This application relates generally to the dispensing arts, particularly pneumatic powered.
The following is a tabulation of some prior art that presently appears relevant:
Varieties of fluids are stored and shipped in various containers for end user application. Many of these containers are thin-walled plastic containers. For example, machinery lubricants such as those used in motor vehicle gear cases, come in a wide variety of viscosities and types of fluids. Some of these gear cases are underneath a vehicle, and cannot be filled by pouring from a container into the gear case fill hole due to various component obstructions around the area of the gear case fill hole, such as a vehicle frame, floor pan, exhaust system, etc.
Originally these gear cases were filled with fluids using a pump and container dedicated to the particular type and viscosity of fluid required. The pump and container were either portable or stationary. The pumps were usually piston, or gear type pumps. These were powered electrically, pneumatically, or pumped manually.
In the past, most gear cases typically used one type of fluid, 90 wt. gear oil. Presently, a modern motor vehicle can use 75W-90 standard gear oil in the front axle, and 75W-140 synthetic gear oil in the rear axle. Also, a special type of fluid in the transfer case, and another special type of fluid in the automatic transmission, and still another in the manual transmission.
Kricheldorf, Hsu, Evans, and Payne show a pneumatic fluid delivery system without a pump that uses a gas pressure internal to the container which causes fluid to flow from the container through a conduit exiting the container. All of these utilize their own dedicated container, and I have found they are not quickly and easily flushed to prevent cross contamination of fluids when switching to other types of fluids. Although Chuang, Herlth, Johnston, and McCormick do not require their own dedicated containers, they do not connect to a variety of container openings.
Stevens's liquid transfer apparatus discloses an adapter which connects to a variety of container openings, but does not securely attach the liquid transfer apparatus to the adapter, requiring a person to constantly maintain the connection. This would not be adequate for a connection that is pressurized. This also would not permit the container to be transported by lifting only the apparatus, without it being securely attached to the adapter. Another disadvantage of Stevens's adapter is that it has to be manufactured using at least two parts, which then must be assembled together to form the adapter. Stevens's apparatus also does not pressurize the container for liquid transfer. Moreover, Stevens's apparatus still has to rely on its own built-in container to operate. Furthermore, Stevens's apparatus is in fact not a fluid dispensing apparatus, but rather, a liquid transfer apparatus.
Samson, Motorcraft, Atec, and Mityvac dispensers also use a dedicated container that cannot be quickly and easily flushed, and are not adaptable to a variety of containers. All of the pneumatic fluid dispensers heretofore known suffer from a number of disadvantages:
(a) The fluid dispensers in present cannot be quickly and securely attached and detached to a variety of containers, necessitating in many cases a transfer of the desired fluid from its original container to a container compatible with the fluid dispenser, which requires additional time spent performing the procedure.
(b) When switching to a different type of fluid, the container first has to be flushed to prevent cross-contamination of fluids. This too requires more time and effort.
(c) When the container is low on fluid and needs to be refilled, the gas pressure inside the container has to be vented before the container can be opened. Once the air supply is turned off in Kricheldorf, Chuang, Hsu, and Herlth dispensers, the air pressure inside the container equalizes to the air pressure external to the container only after enough fluid has exited the container to cause an increase in the air space inside the container, resulting in a decreased pressure. This brings up yet another problem: the fluid continues to dispense after shutting off the air, until the air pressure inside the container equalizes to the air pressure outside the container. The problem is amplified when the fluid volume in the container is low, and the air space is large. Also, the larger the container, the more noticeable the problem is.
(d) The Payne, Johnston, and McCormick dispensers rely on a fluid shut-off valve in the fluid outlet line to stop the fluid from flowing. The air pressure in the container can only be vented by cracking open the fluid fill cap and letting the air escape, or if the dispenser permits, by having to disconnect the air supply, and letting the air escape by back-flowing through the air supply inlet. Having to wait for the air pressure to escape increases the amount of time it takes to refill the container.
(e) The depth of the fluid dispensing conduit in the container cannot be quickly and easily adjusted, and then securely locked in place to facilitate rapid adapting to a different depth container; or for quick changing; or cleaning of the fluid conduit. This is necessary when switching fluid types.
