The present invention relates to image forming apparatus and fuser members and, more particularly, to methods of making fuser members.
In electrostatographic fixing systems, fuser members are coated with a non-adhesive coating including fluoroelastomer polymer to overcome toner staining, i.e. the adhesion of the heat softened toner particles onto the surface of the fuser member. It is well known that the performance of the fuser members is dependent on the crosslink density of the fluoroelastomer polymer topcoat of the fuser member. Unfortunately, there is no single value of crosslink density that can maximize the performance of all the key characteristics simultaneously. For instance, it is known that the coating toughness increases if the crosslink density is decreased. This increased toughness improves wear performance. However, the fluoroelastomer polymer topcoat is more susceptible to toner staining and contamination at these lower crosslink density levels. Thus, there is a conflict on how to select the nominal crosslink density of the topcoat.
Accordingly, there is a need to overcome these and other problems of prior art to provide fuser members with optimized crosslink density and methods of making them.
In accordance with various embodiments, there is a fuser member including a substrate having a first edge and a second edge and a continuous fluoroelastomer layer disposed over a surface of the substrate. The continuous fluoroelastomer layer can include a first region having a first crosslink density and at least a second region having a second crosslink density, wherein the first region can be disposed at an interior portion relative to the first and second edges of the substrate and the at least second region can be disposed proximate to the first region.
According to various embodiments, there is a method of making a fuser member. The method can include providing a substrate having a longitudinal axis, providing a first flow coating solution including a fluoroelastomer polymer, and providing a second flow coating solution including a crosslinking agent. The method can also include mixing the first flow coating solution and the second flow coating solution to form a third flow coating solution. The method can further include forming a continuous fluoroelastomer layer over a surface of the substrate by applying the third flow coating solution onto the substrate from an applicator in a spiral pattern by rotating the substrate in a horizontal position about the longitudinal axis and moving the applicator along the longitudinal axis, wherein the crosslinking agent concentration can be varied along the longitudinal axis by changing the ratio of the first flow coating solution and the second flow coating solution in the third flow coating solution.
According to another embodiment, there is an image forming apparatus including a receptor to receive an electrostatic latent image, at least one charging component for uniformly charging the receptor, at least one imaging component to form a latent image on the receptor, and at least one development component for converting the latent image to a visible image on the receptor. The image forming apparatus can also include a transfer component for transferring the visible image onto a media and a fuser member for fusing the visible image onto the media. The fuser member can include a substrate having a first edge and a second edge and a continuous fluoroelastomer layer disposed over a surface of the substrate, the continuous fluoroelastomer layer including a first region having a first crosslink density and at least a second region having a second crosslink density, wherein the first region can be disposed at an interior portion relative to the first and second edges of the substrate and the at least second region can be disposed proximate to the first region.
According to yet another embodiment, there is a method of making a fuser member. The method can include providing a substrate having a longitudinal axis, providing a first flow coating solution including a fluoroelastomer polymer and a first amount of a crosslinking agent, and providing a second flow coating solution including the fluoroelastomer polymer and a second amount of the crosslinking agent. The method can also include mixing the first flow coating solution and the second flow coating solution to form a third flow coating solution. The method can further include forming a continuous fluoroelastomer layer over a surface of the substrate by applying the third flow coating solution onto the substrate from an applicator in a spiral pattern by rotating the substrate in a horizontal position about the longitudinal axis and moving the applicator along the longitudinal axis, wherein the crosslinking agent concentration can be varied along the longitudinal axis by changing the ratio of the first flow coating solution and the second flow coating solution in the third flow coating solution.
Additional advantages of the embodiments will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The advantages will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description, serve to explain the principles of the invention.
Reference will now be made in detail to the present embodiments, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements. Moreover, all ranges disclosed herein are to be understood to encompass any and all sub-ranges subsumed therein. For example, a range of “less than 10” can include any and all sub-ranges between (and including) the minimum value of zero and the maximum value of 10, that is, any and all sub-ranges having a minimum value of equal to or greater than zero and a maximum value of equal to or less than 10, e.g., 1 to 5. In certain cases, the numerical values as stated for the parameter can take on negative values. In this case, the example value of range stated as “less that 10” can assume negative values, e.g. −1, −2, −3, −10, −20, −30, etc.
As used herein, the term “fuser member” is used interchangeably with the terms including fuser rolls, fuser belts, and fuser films.
