Blood vessels can become partially or completely occluded by emboli, e.g., thrombi, thereby impeding or disrupting the flow of blood therethrough. For example, intracranial arteries can become occluded by thromboembolisms. Disruption of blood flow by the occlusion can prevent oxygen and nutrients from being delivered to tissues downstream of the occlusion. Deprivation of oxygen and nutrients to tissue distal to an occlusion can impair proper function of the tissue, and may result in cellular death. Cellular death increases with duration of the occlusion.
At least one aspect of the disclosure provides methods and apparatuses for advancing an intervention member (e.g., a thrombus retrieval device, such as a stent or mesh device) using a delivery or core member to an endovascular treatment site in the body.
The subject technology is illustrated, for example, according to various aspects described below. Various examples of aspects of the subject technology are described as numbered embodiments (1, 2, 3, etc.) for convenience. These are provided as examples and do not limit the subject technology. It is noted that any of the dependent embodiments may be combined in any combination with each other or one or more other independent embodiments, to form an independent embodiment. The other embodiments can be presented in a similar manner. The following is a non-limiting summary of some embodiments presented herein:
Clause 1. A medical device comprising: a manipulation member comprising a tubular member having an elongate tubular body and a continuous helical cut extending along the body, the cut having an axial length of at least 50 cm, the cut comprising first and second helical slots joined by a connection aperture, wherein a pitch of the cut varies along the first and second helical slots; and an intervention member configured for mobilizing thrombus, the intervention member being coupled to a distal portion of the manipulation member and advanceable via the manipulation member.
Clause 2. The device of Clause 1, wherein a segment of the cut is configured such that the pitch of the cut changes in magnitude, at both ends of the segment, by 0.2 mm/rotation or less.
Clause 3. The device of Clause 2, wherein the segment is located 10 cm or more from an endpoint of the cut.
Clause 4. The device of Clause 2, wherein the segment is located 20 cm or more from an endpoint of the cut.
Clause 5. The device of Clause 2, wherein the length of the segment is about 5 mm or less.
Clause 6. The device of Clause 2, wherein the pitch of the cut changes in magnitude at both ends of the segment, by 0.1 mm/rotation or less.
Clause 7. The device of any of the previous Clauses, wherein the cut comprises a third helical slot, joined to the second helical slot by a second connection aperture.
Clause 8. The device of Clause 7, wherein the pitch of the cut varies along the third helical slot.
Clause 9. The device of any of the previous Clauses, wherein the tube has a diameter of 2.3 mm or less.
Clause 10. The device of any of the previous Clauses, wherein the tube has a wall thickness of 0.010″ or less.
Clause 11. The device of any of the previous Clauses, wherein the first and second helical slots each have an axial length of less than or equal to about 15 cm.
Clause 12. The device of any of the previous Clauses, wherein the intervention member comprises a mesh having a plurality of cells in a generally tubular configuration.
Clause 13. The device of any of the previous Clauses, wherein the intervention member comprises an expandable body having a plurality of struts.
Clause 14. The device of Clause 13, wherein the struts include radially peripherally located struts.
Clause 15. The device of Clause 13, wherein the struts include radially transversely extending struts.
Clause 16. The device of any of the previous Clauses, wherein the intervention member comprises at least one expandable wire.
Clause 17. The device of any of the previous Clauses, wherein the intervention member comprises a longitudinally connected plurality of expandable bodies.
Clause 18. The device of any of the previous Clauses, wherein the intervention member is substantially permanently coupled to the manipulation member.
Clause 19. The device of any of the previous Clauses, wherein the intervention member is coupled to a distal tip of the manipulation member and extends distally from the distal tip.
Clause 20. The device of any of the previous Clauses, wherein the intervention member comprises a thrombus removal device.
Clause 21. A vascular intervention system sized for insertion into a blood vessel, the system comprising a manipulation member and an intervention member coupled to the manipulation member, the manipulation member comprising a tube with plurality of slots connected in an end-to-end manner to form a continuous helical void extending along the length of the tube, wherein adjoining slots intersect with a connection aperture extending through a wall of the tube and having a diameter greater than respective widths of the adjoining slots, the intervention member being configured for mobilizing thrombus.
Clause 22. The system of Clause 21, wherein a pitch of the helical void varies along the length of the tube.
Clause 23. The system of any of the Clauses 21 to 22, wherein a segment of the void is configured such that the pitch of the void changes in magnitude, at both ends of the segment, by 0.2 mm/rotation or less.
Clause 24. The system of Clause 23, wherein the pitch of the void changes in magnitude at both ends of the segment, by 0.1 mm/rotation or less.
Clause 25. The system of Clause 23, wherein the length of the segment is 5 mm or less.
Clause 26. The system of Clause 23, wherein the length of the segment is 3 mm or less.
Clause 27. The system of Clause 23, wherein the length of the segment is 2 mm or less.
Clause 28. The system of Clause 23, wherein the length of the segment is about 1.0 mm.
Clause 29. The system of any of the Clauses 23 to 28, wherein the segment is located 10 cm or more from an endpoint of the void.
Clause 30. The system of any of the Clauses 23 to 28, wherein the segment is located 20 cm or more from an endpoint of the void.
Clause 31. The system of any of the Clauses 23 to 28, wherein the segment is located 30 cm or more from an endpoint of the void.
Clause 32. The system of any of the Clauses 23 to 31, wherein the segment is a first segment, and the pitch of the void changes in magnitude from the first segment to an adjacent second segment by 0.1 mm/rotation or less.
Clause 33. The system of any of the Clauses 23 to 31, wherein the segment is a first segment, and the pitch of the void changes in magnitude from the first segment to an adjacent second segment by 0.01 mm/rotation or less.
Clause 34. The system of any of the Clauses 23 to 31, wherein the segment is a first segment, and the pitch of the void changes in magnitude from the first segment to an adjacent second segment by 0.005 mm/rotation or less.
Clause 35. The system of any of the Clauses 21 to 34, wherein each of the plurality of slots has an axial length of less than or equal to about 15 cm.
Clause 36. The system of any of the Clauses 21 to 35, wherein the intervention member comprises a mesh having a plurality of cells in a generally tubular configuration.
Clause 37. The system of any of the Clauses 21 to 36, wherein the intervention member comprises an expandable body having a plurality of struts.
Clause 38. The system of Clause 37, wherein the struts include radially peripherally located struts.
Clause 39. The system of Clause 37, wherein the struts include radially transversely extending struts.
Clause 40. The system of any of the Clauses 21 to 39, wherein the intervention member comprises at least one expandable wire.
Clause 41. The system of any of the Clauses 21 to 40, wherein the intervention member comprises a longitudinally connected plurality of expandable bodies.
Clause 42. The system of any of the Clauses 21 to 41, wherein the intervention member is substantially permanently coupled to the manipulation member.
Clause 43. The system of any of the Clauses 21 to 42, wherein the intervention member is coupled to a distal tip of the manipulation member and extends distally from the distal tip.
Clause 44. The system of any of the Clauses 21 to 43, wherein the intervention member comprises a thrombus removal device.
Clause 45. A treatment method, comprising: inserting a vascular intervention system into a blood vessel, the system comprising: a manipulation member having a tubular member; and an intervention member coupled to the manipulation member, the tubular member having an elongate tubular body and a continuous helical cut extending along the body, the cut having an axial length of at least 50 cm, the cut comprising first and second helical slots joined by a connection aperture, wherein a pitch of the cut varies along the first and second helical slots; engaging a thrombus in the blood vessel with the intervention member; and moving the thrombus in a proximal direction in the blood vessel with the intervention system.