(f) The dispensers in present have limits to the amount of air pressure they can tolerate before damaging the dispenser or causing explosive failure of the container and contents. This puts humans at risk of injury. This requires the air supply to be regulated, making it necessary for the user to be sure the inlet air is properly regulated to the correct pressure. Otherwise, the dispenser would have to be equipped with an air pressure regulator, and a safety pressure relief valve, which adds substantial costs to the dispenser.
(g) The gas, or air source, for powering the dispensers in present has to be clean to keep contaminants from entering the fluid through the dispenser. Also, one must be careful to make sure that there is no dirt or contaminants on the air supply connection of the dispenser when attaching it to the air supply in order to prevent contaminating the fluid.
In accordance with one embodiment a pneumatic fluid dispensing apparatus comprises an adapter to connect to various openings of a plurality of fluid containers. In accordance with one embodiment a pneumatic fluid dispensing apparatus comprises a locking coupling for securely attaching the apparatus to the container adapter. In accordance with one embodiment a pneumatic fluid dispensing apparatus comprises a controllable valve for applying and venting the air pressure in the container. In accordance with one embodiment a pneumatic fluid dispensing apparatus comprises an air pressure relief valve to limit the air pressure in the container, in combination with an inlet air restriction to limit the air flow volume for fluid dispensing. In accordance with one embodiment a pneumatic fluid dispensing apparatus comprises a fluid dispensing tube quick release lever. In accordance with one embodiment a pneumatic fluid dispensing apparatus comprises a filter for the fluid dispensing air supply.
Thus several advantages of one or more aspects are as follows: to provide a more versatile fluid dispensing apparatus that can be used on a variety of containers, including thin-walled plastic containers, that is faster to use, that results in more controlled dispensing, that is cheaper to manufacture, that is easier to service, that is less costly to repair, that is safer to use, that produces sanitary results, that is simpler to operate, and also that is a one-handed controllable, and transportable, with-the-container-attached fluid dispensing apparatus. These and other advantages of one or more aspects will become apparent from a consideration of the ensuing description and accompanying drawings.
a is a perspective view of the tube release lever;
b is a perspective view of the lever pivot linkage;
c is a perspective view of the valve actuation lever connected to the tube release lever by the lever pivot linkage, and also shows the placement of the anchor pin in the tube release lever;
a is a perspective view of the handle;
b is a perspective view of the mounting plate;
c is a perspective view with some components omitted for clarity;
a is a cross-section view of a pneumatic connector of an alternative embodiment;
b is a cross-section view of a check valve outer housing/handle of an alternative embodiment;
Referring to the drawings, one embodiment of the present device will be described below.
Referring now to the drawings wherein the illustrations are for the purpose of showing one embodiment of the device, and not for the purpose of limiting the same,
Apparatus 20 is configured to connect to a coupler 50 as seen in
Each of a plurality of adapters 40a-c is formed with similar shape and dimensions 42 as the cap or plug of the container to which a person desires to connect to, and is dimensioned to connect to the container opening. All adapters are provided with a threaded cylindrical hole 41 dimensioned for threadedly attaching the adapter to the coupler external threads 52.
The vertical segment 61 of the blank measures roughly 50 mm long top to bottom, and roughly 23 mm wide at the top, with the sides narrowing to roughly 16 mm wide at the bottom. The horizontal segment 62 of the blank is positioned so that about 18 mm of the vertical segment remains above the top edge of the horizontal segment. This section of the vertical segment provides a contact point for a thumb and index finger T/F to operate the latch.
The horizontal segment of the blank measures roughly 112 mm end to end, and roughly 27 mm wide. The lower ½ at each end has a radius 63 of roughly 12 mm, with the lower edge 64 then tapering up as it moves towards the center to roughly 20 mm in width where the edges meet the vertical segment. About 12 mm of the bottom of the vertical segment remains past this point. The top edge at each end of the of the horizontal segment is trimmed off diagonally, starting at about 16 mm in from each end, at an angle of 31-34 degrees to provide a cam type surface 65 for a spring assisted latch return washer 130.
A roughly 8 mm circular hole is punched out at each end of the horizontal segment. Both holes are equally spaced, and roughly centered in the 27 mm width of each end, with the hole spacing measuring roughly 87 to 88 mm from hole center to hole center. These two holes are then drawn to form a flanged round hole 66 roughly 13 mm in diameter, having a flange width of roughly 3 mm. The two flanges are formed in opposite directions of each other.
