Peripheral intravenous catheter (“PIVC”) insertions are increasingly challenging in emergency scenarios as critically ill patients deteriorate. Intraosseous (“IO”) access is often the only means available to clinicians to increase the patients' chances of recovery and even save the patients' lives. IO access can be acquired in as little as 2-5 seconds with a relatively high chance of success.
The commercial state-of-the-art medical device for IO access is a small, drill-like device built around a relatively primitive electric motor for effectuating IO access by drilling with a needle assembly of the IO-access medical device. Some medical devices for IO access utilize linear springs to provide rotational energy for drilling, while some other 10-access medical devices even rely on a manual means for providing the rotational energy for the drilling. No matter what means for drilling a clinician uses for IO access, the clinician needs to be able to control the IO-access medical device under any circumstance and interrupt the drilling at any time for any reason. In addition, there is a need to prevent accidental triggering of IO-access medical devices while handling an IO-access medical device, before the needle assembly of an IO-access medical device is properly positioned for IO access, or even while the IO-access medical device is stored, for example, in an emergency bag.
Disclosed herein are various operating mechanisms for IO-access medical devices and methods thereof that address the foregoing needs. In addition, constant-torque IO access devices and methods thereof are disclosed that significantly reduce design and manufacturing complexity of the small, drill-like devices that are currently the state-of-the-art for IO access.
Disclosed herein is an IO access device including, in some embodiments, a constant-torque spring assembly, a drive shaft, an IO needle, and an interlock mechanism. The constant-torque spring assembly is disposed in a housing, and the drive shaft extends from the housing. The drive shaft is coupled to the constant-torque spring assembly. The IO needle is coupled to the drive shaft. The IO needle is configured for drilling through bone and providing IO access to a medullary cavity of a patient. The interlock mechanism is configured to prevent rotation of the IO needle and the drilling therewith until the interlock mechanism is disengaged.
In some embodiments, the constant-torque spring assembly includes a metal ribbon reversely wound onto an output spool. The output spool has an axial channel. The metal ribbon is configured to wind onto a storage spool with a constant torque when the output spool is released.
In some embodiments, spindles of the output spool and the storage spool are coupled together by at least one elastomeric loop to prevent any timing-related errors between the output spool and the storage spool.
In some embodiments, the interlock mechanism includes a trigger configured to release a lock pin disposed between the trigger and the output spool. A pressure-based trigger mechanism of the IO device is configured to require the interlock mechanism to be disengaged before activation of the pressure-based trigger mechanism for rotation of the IO needle.
In some embodiments, the interlock mechanism includes a rotatable lock pin configured to block axial movement of an extension pin disposed in the axial channel of the output spool between the lock pin and the drive shaft. A pressure-based trigger mechanism of the IO device is configured to require the interlock mechanism to be disengaged before activation of the pressure-based trigger mechanism for rotation of the IO needle.
In some embodiments, the interlock mechanism includes a trigger pivotally mounted on a transversely oriented pin having trigger teeth configured to interlock with those of a distal-end portion of the output spool. A pressure-based trigger mechanism of the IO device is configured to require the interlock mechanism to be disengaged before activation of the pressure-based trigger mechanism for rotation of the IO needle.
In some embodiments, the interlock mechanism includes a spring-loaded trigger mounted in an exterior channel of the housing including an extension channel configured to allow the drive shaft to extend from the axial channel into the extension channel when the extension channel and the axial channel are aligned. A pressure-based trigger mechanism of the IO device is configured to require the interlock mechanism to be disengaged before activation of the pressure-based trigger mechanism for rotation of the IO needle.
In some embodiments, the interlock mechanism includes a pressure-based trigger configured to release a detent from a bore of the output spool. A pressure-based trigger mechanism of the IO device is configured to allow the interlock mechanism to be disengaged either before or after activation of the pressure-based trigger mechanism for rotation of the IO needle.
In some embodiments, the pressure-based trigger mechanism includes a set of housing teeth around an aperture of the housing from which the drive shaft extends, as well as a set of complementary drive-shaft teeth around the drive shaft opposing the set of housing teeth. The set of housing teeth and the set of drive-shaft teeth are engaged in an inactive state of the IO access device by a compression spring between a back side of the set of drive-shaft teeth and the output spool.
In some embodiments, the drive shaft is slidably disposed in the axial channel of the output spool such that force applied to a distal end of the IO needle simultaneously compresses the compression spring and inserts the drive shaft deeper into the axial channel. The force applied to the distal end of the IO needle disengages the set of drive-shaft teeth from the set of housing teeth and initiates an active state of the IO access device in which rotation of the IO needle is effectuated by the output spool of the constant-torque spring assembly on the drive shaft.
In some embodiments, the compression spring is configured to relax when the force applied to the distal end of the IO needle is removed. The set of drive-shaft teeth reengages with the set of housing teeth and reinitiates the inactive state of the IO access device when the force applied to the distal end of the IO needle is removed.
In some embodiments, the IO access device is configured such that entry of the IO needle into the medullary cavity of the patient automatically removes the force applied to the distal end of the IO needle.
In some embodiments, the IO access further comprises a braking system. The braking system is configured to act on the output spool to slow the metal ribbon from winding onto the storage spool.
In some embodiments, the IO needle is configured to separate from the IO access device subsequent to achieving IO access to the medullary cavity of the patient.
In some embodiments, the IO needle includes an obturator removably disposed in a cannula. The cannula has a lumen configured for at least IO infusion upon removal of the obturator.
Also disclosed herein is a method of an IO access device including, in some embodiments, a device-obtaining step, an interlock-disengaging step, a needle-inserting step, a force-applying step, and a drilling step. The device-obtaining step includes obtaining the IO access device. The interlock-disengaging step includes disengaging an interlock mechanism configured to prevent rotation of an IO needle and drilling therewith until the interlock mechanism is disengaged. The needle-inserting step includes inserting a distal end of the IO needle through skin at an insertion site of a patient. The force-applying step includes applying force to bone at the insertion site with the distal end of the IO needle. The force-applying step activates a pressure-based trigger mechanism and starts winding a metal ribbon of a constant-torque spring assembly from an output spool onto a storage spool. The winding of the metal ribbon from the output spool onto the storage spool starts rotation of the IO needle by way of a drive shaft coupled to the constant-torque spring assembly. The drilling step includes drilling through the bone until the IO needle enters a medullary cavity of the patient. IO access is achieved upon entering the medullary cavity of the patient with the IO access device.
In some embodiments, the interlock-disengaging step includes triggering a trigger to release a lock pin disposed between the trigger and the output spool. The pressure-based trigger mechanism is configured to require the interlock-disengaging step before the force-applying step to activate the pressure-based trigger mechanism.