Clause 46. The method of Clause 45, further comprising removing the thrombus from the blood vessel with the intervention system.
Clause 47. The method of Clause 46, further comprising gripping the thrombus with the intervention member.
Clause 48. The method of Clause 46, wherein removing the thrombus comprises retracting the intervention member proximally via the manipulation member.
Clause 49. The method of any of the Clauses 45 to 48, further comprising advancing a catheter into the blood vessel, wherein the inserting comprises inserting the system into a lumen of the catheter.
Clause 50. The method of Clause 49, wherein the advancing a catheter comprises advancing a distal end of the catheter through the thrombus in the blood vessel.
Clause 51. The method of Clause 50, wherein engaging the thrombus in the blood vessel with the intervention member comprises proximally retracting the catheter relative to the intervention member to permit the intervention member to radially expand within the blood vessel to engage the thrombus.
Clause 52. The method of any of the Clauses 45 to 51, wherein a segment of the cut is configured such that the pitch of the cut changes in magnitude, at both ends of the segment, by 0.2 mm/rotation or less.
Clause 53. The method of Clause 52, wherein the segment is located 10 cm or more from an endpoint of the cut.
Clause 54. The method of Clause 52, wherein the segment is located 20 cm or more from an endpoint of the cut.
Clause 55. The method of any of the Clauses 52 to 54, wherein the length of the first segment is 5 mm or less.
Clause 56. The method of any of the Clauses 52 to 55, wherein the pitch of the cut changes in magnitude at both ends of the segment, by 0.1 mm/rotation or less.
Clause 57. The method of any of the Clauses 45 to 55, wherein the cut comprises a third helical slot, joined to the second helical slot by a second connection aperture.
Clause 58. The method of Clause 57, wherein the pitch of the cut varies along the third helical slot.
Clause 59. The method of any of the Clauses 45 to 58, wherein the tube has a diameter of 2.3 mm or less.
Clause 60. The method of any of the Clauses 45 to 59, wherein the tube has a wall thickness of 0.010″ or less.
Clause 61. The method of any of the Clauses 45 to 60, wherein the first and second helical slots each have an axial length of less than or equal to about 15 cm.
Clause 62. A medical device comprising: a manipulation member comprising a tubular member having an elongate tubular body and a continuous helical cut extending along the body, the cut having an axial length of at least 50 cm, the cut comprising first and second helical slots joined by a connection aperture, wherein a pitch of the cut varies along the first and second helical slots; and means for gripping thrombus, the gripping means being coupled to a distal portion of the manipulation member and advanceable via the manipulation member.
Additional features and advantages of the subject technology will be set forth in the description below, and in part will be apparent from the description, or may be learned by practice of the subject technology. The advantages of the subject technology will be realized and attained by the structure particularly pointed out in the written description and embodiments hereof as well as the appended drawings.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the subject technology.
The accompanying drawings, which are included to provide further understanding of the subject technology and are incorporated in and constitute a part of this specification, illustrate aspects of the disclosure and together with the description serve to explain the principles of the subject technology.
In the following detailed description, numerous specific details are set forth to provide a full understanding of the subject technology. It should be understood that the subject technology may be practiced without some of these specific details. In other instances, well-known structures and techniques have not been shown in detail so as not to obscure the subject technology.
In some embodiments, various systems and devices are provided that can enable a clinician to target an endovascular site to treat the site. The system can comprise a core assembly, pusher component, or manipulation member that can be used to control an intervention member coupled (either directly or indirectly) thereto. The coupling can be permanent or releasable. The intervention member can be configured to retrieve a bodily mass or other structure within the vasculature or to be released into the vasculature as a flow restoration treatment. For example, the intervention member can retrieve a thrombus in a patient experiencing acute ischemic stroke. Further, methods of recapturing or retrieving a thrombus or other structure or obstruction within a bodily lumen are also provided. The manipulation member can extend through a catheter such that an operator can manipulate the intervention member, positioned within and/or distal to a distal end of the catheter, using the manipulation member at a location proximal to a proximal end of the catheter.
Intervention Systems
The manipulation member 160 can have a proximal end section 162, which can be graspable by a clinician during use, and a terminal or distal end section 164, which can be coupled (either directly or indirectly) to the intervention member 200. The manipulation member 160 can generally comprise any member(s) with sufficient flexibility, column strength and thin-ness to move the intervention member 200 or other medical device through a catheter. The manipulation member 160 can therefore comprise a wire, or a tube such as a hypotube, or a braid, coil, or other suitable member(s), or a combination of wire(s), tube(s), braid(s), coil(s), etc.
For example, the embodiment of the manipulation member 160 depicted in
The proximal and/or distal wires 168, 172 may taper or vary in diameter along some or all of their lengths. The proximal wire 168 may include one or more fluorosafe markers 176, and such marker(s) can be located on a portion of the wire 168 that is not covered by the outer layer 174, e.g., proximal of the outer layer 174. This portion of the wire 168 marked by the marker(s) 176, and/or proximal of any outer layer 174, can comprise a bare metal outer surface.
Additional features and components of the manipulation member 160 can be implemented as shown and discussed with respect to the core member 160 discussed in U.S. patent application Ser. No. 14/040,463, filed on Sep. 27, 2013, the entirety of which is expressly incorporated herein by reference.
Further, in some embodiments, the manipulation member 160 can omit or exclude one or more features illustrated in
The intervention member 200 can comprise a proximal end portion 202 and a distal end portion 204. In some embodiments, the intervention member 200 can comprise a thrombus gripping device, a thrombus removal device, and/or a thrombus mobilization device. The intervention member 200 can be expandable by an external expansion force or be self-expandable. The intervention member 200 can comprise a generally elongate mesh or stent, such as a laser-cut stent or other form of stent such as a braided stent, roll-up stent, etc. So as to perform the function of thrombus gripping, removal or mobilization, an intervention member in the form of a stent can comprise a stentriever. Further, the intervention member 200 can comprise a foreign body retrieval component that can be configured to engage with, grasp, capture, or otherwise retrieve an implant, such as a stent, coil, graft, or other foreign structure disposed within the vasculature.
In some embodiments, the intervention member 200 can comprise an expandable body having a plurality of struts, and the struts can be interconnected to form, for example, a network of such struts that is configured to grip, engage, remove, or mobilize thrombus. The body can optionally include radially peripherally located struts, for example struts that are located in a sidewall of a generally cylindrical portion of the body when the body is in an expanded configuration, and/or radially transversely extending struts, for example struts that extend across a longitudinal end view of the body when the body is in an expanded configuration. The intervention member can comprise a longitudinally connected plurality of individual bodies, and each of such bodies can have radially peripherally located struts and/or radially transversely extending struts. The bodies of such an intervention member can be longitudinally interconnected by one or more generally longitudinally centrally located, longitudinally extending link members.
In some embodiments, the intervention member 200 can be generally tubular (e.g. a generally tubular mesh) and have an open proximal end and/or an open distal end, or a proximal end and/or distal end that is at least partially closed. Such a generally tubular intervention member can have a mesh that is elongate and/or longitudinally extending.
In some embodiments, the intervention member 200 can comprise one, or several, expandable wires, coils and/or spirals that can expand to form a space-filling shape or mass including the wire(s)/coil(s)/spiral(s) and void space encompassed thereby. The resulting shape or mass can be configured to grip, engage, remove, or mobilize thrombus.