The two horizontal segments are then formed to make the blank into a “U” shape with a radius 67 of roughly 32 mm. The two ends straighten out for about the last 25 mm. The two ends now parallel each other, and measure roughly 47 to 48 mm across to each other. Also, both flanges now point in the same direction. These flanged holes are the latch pivot points, and communicate with the outside diameter of check valve outer housing 120.
The bottom of the vertical segment is formed with a 128 to 132 degree bend 68 upward, in the direction of the two flanged holes. The bend is located roughly 7 mm from the bottom edge of the vertical segment. A second 88 to 92 degree bend 69 is formed in the same direction, and is located roughly 5 mm from the first bend. These two bends are dimensionally configured to communicate with the triangular shaped outer flange 55 of coupler 50.
The inside diameter of valve body 70 measures roughly 22 mm. The outside diameter measures roughly 26 mm. The length measures roughly 69 mm. One end has an o-ring groove 71 formed at the outside diameter centered roughly 9 mm from this end for placement of an o-ring 80 dimensioned to sealingly communicate with connector 50. This end also has a substantial chamfer 72 at the outside diameter. The opposite end of valve body 70 has a retaining ring groove 73 formed about 6 mm in from this end at the inside diameter, dimensionally configured to engage a retaining ring 160 of the tube guide bushing 150. The inside diameter also has a substantial chamfer 74 at this end to facilitate insertion of retaining ring 160, and also to provide space for guide bushing o-ring 170.
Centered about 22 mm in from this same end are eight evenly spaced circular holes 75 through the valve body sidewall measuring roughly 6 to 7 mm in diameter configured for gas inlet and outlet. Centered about 46 mm from this same end are two circular holes 76 spaced 180 degrees apart from each other, dimensionally configured for the attaching of two pressure relief valve inner housings 90. The area around these two holes is spot faced 77 to provide a flat contact surface for pressure relief valve inner housings 90.
The housing has a three step round bore. The first step bore 91 measures 5.7 mm in diameter, and 8.2 mm deep from one end. This first step bore is configured to house a spring 110. The second step bore 92 measures 5.03 to 5.06 mm in diameter, and has a depth of 14.2 mm from the same end. This second bore is dimensionally configured for a loose fit of a ball 100. The third step bore 93 measures 2.5 to 2.6 mm in diameter, and goes all the way through the other end. The step at the intersection of bore 92 and 93 is dimensionally configured to act as a seat 94 for ball 100.
Two of these housings are attached to the two valve body circular holes 76 at the small bore end of the housing. The housings are attached by a press fit, resistance welded, or friction welded, or the housing can be formed with a stepped outside diameter at the small bore end for insertion through a larger valve body hole 76, and then the end of the housing flared out at the inside of the valve body to retain the housings.
The outside diameter is three stepped. One end has a first step 121 with a diameter of 12.6 to 12.8 mm, and a length of 15.2 to 15.3 mm, and is dimensioned to fit easily in flanged hole 66 of latch 60. The second step 122 diameter measures 14 to 15 mm, has a length of 6.3 to 6.4 mm, and is located adjacent to the first step 121. Step 122 also has a cylindrical vent hole 126 that passes through the diameter, and intersects with bore 125 to form a gas vent passage for the pressure relief valve. The diameter of the vent hole measures roughly 2.8 mm. The third step 123 is located at the opposite end of the housing 120 as first step 121, has a diameter measuring 7.8 to 7.9 mm, and has a length of 3.7 to 3.8 mm. Step 123 is dimensionally configured to slip fit into hole 304 of mounting plate 300.
The round bore of housing 120 is two stepped. The first step bore 124 inside diameter measures 9.53 to 9.58 mm, with a depth of 13.9 to 14 mm, and is dimensionally configured to slip over inner housing 90. The second step bore 125 inside diameter measures 5.7 mm, with a total depth from the same end of the housing roughly 20 mm. This bore does not break through the opposite end. This second step bore is dimensionally configured to house spring 110. The depth of this bore can be varied to change the compressed length of spring 110, providing relief valve pressure calibration.
Washer 130 is positioned around valve body 70, and the underside of the washer communicates with cam surface 65 of latch 60. The top side of washer 130 communicates with the bottom of spring 140. Washer 130 is dimensionally configured to provide a contact surface communicating with cam 65 of latch 60.
A lip formed by step 151 and 153 is dimensionally configured to abut the top of valve body 70. This lip also provides a travel limit, or stop, for a valve 230. The inside diameter of bushing 150 is also two stepped.