In some embodiments, the interlock-disengaging step includes rotating a lock pin configured to block axial movement of an extension pin disposed in an axial channel of the output spool between the lock pin and the drive shaft. The pressure-based trigger mechanism is configured to require the interlock-disengaging step before the force-applying step to activate the pressure-based trigger mechanism.
In some embodiments, the interlock-disengaging step includes triggering a trigger pivotally mounted on a transversely oriented pin having trigger teeth configured to interlock with those of a distal-end portion of the output spool. The pressure-based trigger mechanism is configured to require the interlock-disengaging step before the force-applying step to activate the pressure-based trigger mechanism.
In some embodiments, the interlock-disengaging step includes triggering a spring-loaded trigger mounted in an exterior channel of a housing including an extension channel configured to allow the drive shaft to extend from an axial channel of the output spool into the extension channel when the extension channel and the axial channel are aligned. The pressure-based trigger mechanism is configured to require the interlock-disengaging step before the force-applying step to activate the pressure-based trigger mechanism.
In some embodiments, the interlock-disengaging step includes triggering a pressure-based trigger configured to release a detent from a bore of the output spool. The pressure-based trigger mechanism is configured to require the interlock-disengaging step either before or after the force-applying step to activate the pressure-based trigger mechanism.
In some embodiments, the method further includes a force-ceasing step. The force-ceasing step includes ceasing to apply the force to the bone with the distal end of the IO needle. The force-ceasing step stops the rotation of the IO needle.
In some embodiments, the force-ceasing step is manually initiated by a clinician after feeling a change in tissue density upon entering the medullary cavity of the patient. Alternatively, the force-ceasing step is automatically initiated by the pressure-based trigger mechanism after the change in the tissue density upon entering the medullary cavity of the patient.
In some embodiments, the method further includes a needle-detaching step, an obturator-removing step, a cannula-confirming step, a cannula-securing step, and an infusion-starting step. The needle-detaching step includes detaching the IO needle from a remainder of the IO access device. The obturator-removing step includes removing from the IO needle an obturator removably disposed in a cannula. The cannula-confirming step includes confirming the cannula is disposed in the medullary cavity by aspirating bone marrow through a syringe. The cannula-securing step includes securing the cannula to the patient. The infusion-starting step includes starting IO infusion as boluses with a same or different syringe.
These and other features of the concepts provided herein will become more apparent to those of skill in the art in view of the accompanying drawings and following description, which describe particular embodiments of such concepts in greater detail.
Before some particular embodiments are disclosed in greater detail, it should be understood that the particular embodiments disclosed herein do not limit the scope of the concepts provided herein. It should also be understood that a particular embodiment disclosed herein can have features that can be readily separated from the particular embodiment and optionally combined with or substituted for features of any of a number of other embodiments disclosed herein.
Regarding terms used herein, it should also be understood the terms are for the purpose of describing some particular embodiments, and the terms do not limit the scope of the concepts provided herein. Ordinal numbers (e.g., first, second, third, etc.) are generally used to distinguish or identify different features or steps in a group of features or steps, and do not supply a serial or numerical limitation. For example, “first,” “second,” and “third” features or steps need not necessarily appear in that order, and the particular embodiments including such features or steps need not necessarily be limited to the three features or steps. Labels such as “left,” “right,” “top,” “bottom,” “front,” “back,” and the like are used for convenience and are not intended to imply, for example, any particular fixed location, orientation, or direction. Instead, such labels are used to reflect, for example, relative location, orientation, or directions. Singular forms of “a,” “an,” and “the” include plural references unless the context clearly dictates otherwise.
With respect to “proximal,” a “proximal portion” or a “proximal-end portion” of, for example, a catheter includes a portion of the catheter intended to be near a clinician when the catheter is used on a patient. Likewise, a “proximal length” of, for example, the catheter includes a length of the catheter intended to be near the clinician when the catheter is used on the patient. A “proximal end” of, for example, the catheter includes an end of the catheter intended to be near the clinician when the catheter is used on the patient. The proximal portion, the proximal-end portion, or the proximal length of the catheter can include the proximal end of the catheter; however, the proximal portion, the proximal-end portion, or the proximal length of the catheter need not include the proximal end of the catheter. That is, unless context suggests otherwise, the proximal portion, the proximal-end portion, or the proximal length of the catheter is not a terminal portion or terminal length of the catheter.
With respect to “distal,” a “distal portion” or a “distal-end portion” of, for example, a catheter includes a portion of the catheter intended to be near or in a patient when the catheter is used on the patient. Likewise, a “distal length” of, for example, the catheter includes a length of the catheter intended to be near or in the patient when the catheter is used on the patient. A “distal end” of, for example, the catheter includes an end of the catheter intended to be near or in the patient when the catheter is used on the patient. The distal portion, the distal-end portion, or the distal length of the catheter can include the distal end of the catheter; however, the distal portion, the distal-end portion, or the distal length of the catheter need not include the distal end of the catheter. That is, unless context suggests otherwise, the distal portion, the distal-end portion, or the distal length of the catheter is not a terminal portion or terminal length of the catheter.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by those of ordinary skill in the art.
As set forth above, there is a need to prevent accidental triggering of IO-access medical devices while handling an IO-access medical device, before the needle assembly of an IO-access medical device is properly positioned for IO access, or even while the IO-access medical device is stored, for example, in an emergency bag. Disclosed herein are various operating mechanisms for IO-access medical devices and methods thereof that address the foregoing needs.
In addition to the foregoing, there is a need to significantly reduce design and manufacturing complexity of the small, drill-like devices that are currently the state-of-the-art for IO access. Also disclosed herein are constant-torque IO access devices and methods thereof that significantly reduce design and manufacturing complexity of the small, drill-like devices that are currently the state-of-the-art for IO access.
Various embodiments of the constant-torque IO access devices are initially described below. Various operating mechanisms such as a pressure-based trigger mechanism and a number of different interlock mechanisms for the constant-torque IO access devices are subsequently described below. Some of the various operating mechanisms are described below with respect to particular embodiments of the of the constant-torque IO access devices; however, this is for expository expediency in conveying certain concepts of the various operating mechanisms. A particular operating mechanism described with respect to a particular embodiment of a constant-torque IO access device should not be construed as being limited to the particular embodiment of the constant-torque IO access device. And while the various operating mechanisms are described in the context of constant-torque access devices, it should be understood the various operating mechanisms are not limited thereto.
IO Access Devices
As shown, the IO access device 100, 500, or 1100 includes the constant-torque spring assembly 204, 604, or 1104 disposed a housing 102, 502, or 1102, a drive shaft 106 extending from the housing 102, 502, or 1102 and an IO needle assembly 108 coupled to the drive shaft 106 configured to provide IO access to a medullary cavity of a patient.