Any of the intervention members 200 disclosed herein can optionally be connected to, or distal of, a distal tip of the manipulation member 160 (for example, the distal tip of the distal wire 172 where such distal wire is employed), and extend distally therefrom. For example, the proximal end or portion of the intervention member 200 can be so connected. The nature of the connection can be substantially permanent (as discussed herein), or detachable.
The intervention member 200 can optionally be similar to any of the versions or sizes of the SOLITAIRE™ FR Revascularization Device marketed by Covidien of Mansfield, Mass. USA.
Flexible System Components
The manipulation member 160 can optionally be of multi-member construction and can include the tube 170 which can comprise a tubular member or hypotube. The tube 170 can have a sidewall that is “uncut” or without openings or voids formed therein. Alternatively, the tube 170 can have openings, voids or cuts formed in the sidewall to enhance the flexibility of the tube. This may be done by cutting a series of slots in the sidewall along part or all of the length of the tube, or cutting or drilling a pattern of other openings in the sidewall, or cutting a spiral-shaped void in the sidewall.
In some embodiments, for example where the system is to be used in narrow and/tortuous vasculature, such as the neurovasculature, the tube 170 can be of relatively small outside diameter (e.g., 0.040″ or less, or 0.030″ or less, or 0.027″ or less, or about 0.020″); have a relatively thin sidewall thickness (e.g., 0.0050″ or less, or 0.0040″ or less, or about 0.0030″, or between 0.0025″ and 0.0035″); and/or be of relatively long overall length (e.g., 50 cm or more, or 60 cm or more, or 70 cm or more, or 80 cm or more, or about 91 cm). Instead of or in addition to any one or combination of such dimensions, the tube can have a relatively long cut length (the length of the portion of the tube in which opening(s), void(s), cut(s), spiral(s) is/are present) of 50 cm or more, or 60 cm or more, or 70 cm or more, or 80 cm or more, or about 86 cm.
A relatively long, small-diameter and/or thin-walled spiral-cut tube offers certain advantages for use in the manipulation member 160 in narrow and/tortuous vasculature, such as the neurovasculature. The tube can be made highly flexible (or inflexible as the case may be) where necessary by use of an appropriate spiral pitch, and the column strength or “pushability” of the tube can be maintained largely independent of its flexibility, as the diameter of the tube can remain constant along its length, in contrast with a long tapering wire which must sacrifice pushability for flexibility as it narrows. The combination of high flexibility and pushability can facilitate easier navigation into difficult, tortuous vascular locations.
Despite these advantages, difficulties can arise when attempting to make a relatively long, small-diameter and/or thin-walled spiral-cut tube.
In contrast,
In various embodiments of the tube 170, a relatively long contiguous or continuous helical or spiral cut can be provided in the sidewall of the tube. For example, the tube 170 can have such a helical or spiral cut over any of the various cut lengths specified above or elsewhere herein for the tube 170. A tube 170 having such a helical or spiral cut have also have any one or combination of the various outside diameters, sidewall thicknesses and/or overall lengths specified above or elsewhere herein for the tube 170.
The long contiguous or continuous helical or spiral cut can be implemented as discussed herein, e.g., as with respect to
In some embodiments, one or more terminal apertures may be employed in the spiral or helical cut, slot or void. Such terminal aperture(s) can similar to any of the connecting apertures 332 disclosed herein, with the exception that they are positioned at one or both terminal ends of the spiral rather than at a juncture of two or more individual spirals. In still other embodiments of the tube 170, a spiral or helical cut, slot or void is employed with terminal aperture(s) at one or both terminal ends and no connecting apertures along the cut length. One or multiple such spirals may be formed in the sidewall 322 of a single tube 170. Where employed, the terminal aperture(s) can serve as a stress relief or measure against sidewall crack formation at the end(s) of the spiral. A terminal aperture can be an aperture extending radially through the tube 170 (e.g., configured similarly to the connecting aperture 332), but positioned at an end of a given spiral that is not between the given spiral and another spiral.
Instead of or in addition to a spiral that is contiguous or continuous over a relatively long overall length or cut length of the tube 170, the pitch of the spiral can be controlled precisely over a long overall length or cut length. For example, the pitch of the spiral can vary over the cut length such that a pitch of a specific magnitude can prevail along a relatively short segment of the cut length, for example 5 mm or less, or 3 mm or less, or 2 mm or less, or about 1.0 mm. In this manner, the spiral pitch can be finely adjusted in small increments of the cut length thereby facilitating superior control over the mechanical properties of the tube 170 (e.g., bending stiffness, column strength) in various portions of the tube. Therefore, the tube 170 can have a pitch that varies in magnitude (including a specific “first pitch magnitude”) along the overall length or cut length of the tube, and the first pitch magnitude can prevail along a first segment of the cut length. The first segment can have a length (measured along the axis A-A) of 5 mm or less, or 3 mm or less, or 2 mm or less, or about 1.0 mm. The magnitude of the pitch can change from the first magnitude at one or both ends of the first segment. The first segment can be located (e.g., in a contiguous or continuous void) anywhere along the cut length, including location(s) relatively far from the endpoints of the cut length, e.g., more than 10 cm away, or more than 20 cm away, or more than 30 cm away from an endpoint of the cut length.
Instead of or in addition to achievement of a particular pitch magnitude in one or more short segments of the cut length (and/or a spiral that is contiguous or continuous over a relatively long overall length or cut length of the tube 170), the pitch magnitude can be controlled precisely so that it can vary in relatively small increments. (The pitch can be expressed in mm/rotation.) For example, the pitch can vary in magnitude by 0.2 mm/rotation or less, or 0.1 mm/rotation or less, or 0.01 mm/rotation or less, or 0.005 mm/rotation or less. Thus is provided another manner in which the spiral can be finely controlled to facilitate desired mechanical properties in various portions of the tube 170. Therefore, the tube 170 can have a pitch that varies in magnitude (including a specific “first pitch magnitude”) along the overall length or cut length of the tube, and the first pitch magnitude can prevail along a first segment of the cut length. The magnitude of the pitch can change from the first magnitude by 0.2 mm/rotation or less, or 0.1 mm/rotation or less, or 0.01 mm/rotation or less, or 0.005 mm/rotation or less, at one or both ends of the first segment. The first segment can be located (e.g., in a contiguous or continuous void) anywhere along the cut length, including location(s) relatively far from the endpoints of the cut length, e.g., more than 10 cm away, or more than 20 cm away, or more than 30 cm away from an endpoint of the cut length.
In one embodiment, the tube 170 has an overall length of 91 cm, cut length of 86 cm, outside diameter of 0.020″, wall thickness of 0.003″, spiral cut (slot) width of 25 microns, circular connection apertures with a diameter of 100 microns, and individual spiral cut lengths of about 15 cm.
When the route 400 passes through the (right) vertebral artery 414, it frequently encounters vertebral tortuosity such as shown at 432. From either vertebral artery, the route 400 can proceed through the basilar artery (not shown) to or past the basilar tip, posterior cerebral arteries (not shown), or posterior communicating arteries (not shown).
Instead of beginning at access via the femoral artery 402, the route 400 may begin at access via the left 418 or right 434 subclavian artery and proceed into the aortic arch 406, right common carotid artery 412 or right vertebral artery 414, and beyond as described above.