The inside diameter of the first step bore 155 of bushing 150 measures roughly 13 mm, and is dimensionally configured for a 13 mm diameter metal fluid dispensing tube 190 to be easily inserted or removed. Bore 155 is also dimensionally configured with a groove 156 for an o-ring 180 to sealingly communicate with tube 190. The second step bore 157 inside diameter measures roughly 25.5 mm. This bore has a depth of roughly 15 mm from the top of bushing 150.
The top of bushing 150 has a rectangular slot 158 formed and centered across the top measuring roughly 13 mm wide and 15 mm deep. Slot 158, along with bore 157 and retaining ring 220, is dimensionally configured for the placement and retention of lever 210.
a, and also
One end is formed into a channel 211 measuring roughly 13 mm wide and 18 mm in length, with the sides of the channel measuring roughly 8 mm in height. Each side has two circular holes evenly spaced measuring roughly 4.8 mm in diameter, with the hole center to hole center measuring roughly 8.6 mm. The first hole 212a is dimensionally configured for insertion of anchor pin 270. Second hole 212b is dimensionally configured for insertion of lever pivot linkage 260. The opposite end 213 of lever 210 is rounded with a rolled down edge, has a diameter of about 23 mm, and provides a surface for the placement of a thumb or finger in order to push on the lever, thereby releasing the grip of the lever on tube 190.
Centered roughly 20 mm from the channeled end is a bulbous circular section 214 that has a radius of roughly 12.5 mm, and is dimensionally configured to fit easily inside bore 157 of bushing 150. A round hole 215 measuring roughly 13.2 mm in diameter is centered in circular section 214. Hole 215 is dimensionally configured to grip the sides of tube 190 when lever 210 is tensioned at an angle around tube 190. The static angle of section 214 in relation to channel 211 measures roughly 25 degrees. Lever 210 is also dimensionally configured to maintain the positioning of the top of the main valve body 70.
The inside diameter 233 measures roughly 26 mm, and slidably communicates with the outside diameter of valve body 70. The clearance between valve 230 and valve body 70 is a range of 0.02 to 0.04 mm. The inside diameter 233 is also configured with a square cut annulus 234 circumferentially placed, and centered in the width, measuring roughly 1.7 mm square.
The thickness of valve 230 measures roughly 19 mm. The underside face 238 of valve 230 is configured with a circumferential shallow groove 239 dimensioned to communicate with the top of spring 140. Groove 239 provides a spring seat to keep spring 140 centered.
A cylindrical threaded bore 235 is configured for installation of fitting 330, and is located 180 degrees opposite of flat 232. Threaded bore 235 does not break through to annulus 234. Another cylindrical hole 236 centered at bore 235, having a diameter of 1.5 mm to 1.6 mm in one embodiment, does break through, and does communicate with groove 234. Hole 236 is dimensionally configured to provide an orifice type restriction to the inlet air flow.
Two cylindrical bores 237 are located at the outside diameter of valve 230, are spaced 180 degrees apart, and are perpendicular with flat 232. Bores 237 are dimensionally configured for installation of two lever connecting pins 250. The bores have a diameter of 5 mm, and a depth of 6 mm.
c shows one embodiment of an actuation lever 240. Lever 240 in this embodiment is formed from metal tubing with a diameter of roughly 8 mm, and roughly 1.6 mm wall thickness. Other materials may also or otherwise be used, such as molded plastic, etc. Lever 240 is somewhat “U” shaped. The form of lever 240 is dimensionally configured to fit inside frame 290, operate valve 230, and communicate with lever pivot linkage 260.
The sides 241 of lever 240 are flattened, and also have two round holes in each side. All holes have a diameter of roughly 5.2 mm. The holes 242a closest to each end are dimensionally configured to communicate with lever pivot linkage 260, and the holes 242b are located roughly 20 mm inboard from holes 242a being dimensionally configured to communicate with connecting pin 250.
The radius of the “U” 243 measures roughly 21 mm to the outside of the tube, and is dimensionally configured for placement of a thumb to push on, to cause valve 230 to move.
b shows one embodiment of a lever pivot linkage 260. Linkage 260 is formed from roughly 4 mm diameter solid metal wire. Linkage 260 is formed in a rectangular shape measuring roughly 63 mm by 21 mm measured from the outside.