The housing 102, 502, or 1102 houses components of the IO access device 100, 500, or 1100. While the components of the IO access devices 100, 500, and 1100 are largely the same in terms of function, the components can be physically different in order to accommodate a particular form factor. For example, the IO access device 100 has a form factor for holding the IO access device 100 in a way that permits the IO needle assembly 108 to access a medullary cavity of a patient with a stabbing motion. In contrast, the IO access device 500 has a form factor for holding the IO access device 100 in a way that permits the IO needle assembly 108 to access a medullary cavity of a patient with in a more traditional drilling motion. The housing 102, 502, or 1102 is molded of a medically acceptable polymer such that sagittal halves of the housing 102, 502, or 1102 can be snapped or bound (e.g., mechanically fastened with fasteners, chemically bonded by adhesive, etc.) together around the components of the IO access device 100, 500, or 1100.
The constant-torque spring assembly 204, 604, or 1104 includes a metal ribbon (e.g., a stainless-steel ribbon) 210, at least a portion of which is reversely wound onto an output spool 212 and correctly wound onto a storage spool 214 with respect to a bias of the metal ribbon 210. The metal ribbon 210 is configured to wind onto the storage spool 214 or into a storage cavity with a constant torque across a range of revolutions-per-minute (“RPMs”) when the output spool 212 is released or otherwise allowed to do so.
The constant-torque spring assembly 204, 604, or 1104 is unique in that stresses associated with deflection of the metal ribbon 210 are not cumulative over an entire length of the metal ribbon 210. The stresses are temporary and apply to only a short length (e.g., the exposed length) of the metal ribbon 210 at any given time. In addition, the metal ribbon 210 can be tuned with respect to any characteristic selected from its thickness, width, number of winds around the output spool 212, and the like for configuration of the constant-torque spring assembly 204, 604, or 1104 with an optimal rotary action of the IO needle assembly 108 for IO insertion.
Each spool of the output spool 212 and the storage spool 214 optionally includes a spindle co-incident with an axis of the spool for mounting the spool in the housing 102, 502, or 1102. Such a spindle can be on one side of the spool or both sides of the spool. For example, the constant-torque spring assembly 204 of the IO access device 100 includes spindle 216 and spindle 218 of the output spool 212 and spindle 220 and spindle 222 of the storage spool 214. Likewise, the constant-torque spring assembly 604 of the IO access device 500 includes spindle 616 and spindle 618 of the output spool 212 and spindle 620 and spindle 622 of the storage spool 214. The constant-torque spring assembly 1104 of the IO access device 1100 includes analogous spindles as well; however, reference number for the spindles are omitted for clarity.
Alternatively or additionally to the foregoing spindles, each spool of the output spool 212 and the storage spool 214 optionally includes an axial channel co-incident with the axis of the spool, which can be for mounting the spool in the housing 102, 502, or 1102, driving another component (e.g., the drive shaft 106) of the IO access device 100, 500, or 1100, etc. Such an axial channel can be in one side of the spool, both sides of the spool, or extending from one side of the spool to the other side of the spool. For example, the constant-torque spring assembly 204, 604, or 1104 of the IO access device 100, 500, or 1100 includes an axial channel 1024, which, in at least this case, includes a hexagonal shape to drive the hexagonal proximal-end portion of the drive shaft 106. (See
As shown in
Notwithstanding the foregoing, the constant-torque spring assembly 204, 604, or 1104 can alternatively be configured as a constant-power spring assembly including a constant-power spring or a torsion spring assembly including a torsion spring. Like the constant-torque spring assembly 204, 604, or 1104 such a constant-power spring assembly or torsion spring assembly can be disposed in the housing 102, 502, or 1102 for driving the drive shaft 106 coupled to the IO needle assembly 108 to provide IO access to a medullary cavity of a patient.
The IO needle assembly 108 is configured to separate from the IO access device 100, 500, or 1100 subsequent to achieving IO access to a medullary cavity of a patient. While not shown, the IO needle assembly 108 includes an obturator removably disposed in a cannula. The cannula has a lumen configured for at least IO infusion upon removal of the obturator.
Pressure-Based Trigger Mechanism
As shown, the pressure-based trigger mechanism 800 for activating rotation of the IO needle assembly 108 includes the drive shaft 106 slidably disposed in the axial channel 1024 of the output spool 212, a set of drive-shaft teeth 928 around the drive shaft 106, a set of opposing but complementary housing teeth 930 around an aperture of at least the housing 102 from which the drive shaft 106 extends, and a compression spring 932 between a back side of the set of drive-shaft teeth 928 and the output spool 212.
In the inactive state of at least the IO access device 100, a spring force is exerted on the back side of the set of drive-shaft teeth 928 by extension of the compression spring 932 between the back side of the set of drive-shaft teeth 928 and the output spool 212. Extension of the compression spring 932 keeps the drive shaft 106 pushed out of the axial channel 1024, which also keeps the set of drive-shaft teeth 928 thereof away from the output spool 212 such that the set of drive-shaft teeth 928 and the set of housing teeth 930 are engaged with each other. Each set of teeth of the set of drive-shaft teeth 928 and the set of housing teeth 930 can include sawtooth-shaped teeth. When such sets of teeth are engaged with each other as in the inactive state of the IO access device 100, rotation of the drive shaft 106 and, thus, the rotation of the IO needle assembly 108 is prevented.
In the active state of at least the IO access device 100, the spring force exerted on the back side of the set of drive-shaft teeth 928 by the extension of the compression spring 932 is overwhelmed by force applied to a distal-end portion of the drive shaft 106 by way of a distal end of the IO needle assembly 108. Compression of the compression spring 932 keeps the drive shaft 106 pushed into the axial channel 1024, which also keeps the set of drive-shaft teeth 928 thereof close to the output spool 212 such that the set of drive-shaft teeth 928 and the set of housing teeth 930 are disengaged with each other. When such sets of teeth are disengaged with each other as in the active state of the IO access device 100, rotation of the drive shaft 106 and, thus, the rotation of the IO needle assembly 108 is allowed.
In a transition between the inactive state and the active state of at least the IO access device 100, force applied to the distal-end portion of the drive shaft 106 by way of, for example, engaging bone with the distal end of the IO needle assembly 108, simultaneously inserts the drive shaft 106 deeper into the axial channel 1024 and compresses the compression spring 932 between the back side of the set of drive-shaft teeth 928 and the output spool 212. Inserting the drive shaft 106 deeper into the axial channel 1024 disengages the set of drive-shaft teeth 928 from the set of housing teeth 930 to initiate the active state of the IO access device 100, in which state rotation of the IO needle assembly 108 is effectuated by the output spool 212 of the constant-torque spring assembly 204 on the drive shaft 106.