As seen in
In some embodiments, the tube 170 can comprise a spiral-cut tube and the pitch of the spiral can vary along the overall length and/or cut length of the tube. The pitch can vary at a constant rate, or a non-constant rate. One or more segments of the cut length can have constant pitch, and these can be combined with one or more segments that have varying pitch. The tube 170 can incorporate spiral-cut and non-spiral-cut portions.
In some embodiments, the cut portion of the tube 170 can have two or more segments wherein the pitch is substantially constant (e.g., to impart mechanical properties suited to a desired one of the Zones indicated in
If, in a varying-pitch segment positioned between two segments that differ significantly in pitch or stiffness, the PTD is too low, the change in pitch/stiffness at any individual pitch transition will be relatively high; as a result the tube 170 may have an unduly high tendency to kink at such an individual pitch transition as the tube is advanced through a tortuous vessel and/or a high push force is exerted on the tube. In other words, if the tube incorporates an abrupt transition from a high-stiffness section to a low-stiffness section, the tube may be likely to kink at the transition point or segment when encountering a sharp turn in a vessel and/or application of a high push force.
Therefore, in order to accommodate in the tube 170 multiple segments that differ significantly in pitch/stiffness (and for example thereby tailor the mechanical properties of the tube segments to the various anatomical regions of the access route 400), without unduly increasing the tendency of the tube to kink, it can be useful to employ varying-pitch segments or transition zones that have a relatively high PTD or a relatively high overall number N of transitions. When the tube is forced to bend at or near a transition zone characterized by sufficiently high PTD and/or sufficiently high N, the bend becomes “spread” among the individual transitions in the transition zone, resulting in a gradual, arcing bend rather than a sudden, sharp kink.
The flex zones Z1, Z2, Z3, Z4 can vary significantly relative to each other in pitch and/or stiffness in order to accommodate their respective target anatomies. For example, the zone Z4 can have a bending stiffness less than 5%, or less than 3%, or less than 2%, or less than 1% of the bending stiffness of the tube 170 when uncut. The zone Z3 can have a bending stiffness (A) greater than 8%, or greater than 10%, or greater than 12% of the bending stiffness of the tube 170 when uncut; and/or (B) less than 22%, or less than 20%, or less than 18%, or less than 17% of the bending stiffness of the tube 170 when uncut. The zone Z2 can have a bending stiffness (A) greater than 27%, or greater than 29%, or greater than 30% of the bending stiffness of the tube 170 when uncut; and/or (B) less than 36%, or less than 34%, or less than 33% of the bending stiffness of the tube 170 when uncut. The zone Z1 can have a bending stiffness (A) greater than 38%, or greater than 40%, or greater than 42% of the bending stiffness of the tube 170 when uncut; and/or (B) less than 50%, or less than 46%, or less than 44% of the bending stiffness of the tube 170 when uncut. The foregoing bending stiffness values and ranges can be implemented with reference to a tube 170 of any dimensions disclosed herein, including but not limited to a tube 170 having an outside diameter of 0.040″ or less and/or a wall thickness of 0.010″ or less. Such a tube may be constructed from materials including polymers, and metals including nitinol and stainless steels such as 304 or 304L stainless steel. One suitable tube 170 is constructed from 304L stainless steel with an outside diameter of 0.020″ and a wall thickness of 0.003″.
Instead of or in addition to the bending stiffnesses specified above, the zones Z1, Z2, Z3, and/or Z4 can have one, some or all of the following bending stiffnesses in Newtons times millimeters squared (N*mm^2): Z4, less than 12, less than 10, less than 8, or about 5; Z3B, 60-100, or 70-90, or about 80; Z3A, 90-130, 100-120, or about 110; Z2, 180-220, 190-210, or about 205; and/or Z1, greater than 250, greater than 270, or about 280, or 250-310, or 270-290. The uncut tube 170 can have a stiffness of 600-700, 625-675, or about 650. The foregoing bending stiffness values and ranges can optionally be normalized (to account for any differences in measuring equipment) with reference to a value of 340 N*mm^2 for 0.017″ diameter solid wire made from 304 stainless steel.
One, some or all of transition zones T1, T2, T3A, and/or T3B can optionally be provided to incorporate these differences in pitch/stiffness while minimizing any resulting tendency of the tube to kink between the flex zones. The transition zones T1, T2, T3A and/or T3B can have relatively high PTD or N, as discussed above. For example, the transition zone T1 can have a PTD greater than 1.0 transitions per centimeter (T/cm), or of 2.0 T/cm or greater, or of about 2.0 T/cm; the transition zone T2 can have a PTD greater than 0.5 T/cm, or of 0.74 T/cm or greater, or of about 0.74 T/cm; the transition zone T3A can have a PTD greater than 1.5 T/cm, or of 2.2 T/cm or greater, or of about 2.2 T/cm; the transition zone T3B can have a PTD greater than 1.0 T/cm, or of 1.8 T/cm or greater, or of about 1.8 T/cm; and the transition zone T4 can have a PTD greater than 6.0 T/cm, or of 8.9 T/cm or greater, or of about 8.9 T/cm.
The transition zone T3B can provide a transition in flexibility from the relatively soft zone Z4, which can have a bending stiffness (such as any of those discussed above for Z4) suitable for navigating the distal ICA and M1 segment of the MCA, up to the stiffer zone Z3. Along the transition zone T3B, the pitch can increase significantly from the pitch employed in the zone Z4, by over 150%, over 200%, over 250%, or about 254%, to the pitch employed in zone Z3. The transition zone T3B can comprise a number of individual pitch transitions, such that the average overall percent increase in pitch achieved per individual transition is 15% or less, or 12% or less, or 11% or less, or 10.5% or less, or about 10.1%. (Such an average is computed by dividing the total percent increase in pitch achieved in the transition zone by the total number of transitions in the zone.) Instead of or in addition to any of these averages, the transition zone T3B can achieve a reduction in stiffness of greater than 75%, or greater than 85%, or greater than 90%, or about 94.5%, from the zone Z3 (particularly Z3B) to the zone Z4.
The transition zone T2 can provide a transition in flexibility from the zone Z3, which can have a bending stiffness (such as any of those discussed above for Z3) suitable for navigating the common carotid artery, proximal internal carotid artery, and/or proximal vertebral artery, to the stiffer zone Z2 which can have a stiffness (such as any of those discussed above for Z2) suited to crossing the aortic arch and/or extending into one of the arteries leading from the arch toward the neck. Along the transition zone T2, the pitch can increase significantly from the pitch employed in the zone Z3, by over 80%, over 100%, over 120%, or about 125%, to the pitch employed in zone Z2. The transition zone T2 can comprise a number of individual pitch transitions, such that the average overall percent increase in pitch achieved per individual transition is 20% or less, or 15% or less, or 13% or less, or about 12.5%. (Such an average is computed by dividing the total percent increase in pitch achieved in the transition zone by the total number of transitions in the zone.) Instead of or in addition to any of these averages, the transition zone T2 can achieve a reduction in stiffness of greater than 35%, or greater than 40%, or greater than 45%, or about 47%, from the zone Z2 to the zone Z3.
