1566
DIQMTQSPSSLSASVGDRVTITCSGDKLGDKYTSWYQQKPGKAPKLLIYHTSRLQDG


18

VPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYNLPLTFGQGTKVEIK





TIGIT-211-
1567
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS


19

DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-
1568
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS


20

DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-
1569
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS


21

DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-
1570
DIQMTQSPSSLSASVGDRVTITCRASQGVRTSLAWYQQKPGKAPKLLIYAKNNRPSG


22

VPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYHTPQTFGQGTKVEIK





TIGIT-211-
1571
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS


23

DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-
1572
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS


24

DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-
1573
DIQMTQSPSSLSASVGDRVTITCRASQTIERRLNWYQQKPGKAPKLLIYAKNNRPSGV


25

PSRFSGSGSGTDFTLTISSLQPEDFATYYCQQTALVPYTFGQGTKVEIK





TIGIT-211-
1574
DIQMTQSPSSLSASVGDRVTITCRASQTIGDYLNWYQQKPGKAPKLLIYGASSRATG


26

VPSRFSGSGSGTDFTLTISSLQPEDFATYYCAQGAALPRTFGQGTKVEIK





TIGIT-211-
1575
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS


27

DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-
1576
DIQMTQSPSSLSASVGDRVTITCQGASLRNYYASWYQQKPGKAPKLLIYDTSKVASG


28

VPSRFSGSGSGTDFTLTISSLQPEDFATYYCFQGSHIPYTFGQGTKVEIK





TIGIT-211-
1577
DIQMTQSPSSLSASVGDRVTITCRASQSISNNLNWYQQKPGKAPKLLIYAKNNRPSGV


29

PSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYTTPPTFGQGTKVEIK





TIGIT-211-
1578
DIQMTQSPSSLSASVGDRVTITCRASQPIGPDLLWYQQKPGKAPKLLIYRKSNRPSGV


30

PSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPYTFGQGTKVEIK





TIGIT-211-
1579
DIQMTQSPSSLSASVGDRVTITCRASQSIRRFLNWYQQKPGKAPKLLIYWASDRESGV


31

PSRFSGSGSGTDFTLTISSLQPEDFATYYCQQTATWPFTFGQGTKVEIK





TIGIT-211-
1580
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS


32

DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-
1581
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS


33

DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-
1582
DIQMTQSPSSLSASVGDRVTITCRANQNIGNFLNWYQQKPGKAPKLLIYQDFKRPSG


34

VPSRFSGSGSGTDFTLTISSLQPEDFATYYCHQRSSYPWTFGQGTKVEIK





TIGIT-211-
1583
DIQMTQSPSSLSASVGDRVTITCSGNKLGDKYASWYQQKPGKAPKLLIYRTSWLQSG


35

VPSRFSGSGSGTDFTLTISSLQPEDFATYYCVARAVRGNPHVLFGQGTKVEIK





TIGIT-211-
1584
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS


36

DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-
1585
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS


37

DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-
1586
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS


38

DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-
1587
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS


39

DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-
1588
DIQMTQSPSSLSASVGDRVTITCRASQDIGNFLNWYQQKPGKAPKLLIYRTSWLQSG


40

VPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQRSSYPPTFGQGTKVEIK





TIGIT-211-
1589
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS


41

DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-
1590
DIQMTQSPSSLSASVGDRVTITCRASQGVRTSLAWYQQKPGKAPKLLIYGKNIRPSGV


42

PSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSFPLTFGQGTKVEIK





TIGIT-211-
1591
DIQMTQSPSSLSASVGDRVTITCRASQSIRRYLNWYQQKPGKAPKLLIYWASDRESG


43

VPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSFSTPLTFGQGTKVEIK





TIGIT-211-
1592
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS


44

DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-
1593
DIQMTQSPSSLSASVGDRVTITCRASQSIRRYLNWYQQKPGKAPKLLIYDASNLQSGV


45

PSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYDFPRTFGQGTKVEIK





TIGIT-211-
1594
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS


46

DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-
1595
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS


47

DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-
1596
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS


48

DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-
1597
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS


49

DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-
1598
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS


50

DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-
1599
DIQMTQSPSSLSASVGDRVTITCRASQGVRTSLAWYQQKPGKAPKLLIYAKNNRPSG


51

VPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSAPYTFGQGTKVEIK





TIGIT-211-
1600
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS


52

DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-
1601
DIQMTQSPSSLSASVGDRVTITCRASQTIGDYLNWYQQKPGKAPKLLIYGQHNRPSG


53

VPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSFSIPWTFGQGTKVEIK





TIGIT-211-
1602
DIQMTQSPSSLSASVGDRVTITCKASDHIGKFLTWYQQKPGKAPKLLIYAASKLASGV


54

PSRFSGSGSGTDFTLTISSLQPEDFATYYCQQVVWRPFTFGQGTKVEIK





TIGIT-211-
1603
DIQMTQSPSSLSASVGDRVTITCRASQTIGDYLNWYQQKPGKAPKLLIYHDNKRPSG


55

VPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQDAFHPPTFGQGTKVEIK





TIGIT-211-
1604
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS


56

DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-
1605
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYGKNI


57

RPSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYTTPWTFGQGTKVEIK





TIGIT-211-
1606
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS


58

DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-
1607
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS


59

DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-
1608
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS


60

DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-
1609
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS


61

DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-
1610
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS


62

DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-
1611
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS


63

DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-
1612
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS


64

DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-
1613
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS


65

DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-
1614
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS


66

DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-
1615
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS


67

DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-
1616
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS


68

DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-
1617
DIQMTQSPSSLSASVGDRVTITCRASQNIRSYLNWYQQKPGKAPKLLIYGASTLQSGV


69

PSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYENPLTFGQGTKVEIK





TIGIT-211-
1618
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS


70

DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-
1619
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS


71

DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-
1620
DIQMTQSPSSLSASVGDRVTITCRASHNINSYLNWYQQKPGKAPKLLIYGKNIRPSGV


72

PSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYIIPPTFGQGTKVEIK





TIGIT-211-
1621
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS


73

DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-
1622
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS


74

DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-
1623
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS


75

DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-
1624
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS


76

DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-
1625
DIQMTQSPSSLSASVGDRVTITCRASQSVRSYLNWYQQKPGKAPKLLIYAASSLYSG


77

VPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYASVPVTFGQGTKVEIK





TIGIT-211-
1626
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS


78

DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-
1627
DIQMTQSPSSLSASVGDRVTITCRASQSVRSYLNWYQQKPGKAPKLLIYAATTLQSG


79

VPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYIIPPTFGQGTKVEIK





TIGIT-211-
1628
DIQMTQSPSSLSASVGDRVTITCRASQGVRTSLAWYQQKPGKAPKLLIYGKNIRPSGV


80

PSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGYRWPVTFGQGTKVEIK





TIGIT-211-
1629
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS


81

DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-
1630
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS


82

DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-
1631
DIQMTQSPSSLSASVGDRVTITCSGDKLGDKYTSWYQQKPGKAPKLLIYGASSRATG


83

VPSRFSGSGSGTDFTLTISSLQPEDFATYYCMSRSIWGNPHVLFGQGTKVEIK





TIGIT-211-
1632
DIQMTQSPSSLSASVGDRVTITCSGDKLGHTYTSWYQQKPGKAPKLLIYYTSSLHSGV


84

PSRFSGSGSGTDFTLTISSLQPEDFATYYCATRAVRGNPHVLFGQGTKVEIK





TIGIT-211-
1633
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS


85

DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-
1634
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS


86

DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-
1635
DIQMTQSPSSLSASVGDRVTITCRASQTIGDYLNWYQQKPGKAPKLLIYQDFKRPSGV


87

PSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYHDFPLTFGQGTKVEIK





TIGIT-211-
1636
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS


88

DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-
1637
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS


89

DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-
1638
DIQMTQSPSSLSASVGDRVTITCSGDRLGEKYVSWYQQKPGKAPKLLIYGTTSLESGV


90

PSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGYTLPWTFGQGTKVEIK





TIGIT-211-
1639
DIQMTQSPSSLSASVGDRVTITCRASQSIREYLHWYQQKPGKAPKLLIYFGSELRKGV


91

PSRFSGSGSGTDFTLTISSLQPEDFATYYCQNGHSFPLTFGQGTKVEIK





TIGIT-211-
1640
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS


92

DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-
1641
DIQMTQSPSSLSASVGDRVTITCSASQDINKYLNWYQQKPGKAPKLLIYHTSRLQSGV


93

PSRFSGSGSGTDFTLTISSLQPEDFATYYCQQFAYFPATFGQGTKVEIK





TIGIT-211-
1642
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS


94

DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-
1643
DIQMTQSPSSLSASVGDRVTITCRASQGVRTSLAWYQQKPGKAPKLLIYAKNNRPSG


95

VPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSAPYTFGQGTKVEIK





TIGIT-211-
1644
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS


96

DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-
1645
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS


97

DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-
1646
DIQMTQSPSSLSASVGDRVTITCRASHFIGSLLSWYQQKPGKAPKLLIYETSKLASGVP


98

SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSYPRTFGQGTKVEIK





TIGIT-211-
1647
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS


99

DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-
1648
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS


100

DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-
1649
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS


101

DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-
1650
DIQMTQSPSSLSASVGDRVTITCRASQSISNNLNWYQQKPGKAPKLLIYAKNNRPSGV


102

PSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYTTPPTFGQGTKVEIK





TIGIT-211-
1651
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS


103

DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-
1652
DIQMTQSPSSLSASVGDRVTITCRASQSISNNLNWYQQKPGKAPKLLIYDASSSQSGV


104

PSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSSSTPWTFGQGTKVEIK





TIGIT-211-
1653
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS


105

DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-
1654
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS


106

DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-
1655
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS


107

DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-
1656
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS


108

DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-
1657
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS


109

DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-
1658
DIQMTQSPSSLSASVGDRVTITCRASQTIERRLNWYQQKPGKAPKLLIYGTTSLESGV


110

PSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYTTLWTFGQGTKVEIK





TIGIT-211-
1659
DIQMTQSPSSLSASVGDRVTITCSGDNLRGYYASWYQQKPGKAPKLLIYGTSYRYSG


111

VPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQNLAPPYTFGQGTKVEIK





TIGIT-211-
1660
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS


112

DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-
1661
DIQMTQSPSSLSASVGDRVTITCSGDKLGHTYTSWYQQKPGKAPKLLIYGKNIRPSGV


113

PSRFSGSGSGTDFTLTISSLQPEDFATYYCQQNLAPPYTFGQGTKVEIK





TIGIT-211-
1662
DIQMTQSPSSLSASVGDRVTITCRASQSISNNLNWYQQKPGKAPKLLIYTASNLQNGV


114

PSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSNSWPYTFGQGTKVEIK





TIGIT-211-
1663
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYAAS


115

DLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPWTFGQGTKVEIK





TIGIT-211-
1664
DIQMTQSPSSLSASVGDRVTITCRASQTIERRLNWYQQKPGKAPKLLIYHDNKRPSGV


116

PSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGYTLPWTFGQGTKVEIK





TIGIT-269-1
1665
EIVLTQSPATLSLSPGERATLSCRASQSVSSGYLAWYQQKPGQAPRLLIYSTSSRATGI




PDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQSASAHPGWTFGQGTKVEIK





TIGIT-269-2
1666
DIQMTQSPSSLSASVGDRVTITCRASQSINTFLNWYQQKPGKAPKLLIYGASSLQSGV




PSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGYRAPWTFGQGTKVEIK





TIGIT-269-3
1667
DIQMTQSPSSLSASVGDRVTITCRASQSVSSYLNWYQQKPGKAPKLLIYAATSLQSGV




PSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGYSTPWTFGQGTKVEIK





TIGIT-269-4
1668
DIQMTQSPSSLSASVGDRVTITCRASQSIRTYLNWYQQKPGKAPKLLIYGASSLQSGV




PSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYRVPRSFGQGTKVEIK





TIGIT-269-5
1669
EIVLTQSPATLSLSPGERATLSCRASQSVSSGYLAWYQQKPGQAPRLLIYDASSRATGI




PDRFSGSGSGTDFTLTISRLEPEDFAVYYCQHFGGSPLLTFGQGTKVEIK





TIGIT-269-6
1670
DIQMTQSPSSLSASVGDRVTITCRASQHIGKYLNWYQQKPGKAPKLLIYGASSLQSG




VPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQTYSPVTFGQGTKVEIK





TIGIT-269-7
1671
DIQMTQSPSSLSASVGDRVTITCRASQSIGGYLNWYQQKPGKAPKLLIYAVSSLQSGV




PSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGFYTPWTFGQGTKVEIK





TIGIT-269-8
1672
DIQMTQSPSSLSASVGDRVTITCRASQSINTFLNWYQQKPGKAPKLLIYGASSLQSGV




PSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGYRAPWTFGQGTKVEIK





TIGIT-269-9
1673
DIQMTQSPSSLSASVGDRVTITCRASQNIGKYLNWYQQKPGKAPKLLIYAASSLQSG




VPSRFSGSGSGTDFTLTISSLQPEDFATYYCHQSYGIPWTFGQGTKVEIK





TIGIT-269-
1674
DIQMTQSPSSLSASVGDRVTITCRASQNIRNYLNWYQQKPGKAPKLLIYGASSLQSGV


10

PSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYRSFFTFGQGTKVEIK





TIGIT-269-
1675
DIQMTQSPSSLSASVGDRVTITCRASQSIKNYLNWYQQKPGKAPKLLIYTASSLQSGV


11

PSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYGNVWTFGQGTKVEIK





TIGIT-269-
1676
DIQMTQSPSSLSASVGDRVTITCRASQSINTFLNWYQQKPGKAPKLLIYGASSLQSGV


12

PSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGYRAPWTFGQGTKVEIK





TIGIT-269-
1677
DIQMTQSPSSLSASVGDRVTITCRASQSITRYLNWYQQKPGKAPKLLIYTTSSLQSGV


13

PSRFSGSGSGTDFTLTISSLQPEDFATYYCLQAYSTPWTFGQGTKVEIK





TIGIT-269-
1678
DIQMTQSPSSLSASVGDRVTITCRASEKISTYLNWYQQKPGKAPKLLIYAASSLQSGV


14

PSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSHQTPWTFGQGTKVEIK





TIGIT-269-
1679
EIVLTQSPATLSLSPGERATLSCRASQSVNSNHLAWYQQKPGQAPRLLIYSTSSRATGI


15

PDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQSGSSSLTFGQGTKVEIK





TIGIT-269-
1680
DIQMTQSPSSLSASVGDRVTITCRASQSISNYLNWYQQKPGKAPKLLIYGATSLQSGV


16

PSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYIMSQWTFGQGTKVEIK





TIGIT-269-
1681
DIQMTQSPSSLSASVGDRVTITCRASQSITRYLNWYQQKPGKAPKLLIYGASSLQSGV


17

PSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGFRAPRTFGQGTKVEIK





TIGIT-269-
1682
DIQMTQSPSSLSASVGDRVTITCRASQSVGSYLNWYQQKPGKAPKLLIYSASSLQSGV


18

PSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSHATPWTFGQGTKVEIK





TIGIT-269-
1683
EIVLTQSPATLSLSPGERATLSCRASHSVSNNYLAWYQQKPGQAPRLLIYGASSRATG


19

IPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQLFDRSRPGYTFGQGTKVEIK





TIGIT-269-
1684
DIQMTQSPSSLSASVGDRVTITCRASQSINTFLNWYQQKPGKAPKLLIYGASSLQSGV


20

PSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGYRAPWTFGQGTKVEIK





TIGIT-269-
1685
EIVLTQSPATLSLSPGERATLSCRASQSVSGTYLAWYQQKPGQAPRLLIYGASSRATG


21

IPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYKRSSGFTFGQGTKVEIK





TIGIT-471-
2190
DIQMTQSPSSLSASVGDRVTITCRASQTIERRLNWYQQKPGKAPKLLIYDASSLHTGV


001

PSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYIIPPTFGQGTKVEIK





TIGIT-471-
2191
DIQMTQSPSSLSASVGDRVTITCRASHGVRTSLAWYQQKPGKAPKLLIYGKNNRPTG


009

VPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSLAPPYTFGQGTKVEIK





TIGIT-471-
2192
DIQMTQSPSSLSASVGDRVTITCRATQAIERRLKWYQQKPGKAPKLLIYDNSSRQTGV


017

PSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYIIPYTFGQGTKVEIK





TIGIT-471-
2193
DIQMTQSPSSLSASVGDRVTITCSASQDINKYLNWYQQKPGKAPKLLIYHTSRLQSGV


025

PSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYTYFPATFGQGTNVEIK





TIGIT-471-
2194
DIQMTQSPSSLSASVGDRVTITCRASQGVRTSLAWYQQKPGKAPKLLIYAKNNRPSG


033

VPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSAPYTFGQGTKVEIK





TIGIT-471-
2195
DIQMTQSPSSLSASVGDRVTITCSASHDINEYLNWYQQKPGKAPKLLIYHTSRLQSGV


041

PSRFSGSESVTDFTLTISSLQPEDFATYYCQQFAYFPATFGQGTKVEIK





TIGIT-471-
2196
dIQMTPSPSSLSASVGDKITITCRPAHNIGNFLNWYQQKPRKAPKLLIYKTTWLHSSVP


049

SSISGGGSATDYTLTIISLQPADYATYYCRHRSSYLPTFGQGTKVEIK





TIGIT-471-
2197
DIQMTQSPSSLSASVGDRVTITCRASQNIRSYLNWYQQKPGKAPKLLIYGKNIRPSGV


005

PSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYASVPVTFGQGTKVEIK





TIGIT-471-
2198
DIQMTQYPSSLSASVGDRVTIICSGNKLGDKYASWFQQKPGKARKLLIYRISWLQSG


013

VPARFSGSGSGTDFTVTISSMEREDFATYYCVARPLRGNPHVLFGQGTKVEIK





TIGIT-471-
2199
DIQMTQSPSSLSASVGDRVTITCRASQGVRTSLAWYQQKPGKAPKLLIYAKNNRPSG


021

VPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSAPYTFGQGTKVEIK





TIGIT-471-
2200
DIQMTQSPSSLSASVGDRVTITCRASQGVRTSLAWYQQKPGKAPKLLIYAINNRPSGV


029

PSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSAPYTFGQGTKVRSK





TIGIT-471-
2201
DIQMTQSPSSLSASVGDRVTITCSASQDIRRYLNWYQQKPGKAPKLLIYHTSTLQSGV


037

PSRFSGSGSGTDFTLTISSLQPDDFASYYCQQYRLFGQGTKVEIK





TIGIT-471-
2202
DIQMTQSPSSLSASVGDRVTITCSASQDINKYLNWYQQKPGKAPKLLIYHTSRLQSGV


045

PSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYTYFFGQGTKVEIK





TIGIT-471-
2203
DIQMTQSPSSLSASVGDRVTITCRASQNIRSYLNWYQQKPGKAPKLLIYGKNIRPSGV


002

PSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYASVPVTFGQGTKVEIK





TIGIT-471-
2204
DIQMTQSPSSLSASVGDRVTITCSAYQDINKYLNWYQQKPGKAPKLLIYHKSRLQSG


010

VPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQFAYFPATFGQGTKVEIK





TIGIT-471-
2205
DIQMTQSPSSLSASVGDRVTITCRASQTIERRLNWYQQKPGKAPKLLIYDTSSRHTGV


018

PSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYIIPPTFGQGTKVEIK





TIGIT-471-
2206
DIQMTQSPSSLSASVGDRVTITCRASQDIGNFLNWYQQKPGKAPKLLIYRTSWLQSG


026

VPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQRSSYPPTFGQGTNVEIK





TIGIT-471-
2207
DIQMTQSPSSLSASVGDRVTITCRASQSISSYVNWYQQKPGKAPKLLIYRASTLASGV


034

PSRFSGSGSGTDFTLTISSLQPEDFATYYCQQFAYFPATFGQGTKVEIK





TIGIT-471-
2208
DIQMTQSPSSLSASVGDRVTITCRASQVVSTSLSWYQQKPGKAPKLLIYANNNRASG


042

VPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYTAPYTFGQGTKVEIK





TIGIT-471-
2209
DIQMTQSPSSLSASVGDRVTITCRATQTIETSLKWYQQKPGKAPKLLIYDKNSLQTGV


006

PSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPHTFGQGTKVEIK





TIGIT-471-
2210
DIQMTQSPSSLSASVGDRVTITCRASQNIRSYLNWYQQKPGKAPKLLIYGKNIRPSGV


014

PSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYASVPVTFGQGTKVEIK





TIGIT-471-
2211
DIQMTQSPSSLSASVGDRVTITCRASQNIRSYLNWYQQKPGKAPKLLIYGKNIRPSGV


022

PSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYASVPVTFGQGTKVEIK





TIGIT-471-
2212
DIQMTQSPSSLSASVGDRVTITCCASQDINKFLNWYQQKPGKAPKLLIYHTSRLQSGV


030