In a transition between the active state and the inactive state of at least the IO access device 100, force removed from the distal-end portion of the drive shaft 106 by way of, for example, disengaging the distal end of the IO needle assembly 108 from bone, allows the compression spring 932 between the back side of the set of drive-shaft teeth 928 and the output spool 212 to relax, which pushes the drive shaft 106 out of the axial channel 1024 away from the output spool 212. Pushing the drive shaft 106 out of the axial channel 1024 reengages the set of drive-shaft teeth 928 with the set of housing teeth 930 to initiate the inactive state of the IO access device 100, in which state rotation of the IO needle assembly 108 is by the output spool 212 of the constant-torque spring assembly 204 on the drive shaft 106 is prevented.
The transition between the active state and the inactive state of at least the IO access device 100 can be automatically initiated by the IO access device 100. In such an IO access device, the compression spring 932 is configured by way of its material, construction, or both to have a spring constant and a compressible length proportional to a spring force greater than an average force that can be applied on the distal end of the IO needle assembly 108 by marrow in a medullary cavity of a patient. Entry of the IO needle assembly 108 into the medullary cavity of the patient automatically replaces the force applied on the distal end of the IO needle assembly 108 by compact bone, which force is greater than the foregoing spring force, with the force applied on the distal end of the IO needle assembly 108 by the marrow in the medullary cavity, which force is less than the foregoing spring force, thereby allowing the compression spring 932 to push the drive shaft 106 out of the axial channel 1024 away from the output spool 212 to initiate the transition to the inactive state of the IO access device 100. Notwithstanding the foregoing, the transition between the active state and the inactive state can be manually initiated by a clinician after feeling a change in tissue density upon entering the medullary cavity from compact bone.
While the pressure-based trigger mechanism 800 is described for the IO access device 100, it should be understood that any IO access device selected from the IO access devices 100, 500 and 1100 can include the pressure-based trigger mechanism 800, optionally as part of an interlock mechanism. Notably, the IO access devices 500 and 1100 are not shown with the set of drive-shaft teeth 928 or the complementary set of housing teeth 930 of the pressure-based trigger mechanism 800. Without such teeth, rotation of the IO needle assembly 108 must be effectuated by or in combination with another rotation-activating means set forth herein for activating rotation of the IO needle assembly 108. Notwithstanding that, the compression spring 932 remains a useful component to a clinician for feeling the change in tissue density upon the distal end of the IO needle assembly 108 entering the medullary cavity from compact bone, thereby signaling drilling should be stopped. Indeed, regardless of whether the IO access device 500 or 1100 includes the set of drive-shaft teeth 928 and the set of housing teeth 930, the compression spring 932 is still configured to push the drive shaft 106 out of the axial channel 1024 away from the output spool 212 upon the distal end of the IO needle assembly 108 entering the medullary cavity from compact bone, which provides an immediate palpable signal to a clinician to stop drilling.
Force-Decoupling Mechanism
As shown in
Interlock Mechanisms
As shown in
As shown, the interlock mechanism 438 includes a lock pin 442 configured to rotate such that the lock pin 442 does not block axial movement of the extension pin 234 in the axial channel 1024 of the output spool 212, thereby allowing activation of the pressure-based trigger mechanism 800. This is shown on the right-hand side of
As shown in
As shown on the left-hand side of
As shown in
As an additional preventing means to the foregoing interlock mechanisms 338, 438, 738, 1238, and 1338 for preventing accidental activation of the pressure-based trigger mechanism 800 of an IO access device by dropping or handling the IO access device, a needle cover can be included to cover the IO needle assembly 108. While not shown, the needle cover is configured to cover the IO needle assembly 108 and prevent accidental activation of the pressure-based trigger mechanism 800 by way of providing a spatial buffer around the IO needle assembly 108. Until the needle cover is removed from around the IO needle assembly 108, a clinician is also prevented from touching the IO needle assembly 108, thereby enhancing sterility of the IO needle assembly 108.
Braking Mechanism
While not shown, the IO access device 100, 500, or 1100 can further include a hand-actuated braking system configured to act on the output spool 212 to slow the metal ribbon 210 from winding onto the storage spool 214. The braking system can be initiated at a start of the winding of the metal ribbon 210 onto the storage spool 214 or at any time throughout the winding.
Methods
Methods of the IO access device 100, 500, or 1100 include at least a method of using the IO access device 100, 500, or 1100.
A method of using the IO access device 100, 500, or 1100 includes at least a device-obtaining step. The device-obtaining step includes obtaining the IO access device 100, 500, or 1100.
The method can also include a skin-preparing step. The skin-preparing step includes preparing skin of a patient with an antiseptic (e.g., iodopovidone) at an insertion site of the patient. The insertion site can be about the proximal tibia, the distal tibia, or the distal femur.
The method can also include an interlock-disengaging step. The interlock-disengaging step includes disengaging an interlock mechanism set forth herein configured to prevent rotation of an IO needle and drilling therewith until the interlock mechanism is disengaged. In an example, the interlock-disengaging step can include triggering the trigger 340 to release the lock pin 342 disposed between the trigger 340 and the output spool 212. In another example, the interlock-disengaging step can include rotating the lock pin 442 configured to block axial movement of the extension pin 234 disposed in the axial channel 1024 of the output spool 212 between the lock pin 442 and the drive shaft 106. In yet another example, the interlock-disengaging step can include triggering the trigger 640 pivotally mounted on the transversely oriented pin 642 having trigger teeth configured to interlock with those of a distal-end portion of the output spool 212. In yet another example, the interlock-disengaging step can include triggering the spring-loaded trigger 1340 mounted in the exterior channel of the housing 1102 including the extension channel configured to allow the drive shaft 106 to extend from the axial channel 1024 of the output spool 212 into the extension channel when the extension channel and the axial channel 1024 are aligned. The pressure-based trigger mechanism 800 is configured to require the foregoing interlock-disengaging step before the force-applying step to activate the pressure-based trigger mechanism. That said the pressure-based trigger mechanism 800 can be configured to require the interlock-disengaging step either before or after the force-applying step to activate the pressure-based trigger mechanism. Indeed, the interlock-disengaging step can include triggering the pressure-based trigger 1240 configured to release the detent 1242 from the bore of the output spool 212.
The method can also include a needle-inserting step. The needle-inserting step includes inserting the distal end of the IO needle of the IO needle assembly 108 through the skin at the insertion site.
The method can also include a force-applying step. The force-applying step includes applying force to bone at the insertion site with the distal end of the IO needle of the IO needle assembly 108 to activate the pressure-based trigger mechanism 800. In accordance with force-applying step, the drive shaft 106 is inserted deeper into the axial channel 1024 of the output spool 212 of the constant-torque spring assembly 204, 604, or 1104, which compresses the compression spring 932 between the back side of the set of drive-shaft teeth 928 and the output spool 212. Compressing the compression spring 932 disengages the set of drive-shaft teeth 928 from the opposing set of housing teeth 930 around the aperture of the housing 102, 502, or 1102. Further in accordance with the force-applying step, the metal ribbon 210 of the constant-torque spring assembly 204, 604, or 1104 starts winding from the output spool 212 onto the storage spool 214, thereby starting rotation of the IO needle assembly 108 and the IO needle thereof by way of the drive shaft 106 coupled to the constant-torque spring assembly 204, 604, or 1104.