The transition zone T1 can provide a transition in flexibility from the zone Z2, to the stiffer zone Z1 which can have a stiffness (such as any of those discussed above for Z1) suited to passing through the femoral artery and abdominal aorta, and providing pushability for the more distal portions of the manipulation member 160. Along the transition zone T1, the pitch can increase significantly from the pitch employed in the zone Z2, by over 35%, over 40%, or about 45%, to the pitch employed in zone Z1. The transition zone T1 can comprise a number of individual pitch transitions, such that the average overall percent increase in pitch achieved per individual transition is 10% or less, or 8% or less, or 6% or less, or about 5.6%. (Such an average is computed by dividing the total percent increase in pitch achieved in the transition zone by the total number of transitions in the zone.) Instead of or in addition to any of these averages, the transition zone T1 can achieve a reduction in stiffness of greater than 15%, or greater than 20%, or greater than 25%, or about 27%, from the zone Z1 to the zone Z2.
Some, one or all flex zones Z1, Z2, Z3, Z4 can have a length greater than 30 mm, or greater than 40 mm. For example, the zone Z4 can have a length of 60 mm or more, or 80 mm or more, or 80-120 mm, or about 100 mm. The zone Z3B can have a length of 40-60 mm, or about 50 mm and the zone Z3A can have a length of 50-70 mm, or about 60 mm. The zone Z2 can have a length greater than 200 mm, or 200-300 mm, or 225-275 mm, or about 250 mm. The zone Z1 can have a length of 50-70 mm, or about 60 mm.
Instead of or in addition to any one or combination of the lengths specified above, the zones can be situated along the tube 170 with their respective distal ends located at the following distances from the distal end of the tube, or from the proximal end of the intervention member 200: Z4, 8-12 mm, or about 10 mm; Z3B, 225-275 mm, or 240-260 mm, or about 250 mm; Z3A, 300-340 mm, or 310-330 mm, or about 320 mm; Z2, 480-540 mm, 490-530 mm, or about 515 mm; and/or Z1, 780-820 mm, or 790-810 mm, or about 800 mm. By employing these locations along the tube, the zones Z1, Z2, Z3 and/or Z4 can be configured to occupy the anatomical regions described herein as corresponding to such region(s) when the distal end of zone Z4 or the intermediate region 166 is located within the M1 segment of the MCA.
The tube 170 can optionally include a transition zone T4 at the distal end of the cut length, e.g., distal of and adjacent to the zone Z4. The transition zone T4 can be configured to serve a “steering” function to point the tube 170 in the direction of travel of the distal portions of the manipulation member 160 (e.g., distal wire 172) as those distal portions navigate turns within the vasculature. Accordingly the zone T4 can have a relatively high PTD (e.g., over 5 T/cm, over 7 T/cm, or about 9 T/cm), a relatively short length (e.g., less than 15 mm, or less than 12 mm, or 8-10 mm, or about 9 mm), and/or an average stiffness less than the stiffness of the zone Z4 (e.g., a stiffness that decreases from that of zone Z4 as zone T4 extends distally).
Numerous parameters for various aspects of a spiral cut of the tube 170 are specified above. The scope of the present disclosure includes any single one or any combination of any number of the specified parameters. No one parameter, and no one value of any such parameter, should be regarded as essential.
Information regarding additional embodiments of the intervention system 100, and additional details, components and methods that can optionally be used or implemented in or with the embodiments of the system 100 described herein, can be found in U.S. patent application Ser. No. 14/040,463, filed on Sep. 27, 2013, and/or U.S. patent application Ser. No. 13/664,547, filed on Oct. 31, 2012, the entirety of each of which is hereby incorporated by reference herein. The intervention system 100 and methods disclosed herein can optionally be similar to any of the systems or methods disclosed in the above-incorporated applications.
Intervention Members
Depending on the procedure and intended use of the intervention system 100, it optionally may be advantageous to have a connection mechanism that permits intentional release of the intervention member 200. For example, during a blood flow restoration procedure, it may prove difficult and/or dangerous to fully retrieve a thrombus due to a complicated vasculature or the risk of damaging a lumen wall. Leaving the intervention member 200 inside the patient may prove to be the only option available to a surgeon or other medical personnel, or it may be a goal of the procedure, such as when the intervention member 200 is deployed across an aneurysm (e.g., as an aneurysm bridge to retain coils or other materials in an aneurysm). In other circumstances the intervention member 200 may include drug-eluting capabilities, and/or may be coated with a particular type of drug that facilitates thrombus dissolution. It may be advantageous in such circumstances to release the intervention member 200 and allow the intervention member 200 to anchor the thrombus against the lumen wall while the thrombus is dissolved by the drug. In some embodiments, the intervention member 200 can comprise a portion, located proximally or distally of the connection 606, that is configured for selective detachment of the endovascular device 602 from the manipulation member 160. For example, such a portion can comprise an electrolytically severable segment of the manipulation member. In some embodiments, the intervention member 200 can be devoid of any feature that would permit selective detachment of the intervention member 200 from the manipulation member 160.
Further details regarding connections that can be employed between the intervention member 200 and the manipulation member 160 disclosed in U.S. Patent Publication No. 2014/0194919, published on Jul. 10, 2014; U.S. Patent Publication No. 2014/0194911, published on Jul. 20, 2014; U.S. patent application Ser. No. 14/026,302, filed on Sep. 13, 2013; and U.S. patent application Ser. No. 13/834,945, filed on Mar. 15, 2013; the entirety of each of which is hereby incorporated by reference herein.
As illustrated in
As illustrated in
Individual cells of the proximal portion 622 can have different sizes than individual cells located distal to the tapered proximal portion. For example, in some embodiments, the proximal portion 622 can have individual cells that have a size larger than that of the individual cells located distal to the tapered proximal portion. The proximal portion 622 can taper gradually towards the connection 606.
The taper of proximal portion 622 can be at various angles relative to the manipulation member 160. For example, in some embodiments, the taper can have an angle of approximately 45 degrees relative to the manipulation member, though other angles are also possible.
The intervention member 200 can comprise a first edge 624 and a second edge 626. The first edge 624 and second edge 626 can be formed, for example, from cutting a sheet or a tube. While the first and second edges are shown as having an undulating, or sinuous configuration, in some embodiments the first and second edges can have a straight, or linear configuration, or other configuration. In some embodiments, the edges 624, 626 can be curved, straight, or a combination thereof along the tapered proximal portion 622.
The various embodiments of the intervention member 200 that are depicted or described herein provide one type of endovascular device or engagement member that may be employed as part of the intervention system 100, for example coupled to a distal end or portion of the manipulation member 160, for functions such as removal of a clot, thrombus, or other obstructions from the body. The engagement member can be expandable (either self-expandable or not), or non-expandable. The engagement member can be generally tubular (as in the depicted intervention member 200 in
The intervention member 200 can be curled, rolled, or otherwise formed such that first edge 624 and second edge 626 overlap one another when the intervention member 200 is in a volume-reduced form. In a volume-reduced form, the frame 602 of the intervention member 200 can overlap to facilitate introduction of the intervention member 200 into and through the catheter 607. In some embodiments, the intervention member 200 is circumferentially continuous (e.g., forming a continuous cylindrical shape), lacking first and second edges 624, 626 and having no overlap or gap in a volume-reduced form and expanded form. Regardless of whether the intervention member 200 is circumferentially continuous, the intervention member 200 can have a central longitudinal axis both while in a volume-reduce form and when fully or partially expanded. In some embodiments, the intervention member 200 can be self-expandable, and can expand toward a fully expanded configuration upon release from the catheter 607. Upon expansion, the intervention member 200 can expand towards an inner wall of a vessel, towards a thrombus occluding the inner wall of a vessel, or both.