PSRFSGSGSGTDFTLTISSLQPEDFATYYCQQFASFPATFGQGTKVEIK





TIGIT-471-
2213
DIQMTQSPSSLSASVGDRVTITCRASQTIERRLNWYQQKPGKAPKLLIYDASSLHTGV


038

SSRFSGSGSGTYFTLTISSLQAEDFATYYCQQSYIIPPTFGQGTKVEIK





TIGIT-471-
2214
DIQMTQSPSSLSASVGDRVTITCAASGFNIKDTYIHWYQQKPGKAPKLLIYGTTSLES


046

GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPRTFGQGTKVEIK





TIGIT-471-
2215
DIQMTQSPSSLSASVGDRVTITCRASQTISSYLNWYQQKPGKAPKLLIYENNNRPSGV


003

PSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYIIPPTFGQGTKVEIK





TIGIT-471-
2216
DIQMTQSPSSLSASVGDRVTITCSASQDINKYLNWYQQKPGKAPKLLIYHTSRLQSGV


011

PSRFSGSGSGTDFTLTISSLQPEDFATYYCQQVVWRPFTFGQGTKVEIK





TIGIT-471-
2217
DIQMTQSPSSLSASVGDRVTITCRASQTIERRLNWYQQKPGKAPKLLIYDASSLHTGV


019

PSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYIIPPTFGQGTKVEIK





TIGIT-471-
2218
DIQMTQSPSSLSASVGDRVTITCRASQTISSYLNWYQQKPGKAPKLLIYENNNRPSGV


027

PSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYIIPPTFGQGTNVEIK





TIGIT-471-
2219
DIQMTQSPSSLSASVGDRVTITCSGDKLGHTYTSWYQQKPGKAPKLLIYRASTLASG


035

VPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGYTLPWTFGQGTKVEIK





TIGIT-471-
2220
DIQMTQSPSSLSASVGDRVTITCRANQNIGNFLNWYQQKPGKAPKLLIYHTSRLQDW


043

IPSRFSASVSGTDFTLTISSLQSEDCATYYCQQLAFGQGTKVEIK





TIGIT-471-
2221
DIQMTQSPSSLSASVGDRVTITCSASQDINKYLNWYQQKPGKAPKLLIYHTSRLQSGV


007

PSRFSGSGSGTDFTLTISSLQPEDFATYYCQQFAYFPATFGQGTKVEIK





TIGIT-471-
2222
DIQMTQSPSSLSASVGDRVTITCRASHGVRTSLAWYQQKPGKAPKLLIYGKNNRPTG


015

VPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSAPYTFGQGTKVEIK





TIGIT-471-
2223
DIQMTQSPSSLSASVGDRVTITCRATQSIRSFLNWYQQKPGKAPKLLIYKVSNRFSGV


023

PSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYDAYPPTLGQGTKVEIK





TIGIT-471-
2224
DIQMTQSPSSLSASVGDRVTITCRASQDIGNFLNWYQQKPGKAPKLLIYRTSWLQSG


031

VPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQRSSYSATFGQGTKVEIK





TIGIT-471-
2225
DIQMTQSPSSLSASVGDRVTITCSGNKLGDKYASWYQQKPGKAPKLLIYRTTWLQSG


039

VPSRFSGSGSGTDFTLTISSLQPEDFATYYCVARAVRGNPLVLFGQGTKVEIK





TIGIT-471-
2226
DIQMTQSPSSLSASVGDRVTITCRASQGVRTSLAWYQQKPGKAPKLLIYGKNIRPIGV


047

PSRFSGSGSGTDFTLTISSLQPEDFATYYCGQSYRYRLTFGQGTKVEIK





TIGIT-471-
2227
DIQMTQSPSSLSASVGDRVTITCRASQGVRTSLAWYQQKPGKAPKLLIYAKNNRPSG


004

VPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSAPYTFGQGTKVEIK





TIGIT-471-
2228
DIQMTQSPSSLSASVGDRVTITCRASQRISSFLNWYQQKPGKAPKLLIYGKNIRPSGVP


012

SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYELPLTFGQGTKVEIK





TIGIT-471-
2229
DIQMTQSPSSLSASVGDRVTITCCASQDINKYLNWYQQKPGKAPKLLIYHTSRLQSG


020

VPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQFAYFPATFGQGTKVEIK





TIGIT-471-
2230
DIQMTQSPSSLSASVGDRVTITCRASQSVDRYFNWYQQKPGKAPKLLIYAASSLYSG


028

VPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYRTPLTFGQGTNVEIK





TIGIT-471-
2231
DIQMTQSPSSLSASVGDRVTITCRASQNIRSYLNWYQQKPGKAPKLLIYGKNIRPSGV


036

PSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYASVPVTFGQGTKVEIK





TIGIT-471-
2232
DIHMTHSPSSLSASVGDRVTITCSASQDINKYLNWYQQKPGKAPKLLIYHTSTLQSPF


044

PSRFSGSGSGTDFTLTISSLQPEDFATYYCQQFAYFPATFGQGTKVEIK





TIGIT-471-
2233
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYQMS


008

HLASGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSAPTFGQGTKVEIK





TIGIT-471-
2234
DIQMTQSPSSLSASVGDRVTITCRASQGVRTSLAWYQQKPGKAPKLLIYAKNNRPSG


016

VPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSAPYTFGQGTKVEIK





TIGIT-471-
2235
DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSTGNTYLHWYQQKPGKAPKLLIYQMS


024

HLASGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSAPTFGQGTNVEIK





TIGIT-471-
2236
DIQMTQSPSSLSASVGDRVTITCRASQGVRTSLAWYQQKPGKAPKLLIYAKNNRPSG


032

VPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSVPYTFGQGTKVEIK





TIGIT-471-
2237
EIQMTQSPSSLSASVGDRVTITCRASQGVRTSLAWYQQKPRKAPKLLIYALNNRPSG


040

VPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSAPYTFGQGTKVEIK





TIGIT-471-
2238
DIQMTQSPSSLSASVGDRVTITCGASQTIERRLNWYQQKPGKAPKLLIYDASSLHTGV


048

PSRISGSGSGTDFTLTISSLQPEHFATYYCQQSYIIPPTFGQGTKVEIK


















TABLE 15






SEQ



Variant
ID NO:
Sequence







TIGIT-29-01
1686
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGRTFSNYAMG




WFRQAPGKEREFVAAITWSGTRTDYADSVKGRFTISADNAKNTVYLQMNSLKPED




TAVYYCAAAAWTIYEYDYWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLG




GPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPR




EEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQV




YTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFF




LYSLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-29-02
1687
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGRTFDIYAMG




WFRQAPGKEREWVSTISWSGGRTYYADSVKGRFTISADNAKNTVYLQMNSLKPED




TAVYYCAARPVYRTYGSWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGP




SVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREE




QYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYT




LPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLY




SKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-29-03
1688
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGFTFSSYAMG




WFRQAPGKEREFVAAITWSGTRTDYADSVKGRFTISADNAKNTVYLQMNSLKPED




TAVYYCAAAAWRYSEYDYWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLG




GPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPR




EEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQV




YTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFF




LYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-29-4
1689
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGSTFDTYVMG




WFRQAPGKERELVSTISSDGDSTYYADSVKGRFTISADNAKNTVYLQMNSLKPEDT




AVYYCAAGTRRGRNYWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGPS




VFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQ




YNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL




PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYS




KLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-29-5
1690
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGRTFSIYAMGW




FRQAPGKEREWVATISSSGDRTYYADSVKGRFTISADNAKNTVYLQMNSLKPEDTA




VYYCAARRYGRRYDYWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGPS




VFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQ




YNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL




PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYS




KLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-29-06
1691
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGGTFRSYVMG




WFRQAPGKEREWVATINSSGSRTYYADSVKGRFTISADNAKNTVYLQMNSLKPED




TAVYYCAARPNYRDYEYWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGG




PSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPRE




EQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVY




TLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFL




YSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-29-07
1692
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGSIFSNYAMGW




FRQAPGKEREFVATISRGGTRTNYADSVKGRFTISADNAKNTVYLQMNSLKPEDTA




VYYCAAAAWTIYAYNYWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGP




SVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREE




QYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYT




LPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLY




SKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-29-8
1693
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGRTLDDYVMG




WFRQAPGKEREGVATISGGGDTTYYADSVKGRFTISADNAKNTVYLQMNSLKPED




TAVYYCAAVPWRWTTRRDYWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELL




GGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKP




REEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQ




VYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSF




FLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-29-9
1694
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGFTFDNYAMG




WFRQAPGKEREFVSSITWSGGRTSYADSVKGRFTISADNAKNTVYLQMNSLKPEDT




AVYYCAANAWTIYRYDYWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGG




PSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPRE




EQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVY




TLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFL




YSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-29-10
1695
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGRTFSNYGMG




WFRQAPGKEREFVSGISGSGGRTSYADSVKGRFTISADNAKNTVYLQMNSLKPEDT




AVYYCAANLWYPVDRLNTGFNYWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAP




ELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAK




TKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPR




EPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDS




DGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-29-11
1696
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGRTLSSYAMG




WFRQAPGKEREFVASITWGGGRTYYADSVKGRFTISADNAKNTVYLQMNSLKPED




TAVYYCATRLWGTWTAGDYDYWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAP




ELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAK




TKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPR




EPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDS




DGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-29-12
1697
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGSTFSSYAMG




WFRQAPGKEREFVAAITWSGTRTNYADSVKGRFTISADNAKNTVYLQMNSLKPED




TAVYYCAAAAWTIYTYDSWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLG




GPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPR




EEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQV




YTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFF




LYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-29-13
1698
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGFIFSNYAMGW




FRQAPGKEREFVAAITWSGGRTYYADSVKGRFTISADNAKNTVYLQMNSLKPEDT




AVYYCAAAAWTIYEYDYWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGG




PSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPRE




EQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVY




TLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFL




YSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-29-14
1699
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGFTFSDYVMG




WFRQAPGKEREFVSAISWSGTNTNYADSVKGRFTISADNAKNTVYLQMNSLKPEDT




AVYYCATRALRDGRGYWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGP




SVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREE




QYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYT




LPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLY




SKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-29-15
1700
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGRTFDSYAMG




WFRQAPGKEREGVATISGSGGRTYYADSVKGRFTISADNAKNTVYLQMNSLKPED




TAVYYCAAAAWTIYEFDSWGQGTQVTVTSGGGGSEPKSSDKTHTCPPCPAPELLGG




PSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPRE




EQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVY




TLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFL




YSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-29-16
1701
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGSIFSIYAMGW




FRQAPGKEREWVATISWGGNSTYYADSVKGRFTISADNAKNTVYLQMNSLKPEDT




AVYYCAARPRFRTYGYWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGPS




VFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQ




YNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL




PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYS




KLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-29-17
1702
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGSTLSIYAMGW




FRQAPGKERELVATISSGGGSTYYADSVKGRFTISADNAKNTVYLQMNSLKPEDTA




VYYCAAGSVYGRNYWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGPSV




FLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQY




NSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLP




PSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK




LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-29-18
1703
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGSTFSNYAMG




WFRQAPGKEREFVSAINSSGSRTYYADSVKGRFTISADNAKNTVYLQMNSLKPEDT




AVYYCAARLWGTWTAGDYDYWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPE




LLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKT




KPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPRE




PQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD




GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-29-19
1704
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGRTFSSYAMG




WFRQAPGKEREFVATISGSFGRTYYADSVKGRFTISADNAKNTVYLQMNSLKPEDT




AVYYCAAGAWTIYEYDYWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGG




PSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPRE




EQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVY




TLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFL




YSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-29-20
1705
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGSTFSIYAMGW




FRQAPGKERELVASISWSGDTTNYADSVKGRFTISADNAKNTVYLQMNSLKPEDTA




VYYCAAGSVYGRNSWGQGTQVTVTSGGGGSEPKSSDKTHTCPPCPAPELLGGPSVF




LFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQY




NSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLP




PSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK




LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-29-21
1706
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGSTFSNYAMG




WFRQAPGKERELVSAITWSSSRTYYADSVKGRFTISADNAKNTVYLQMNSLKPEDT




AVYYCAAAAWTIYNFEYWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGG




PSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPRE




EQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVY




TLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFL




YSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-29-22
1707
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGSILSSYTMGW




FRQAPGKEREFVSTISRSSTRTYYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAV




YYCAARLWGTWTAGDYDYWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELL




GGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKP




REEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQ




VYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSF




FLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-29-23
1708
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGSTFDIYAMGW




FRQAPGKEREFVASISSGDTNTNYADSVKGRFTISADNAKNTVYLQMNSLKHEDTA




VYYCAAGRYSGYNSWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGPSVF




LFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQY




NSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLP




PSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK




LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-29-24
1709
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGRTFDTYAMG




WLRQAPGKEREFVSAISTGDGSTNYADSVKGRFTISADNAKNTVYLQMNSLKPEDT




AVYYCAAARRSGRGSWGQGTQVTVTSGGGGSEPKSSDKTHTCPPCPAPELLGGPS




VFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQ




YNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL




PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYS




KLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-29-25
1710
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGFTFDNYAMG




WFRQAPGKEREGVAAITWSGGRTYYADSVKGRFTISADNAKNTVYLQMNSLKPED




TAVYYCAAAAWTIYEYDSWGQGTQVTVTSGGGGSEPKSSDKTHTCPPCPAPELLG




GPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPR




EEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQV




YTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFF




LYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-29-26
1711
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGFTFDNYAMG




WFRQAPGKEREFVATITWSGTRTNYADSVKGRFTISADNAKNTVYLQMNSLKPED




TAVYYCAAAAWTIYDYDYWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLG




GPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPR




EEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQV




YTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFF




LYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-29-27
1712
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGRTFSNNVMG




WFRQAPGKEREFVAAISWGGASTNYADSVKGRFTISADNAKNTVYLQMNSLKPED




TAVYYCAAGPKTPDTRNYWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLG




GPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPR




EEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQV




YTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFF




LYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-29-28
1713
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGFIFDSYAMGW




FRQAPGKEREFVAAISWGGSNTNYADSVKGRFTISADNAKNTVYLQMNSLKPEDT




AVYYCAAVRITDGRDYWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGPS




VFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQ




YNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL




PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYS




KLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-29-29
1714
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGRTFSNYAMG




WFRQAPGKEREFVAAITWSGTRTDYADSVKGRFTISADNAKNTVYLQMNSLKPED




TAVYYCAAAAWTIYEYDYWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLG




GPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPR




EEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQV




YTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFF




LYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-29-30
1715
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGFTFSSYAMG




WFRQAPGKEREFVAAITWSGTRTDYADSVKGRFTISADNAKNTVYLQMNSLKPED




TAVYYCAAAAWRYSEYDYWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLG




GPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPR




EEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQV




YTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFF




LYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-29-31
1716
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGFTFSIYAMGW




FRQAPGKEREWVSTISWSGGNTYYADSVKGRFTISADNAKNTVYLQMNSLKPEDT




AVYYCATRPRFRRYDSWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGPS




VFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQ




YNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL




PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYS




KLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-29-32
1717
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGSTFDSYAMG




WFRQAPGKEREGVAAITTSGSSTYYADSVKGRFTISADNAKNTVYLQMNSLKPEDT




AVYYCAARGGVRSGSPGTYNYWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPE




LLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKT




KPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPRE




PQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD




GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-29-33
1718
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGFIFSTYAMGW




FRQAPGKERELVSAITRSGITTYYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAV




YYCAAAAWTIYEYDYWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGPS




VFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQ




YNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL




PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYS




KLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-29-34
1719
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGFTFRNYAMG




WFRQAPGKEREFVSSISSSSSRTSYADSVKGRFTISADNAKNTVYLQMNSLKPEDTA




VYYCAARLWGTWTAGDYDYWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPEL




LGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTK




PREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREP




QVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDG




SFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-29-35
1720
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGRIFSIYTMGW




FRQAPGKEREWVATINSSGSRTYYADSVKGRFTISADNAKNTVYLQMNSLKPEDTA




VYYCAARPSYNRYDSWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGPSV




FLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQY




NSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLP




PSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK




LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-29-36
1721
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGFTFSSYAMG




WFRQAPGKEREFVASITWSGTSTNYADSVKGRFTISADNAKNTVYLQMNSLKPEDT




AVYYCAAAAWTIYAYDYWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGG




PSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPRE




EQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVY




TLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFL




YSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-29-37
1722
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGRTFSNYAMG




WFRQAPGKEREFVAGISWSGTRTYYADSVKGRFTISADNAKNTVYLQMNSLKPED




TAVYYCAAAAWTIYEYDYWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLG




GPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPR




EEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQV




YTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFF




LYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-29-38
1723
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGSTFSSYAMG




WFRQAPGKEREFVSAISRNGASTSYADSVKGRFTISADNAKNTVYLQMNSLKPEDT




AVYYCAAAGTRFDYWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGPSVF




LFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQY




NSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLP




PSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK




LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-29-39
1724
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGRTLDDYVMG




WFRQAPGKEREGVATISGGGDTTYYADSVKGRFTISADNAKNTVYLQMNSLKPED




TAVYYCAAVPWRWTTRRDYWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELL




GGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKP




REEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQ




VYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSF




FLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-29-40
1725
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGFTFDNYAMG




WFRQAPGKEREFVATITWSGTRTNYADSVKGRFTISADNAKNTVYLQMNSLKPED




TAVYYCAAAAWTIYDYDYWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLG




GPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPR




EEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQV




YTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFF




LYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-29-41
1726
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGRTFSTNAMG




WFRQAPGKEREWVTAITTSGGNTYYADSVKGRFTISADNAKNTVYLQMNSLKPED




TAVYYCAARDETYGTYDYWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLG




GPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPR




EEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQV




YTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFF




LYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-29-42
1727
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGSTFSTYAMG




WFRQAPGKEREFVATISTSSSRTYYADSVKGRFTISADNAKNTVYLQMNSLKPEDT




AVYYCAARLWGTWTAGDYDYWGQGTQVTVSLGGGGSEPKSSDKTHTCPPCPAPE




LLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKT




KPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPRE




PQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD




GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-29-43
1728
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGRTFDSYAMG




WFRQAPGKEREWVSAISWSGSSTYYADSVKGRFTISADNAKNTVYLQMNSLKPED




TAVYYCAARGGYGRYDSWGQGTQVTVTSGGGGSEPKSSDKTHTCPPCPAPELLGG




PSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPRE




EQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVY




TLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFL




YSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-29-44
1729
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGFTFDNYAMG




WFRQAPGKEREFVATITWSGTTTNYADSVKGRFTISADNAKNTVYLQMNSLKPEDT




AVYYCAAAAWTIYDYDYWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGG




PSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPRE




EQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVY




TLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFL




YSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-29-45
1730
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGFTFSSYAMG




WFRQAPGKEREFVASITWSGTRTDYADSVKGRFTISADNAKNTVYLQMNSLKPEDT




AVYYCAAAAWTIYGYEYWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGG




PSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPRE




EQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVY




TLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFL




YSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-29-46
1731
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGSTFDIYAMGW




FRQAPGKEREFVASISSGDTNTYYADSVKGRFTISADNAKNTVYLQMNSLKHEDTA




VYYCAAGRYSGYNSWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGPSVF




LFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQY




NSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLP




PSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK




LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-29-47
1732
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGSTLSSYAMG




WFRQAPGKERELVAAITGSGGRTYYADSVKGRFTISADNAKNTVYLQMNSLKPED




TAVYYCAANRRYSFPYWSFWYDDFDYWGQGTQVTVSSGGGGSEPKSSDKTHTCP




PCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVE




VHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISK




AKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTT




PPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-30-01
1733
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGFAFSSYWMG




WFRQAPGKERELVAARNSGGNTNYADSVKGRFTISADNAKNTVYLQMNSLKPEDT




AVYYCAADVWYGSTWRNWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLG




GPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPR




EEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQV




YTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFF




LYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-30-02
1734
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGRTFGDYIMG




WFRQAPGKERELVATISGGGSTNYADSVKGRFTISADNAKNTVYLQMNSLKPEDTA




VYYCAAVFSRGPLTWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGPSVF




LFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQY




NSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLP




PSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK




LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-30-03
1735
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGNIFSRYIMGW




FRQAPGKEREWVAGISNGGTTKYADSVKGRFTISADNAKNTVYLQMNSLKPEDTA




VYYCAQGWKIRPTIWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGPSVF




LFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQY




NSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLP




PSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK




LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-30-04
1736
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGFTFSTHWMG




WFRQAPGKERELVAARNSGGNTNYADSVKGRFTISADNAKNTVYLQMNSLKPEDT




AVYYCAADVWYGSTWRNWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLG




GPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPR




EEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQV




YTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFF




LYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-30-5
1737
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGGTFRNYGMG




WFRQAPGKERELVAAISWSGVSTIYADSVKGRFTISADNAKNTVYLQMNSLKPEDT




AVYYCASSPYGPLYRSTHYYDWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPEL




LGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTK




PREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREP




QVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDG




SFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-30-6
1738
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGRFSRINSMGW




FRQAPGKERELVAHIFRSGITSYASYADSVKGRFTISADNAKNTVYLQMNSLKPEDT




AVYYCAIGRGSWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGPSVFLFPP




KPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTY




RVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE




EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTV




DKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-30-7
1739
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGIPASIRTMGW




FRQAPGKEREGISLITSDDGSTYYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAV




YYCAWTTNRGMDWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGPSVFL




FPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYN




STYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPP




SREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKL




TVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-30-8
1740
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGFTMSSSWMG




WFRQAPGKEREFVATLTSGGSTNYADSVKGRFTISADNAKNTVYLQMNSLKPEDT




AVYYCAADVWYGSTWRNWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLG




GPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPR




EEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQV




YTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFF




LYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-30-9
1741
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGPISGINRMGW




FRQAPGKEREWVSTITFNGDHTYYADSVKGRFTISADNAKNTVYLQMNSLKPEDTA




VYYCAARPYTRPGSMWVSSLYDWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAP




ELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAK




TKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPR




EPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDS




DGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-30-10
1742
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASVRTFSLSDMG




WFRQAPGKEREFVGAINWLSESTYYADSVKGRFTISADNAKNTVYLQMNSLKPED




TAVYYCAAQGGVLSGWDWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGG




PSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPRE




EQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVY




TLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFL




YSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-30-11
1743
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGSITSIRSMGWF




RQAPGKEREWVSSVYIFGGSTYYADSVKGRFTISADNAKNTVYLQMNSLKPEDTA




VYYCANSNKPKFDWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGPSVFL




FPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYN




STYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPP




SREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKL




TVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-30-12
1744
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGRTFGDYIMG




WFRQAPGKERELVASVSGGGNSDYADSVKGRFTISADNAKNTVYLQMNSLKPEDT




AVYYCAAVFSRGPLTWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGPSV




FLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQY




NSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLP




PSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK




LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-30-13
1745
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGRTFSNYFMG




WFRQAPGKERESVAAINWDSARTYYADSVKGRFTISADNAKNTVYLQMNSLKPED




TAVYYCASAGRWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGPSVFLFP




PKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNST




YRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSR




EEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLT




VDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-30-14
1746
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGPTFSIYDMGW




FRQAPGKEREFVAAITWNSGRTNYADSVKGRFTISADNAKNTVYLQMNSLKPEDT




AVYYCAAGAWSSLRKTAASWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELL




GGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKP




REEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQ




VYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSF




FLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-30-15
1747
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGFTFSGNWMG




WFRQAPGKEREWVSGISSGGGRTYYADSVKGRFTISADNAKNTVYLQMNSLKPED




TAVYYCAADVWYGSTWRNWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELL




GGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKP




REEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQ




VYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSF




FLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-30-16
1748
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGFPFSEYPMGW




FRQAPGKEREFVAVVNWNGDSTYYADSVKGRFTISADNAKNTVYLQMNSLKPEDT




AVYYCANFNRDWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGPSVFLFP




PKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNST




YRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSR




EEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLT




VDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-30-17
1749
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGSIFNIGMGWF




RQAPGKEREWVSSIYSNGHTYYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAV




YYCANSNKPKFDWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGPSVFLF




PPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNS




TYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS




REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKL




TVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-30-18
1750
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGRAFSLRTMG




WFRQAPGKEREGISLITSDDGSTYYADSVKGRFTISADNAKNTVYLQMNSLKPEDT




AVYYCAWTTNRGMDWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGPSV




FLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQY




NSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLP




PSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK




LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-30-19
1751
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGRTFSSYAMM




GWFRQAPGKEREFLAIITDGSKTLYADSVKGRFTISADNAKNTVYLQMNSLKPEDT




AVYYCAAQFTLARHLVWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGPS




VFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQ




YNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL




PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYS




KLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-30-20
1752
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGPTFSIYDMGW




FRQAPGKEREFVAVINWSRGSTFYADSVKGRFTISADNAKNTVYLQMNSLKPEDTA




VYYCAAGVWSSLRHTAANWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLG




GPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPR




EEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQV




YTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFF




LYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-30-21
1753
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGFTFSTSWMG




WFRQAPGKERELVATINSGGGTNYADSVKGRFTISADNAKNTVYLQMNSLKPEDT




AVYYCAADVWYGSTWRNWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLG




GPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPR




EEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQV




YTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFF




LYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-30-22
1754
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGFTLSGNWMG




WFRQAPGKEREFVASISSSGVSKHYADSVKGRFTISADNAKNTVYLQMNSLKPEDT




AVYYCAADVWYGSTWRNWGRGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLG




GPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPR




EEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQV




YTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFF




LYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-30-23
1755
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGRAFRRYTMG




WFRQAPGKEREFVAAIRWSGGTTFYADSVKGRFTISADNAKNTVYLQMNSLKPED




TAVYYCAAEWAAMKDWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGPS




VFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQ




YNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL




PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYS




KLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-30-24
1756
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGNIFSRYIMGW




FRQAPGKEREWVAGISNGGTTKYADSVKGRFTISADNAKNTVYLQMNSLKPEDTA




VYYCAQGWKIIPTDWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGPSVF




LFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQY




NSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLP




PSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK




LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-30-25
1757
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGPTFSIYDMGW




FRQAPGKEREFVASTIWSRGDTYYADSVKGRFTISADNAKNTVYLQMNSLKPEDTA




VYYCAAGVWSSLRHTAANWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLG




GPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPR




EEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQV




YTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFF




LYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-30-26
1758
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGRTYYAMGWF




RQAPGKEREFLAIITDGSKTLYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAVY




YCAAQFTLARHLVWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGPSVFL




FPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYN




STYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPP




SREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKL




TVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-30-27
1759
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGFTFSTSWMG




WFRQAPGKEREFVAGILSDGRELYADSVKGRFTISADNAKNTVYLQMNSLKPEDTA




VYYCAADVWYGSTWRNWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGP




SVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREE




QYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYT




LPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLY




SKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-30-28
1760
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGRTFESYRMG




WFRQAPGKEREFVGGINWSGRTYYADSVKGRFTISADNAKNTVYLQMNSLKPEDT




AVYYCAARRLYSGSYLDWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGP




SVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREE




QYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYT




LPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLY




SKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-30-29
1761
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGSSLSFNAMG




WFRQAPGKEREWVSSVYIFGGSTYYADSVKGRFTISADNAKNTVYLQMNSLKPED




TAVYYCANSNKPKFDWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGPSV




FLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQY




NSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLP




PSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK




LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-30-30
1762
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGGTFSGRGMG




WFRQAPGKEREWVSSVYIFGGSTYYADSVKGRFTISADNAKNTVYLQMNSLKPED




TAVYYCANSNKPKFDWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGPSV




FLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQY




NSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLP




PSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK




LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-30-31
1763
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGPTFSWTMMG




WFRQAPGKEREFLAIITDGSKTLYADSVKGRFTISADNAKNTVYLQMNSLKPEDTA




VYYCAAQFTLARHLVWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGPSV




FLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQY




NSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLP




PSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK




LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-30-32
1764
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGIIGTIRTMGWF




RQAPGKEREGISLITSDDGSTYYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAV




YYCAWTTNRGMDWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGPSVFL




FPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYN




STYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPP




SREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKL




TVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-30-33
1765
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGFTLENNMMG




WFRQAPGKERELVSAIGWSGASTYYADSVKGRFTISADNAKNTVYLQMNSLKPED




TAVYYCAANLRGDNWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGPSV




FLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQY




NSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLP




PSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK




LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-30-34
1766
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGNIFSRYIMGW




FRQAPGKEREWVAGISSGGTTKYADSVKGRFTISADNAKNTVYLQMNSLKPEDTA




VYYCAQGWKIVPTNWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGPSVF




LFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQY




NSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLP




PSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK




LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-30-35
1767
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGNIDRLYAMG




WFRQAPGKEREGISLITSDDGSTYYADSVKGRFTISADNAKNTVYLQMNSLKPEDT




AVYYCASSGPADARNGERWAWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPEL




LGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTK




PREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREP




QVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDG




SFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-30-36
1768
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGSIASTHAIGWF




RQAPGKEREWVSSVYIFGGSTYYADSVKGRFTISADNAKNTVYLQMNSLKPEDTA




VYYCANSNKPKFDWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGPSVFL




FPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYN




STYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPP




SREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKL




TVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-30-37
1769
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGRTFSSKAMG




WFRQAPGKEREWVSSVYIFGGSTYYADSVKGRFTISADNAKNTVYLQMNSLKPED




TAVYYCANSNKPKFDWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGPSV




FLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQY




NSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLP




PSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK




LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-30-38
1770
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGSIASFNAMGW




FRQAPGKEREWVSSVYIFGGSTYYADSVKGRFTISADNAKNTVYLQMNSLKPEDTA




VYYCANSNKPKFDWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGPSVFL




FPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYN




STYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPP




SREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKL




TVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-30-39
1771
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGFTFSTSWMG




WFRQAPGKEREWVVGISSGGSTHYADSVKGRFTISADNAKNTVYLQMNSLKPEDT




AVYYCAADVWYGSTWRNWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLG




GPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPR




EEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQV




YTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFF




LYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-30-40
1772
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGFTFSGNWMG




WFRQAPGKEREWVVGISSGGSTHYADSVKGRFTISADNAKNTVYLQMNSLKPEDT




AVYYCAADVWYGSTWRNWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLG




GPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPR




EEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQV




YTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFF




LYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-30-41
1773
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGRTFSSYAMM




GWFRQAPGKEREFLAIITDGSKTLYADSVKGRFTISADNAKNTVYLQMNSLKPEDT




AVYYCAAQFILARHLVWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGPS




VFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQ




YNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL




PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYS




KLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-30-42
1774
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGITITTEVMGW




FRQAPGKEREYVAAIHWNGDSTAYADSVKGRFTISADNAKNTVYLQMNSLKPEDT




AVYYCAQVSQWRAWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGPSVF




LFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQY




NSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLP




PSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK




LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-30-43
1775
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGFTFSTSWMG




WFRQAPGKERELVAARNSGGNTNYADSVKGRFTISADNAKNTVYLQMNSLKPEDT




AVYYCAADVWYGSTWRNWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLG




GPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPR




EEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQV




YTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFF




LYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-30-44
1776
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGVTLDLYAMG




WFRQAPGKEREFVAGIWRSGGSTVYADSVKGRFTISADNAKNTVYLQMNSLKPED




TAVYYCATWTTTWGRNRDWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLG




GPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPR




EEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQV




YTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFF




LYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-30-45
1777
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGGTFSGGFMG




WFRQAPGKEREWVASVLRGGYTWYADSVKGRFTISADNAKNTVYLQMNSLKPED




TAVYYCANGGSSYWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGPSVFL




FPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYN




STYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPP




SREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKL




TVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-30-46
1778
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGRTFSTYASM




WWFRQAPGKEREFLAIITDGSKTLYADSVKGRFTISADNAKNTVYLQMNSLKPEDT




AVYYCAGSWSYPGLTWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGPSV




FLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQY




NSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLP




PSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK




LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-30-47
1779
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGFTMSSSWMG




WFRQAPGKEREWVVGISSGGSTHYADSVKGRFTISADNAKNTVYLQMNSLKPEDT




AVYYCAADVWYGSTWRNWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLG




GPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPR




EEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQV




YTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFF




LYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-30-48
1780
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGFPVNRYSMG




WFRQAPGKERELVSAIGWSGASTYYADSVKGRFTISADNAKNTVYLQMNSLKPED




TAVYYCAADFWLARLRVADDYDWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAP




ELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAK




TKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPR




EPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDS




DGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-30-49
1781
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGNIFSRYIMGW




FRQAPGKEREWVAGISNGGTTKYADSVKGRFTISADNAKNTVYLQMNSLKPEDTA




VYYCAQGWKIVPTNWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGPSVF




LFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQY




NSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLP




PSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK




LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-30-50
1782
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGRSFSNYVMG




WFRQAPGKERERVATITSGGLTVYADSVKGRFTISADNAKNTVYLQMNSLKPEDTA




VYYCALYRVNWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGPSVFLFPP




KPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTY




RVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE




EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTV




DKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-30-51
1783
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGSIFSISDMGWF




RQAPGKEREFVGAINWLSESTYYADSVKGRFTISADNAKNTVYLQMNSLKPEDTAV




YYCAAQGGVLSGWDWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGPSV




FLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQY




NSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLP




PSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK




LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-30-52
1784
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGRTFSNYFMG




WFRQAPGKERESVATVTWRDNITYYADSVKGRFTISADNAKNTVYLQMNSLKPED




TAVYYCASAGRWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGPSVFLFP




PKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNST




YRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSR




EEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLT




VDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-30-53
1785
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGLTFSNYVMG




WFRQAPGKERESVAAINWDSARTYYADSVKGRFTISADNAKNTVYLQMNSLKPED




TAVYYCASAGRWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGPSVFLFP




PKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNST




YRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSR




EEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLT




VDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-30-54
1786
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGFTFRSFGMGW




FRQAPGKEREFVASTIWSRGDTYYADSVKGRFTISADNAKNTVYLQMNSLKPEDTA




VYYCASSPYGPLYRSTHYYDWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELL




GGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKP




REEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQ




VYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSF




FLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-30-55
1787
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGNTFSGGFMG




WFRQAPGKEREWVASVLRGGYTWYADSVKGRFTISADNAKNTVYLQMNSLKPED




TAVYYCATGWQSTTKSQGWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLG




GPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPR




EEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQV




YTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFF




LYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-30-56
1788
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGLTISTYPMGW




FRQAPGKEREFVAAVNWSGRRELYADSVKGRFTISADNAKNTVYLQMNSLKPEDT




AVYYCAAFREYHWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGPSVFLF




PPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNS




TYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS




REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKL




TVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-30-57
1789
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGPTFSIYDMGW




FRQAPGKEREFVAAITWNSGRIGYADSVKGRFTISADNAKNTVYLQMNSLKPEDTA




VYYCAAGVWSSLRHTAANWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELLG




GPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPR




EEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQV




YTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFF




LYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-30-58
1790
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQAGGSLRLSCAASGFAFGDSWMG




WFRQAPGKEREWVSGISSGGGRTYYADSVKGRFTISADNAKNTVYLQMNSLKPED




TAVYYCAADVWYGSTWRNWGQGTQVTVSSGGGGSEPKSSDKTHTCPPCPAPELL




GGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKP




REEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQ




VYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSF




FLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-31-01
1791
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQPGGSLRLSCAASGFTFDRSWMG




WFRQAPGKEREVVASITSGGSTYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTA




VYYCAADVWYGSTWRNWGQGTLVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGP




SVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREE




QYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYT




LPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLY




SKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-31-02
1792
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGW




FRQAPGKERELVAEITRSGRTNYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAV




YYCAAVFSRGPLTWGQGTLVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGPSVFLF




PPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNS




TYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS




REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKL




TVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-31-03
1793
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQPGGSLRLSCAASGFTFSGNWMG




WFRQAPGKEREFVASISSSGISTYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTA




VYYCAADVWYGSTWRNWGQGTLVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGP




SVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREE




QYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYT




LPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLY




SKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-31-04
1794
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQPGGSLRLSCAASGFPVNRYWMG




WFRQAPGKERELVATITSGGSTNYADSVKGRFTISADNSKNTAYLQMNSLKPEDTA




VYYCAADVWYGSTWRNWGQGTLVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGP




SVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREE




QYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYT




LPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLY




SKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-31-05
1795
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGW




FRQAPGKEREFVATISRGGGSTYVDSVKGRFTISADNSKNTAYLQMNSLKPEDTAV




YYCAAVFSRGPLTWGQGTLVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGPSVFLF




PPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNS




TYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS




REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKL




TVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-31-06
1796
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQPGGSLRLSCAASGFTFSTSWMGW




FRQAPGKERELVASITSGGSTYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAV




YYCAADVWYGSTWRNWGQGTLVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGPS




VFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQ




YNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL




PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYS




KLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-31-7
1797
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQPGGSLRLSCAASGSTFSINRMGW




FRQAPGKEREWVATIVHSGGHSGGTSYYADSVKGRFTISADNSKNTAYLQMNSLKP




EDTAVYYCAARPYTRPGSMWVSSLYDWGQGTLVTVSSGGGGSEPKSSDKTHTCPP




CPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEV




HNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKA




KGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTP




PVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-31-08
1798
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQPGGSLRLSCAASGFTFSTSWMGW




FRQAPGKERELVAARNSGGNTNYADSVKGRFTISADNSKNTAYLQMNSLKPEDTA




VYYCAADVWYGSTWRNWGQGTLVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGP




SVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREE




QYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYT




LPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLY




SKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-31-9
1799
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQPGGSLRLSCAASGGTLSGNAMG