The method can also include a drilling step. The drilling step includes drilling through the bone until the IO needle assembly 108 enters a medullary cavity of the patient. IO access is achieved upon entering the medullary cavity of the patient with the IO access device 100, 500, or 1100.
The method can also include a force-ceasing step. The force-ceasing step includes ceasing to apply the force to the bone with the distal end of the IO needle assembly 108 or the IO needle thereof. The force-ceasing step removes at least a portion of the drive shaft 106 from the axial channel 1024 of the output spool 212, relaxes the compression spring 932, and reengages the set of drive-shaft teeth 928 with the set of housing teeth 930 to stop the rotation of the IO needle assembly 108. The force-ceasing step can be automatically initiated by the IO access device 100, 500, or 1100 after experiencing a change in tissue density (e.g., compact bone to marrow) upon entering the medullary cavity of the patient. Alternatively, the force-ceasing step can be manually initiated by a clinician after feeling the change in tissue density upon entering the medullary cavity of the patient.
The method can also include a needle-detaching step. The needle-detaching step includes detaching the IO needle assembly 108 from a remainder of the IO access device 100, 500, or 1100.
The method can also include an obturator-removing step. The obturator-removing step includes removing from the IO needle assembly 108 the obturator removably disposed in a cannula.
The method can also include a cannula-confirming step. The cannula-confirming step includes confirming the cannula is disposed in the medullary cavity by aspirating bone marrow through a syringe.
The method can also include a cannula-securing step. The cannula-securing step includes securing the cannula to the patient with a dressing.
The method can also include an infusion-starting step. The infusion-starting step includes starting IO infusion as boluses with a same or different syringe.
While some particular embodiments have been disclosed herein, and while the particular embodiments have been disclosed in some detail, it is not the intention for the particular embodiments to limit the scope of the concepts provided herein. Additional adaptations and/or modifications can appear to those of ordinary skill in the art, and, in broader aspects, these adaptations and/or modifications are encompassed as well. Accordingly, departures may be made from the particular embodiments disclosed herein without departing from the scope of the concepts provided herein.
This application claims the benefit of priority to U.S. Provisional Application No. 62/907,460, filed Sep. 27, 2019, which is incorporated by reference in its entirety into this application.
Number | Name | Date | Kind |
---|---|---|---|
2773501 | Young | Dec 1956 | A |
3071135 | Baldwin et al. | Jan 1963 | A |
3804544 | Adams | Apr 1974 | A |
3811442 | Maroth | May 1974 | A |
3815605 | Schmidt et al. | Jun 1974 | A |
3991765 | Cohen | Nov 1976 | A |
4266555 | Jamshidi | May 1981 | A |
4314565 | Lee | Feb 1982 | A |
4383530 | Bruno | May 1983 | A |
4736742 | Alexson et al. | Apr 1988 | A |
4889529 | Haindl | Dec 1989 | A |
4952207 | Lemieux | Aug 1990 | A |
4964854 | Luther | Oct 1990 | A |
4969870 | Kramer et al. | Nov 1990 | A |
5040542 | Gray | Aug 1991 | A |
5042558 | Hussey et al. | Aug 1991 | A |
5053017 | Chamuel | Oct 1991 | A |
5122114 | Miller et al. | Jun 1992 | A |
5207697 | Carusillo et al. | May 1993 | A |
5263939 | Wortrich | Nov 1993 | A |
5290267 | Zimmermann | Mar 1994 | A |
5312364 | Jacobs | May 1994 | A |
5332398 | Miller et al. | Jul 1994 | A |
5364367 | Banks et al. | Nov 1994 | A |
5372583 | Roberts et al. | Dec 1994 | A |
5406940 | Melzer et al. | Apr 1995 | A |
5451210 | Kramer et al. | Sep 1995 | A |
5554154 | Rosenberg | Sep 1996 | A |
5575780 | Saito | Nov 1996 | A |
5591188 | Waisman | Jan 1997 | A |
5601559 | Melker et al. | Feb 1997 | A |
5667509 | Westin | Sep 1997 | A |
5688249 | Chang et al. | Nov 1997 | A |
5779708 | Wu | Jul 1998 | A |
5817052 | Johnson et al. | Oct 1998 | A |
5853393 | Bogert | Dec 1998 | A |
5868711 | Kramer et al. | Feb 1999 | A |
5885293 | McDevitt | Mar 1999 | A |
5927976 | Wu | Jul 1999 | A |
5960797 | Kramer et al. | Oct 1999 | A |
5967143 | Klappenberger | Oct 1999 | A |
6117108 | Woehr et al. | Sep 2000 | A |
6135769 | Kwan | Oct 2000 | A |
6199664 | Tkaczyk et al. | Mar 2001 | B1 |
6210373 | Allmon | Apr 2001 | B1 |
6228088 | Miller et al. | May 2001 | B1 |
6247928 | Meller et al. | Jun 2001 | B1 |
6270484 | Yoon | Aug 2001 | B1 |
6273715 | Meller et al. | Aug 2001 | B1 |
6419490 | Kitchings Weathers, Jr. | Jul 2002 | B1 |
6458117 | Pollins, Sr. | Oct 2002 | B1 |
6527778 | Athanasiou et al. | Mar 2003 | B2 |
6602214 | Heinz et al. | Aug 2003 | B2 |
6626887 | Wu | Sep 2003 | B1 |
6629959 | Kuracina et al. | Oct 2003 | B2 |