In various embodiments, the continuous fluoroelastomer layer 190 can include fluoroelastomer polymer selected from the group consisting of copolymers of vinylidene fluoride, hexafluoropropylene, and tetrafluorothylene; and terpolymers of vinylidene fluoride, hexafluoropropylene, and tetrafluorothylene. Other suitable polymers are described in detail in the U.S. Pat. No. 5,945,223, the disclosure of which is incorporated herein in its entirety.
Any suitable material that has satisfactory heat transfer characteristics can be used as the substrate 180 for the fuser member 100. The fuser member 100 can be a roll, belt, flat surface or other suitable shape used in the fixing of thermoplastic toner images to a suitable media. The fuser member 100 can be a pressure member or a release agent donor member, preferably in the form of a cylindrical roll, belt, or film. Typically, the roll fuser member can be made of a hollow cylindrical metal core, such as copper, aluminum, steel, or certain plastic materials chosen to maintain rigidity, structural integrity, as well as being capable of having a fluoroelastomer coated thereon and adhered firmly thereto.
According to various embodiments, there is a method 300 of making a fuser member 100, 200 as shown in
Referring back to
The third coating solution 202″ can be applied to the periphery 204 in a spiral fashion by rotating the fuser member 200 about its longitudinal axis 216 in a horizontal position, as shown by the arrow 270 while translating the applicator 212 in a direction 268 parallel to the longitudinal axis 216 of the fuser member 200 along the length of the substrate 280 in a horizontal position, as shown in
By accurately controlling the amount of the third coating solution 202″ that can be released at the nozzle 214 of the applicator 212, substantially all of the third coating solution 202″ that passes through the nozzle 214 can adhere to the fuser member 200. “Substantially all” as used herein means from about 80 to about 100 percent of the coating initially released from the nozzle will adhere to the fuser member. Furthermore, by changing the ratio of the amounts of the first coating solution 202 and the second coating solution 202′ in the third coating solution 202″, one can obtain a desired crosslinking agent concentration profile along the longitudinal axis 216.
In various embodiments, using the above described flow coating process, a continuous fluoroelastomer layer 190 having a thickness from about 5 μm to about 250 μm with a tolerance of ±2 μm can be formed over the substrate 180. However, one of ordinary skill in the art would know that subsequent post coating operations, such as, for example, grinding and/or polishing can be required to obtain the preferred dull or flat finish.
Referring back to
The exemplary fuser member 200 shown in the apparatus 201 is a fuser roll. However, the flow coating process described above can be used to make fuser belts or films. The fuser belts or films can be preferably mounted on a cylindrical mandrill and processed in a manner process similar to that heretofore described, with the outer surface of the belt or film being coated.
According to various embodiments, there is a method 400 of making a fuser member 100, 200 as shown in
According to various embodiments, there is an image forming apparatus 600 as shown in
Examples are set forth hereinbelow and are illustrative of different amounts and types of reactants and reaction conditions that can be utilized in practicing the disclosure. It will be apparent, however, that the disclosure can be practiced with other amounts and types of reactants and reaction conditions than those used in the examples, and the resulting devices various different properties and uses in accordance with the disclosure above and as pointed out hereinafter.
About 60 grams of VITON GF®, a terpolymer of vinylidene fluoride, hexafluoropropylene and tetrafluoroethylene (DuPont, Wilmington, Del.) and about 197.8 grams of methyl isobutyl ketone are stirred at ambient temperature of about 25° C. using a Union Process O1 attritor (Union Process, Inc., Akron, Ohio) containing about 2,500 grams of about ⅜ inch steel shots for about 30 minutes to form a polymer solution. The attritor is externally cooled with a water jacket to maintain the solution temperature at about 25° C. Without external cooling, the temperature of the solution in the attritor can rise to about 33° C. The resultant mixture is then filtered through about ⅛ inch coarse nylon filter cloth.
A mixture of about 1.2 grams (about 0.407 weight %) of magnesium hydroxide (Merck and Company, MAGLITE D™), about 0.6 gram (about 0.203 weight %) of calcium hydroxide (Baker reagent grade), and about 3.5 grams of VITON CURATIVE 50® (DuPont) and about 100 grams of methyl isobutyl ketone are stirred at ambient temperature of about 25° C. using a Union Process O1 attritor containing about 2,500 grams of about ⅜ inch steel shots for 30 minutes to form a curative solution.