Both ends 261 of the wire face each other. The ends terminate within one of the long sides, and are equally spaced measuring roughly 5 mm long from the corners 262. The ends 261 are dimensionally configured to pivotally communicate with holes 242a of lever 240. The opposite long side 263, at about the middle, is dimensionally configured to pivotally communicate with holes 212b of lever 210.
c shows an anchor pin 270. Pin 270 is typically a solid dowel pin measuring roughly 45 mm in length, and has a diameter of roughly 5 mm. Pin 270 is dimensionally configured to communicate with holes 212a of lever 210, and also the bores of posts 280. Pin 270 is also dimensionally configured to maintain positioning of lever 210.
The bore at one end is threaded, and communicates with side plate mounting bolt 350 (
About 10 cm of each end of the flat bar turn out, and extend away from one corner 292 of the oval, forming a hand grip 293. The ends forming the grip are straight at this section, are parallel to each other, and are spaced roughly 25 mm apart measured from the outside. Grip 293 is parallel with and centered in relation to the sides of the oval. Each end of grip 293 has two circular holes 294 roughly 6 mm in diameter, dimensionally configured for pneumatic connector mounting rivets 370.
Each side of the oval shape has two circular holes 295 roughly 6 mm in diameter that are spaced roughly 6.6 cm center to center, and are spaced evenly within the oval shape 291. Holes 295 are dimensionally configured for attachment of mounting plates 300 to handle 290. Handle 290 is dimensionally configured to provide a hand graspable section 293, and has attachment points for pneumatic connector 310, mounting plates 300, and posts 280.
There are two round holes 303 roughly 6 mm in diameter centered roughly 6 mm from the top edge spaced roughly 6.6 cm center to center. These holes are dimensionally configured to communicate with the mounting plates to handle mounting bolts 350. One round hole 304 is located at the bottom measuring roughly 8 mm in diameter, and is centered at the bottom of the triangle roughly 3.76 cm from top edge 301. Hole 304 is dimensionally configured to communicate with step 123 of housing 120.
Connector 310 has a 3 step cylindrical bore. The first step bore 311 measures roughly 11 mm in diameter by roughly 14 mm deep, and is threadedly configured for communication with an inlet air supply line connection 315 (
The side of connector 310 has two cylindrical through-holes 314 roughly 5 mm in diameter, spaced roughly 13 mm center to center, with one centered roughly 25 mm from the first bore 311 end. Holes 314 are dimensionally configured to communicate with handle holes 294 and mounting rivets 370.
The manner of using my fluid dispensing apparatus is unique to the other fluid dispensers in present. One first obtains a container of fluid/liquid that one wishes to dispense. The cap is removed from the container, and one selects from a plurality of adapters 40a-c (
Next, a pressurized air source is connected to fluid dispensing apparatus 20, normally using an air hose with a common quick-connect coupler. Now the fluid dispensing apparatus 20 is ready to be connected to the container. While holding the apparatus with one hand by the apparatus handle 290, one inserts the bottom of tube 190 through coupler 50, and then clicks the apparatus 20 down on top of coupler 50, in order for the apparatus to securely latch onto coupler 50. One does not need to manipulate the latches by hand to accomplish this. The latches only need to be squeezed together by a thumb and index finger at T/F points when one wishes to disconnect the apparatus from the coupler/container. The thumb and index finger can be seen on the latches in
The next step is to adjust tube 190 to reach the bottom of the container. This is done simply by pushing down on the top of tube 190 by hand. To pull up or remove tube 190, one must first push down with a thumb or finger on section 213 of tube release lever 210 (
I have found that while normally holding apparatus 20 by hand at the grip of the apparatus, my thumb is in proper orientation for, and comfortably fits under radius 243 of valve actuation lever 240, in order to push on section 213 of lever 210.
Fluid dispensing apparatus 20 is now ready to dispense fluid. The same thumb is also in proper orientation for, and easily pushes down on radius 243 of actuation lever 240.