The extent of any overlap of the frame 608 can depend upon a degree of the frame's expansion. Expansion within a vessel can be limited, at least in part, by the vessel's size, and the amount and the properties of any thrombus present. For example, a greater overlap of the edges 624, 626 can occur in narrower vessels, whereas in wider vessels the overlap can be smaller, or even an “underlap” may occur, in which case the edges 22 and 24 are separated by an open gap or space within the vessel.
In some embodiments, the intervention member 200 can experience various degrees of overlap in a volume-reduced form, forming zones of overlap 628. The intervention member 200 can assume various diameters Δ1, Δ2, etc., depending on the degree of the overlap (e.g., represented by angle α1, α2, etc.). Overlap zones can vary in size and configuration depending on the vessel size. When inside a vessel, the overlap zone of the intervention member 200 can advantageously provide grip and/or retaining ability with respect to a thrombus. For example, when the intervention member 200 expands against a thrombus, the individual struts 614 and individual cells 616 of the overlap zone can embed into and grip, or retain, the thrombus. Alternatively, the intervention member 200 can be constructed without any overlap or edges 624, 626, e.g., as a continuous tube-like or cylindrical member.
The intervention member 200 can be manufactured in various lengths and relaxed-state diameters. In some embodiments, the intervention member 200 can have lengths, measured proximally to distally along the longitudinal axis, of 15 mm or less to 40 mm or more, though other ranges and sizes are also possible. The intervention member 200 can also have relaxed-state diameters, the diameters being measured when the intervention member 200 is fully free to expand, i.e., in absence of external forces. In some embodiments, the intervention member 200 can have a diameter of approximately 3 mm to 4 mm so as to be used in size 18 microcatheters (i.e., microcatheters with an inner diameter of approximately 0.21 inch). In some embodiments, the intervention member 200 can have a diameter of approximately 5 mm to 6 mm so as to be used in size 27 microcatheters (i.e., microcatheters with an inner diameter of approximately 0.027 inch). Other ranges and values are also possible.
Each cell 616 of the intervention member 200 can have a maximum length (labeled “L” in
The location and longitudinal extent of thrombus engagement by a mechanical thrombus-retrieval device, e.g., the intervention member 200, can affect the likelihood of successfully capturing the engaged thrombus. Some embodiments of the subject technology increase the likelihood of successful thrombus capture and retrieval by increasing a longitudinal extent of substantially even thrombus engagement, distally shifting the region of increased thrombus engagement, or both. When a thrombus is primarily engaged along a portion of the thrombus near its proximal end, and particularly when a longitudinal extent of substantially even thrombus engagement is small, the thrombus may be more likely to fragment, become released from the retrieval device, or both.
In some embodiments, the intervention member 200 can be configured for substantially uniform or distally biased thrombus engagement, after expansion of the intervention member 200 into the thrombus, during retrieval of thrombus from a vessel by proximal retraction of the manipulation member 160. The thrombus can be generally soft, or malleable, or generally hard, or callous. For example, the intervention member 200 can have strut and cell dimensions that provide substantially uniform or distally biased thrombus engagement.
Referring to
Referring to
A technique for engaging and removing a thrombus 662 and restricting downstream travel of secondary emboli during thrombus retrieval will now be discussed with reference to
Referring to
In some embodiments, where the manipulation member 160 includes a tube 170 with transition zones T3B, T3A, T2, and/or T1, as discussed above with respect to
Referring to
In accordance with some embodiments of methods disclosed herein, when operating the intervention system 100, a clinician can check the initial partial expansion of the intervention member 200 and, if the initial placement is unsatisfactory or if the initial expansion of the intervention member 200 is unsatisfactory, the clinician can recapture, collapse, withdraw, or resheath the intervention member 200 into the catheter. After resheathing, the clinician can attempt to deploy the intervention member 200 again. Resheathing can also be performed, and the manipulation member 160 and the intervention member 200 removed from the patient entirely, if for example, the delivery and/or expansion of the intervention member 200 damages or reveals a defect in, or improper sizing of, the intervention member 200 or the intervention system 100. After an initial partial expansion of the intervention member 200, the depicted manipulation member 160 can optionally be entirely removed with the intervention member 200 from the catheter without need to remove the catheter from the blood vessel. In this manner, access to the treatment site in a blood vessel can be maintained via the catheter and, if desired, additional treatment can be performed using the catheter. In the present disclosure, numerous references are made to moving the catheter axially over the manipulation member 160 and/or the intervention member 200, and moving the manipulation member 160 and/or the intervention member 200 axially within the catheter. Except where specifically noted to the contrary, all such references to one form of this relative movement should be understood to include the other as an alternative.
Once the intervention member 200 has been expanded into the thrombus 662, the intervention member 200 can grip the thrombus, by virtue of its ability to mechanically interlock with the thrombus as well as its ability to electrically attract, adhere, and/or attach to the thrombus 662. The galvanic cell(s) and/or region(s) can begin a galvanic reaction before or after the intervention member 200 has been released from the catheter 607 into the anatomical vessel 672 (e.g., an intracranial vessel) and/or expanded into the thrombus 662, as discussed in U.S. patent application Ser. No. 14/541,094, filed on Nov. 13, 2014, the entirety of which is expressly incorporated herein by reference.
In some embodiments, at least a portion of the thrombus 662 is attracted, adhered, and/or attached to an inwardly facing surface of the intervention member 200. Blood constituents can be bound primarily or substantially only to an inwardly facing surface of the mesh in some embodiments.
With reference to
Prior to retracting the intervention member 200 and thrombus 662, the catheter 607 or the guide catheter 664 can be manipulated. For example, the catheter 607 or the guide catheter 664 can be moved forward to a predetermined point relative to the intervention member 200. Use of markers along the catheter 607, or the guide catheter 664, and/or intervention member 200 can be used to determine the relative locations of the catheter 607, the guide catheter 664, and intervention member 200. Description of the use of such markers can be found, for example, in PCT Publication No. WO2009/105710, which is expressly incorporated herein by reference in its entirety.
Referring to
Referring to
Referring to
Additionally, while the intervention member 200 described above has been described in the context of use during a blood flow restoration procedure, the intervention member 200 can also, or alternatively, be used as an implantable member (e.g., a stent). For example, the intervention member 200 can be released through the connection 606 at a stenosis, aneurysm, or other appropriate location in a vessel. The intervention member 200 can expand and engage a vessel wall so as to hold the vessel wall open and/or act as an occluding member. While the filament thicknesses, widths, cell sizes, and forces described above can be optimized for an intervention member 200 for flow restoration, these values can also be optimized for an intervention member 200 for use as an implantable member. In some embodiments the same values can be used for both flow restoration and use as an implantable member.
Further, the intervention member 200 can also be used to engage with and retrieve one or more implants, stents, coils, or other structures within the vessel. The intervention member 200 can be actuated between a disengaged and an engaged configuration to engage one or more implants, stents, coils, or other structures. Moreover, the implant, stent, coil, or other structure can be captured or retrieved into the catheter, as discussed similarly herein regarding thrombus retrieval.
Further details regarding intervention members, the manufacture of intervention members, and use of intervention members are disclosed in U.S. Pat. No. 7,300,458, issued Nov. 27, 2007; U.S. Patent Application Publication No. 2011/0060212, published on Mar. 10, 2011; U.S. Patent Application Publication No. 2012/0083868, published on Apr. 5, 2012; U.S. Patent Application Publication No. 2011/0160763, published on Jun. 30, 2011; U.S. Patent Publication No. 2014/0194919, published on Jul. 10, 2014; and U.S. Patent Publication No. 2014/0194911, published on Jul. 20, 2014; and U.S. patent application Ser. No. 14/026,302, filed on Sep. 13, 2013; the entirety of each of which is hereby incorporated by reference herein.