6641395 | Kumar et al. | Nov 2003 | B2 |
6652490 | Howell | Nov 2003 | B2 |
6692471 | Boudreaux | Feb 2004 | B2 |
6761726 | Findlay et al. | Jul 2004 | B1 |
6814734 | Chappuis et al. | Nov 2004 | B2 |
6830562 | Mogensen et al. | Dec 2004 | B2 |
6875219 | Arramon et al. | Apr 2005 | B2 |
6905486 | Gibbs | Jun 2005 | B2 |
6916292 | Morawski et al. | Jul 2005 | B2 |
6984213 | Horner et al. | Jan 2006 | B2 |
6997907 | Safabash et al. | Feb 2006 | B2 |
7112191 | Daga | Sep 2006 | B2 |
7135031 | Flint | Nov 2006 | B2 |
7214208 | Vaillancourt et al. | May 2007 | B2 |
7347838 | Kulli | Mar 2008 | B2 |
7347840 | Findlay et al. | Mar 2008 | B2 |
7407493 | Cane' | Aug 2008 | B2 |
7458954 | Ferguson et al. | Dec 2008 | B2 |
7513888 | Sircom et al. | Apr 2009 | B2 |
7530965 | Villa et al. | May 2009 | B2 |
7534227 | Kulli | May 2009 | B2 |
7569033 | Greene et al. | Aug 2009 | B2 |
7582102 | Heinz et al. | Sep 2009 | B2 |
7588559 | Aravena et al. | Sep 2009 | B2 |
7658725 | Bialecki et al. | Feb 2010 | B2 |
7670328 | Miller | Mar 2010 | B2 |
7699807 | Faust et al. | Apr 2010 | B2 |
7699850 | Miller | Apr 2010 | B2 |
7736332 | Carlyon et al. | Jun 2010 | B2 |
7749225 | Chappuis et al. | Jul 2010 | B2 |
7798994 | Brimhall | Sep 2010 | B2 |
7811260 | Miller et al. | Oct 2010 | B2 |
7815642 | Miller | Oct 2010 | B2 |
7828774 | Harding et al. | Nov 2010 | B2 |
7833204 | Picha | Nov 2010 | B2 |
7842038 | Haddock et al. | Nov 2010 | B2 |
7850620 | Miller et al. | Dec 2010 | B2 |
7850650 | Breitweiser | Dec 2010 | B2 |
D633199 | MacKay et al. | Feb 2011 | S |
7899528 | Miller et al. | Mar 2011 | B2 |
7905857 | Swisher | Mar 2011 | B2 |
7951089 | Miller | May 2011 | B2 |
7955297 | Radmer et al. | Jun 2011 | B2 |
7972339 | Nassiri et al. | Jul 2011 | B2 |
7976502 | Baid | Jul 2011 | B2 |
8038664 | Miller et al. | Oct 2011 | B2 |
8043253 | Kraft et al. | Oct 2011 | B2 |
8043265 | Abe et al. | Oct 2011 | B2 |
8142365 | Miller | Mar 2012 | B2 |
8152771 | Mogensen et al. | Apr 2012 | B2 |
8162904 | Takano et al. | Apr 2012 | B2 |
8167899 | Justis et al. | May 2012 | B2 |
8235945 | Baid | Aug 2012 | B2 |
8246584 | Aravena et al. | Aug 2012 | B2 |
8273053 | Saltzstein | Sep 2012 | B2 |
8292891 | Browne et al. | Oct 2012 | B2 |
8308693 | Miller et al. | Nov 2012 | B2 |
8333769 | Browne et al. | Dec 2012 | B2 |
8356598 | Rumsey | Jan 2013 | B2 |
8357163 | Sidebotham et al. | Jan 2013 | B2 |
8388541 | Messerly et al. | Mar 2013 | B2 |
8388623 | Browne et al. | Mar 2013 | B2 |
8414539 | Kuracina et al. | Apr 2013 | B1 |
8419683 | Miller et al. | Apr 2013 | B2 |
8480632 | Miller et al. | Jul 2013 | B2 |
8480672 | Browne et al. | Jul 2013 | B2 |
8486027 | Findlay et al. | Jul 2013 | B2 |
8506568 | Miller | Aug 2013 | B2 |
8535271 | Fuchs et al. | Sep 2013 | B2 |
8562615 | Browne et al. | Oct 2013 | B2 |
8641715 | Miller | Feb 2014 | B2 |
8647257 | Jansen et al. | Feb 2014 | B2 |
8656929 | Miller et al. | Feb 2014 | B2 |
8657790 | Tai et al. | Feb 2014 | B2 |
8663231 | Browne et al. | Mar 2014 | B2 |
8668698 | Miller et al. | Mar 2014 | B2 |
8684978 | Miller et al. | Apr 2014 | B2 |
8690791 | Miller | Apr 2014 | B2 |
8715287 | Miller | May 2014 | B2 |
8771230 | White et al. | Jul 2014 | B2 |
8781555 | Burnside et al. | Jul 2014 | B2 |
8801663 | Woehr | Aug 2014 | B2 |
8812101 | Miller et al. | Aug 2014 | B2 |
8814835 | Baid | Aug 2014 | B2 |
8821493 | Anderson | Sep 2014 | B2 |
8828001 | Stearns et al. | Sep 2014 | B2 |
8849382 | Cox et al. | Sep 2014 | B2 |
8870872 | Miller | Oct 2014 | B2 |
8936575 | Moulton | Jan 2015 | B2 |
8944069 | Miller et al. | Feb 2015 | B2 |
8974410 | Miller et al. | Mar 2015 | B2 |
8998848 | Miller et al. | Apr 2015 | B2 |
9072543 | Miller et al. | Jul 2015 | B2 |
9078637 | Miller | Jul 2015 | B2 |
9149625 | Woehr et al. | Oct 2015 | B2 |
9173679 | Tzachar et al. | Nov 2015 | B2 |
9226756 | Teisen et al. | Jan 2016 | B2 |
9278195 | Erskine | Mar 2016 | B2 |
9295487 | Miller et al. | Mar 2016 | B2 |
9302077 | Domonkos et al. | Apr 2016 | B2 |
9314232 | Stark | Apr 2016 | B2 |
9314270 | Miller | Apr 2016 | B2 |
9358348 | Weilbacher et al. | Jun 2016 | B2 |
9393031 | Miller | Jul 2016 | B2 |
9414815 | Miller et al. | Aug 2016 | B2 |
9415192 | Kuracina et al. | Aug 2016 | B2 |
9421345 | Woehr et al. | Aug 2016 | B2 |
9427555 | Baid | Aug 2016 | B2 |
9433400 | Miller | Sep 2016 | B2 |
9439667 | Miller | Sep 2016 | B2 |
9439702 | Arthur et al. | Sep 2016 | B2 |
9445743 | Kassab | Sep 2016 | B2 |
9451968 | Miller et al. | Sep 2016 | B2 |
9451983 | Windolf | Sep 2016 | B2 |
9456766 | Cox et al. | Oct 2016 | B2 |
9480483 | Browne et al. | Nov 2016 | B2 |
9492097 | Wilkes et al. | Nov 2016 | B2 |
9504477 | Miller et al. | Nov 2016 | B2 |
9521961 | Silverstein et al. | Dec 2016 | B2 |
9545243 | Miller et al. | Jan 2017 | B2 |
9554716 | Burnside et al. | Jan 2017 | B2 |
9615816 | Woodard | Apr 2017 | B2 |
9615838 | Nino et al. | Apr 2017 | B2 |
9623210 | Woehr | Apr 2017 | B2 |