WFRQAPGKEREWVASIYWSSGNTYYADSVKGRFTISADNSKNTAYLQMNSLKPED




TAVYYCANSNKPKFDWGQGTLVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGPSV




FLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQY




NSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLP




PSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK




LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-31-10
1800
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQPGGSLRLSCAASGHTFSSYGMG




WFRQAPGKERELVAAISWSGISTIYADSVKGRFTISADNSKNTAYLQMNSLKPEDTA




VYYCASSPYGPLYRSTHYYDWGQGTLVTVSSGGGGSEPKSSDKTHTCPPCPAPELL




GGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKP




REEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQ




VYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSF




FLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-31-11
1801
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQPGGSLRLSCAASGFTFSTSWMGW




FRQAPGKEREFVASISTSGNTFYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVY




YCAADVWYGSTWRNWGQGTLVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGPSV




FLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQY




NSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLP




PSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK




LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-31-12
1802
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQPGGSLRLSCAASGFTFSRYWMG




WFRQAPGKEREAVASITSGGSTYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTA




VYYCAADVWYGSTWRNWGQGTLVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGP




SVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREE




QYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYT




LPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLY




SKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-31-13
1803
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQPGGSLRLSCAASGFTFDRSWMG




WFRQAPGKEREWVASITSGGTTNYADSVKGRFTISADNSKNTAYLQMNSLKPEDT




AVYYCAADVWYGSTWRNWGQGTLVTVSSGGGGSEPKSSDKTHTCPPCPAPELLG




GPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPR




EEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQV




YTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFF




LYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-31-14
1804
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQPGGSLRLSCAASGYTFRAYVMG




WFRQAPGKERELVAVINYRGSSLKYADSVKGRFTISADNSKNTAYLQMNSLKPEDT




AVYYCAASEWGGSDYDHDYDWGQGTLVTVSSGGGGSEPKSSDKTHTCPPCPAPEL




LGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTK




PREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREP




QVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDG




SFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-31-15
1805
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQPGGSLRLSCAASGFTFSTYGMGW




FRQAPGKEREFVAAISWSGVSKHYADSVKGRFTISADNSKNTAYLQMNSLKPEDTA




VYYCASSPYGPLYRSTHYYDWGQGTLVTVSSGGGGSEPKSSDKTHTCPPCPAPELL




GGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKP




REEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQ




VYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSF




FLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-31-16
1806
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQPGGSLRLSCAASGFTFSTSWMGW




FRQAPGKERELVVSVTSGGYTNYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAV




YYCAADVWYGSTWRNWGQGTLVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGPS




VFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQ




YNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL




PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYS




KLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-31-17
1807
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQPGGSLRLSCAASGFTMSSSWMG




WFRQAPGKEREWVASINSGGTRNYADSVKGRFTISADNSKNTAYLQMNSLKPEDT




AVYYCAADVWYGSTWRNWGQGTLVTVSSGGGGSEPKSSDKTHTCPPCPAPELLG




GPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPR




EEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQV




YTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFF




LYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-31-18
1808
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQPGGSLRLSCAASGFTFSGNWMG




WFRQAPGKEREFVASISSGSAINYADSVKGRFTISADNSKNTAYLQMNSLKPEDTA




VYYCAADVWYGSTWRNWGQGTLVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGP




SVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREE




QYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYT




LPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLY




SKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-31-19
1809
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQPGGSLRLSCAASGRTFGNYAMG




WFRQAPGKEREFVADIRSSAGRTYYADSVKGRFTISADNSKNTAYLQMNSLKPEDT




AVYYCAASEWGGSDYDHDYDWGQGTLVTVSSGGGGSEPKSSDKTHTCPPCPAPEL




LGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTK




PREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREP




QVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDG




SFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-31-20
1810
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQPGGSLRLSCAASGFTFSGNWMG




WFRQAPGKEREFVAGILSDGRELYADSVKGRFTISADNSKNTAYLQMNSLKPEDTA




VYYCAADVWYGSTWRNWGQGTLVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGP




SVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREE




QYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYT




LPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLY




SKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-31-21
1811
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQPGGSLRLSCAASGFTLSGNWMG




WFRQAPGKEREFVASISSSGISTYYADSVKGRFIISADNSKNTAYLQMNSLKPEDTA




VYYCAADVWYGSTWRNWGQGTLVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGP




SVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREE




QYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYT




LPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLY




SKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-31-22
1812
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQPGGSLRLSCAASGRTFSTHAMG




WFRQAPGKEREFVAAITPINWGGRGTHYADSVKGRFTISADNSKNTAYLQMNSLKP




EDNAVYYCAAKRLRSGRWTWGQGTLVTVSSGGGGSEPKSSDKTHTCPPCPAPELL




GGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKP




REEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQ




VYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSF




FLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-31-23
1813
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQPGGSLRLSCAASGFTFSNSGMGW




FRQAPGKEREWVASIYWSSGNTYYADSVKGRFTISADNSKNTAYLQMNSLKPEDT




AVYYCANSNKPKFDWGQGTLVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGPSVF




LFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQY




NSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLP




PSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK




LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-31-24
1814
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQPGGSLRLSCAASGRTFSMGWFRQ




APGKEREFVATVRWGTSSTYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVY




YCAAETFGSGSSLMSEYDWGQGTLVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGG




PSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPRE




EQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVY




TLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFL




YSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-31-25
1815
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQPGGSLRLSCAASGNIFSRYIMGW




FRQAPGKEREWVAGISNGGTTKYADSVKGRFTISADNSKNTAYLQMNSLKPEDTA




VYYCAQGWKIVPTNWGQGTLVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGPSVF




LFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQY




NSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLP




PSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK




LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-31-26
1816
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQPGGSLRLSCAASGFTFDRSWMG




WFRQAPGKERELVAAITSGGSTYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTA




VYYCAADVWYGSTWRNWGQGTLVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGP




SVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREE




QYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYT




LPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLY




SKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-31-27
1817
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQPGGSLRLSCAASGFTFGHYAMG




WFRQAPGKEREFVAAISWSGVSTYYADSVKGRFTISADNSKNTAYLQMNSLKPEDT




AVYYCASSPYGPLYRSTHYYDWGQGTLVTVSSGGGGSEPKSSDKTHTCPPCPAPEL




LGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTK




PREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREP




QVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDG




SFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-31-28
1818
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQPGGSLRLSCAASGRTFSSYHMGW




FRQAPGKERELVALISRVGVTSYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAV




YYCAAVRTYGSATYDWGQGTLVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGPSV




FLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQY




NSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLP




PSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK




LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-31-29
1819
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQPGGSLRLSCAASGRSRMGWFRQ




APGKEREFVATISWSGSAVYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYC




AAGGRYSARVWGQGTLVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGPSVFLFPP




KPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTY




RVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE




EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTV




DKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-31-30
1820
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQPGGSLRLSCAASGRTYNMGWFR




QAPGKEREWVATIYSRSGGSTTYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTA




VYYCATYGYDSGRYYSWGQGTLVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGPS




VFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQ




YNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL




PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYS




KLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-31-31
1821
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQPGGSLRLSCAASGFTLSGNWMG




WFRQAPGKEREFVASISSGGGTNYADSVKGRFTISADNSKNTAYLQMNSLKPEDTA




VYYCAADVWYGSTWRNWGQGTLVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGP




SVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREE




QYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYT




LPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLY




SKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-31-32
1822
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQPGGSLRLSCAASGFTFSTSWMGW




FRQAPGKERELVAAMTSGGGTNYADSVKGRFTISADNSKNTAYLQMNSLKPEDTA




VYYCAADVWYGSTWRNWGQGTLVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGP




SVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREE




QYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYT




LPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLY




SKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-31-33
1823
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQPGGSLRLSCAASGFTFSTSWMGW




FRQAPGKERELVASITSGGSTNYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAV




YYCAADVWYGSTWRNWGQGTLVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGPS




VFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQ




YNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL




PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYS




KLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-31-34
1824
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQPGGSLRLSCAASGRSRYGMGWF




RQAPGKEREFVSAISWSGISTYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAV




YYCAATQWGSSGWKQARWYDWGQGTLVTVSSGGGGSEPKSSDKTHTCPPCPAPE




LLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKT




KPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPRE




PQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD




GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-31-35
1825
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQPGGSLRLSCAASGFTFSTSWMGW




FRQAPGKERELVASITSGGTTNYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAV




YYCAADVWYGSTWRNWGQGTLVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGPS




VFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQ




YNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL




PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYS




KLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-31-36
1826
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQPGGSLRLSCAASGFTFDRSWMG




WFRQAPGKERELVASVTSGGTTNYADSVKGRFTISADNSKNTAYLQMNSLKPEDT




AVYYCAADVWYGSTWRNWGQGTLVTVSSGGGGSEPKSSDKTHTCPPCPAPELLG




GPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPR




EEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQV




YTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFF




LYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-31-37
1827
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQPGGSLRLSCAASGSIFSINSMGWF




RQAPGKEREFVAALSWIIGSTYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAV




YYCAVNGRWRSWSSQRDWGQGTLVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGG




PSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPRE




EQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVY




TLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFL




YSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-31-38
1828
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQPGGSLRLSCAASGFTFDRSWMG




WFRQAPGKERELVASITSGGSTSYADSVKGRFTISADNSKNTAYLQMNSLKPEDTA




VYYCAADVWYGSTWRNWGQGTLVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGP




SVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREE




QYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYT




LPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLY




SKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-31-39
1829
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQPGGSLRLSCAASGFTFSTSWMGW




FRQAPGKERELVAGVNSNGYINYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAV




YYCAADVWYGSTWRNWGQGTLVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGPS




VFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQ




YNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL




PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYS




KLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-31-40
1830
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQPGGSLRLSCAASGSTLRDYVMG