The volume of air used for dispensing is automatically limited by orifice 236 of valve 230. The air pressure inside the container is automatically limited to a predetermined pressure by the air pressure relief valves, which consist of parts 90, 100, 110, and 120. When air pressure builds inside the container, the pressure acts on ball 100. Ball 100 is held closed, resting on its seat 94 from the tension of spring 110. When the air pressure acting on the ball overcomes the tension of spring 110, ball 100 is moved off its seat. Any excess pressure flows around ball 100, and exits through the vent holes 126 of housing 120, as illustrated in
Orifice 236 of valve 230 is dimensionally configured large enough so that there is normally a minimal amount of pneumatic pressure continually being exhausted through the pressure relief valves during dispensing. This is to assure that there is always an ample amount of air pressure available for fluid dispensing. Another benefit of air pressure continually exhausting through the relief valves during each dispensing cycle is that it helps prevent the valves from becoming stuck closed from non-use. An additional advantage of having an air pressure reserve available is to compensate for air leakage of the entire system, such as a leaking connection of the adapter to the container due to a deformed opening of the plastic container.
To stop the fluid dispensing, one simply takes their thumb off lever 240. This action causes spring 140 to return valve 230 to its at-rest position adjacent to holes 75 of valve body 70. This exposes the holes 75 of valve body 70 to the atmosphere. This vents the air pressure inside the container, which equalizes the air pressure inside the container to the air pressure outside the container, thereby causing the fluid in the container to cease dispensing. This is best illustrated in
Fluid dispensing apparatus 20 can be transported with the container attached to the point of use simply by carrying it with one hand on handle 290. Apparatus 20 stays latched to a container very well. I have tried unsuccessfully to violently shake loose a 5-liter container of liquid attached to the dispensing apparatus.
The pressure relief valve outer housing 120z (
A rigid pneumatic connector 310z (
Tube release lever 210 is replaced by a torsion spring type of tube release 210z (
The alternative embodiment can use latches 60 and coupler 50 as in the first embodiment, or go without the latches, and use coupler 50z as in the additional embodiment.
Accordingly, the reader will see that the fluid dispensing apparatus of the various embodiments can be used to dispense fluids/liquids conveniently and directly from the container the fluid is supplied in. In addition, these containers can be thin-walled plastic containers which, due to the pressure regulation capability of the dispensing apparatus, will not sustain damage. This method of dispensing saves time, greatly reduces the possibilities of cross-contamination of fluids, and substantially broadens the spectrum of containers which fluids/liquids can be dispensed from. Furthermore, the fluid dispensing apparatus has the additional advantages in that:
While my above description contains many specificities, these should not be construed as limitations on the scope, but rather as an exemplification of several embodiments thereof. Many other variations are possible. For example, the actuation lever can be configured to be finger operated. The handle can be a tube handle, which also provides an air supply path. The handle and frame can be molded plastic, or composite, with or without an air supply passage. The handle can have an air pressure control valve, or air on-off valve, incorporated in the handle.
The control valve can be finger or thumb operated. One of the pressure relief valves can be eliminated. A handle with or without an air supply passage can attach to where one of the pressure relief valves attach, thereby obviating the need of the handle and mounting plates of the first and second embodiment.
A tube guide bushing can be used to provide the air pressure relief, as well as the venting of the air pressure inside the container. This can be done with a flat seat on the underside of the bushing which contacts the top of the valve body, and that is held down under spring tension. It can lift off the seat when container air pressure acts on it. The spring tension for holding the guide bushing on its seat can be provided by a tube release lever formed from spring steel sheet.
This type of tube guide bushing, along with an air pressure on-off valve, obviates the need for the pneumatic valve, as well as the vent holes in the valve body of the first, additional, and alternative embodiments. This would also eliminate the need for the close tolerance of the valve body outside diameter.
The latch can be a single latch instead of two. It can be made of spring steel sheet material, and of a one-piece construction formed in somewhat of a “∩” shape. It can have the legs configured to connect to the coupler of the first embodiment. The inside radius of the “∩” can be configured for the latch pivot point, and have tabs extending upward on each side past the radius for the placement of a thumb and finger for releasing the latch. This latch, along with the pressure relieving tube guide bushing, and with the above elimination of the pneumatic valve, would obviate the need of the latch and valve return spring, the latch return washer, and the pressure relief valves of the first, additional, and alternative embodiments.
The coupler can be similar to a well known air hose quick-coupler. The fluid dispensing tube can be a multiple section telescoping type of tube, or a flexible plastic tube. The filter can be a flat disc, conical, cylindrical, and constructed of screen materials, plastic materials, metal materials, the materials can be sintered, etc.
Accordingly, the scope should be determined not by the embodiments illustrated, but by the appended claims and their legal equivalents.