9636031 | Cox | May 2017 | B2 |
9636484 | Baid | May 2017 | B2 |
9649048 | Cox et al. | May 2017 | B2 |
9681889 | Greenhalgh et al. | Jun 2017 | B1 |
9687633 | Teoh | Jun 2017 | B2 |
9717564 | Miller et al. | Aug 2017 | B2 |
9730729 | Kilcoin et al. | Aug 2017 | B2 |
9782546 | Woehr | Oct 2017 | B2 |
9839740 | Beamer et al. | Dec 2017 | B2 |
9844646 | Knutsson | Dec 2017 | B2 |
9844647 | Knutsson | Dec 2017 | B2 |
9872703 | Miller et al. | Jan 2018 | B2 |
9883853 | Woodard et al. | Feb 2018 | B2 |
9895512 | Kraft et al. | Feb 2018 | B2 |
9962211 | Csernatoni | May 2018 | B2 |
10052111 | Miller et al. | Aug 2018 | B2 |
10092320 | Morgan et al. | Oct 2018 | B2 |
10159531 | Misener et al. | Dec 2018 | B2 |
10172538 | Kassab | Jan 2019 | B2 |
10413211 | Kassab | Sep 2019 | B2 |
10449330 | Newman et al. | Oct 2019 | B2 |
10893887 | Blanchard | Jan 2021 | B2 |
10980522 | Muse | Apr 2021 | B2 |
20030060781 | Mogensen et al. | Mar 2003 | A1 |
20030225344 | Miller | Dec 2003 | A1 |
20030225411 | Miller | Dec 2003 | A1 |
20030229308 | Tsals et al. | Dec 2003 | A1 |
20040010236 | Morawski et al. | Jan 2004 | A1 |
20040059317 | Hermann | Mar 2004 | A1 |
20040220497 | Findlay et al. | Nov 2004 | A1 |
20040243135 | Koseki | Dec 2004 | A1 |
20050035014 | Cane | Feb 2005 | A1 |
20050101912 | Faust et al. | May 2005 | A1 |
20050113866 | Heinz et al. | May 2005 | A1 |
20050131345 | Miller | Jun 2005 | A1 |
20060015066 | Turieo et al. | Jan 2006 | A1 |
20060025723 | Ballarini | Feb 2006 | A1 |
20070049945 | Miller | Mar 2007 | A1 |
20070191772 | Wojcik | Aug 2007 | A1 |
20070270775 | Miller et al. | Nov 2007 | A1 |
20080015467 | Miller | Jan 2008 | A1 |
20080154304 | Crawford et al. | Jun 2008 | A1 |
20080208136 | Findlay et al. | Aug 2008 | A1 |
20080215056 | Miller et al. | Sep 2008 | A1 |
20080221580 | Miller et al. | Sep 2008 | A1 |
20080257359 | Rumsey | Oct 2008 | A1 |
20090048575 | Waters | Feb 2009 | A1 |
20090054808 | Miller | Feb 2009 | A1 |
20090093830 | Miller | Apr 2009 | A1 |
20090204024 | Miller | Aug 2009 | A1 |
20090306697 | Fischvogt | Dec 2009 | A1 |
20100004606 | Hansen | Jan 2010 | A1 |
20100204649 | Miller et al. | Aug 2010 | A1 |
20100286607 | Saltzstein | Nov 2010 | A1 |
20100298830 | Browne et al. | Nov 2010 | A1 |
20100298831 | Browne et al. | Nov 2010 | A1 |
20100312246 | Browne et al. | Dec 2010 | A1 |
20110004163 | Vaidya | Jan 2011 | A1 |
20110028976 | Miller | Feb 2011 | A1 |
20120202180 | Stock et al. | Aug 2012 | A1 |
20120203154 | Tzachar | Aug 2012 | A1 |
20120274280 | Yip et al. | Nov 2012 | A1 |
20130030439 | Browne et al. | Jan 2013 | A1 |
20130041345 | Kilcoin et al. | Feb 2013 | A1 |
20130072938 | Browne et al. | Mar 2013 | A1 |
20130102924 | Findlay et al. | Apr 2013 | A1 |
20130158484 | Browne et al. | Jun 2013 | A1 |
20130178807 | Baid | Jul 2013 | A1 |
20140031674 | Newman et al. | Jan 2014 | A1 |
20140031794 | Windolf | Jan 2014 | A1 |
20140039400 | Browne et al. | Feb 2014 | A1 |
20140081281 | Felder | Mar 2014 | A1 |
20140142577 | Miller | May 2014 | A1 |
20140188133 | Misener | Jul 2014 | A1 |
20140262408 | Woodard | Sep 2014 | A1 |
20140262880 | Yoon | Sep 2014 | A1 |
20140276205 | Miller et al. | Sep 2014 | A1 |
20140276206 | Woodward | Sep 2014 | A1 |
20140276471 | Emery et al. | Sep 2014 | A1 |
20140276833 | Larsen et al. | Sep 2014 | A1 |
20140276839 | Forman et al. | Sep 2014 | A1 |
20140343454 | Miller et al. | Nov 2014 | A1 |
20140343497 | Baid | Nov 2014 | A1 |
20150011941 | Saeki | Jan 2015 | A1 |
20150045732 | Murphy et al. | Feb 2015 | A1 |
20150080762 | Kassab et al. | Mar 2015 | A1 |
20150126931 | Holm et al. | May 2015 | A1 |
20150196737 | Baid | Jul 2015 | A1 |
20150223786 | Morgan et al. | Aug 2015 | A1 |
20150230823 | Morgan et al. | Aug 2015 | A1 |
20150238733 | bin Abdulla | Aug 2015 | A1 |
20150342615 | Keinan et al. | Dec 2015 | A1 |
20150342756 | Bays et al. | Dec 2015 | A1 |
20150351797 | Miller et al. | Dec 2015 | A1 |
20150366569 | Miller | Dec 2015 | A1 |
20160022282 | Miller et al. | Jan 2016 | A1 |
20160022284 | Lele et al. | Jan 2016 | A1 |
20160058432 | Miller | Mar 2016 | A1 |
20160066954 | Miller et al. | Mar 2016 | A1 |
20160136410 | Aklog et al. | May 2016 | A1 |
20160183974 | Miller | Jun 2016 | A1 |
20160184509 | Miller et al. | Jun 2016 | A1 |
20160235949 | Baid | Aug 2016 | A1 |
20160354539 | Tan et al. | Dec 2016 | A1 |
20160361519 | Teoh et al. | Dec 2016 | A1 |
20170020533 | Browne et al. | Jan 2017 | A1 |
20170020560 | Van Citters et al. | Jan 2017 | A1 |
20170021138 | Sokolski | Jan 2017 | A1 |
20170043135 | Knutsson | Feb 2017 | A1 |
20170105763 | Karve et al. | Apr 2017 | A1 |
20170136217 | Riesenberger et al. | May 2017 | A1 |
20170151419 | Sonksen | Jun 2017 | A1 |
20170156740 | Stark | Jun 2017 | A9 |
20170156751 | Csernatoni | Jun 2017 | A1 |
20170209129 | Fagundes et al. | Jul 2017 | A1 |
20170231644 | Anderson | Aug 2017 | A1 |
20170303962 | Browne et al. | Oct 2017 | A1 |