Mix the first flow coating solution (Part A) of Prophetic example 1 with the second flow coating solution (Part B) of Prophetic example 2 at the flow coating head to form a third flow coating solution. Apply the third flow coating solution onto a metal roll, such that the VITON CURATIVE 50® concentration in the coating varies from about 4-5 weight % in the wear resistance region (low cure zone) to about 5-7 weight % in the stain resistant region (high cure zone). The coated metal roll is then thermally cured for about 4 hours at about 45° C., about 2 hours at about 75° C., about 16 hours at about 95° C., followed by ramp heating to about 400° C. for about 16 hours.
About 60 grams of VITON GF®, a terpolymer of vinylidene fluoride, hexafluoropropylene and tetrafluoroethylene (DuPont) and about 197.8 grams of methyl isobutyl ketone are stirred at ambient temperature of about 25° C. using a Union Process O1 attritor containing about 2,500 grams of about ⅜ inch steel shots for about 30 minutes to form a polymer solution. The attritor is externally cooled with a water jacket to maintain the solution temperature at about 25° C. Without external cooling, the temperature of the solution in the attritor can rise to about 33° C. A mixture of about 1.2 grams (about 0.407 weight %) of magnesium hydroxide (Merck and Company, MAGLITE D™), about 0.6 gram (about 0.203 weight %) of calcium hydroxide (Baker reagent grade), and about 3.5 grams of VITON CURATIVE 50® (DuPont) are added and stirring is continued for about 15 more minutes. About 23.62 grams (about 8 weight %) of methanol is then added, and stirring is continued for 15 additional minutes. The resultant mixture is then filtered through ⅛ inch coarse nylon filter cloth.
About 60 grams of VITON GF®, a terpolymer of vinylidene fluoride, hexafluoropropylene and tetrafluoroethylene (DuPont, Wilmington, Del.) and about 197.8 grams of methyl isobutyl ketone are stirred at ambient temperature of about 25° C. using a Union Process O1 attritor containing about 2,500 grams of about ⅜ inch steel shots for 30 minutes to form a polymer solution. The attritor is externally cooled with a water jacket to maintain the solution temperature at about 25° C. Without external cooling, the temperature of the solution in the attritor can rise to about 33° C. A mixture of about 1.2 grams (about 0.407 weight %) of magnesium hydroxide (Merck and Company, MAGLITE D™), about 0.6 gram (about 0.203 weight %) of calcium hydroxide (Baker reagent grade), and about 2.7 grams of VITON CURATIVE 50® (DuPont) are added and stirring is continued for about 15 more minutes. About 23.62 grams (about 8 weight %) of methanol is then added, and stirring is continued for about 15 additional minutes. The resultant mixture is then filtered through about ⅛ inch coarse nylon filter cloth.
Mix the first flow coating solution (Part C) of Prophetic Example 4 with the second flow coating solution (Part D) of Prophetic Example 5 at the flow coating head to form a third flow coating solution. Apply the third flow coating solution onto a metal roll, such that the VITON CURATIVE 50® concentration in the coating varies from about 4-5 weight % in the wear resistance region (low cure zone) to about 5-7 weight % in the stain resistant region (high cure zone). The coated metal roll is then thermally cured for about 4 hours at about 45° C., about 2 hours at about 75° C., about 16 hours at about 95° C., followed by ramp heating to about 400° C. for about 16 hours.
While the invention has been illustrated respect to one or more implementations, alterations and/or modifications can be made to the illustrated examples without departing from the spirit and scope of the appended claims. In addition, while a particular feature of the invention may have been disclosed with respect to only one of several implementations, such feature may be combined with one or more other features of the other implementations as may be desired and advantageous for any given or particular function. Furthermore, to the extent that the terms “including”, “includes”, “having”, “has”, “with”, or variants thereof are used in either the detailed description and the claims, such terms are intended to be inclusive in a manner similar to the term “comprising.” As used herein, the phrase “one or more of”, for example, A, B, and C means any of the following: either A, B, or C alone; or combinations of two, such as A and B, B and C, and A and C; or combinations of three A, B and C.
Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.
This application is a division of U.S. patent application Ser. No. 12/050,668 filed Mar. 18, 2008, the disclosure of which is incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 12050668 | Mar 2008 | US |
Child | 13356145 | US |