WFRQAPGKERELVSSISRSGTTMFADSVKGRFTIIADNSKNTAYLLMNSLKPQDTAV




YYCAAVFSRGLLTCGQGTLVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGPSVFLF




PPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNS




TYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS




REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKL




TVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-31-41
1831
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQPGGSLRLSCAASGGTLSSYIMGW




FRQAPGKEREFVAAISGWSGGTTNYADSVKGRFTISADNSKNTAYLQMNSLKPEDT




AVYYCAAARFAPGSRGYDWGQGTLVTVSSGGGGSEPKSSDKTHTCPPCPAPELLG




GPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPR




EEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQV




YTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFF




LYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-31-42
1832
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQPGGSLRLSCAASGFTFSTHWMG




WFRQAPGKEREFVASIGSSGTTRYADSVKGRFTISADNSKNTAYLQMNSLKPEDTA




VYYCAADVWYGSTWRNWGQGTLVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGP




SVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREE




QYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYT




LPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLY




SKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-31-43
1833
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQPGGSLRLSCAASGGTFSAFPMGW




FRQAPGKERELVAAISSGGTTYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAV




YYCAAQGGVLSAWDWGQGTLLTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGPSV




FLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQY




NSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLP




PSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK




LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-31-44
1834
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQPGGSLRLSCAASGFTFSGNWMG




WFRQAPGKEREWVASISSGGTTNYADSVKGRFTISADNSKNTAYLQMNSLKPEDTA




VYYCAADVWYGSTWRNWGQGTLVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGP




SVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREE




QYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYT




LPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLY




SKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-31-45
1835
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQPGGSLRLSCAASGFTFSGNWMG




WFRQAPGKEREFVAGVNSNGYINYADSVKGRFTISADNSKNTAYLQMNSLKPEDT




AVYYCAADVWYGSTWRNWGQGTLVTVSSGGGGSEPKSSDKTHTCPPCPAPELLG




GPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPR




EEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQV




YTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFF




LYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-31-46
1836
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQPGGSLRLSCAASGFTFDRSWMG




WFRQAPGKERELVASITSGGTTSYADSVKGRFTISADNSKNTAYLQMNSLKPEDTA




VYYCAADVWYGSTWRNWGQGTLVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGP




SVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREE




QYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYT




LPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLY




SKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-31-47
1837
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQPGGSLRLSCAASGFTFSGNWMG




WFRQAPGKEREWVVGISSGGTPHYADSVKGRFTISADNSKNTAYLQMNSLKPEDT




AVYYCAADVWYGSTWRNWGQGTLVTVSSGGGGSEPKSSDKTHTCPPCPAPELLG




GPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPR




EEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQV




YTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFF




LYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-31-48
1838
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQPGGSLRLSCAASGFTLSSNWMG




WFRQAPGKERELVAGVNSNGYINYADSVKGRFTISADNSKNTAYLQMNSLKPEDT




AVYYCAADVWYGSTWRNWGQGTLVTVSSGGGGSEPKSSDKTHTCPPCPAPELLG




GPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPR




EEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQV




YTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFF




LYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-31-49
1839
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQPGGSLRLSCAASGFDFSVSWMG




WFRQAPGKERELVARISSGGELPYYADSVKGRFTISADNSKNTAYLQMNSLKPKHT




AVYYCAARPNTRPGSMWGQGTLVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGPS




VFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQ




YNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL




PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYS




KLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-31-50
1840
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQPGGSLRLSCAASGFTMSSSWMG




WFRQAPGKEREFVGGISSGGSTYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTA




VYYCAADVWYGSTWRNWGQGTLVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGP




SVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREE




QYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYT




LPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLY




SKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-31-51
1841
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQPGGSLRLSCAASGRNFRRNSMG




WFRQAPGKEREFVAVITRSGGGEVTTYADSVKGRFTISADNSKNTAYLQMNSLKPE




DTAVYYCAMSSVTRGSSDWGQGTLVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGG




PSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPRE




EQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVY




TLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFL




YSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-31-52
1842
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQPGGSLRLSCAASGFTFDRSWMG




WFRQAPGKEREFVAGITSSGIPNYADSVKGRFTISADNSKNTAYLQMNSLKPEDTA




VYYCAADVWYGSTWRNWGQGTLVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGP




SVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREE




QYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYT




LPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLY




SKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-31-53
1843
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQPGGSLRLSCAASGLTISTYNMGW




FRQAPGKERELVSAIGWSGASTYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTA




VYYCAAFRGRMYDWGQGTLVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGPSVFL




FPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYN




STYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPP




SREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKL




TVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-31-54
1844
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQPGGSLRLSCAASGFTFSTSWMGW




FRQAPGKERELVAAVTSGGNTNYADSVKGRFTISADNSKNTAYLQMNSLKPEDTA




VYYCAADVWYGSTWRNWGQGTLVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGP




SVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREE




QYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYT




LPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLY




SKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-31-55
1845
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGW




FRQAPGKERELVAEITRVGNTNYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAV




YYCAAVFSRGPLTWGQGTLVTVSSGGGGSEPKSSDKTHTCPPCPAPELLGGPSVFLF




PPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNS




TYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS




REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKL




TVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





TIGIT-31-56
1846
MKHLWFFLLLVAAPRWVLSEVQLVESGGGLVQPGGSLRLSCAASGRIFRRNSMGW




FRQAPGKEREFVAVITRSGGGEVTTYADSVKGRFTINADNSKNTAYLQMNSLKPED




TAVYYCAMSSVTRGSSDWGQGTLVTVSTGGGGSEPKSSDKTHTCPPCPAPELLGGP




SVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREE




QYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYT




LPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLY




SKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG









While preferred embodiments of the present disclosure have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the disclosure. It should be understood that various alternatives to the embodiments of the disclosure described herein may be employed in practicing the disclosure. It is intended that the following claims define the scope of the disclosure and that methods and structures within the scope of these claims and their equivalents be covered thereby.

Claims
  • 1. An antibody or antibody fragment comprising an amino acid sequence at least about 90% identical to that set forth in any one of SEQ ID NOs: 35-44 or 62-1846.
  • 2. The antibody or antibody fragment of claim 1, wherein the antibody or antibody fragment comprises an amino acid sequence at least about 95% identical to that set forth in any one of SEQ ID NOs: 35-44 or 62-1846.
  • 3. The antibody or antibody fragment of claim 1, wherein the antibody or antibody fragment comprises an amino acid sequence as set forth in any one of SEQ ID NOs: 35-44.
  • 4. The antibody or antibody fragment of claim 1, wherein the antibody is a monoclonal antibody, a polyclonal antibody, a bi-specific antibody, a multispecific antibody, a grafted antibody, a human antibody, a humanized antibody, a synthetic antibody, a chimeric antibody, a camelized antibody, a single-chain Fvs (scFv), a single chain antibody, a Fab fragment, a F(ab')2 fragment, a Fd fragment, a Fv fragment, a single-domain antibody, an isolated complementarity determining region (CDR), a diabody, a fragment comprised of only a single monomeric variable domain, disulfide-linked Fvs (sdFv), an intrabody, an anti-idiotypic (anti-Id) antibody, or ab antigen-binding fragments thereof.
  • 5. The antibody or antibody fragment of claim 1, wherein the antibody or antibody fragment binds to TIGIT with a KD of less than 75 nM.
  • 6. The antibody or antibody fragment of claim 1, wherein the antibody or antibody fragment binds to TIGIT with a KD of less than 50 nM.
  • 7. The antibody or antibody fragment of claim 1, wherein the antibody or antibody fragment binds to TIGIT with a KD of less than 25 nM.
  • 8. The antibody or antibody fragment of claim 1, wherein the antibody or antibody fragment binds to TIGIT with a KD of less than 10 nM.
  • 9. An antibody or antibody fragment that binds TIGIT, comprising an immunoglobulin heavy chain comprising an amino acid sequence at least about 90% identical to that set forth in any one of SEQ ID NOs: 35-44.
  • 10. The antibody or antibody fragment of claim 9, wherein the immunoglobulin heavy chain comprises an amino acid sequence at least about 95% identical to that set forth in any one of SEQ ID NOs: 35-44.
  • 11. The antibody or antibody fragment of claim 9, wherein the immunoglobulin heavy chain comprises an amino acid sequence as set forth in any one of SEQ ID NOs: 35-44 or 62-1846.
  • 12. The antibody or antibody fragment of claim 9, wherein the antibody is a monoclonal antibody, a polyclonal antibody, a bi-specific antibody, a multispecific antibody, a grafted antibody, a human antibody, a humanized antibody, a synthetic antibody, a chimeric antibody, a camelized antibody, a single-chain Fvs (scFv), a single chain antibody, a Fab fragment, a F(ab')2 fragment, a Fd fragment, a Fv fragment, a single-domain antibody, an isolated complementarity determining region (CDR), a diabody, a fragment comprised of only a single monomeric variable domain, disulfide-linked Fvs (sdFv), an intrabody, an anti-idiotypic (anti-Id) antibody, or ab antigen-binding fragments thereof.
  • 13. The antibody or antibody fragment of claim 9, wherein the antibody or antibody fragment thereof is chimeric or humanized.
  • 14. The antibody or antibody fragment of claim 9, wherein the antibody or antibody fragment binds to TIGIT with a KD of less than 75 nM.
  • 15. The antibody or antibody fragment of claim 9, wherein the antibody or antibody fragment binds to TIGIT with a KD of less than 50 nM.
  • 16. The antibody or antibody fragment of claim 9, wherein the antibody or antibody fragment binds to TIGIT with a KD of less than 25 nM.
  • 17. The antibody or antibody fragment of claim 9, wherein the antibody or antibody fragment binds to TIGIT with a KD of less than 10 nM.
  • 18. A method of treating a disease or condition comprising administering the antibody or antibody fragment of claim 1.
  • 19. The method of claim 18, wherein the disease is a viral infection.
  • 20. The method of claim 18, wherein the disease is cancer.
Provisional Applications (1)
Number Date Country
63165651 Mar 2021 US