The apparatus and methods discussed herein are not limited to the deployment and use of a medical device or stent within the vascular system but may include any number of further treatment applications. Other treatment sites may include areas or regions of the body including any hollow anatomical structures.
The foregoing description is provided to enable a person skilled in the art to practice the various configurations described herein. While the subject technology has been particularly described with reference to the various figures and configurations, it should be understood that these are for illustration purposes only and should not be taken as limiting the scope of the subject technology.
There may be many other ways to implement the subject technology. Various functions and elements described herein may be partitioned differently from those shown without departing from the scope of the subject technology. Various modifications to these configurations will be readily apparent to those skilled in the art, and generic principles defined herein may be applied to other configurations. Thus, many changes and modifications may be made to the subject technology, by one having ordinary skill in the art, without departing from the scope of the subject technology.
It is understood that the specific order or hierarchy of steps in the processes disclosed is an illustration of exemplary approaches. Based upon design preferences, it is understood that the specific order or hierarchy of steps in the processes may be rearranged. Some of the steps may be performed simultaneously. The accompanying method claims present elements of the various steps in a sample order, and are not meant to be limited to the specific order or hierarchy presented.
As used herein, the phrase “at least one of” preceding a series of items, with the term “and” or “or” to separate any of the items, modifies the list as a whole, rather than each member of the list (i.e., each item). The phrase “at least one of” does not require selection of at least one of each item listed; rather, the phrase allows a meaning that includes at least one of any one of the items, and/or at least one of any combination of the items, and/or at least one of each of the items. By way of example, the phrases “at least one of A, B, and C” or “at least one of A, B, or C” each refer to only A, only B, or only C; any combination of A, B, and C; and/or at least one of each of A, B, and C.
Terms such as “top,” “bottom,” “front,” “rear” and the like as used in this disclosure should be understood as referring to an arbitrary frame of reference, rather than to the ordinary gravitational frame of reference. Thus, a top surface, a bottom surface, a front surface, and a rear surface may extend upwardly, downwardly, diagonally, or horizontally in a gravitational frame of reference.
Furthermore, to the extent that the term “include,” “have,” or the like is used in the description or the claims, such term is intended to be inclusive in a manner similar to the term “comprise” as “comprise” is interpreted when employed as a transitional word in a claim.
The word “exemplary” is used herein to mean “serving as an example, instance, or illustration.” Any embodiment described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments.
A reference to an element in the singular is not intended to mean “one and only one” unless specifically stated, but rather “one or more.” Pronouns in the masculine (e.g., his) include the feminine and neuter gender (e.g., her and its) and vice versa. The term “some” refers to one or more. Underlined and/or italicized headings and subheadings are used for convenience only, do not limit the subject technology, and are not referred to in connection with the interpretation of the description of the subject technology. All structural and functional equivalents to the elements of the various configurations described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and intended to be encompassed by the subject technology. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the above description.
Although the detailed description contains many specifics, these should not be construed as limiting the scope of the subject technology but merely as illustrating different examples and aspects of the subject technology. It should be appreciated that the scope of the subject technology includes other embodiments not discussed in detail above. Various other modifications, changes and variations may be made in the arrangement, operation and details of the method and apparatus of the subject technology disclosed herein without departing from the scope of the present disclosure. Unless otherwise expressed, reference to an element in the singular is not intended to mean “one and only one” unless explicitly stated, but rather is meant to mean “one or more.” In addition, it is not necessary for a device or method to address every problem that is solvable (or possess every advantage that is achievable) by different embodiments of the disclosure in order to be encompassed within the scope of the disclosure. The use herein of “can” and derivatives thereof shall be understood in the sense of “possibly” or “optionally” as opposed to an affirmative capability.
This application is a continuation-in-part of U.S. patent application Ser. No. 14/040,463, filed on Sep. 27, 2013, which claims the benefit of U.S. Provisional Application No. 61/870,755, filed Aug. 27, 2013, the entirety of each of which is expressly incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3416531 | Edwards | Dec 1968 | A |
4364391 | Toye | Dec 1982 | A |
4425919 | Alston, Jr. et al. | Jan 1984 | A |
4516972 | Samson | May 1985 | A |
4655771 | Wallsten | Apr 1987 | A |
4723936 | Buchbinder et al. | Feb 1988 | A |
4790831 | Skribiski | Dec 1988 | A |
4990151 | Wallsten | Feb 1991 | A |
5011478 | Cope | Apr 1991 | A |
5026377 | Burton et al. | Jun 1991 | A |
5037404 | Gold et al. | Aug 1991 | A |
5098393 | Amplatz et al. | Mar 1992 | A |
5108411 | McKenzie et al. | Apr 1992 | A |
5147370 | McNamara et al. | Sep 1992 | A |
5178158 | de Toledo | Jan 1993 | A |
5201316 | Pomeranz et al. | Apr 1993 | A |
5209734 | Hurley et al. | May 1993 | A |
5279562 | Sirhan et al. | Jan 1994 | A |
5279596 | Castaneda et al. | Jan 1994 | A |