20170303963 | Kilcoin et al. | Oct 2017 | A1 |
20180049772 | Brockman | Feb 2018 | A1 |
20180092662 | Rioux et al. | Apr 2018 | A1 |
20180116551 | Newman et al. | May 2018 | A1 |
20180116642 | Woodard et al. | May 2018 | A1 |
20180116693 | Blanchard et al. | May 2018 | A1 |
20180117262 | Islam | May 2018 | A1 |
20180125465 | Muse et al. | May 2018 | A1 |
20180154112 | Chan et al. | Jun 2018 | A1 |
20180221003 | Hibner et al. | Aug 2018 | A1 |
20180228509 | Fojtik | Aug 2018 | A1 |
20180242982 | Laughlin et al. | Aug 2018 | A1 |
20190069812 | Isaacson et al. | Mar 2019 | A1 |
20190282244 | Muse | Sep 2019 | A1 |
20200054347 | Coppedge et al. | Feb 2020 | A1 |
20200054410 | Pfotenhauer et al. | Feb 2020 | A1 |
20200113584 | McGinley et al. | Apr 2020 | A1 |
20200129186 | Miller et al. | Apr 2020 | A1 |
20200197121 | Morey et al. | Jun 2020 | A1 |
20210093358 | Lindekugel et al. | Apr 2021 | A1 |
20210322055 | Lindekugel et al. | Oct 2021 | A1 |
20210375445 | Lindekugel et al. | Dec 2021 | A1 |
20220240976 | Pett et al. | Aug 2022 | A1 |
20220249104 | Pett et al. | Aug 2022 | A1 |
Number | Date | Country |
---|---|---|
108742795 | Nov 2018 | CN |
110547847 | Dec 2019 | CN |
0923961 | Jun 1999 | EP |
2390297 | Nov 2012 | ES |
2581548 | Nov 1986 | FR |
2018509969 | Apr 2018 | JP |
1997024151 | Jul 1997 | WO |
1998052638 | Feb 1999 | WO |
2005046769 | May 2005 | WO |
05041790 | May 2005 | WO |
2005053506 | Jun 2005 | WO |
2005072625 | Aug 2005 | WO |
2007018809 | Feb 2007 | WO |
2008002961 | Jan 2008 | WO |
2008016757 | Feb 2008 | WO |
08033873 | Mar 2008 | WO |
2008033871 | Mar 2008 | WO |
2008033872 | Mar 2008 | WO |
2008033874 | Mar 2008 | WO |
2008054894 | May 2008 | WO |
2008086258 | Jul 2008 | WO |
2008124206 | Oct 2008 | WO |
2008124463 | Oct 2008 | WO |
2008130893 | Oct 2008 | WO |
2008134355 | Nov 2008 | WO |
2008144379 | Nov 2008 | WO |
2009070896 | Jun 2009 | WO |
2010043043 | Apr 2010 | WO |
2011097311 | Aug 2011 | WO |
2011139294 | Nov 2011 | WO |
2013009901 | Jan 2013 | WO |
2013173360 | Nov 2013 | WO |
2014142948 | Sep 2014 | WO |
2014144239 | Sep 2014 | WO |
2014144262 | Sep 2014 | WO |
2014144489 | Sep 2014 | WO |
2014144757 | Sep 2014 | WO |
2014144797 | Sep 2014 | WO |
2015177612 | Nov 2015 | WO |
16033016 | Mar 2016 | WO |
16053834 | Apr 2016 | WO |
2016085973 | Jun 2016 | WO |
2016163939 | Oct 2016 | WO |
18006045 | Jan 2018 | WO |
2018025094 | Feb 2018 | WO |
2018058036 | Mar 2018 | WO |
2018075694 | Apr 2018 | WO |
18098086 | May 2018 | WO |
2018165334 | Sep 2018 | WO |
2018165339 | Sep 2018 | WO |
2019051343 | Mar 2019 | WO |
2019164990 | Aug 2019 | WO |
2021011795 | Jan 2021 | WO |
2021016122 | Jan 2021 | WO |
2021062385 | Apr 2021 | WO |
2021062038 | Apr 2021 | WO |
2021062394 | Apr 2021 | WO |
2022165232 | Aug 2022 | WO |
Entry |
---|
PCT/US2021/ 046573 filed Aug. 18, 2021 International Search Report and Written Opinion dated Nov. 30, 2021. |
PCT/US2021/ 047378 filed Aug. 24, 2021 International Search Report and Written Opinion dated Nov. 17, 2021. |
PCT/US2021/ 048542 filed Aug. 31, 2021 International Search Report and Written Opinion dated Dec. 9, 2021. |
PCT/US2021/ 049475 filed Sep. 8, 2021 International Search Report and Written Opinion dated Dec. 9, 2021. |
U.S. Appl. No. 17/031,650, filed Sep. 24, 2020 Non-Final Office Action dated Jan. 19, 2022. |
Ekchian Gregory James et al: “Quantitative Methods for In Vitro and In Vivo Characterization of Cell and Tissue Metabolism”, Jun. 11, 2018, XP055839281, retrieved from the internet on Sep. 8, 2021 : URL: https://dspace.mit.edu/bitstream/handle/1721.1/117890/1051211749-MIT.pdf?sequence=1&isAllowed-y. |
PCT/US2021/ 035232 filed Jun. 1, 2021 International Search Report and Written Opinion dated Oct. 19, 2021. |
PCT/US2021/035475 filed Jun. 2, 2021 International Search Report and Written Opinion dated Sep. 17, 2021. |
PCT/US2021/028114 filed Apr. 20, 2021 International Search Report and Written Opinion dated Jul. 12, 2021. |
PCT/US2020/ 053119 filed Sep. 28, 2020 International Search Report and Written Opinion dated Jan. 5, 2021. |
PCT/US2020/052558 filed Sep. 24, 2020 International Search Report and Written Opinion dated Feb. 11, 2021. |
PCT/US2020/053135 filed Sep. 28, 2020 International Search Report and Written Opinion dated Dec. 18, 2020. |
PCT/US2022/014391 filed Jan. 28, 2022 International Search Report and Written Opinion dated Apr. 14, 2022. |
PCT/US2022/015686 filed Feb. 8, 2022 International Search Report and Written Opinion dated May 25, 2022. |
U.S. Appl. No. 17/031,650, filed Sep. 24, 2020 Final Office Action dated Jul. 20, 2022. |
PCT/US2019/ 018828 filed Feb. 20, 2019 International Preliminary Report on Patentability dated Aug. 27, 2020. |
PCT/US2019/ 018828 filed Feb. 20, 2019 International Search Report and Written Opinion dated Jun. 13, 2019. |
Number | Date | Country | |
---|---|---|---|
20210093357 A1 | Apr 2021 | US |
Number | Date | Country | |
---|---|---|---|
62907460 | Sep 2019 | US |