5292311 | Cope | Mar 1994 | A |
5318032 | Lonsbury et al. | Jun 1994 | A |
5318529 | Kontos | Jun 1994 | A |
5358493 | Schweich, Jr. et al. | Oct 1994 | A |
5382259 | Phelps et al. | Jan 1995 | A |
5389087 | Miraki | Feb 1995 | A |
5403292 | Ju | Apr 1995 | A |
5437288 | Schwartz et al. | Aug 1995 | A |
5445646 | Euteneuer et al. | Aug 1995 | A |
5454795 | Samson | Oct 1995 | A |
5458605 | Klemm | Oct 1995 | A |
5474563 | Myler et al. | Dec 1995 | A |
5478349 | Nicholas | Dec 1995 | A |
5484444 | Braunschweiler et al. | Jan 1996 | A |
5496294 | Hergenrother et al. | Mar 1996 | A |
5499975 | Cope et al. | Mar 1996 | A |
5522822 | Phelps et al. | Jun 1996 | A |
5531721 | Pepin et al. | Jul 1996 | A |
5534007 | St. Germain et al. | Jul 1996 | A |
5545209 | Roberts et al. | Aug 1996 | A |
5554139 | Okajima | Sep 1996 | A |
5569220 | Webster, Jr. | Oct 1996 | A |
5571135 | Fraser et al. | Nov 1996 | A |
5573520 | Schwartz et al. | Nov 1996 | A |
5584821 | Hobbs et al. | Dec 1996 | A |
5599325 | Ju et al. | Feb 1997 | A |
5599326 | Carter | Feb 1997 | A |
5601539 | Corso, Jr. | Feb 1997 | A |
5636641 | Fariabi | Jun 1997 | A |
5645559 | Laptewicz, Jr. et al. | Jul 1997 | A |
5658264 | Samson | Aug 1997 | A |
5662622 | Gore et al. | Sep 1997 | A |
5676659 | McGurk | Oct 1997 | A |
5695483 | Samson | Dec 1997 | A |
5695499 | Helgerson et al. | Dec 1997 | A |
5702373 | Samson | Dec 1997 | A |
5702418 | Ravenscroft | Dec 1997 | A |
5704926 | Sutton | Jan 1998 | A |
5709703 | Lukic et al. | Jan 1998 | A |
5711909 | Gore et al. | Jan 1998 | A |
5725513 | Ju et al. | Mar 1998 | A |
5725571 | Imbert et al. | Mar 1998 | A |
5728063 | Preissman et al. | Mar 1998 | A |
5741429 | Donadio, III et al. | Apr 1998 | A |
5743876 | Swanson | Apr 1998 | A |
5759173 | Preissman et al. | Jun 1998 | A |
5772641 | Wilson | Jun 1998 | A |
5782811 | Samson et al. | Jul 1998 | A |
5791036 | Bronson et al. | Aug 1998 | A |
5795341 | Samson | Aug 1998 | A |
5833632 | Jacobsen et al. | Nov 1998 | A |
5836925 | Soltesz | Nov 1998 | A |
5836926 | Peterson et al. | Nov 1998 | A |
5851203 | van Muiden | Dec 1998 | A |
5853400 | Samson | Dec 1998 | A |
5873866 | Kondo et al. | Feb 1999 | A |
5876386 | Samson | Mar 1999 | A |
5891112 | Samson | Apr 1999 | A |
5897529 | Ponzi | Apr 1999 | A |
5897537 | Berg et al. | Apr 1999 | A |
5902290 | Peacock, III et al. | May 1999 | A |
5906605 | Coxum | May 1999 | A |
5935161 | Robinson et al. | Aug 1999 | A |
5938653 | Pepin | Aug 1999 | A |
5951494 | Wang et al. | Sep 1999 | A |
5951539 | Nita et al. | Sep 1999 | A |
5961510 | Fugoso et al. | Oct 1999 | A |
5968053 | Revelas | Oct 1999 | A |
5971975 | Mills et al. | Oct 1999 | A |
5984963 | Loomis et al. | Nov 1999 | A |
6017323 | Chee | Jan 2000 | A |
6030371 | Pursley | Feb 2000 | A |
6045547 | Ren et al. | Apr 2000 | A |
6053903 | Samson | Apr 2000 | A |
6053904 | Scribner et al. | Apr 2000 | A |
6077258 | Lange et al. | Jun 2000 | A |
6077295 | Limon et al. | Jun 2000 | A |
6083152 | Strong | Jul 2000 | A |
6093177 | Javier, Jr. et al. | Jul 2000 | A |
6105651 | Leanna | Aug 2000 | A |
6106510 | Lunn et al. | Aug 2000 | A |
6106540 | White et al. | Aug 2000 | A |
6123723 | Konya et al. | Sep 2000 | A |
6126685 | Lenker et al. | Oct 2000 | A |
6135992 | Wang | Oct 2000 | A |
6149680 | Shelso et al. | Nov 2000 | A |
6152912 | Jansen et al. | Nov 2000 | A |
6152944 | Holman et al. | Nov 2000 | A |
6159219 | Ren et al. | Dec 2000 | A |
6165163 | Chien et al. | Dec 2000 | A |
6165166 | Samuelson et al. | Dec 2000 | A |
6171295 | Garabedian et al. | Jan 2001 | B1 |
6171296 | Chow | Jan 2001 | B1 |
6171297 | Pedersen et al. | Jan 2001 | B1 |
6186986 | Berg et al. | Feb 2001 | B1 |
6193739 | Chevillon et al. | Feb 2001 | B1 |
6197015 | Wilson | Mar 2001 | B1 |
6217565 | Cohen | Apr 2001 | B1 |
6217566 | Ju et al. | Apr 2001 | B1 |
6251132 | Ravenscroft et al. | Jun 2001 | B1 |
6258080 | Samson | Jul 2001 | B1 |
6264683 | Stack et al. | Jul 2001 | B1 |
6287315 | Wijeratne et al. | Sep 2001 | B1 |
6325807 | Que | Dec 2001 | B1 |
6350278 | Lenker et al. | Feb 2002 | B1 |
6355027 | Le et al. | Mar 2002 | B1 |
6358238 | Sherry | Mar 2002 | B1 |
6358460 | Hunt, Jr. et al. | Mar 2002 | B1 |
6368316 | Jansen et al. | Apr 2002 | B1 |
6371953 | Beyar et al. | Apr 2002 | B1 |
6383171 | Gifford et al. | May 2002 | B1 |
6387118 | Hanson | May 2002 | B1 |
6395008 | Ellis et al. | May 2002 | B1 |
6395017 | Dwyer et al. | May 2002 | B1 |
6398791 | Que et al. | Jun 2002 | B1 |
6419693 | Fariabi | Jul 2002 | B1 |
6425898 | Wilson et al. | Jul 2002 | B1 |
6428552 | Sparks | Aug 2002 | B1 |
6443971 | Boylan et al. | Sep 2002 | B1 |
6458075 | Sugiyama et al. | Oct 2002 | B1 |
6464684 | Galdonik | Oct 2002 | B1 |
6468298 | Pelton | Oct 2002 | B1 |
6475184 | Wang et al. | Nov 2002 | B1 |
6494907 | Bulver et al. | Dec 2002 | B1 |
6508804 | Sarge et al. | Jan 2003 | B2 |
6508805 | Garabedian et al. | Jan 2003 | B1 |
6508806 | Hoste | Jan 2003 | B1 |
6517547 | Feeser et al. | Feb 2003 | B1 |
6554820 | Wendlandt et al. | Apr 2003 | B1 |
6562021 | Derbin et al. | May 2003 | B1 |
6562063 | Euteneuer et al. | May 2003 | B1 |
6576006 | Limon et al. | Jun 2003 | B2 |
6582460 | Cryer | Jun 2003 | B1 |
6589227 | Sonderskov | Jul 2003 | B2 |
6602271 | Adams et al. | Aug 2003 | B2 |
6607551 | Sullivan et al. | Aug 2003 | B1 |
6622367 | Bolduc et al. | Sep 2003 | B1 |
6635047 | Forsberg | Oct 2003 | B2 |
6638245 | Miller et al. | Oct 2003 | B2 |
6641564 | Kraus | Nov 2003 | B1 |
6648654 | Akram et al. | Nov 2003 | B1 |
6648874 | Parisi et al. | Nov 2003 | B2 |
6652508 | Griffin et al. | Nov 2003 | B2 |
6663614 | Carter | Dec 2003 | B1 |
6669719 | Wallace et al. | Dec 2003 | B2 |
6689120 | Gerdts | Feb 2004 | B1 |
6699274 | Stinson | Mar 2004 | B2 |
6702782 | Miller et al. | Mar 2004 | B2 |
6706055 | Douk et al. | Mar 2004 | B2 |
6716207 | Farnholtz | Apr 2004 | B2 |
6726659 | Stocking et al. | Apr 2004 | B1 |
6764504 | Wang et al. | Jul 2004 | B2 |
6808529 | Fulkerson | Oct 2004 | B2 |
6815325 | Ishii | Nov 2004 | B2 |
6817995 | Halpern | Nov 2004 | B1 |
6830575 | Stenzel et al. | Dec 2004 | B2 |
6837890 | Chludzinski et al. | Jan 2005 | B1 |
6843802 | Villalobos et al. | Jan 2005 | B1 |
6858024 | Berg et al. | Feb 2005 | B1 |
6866660 | Garabedian et al. | Mar 2005 | B2 |
6866679 | Kusleika | Mar 2005 | B2 |
6939337 | Parker et al. | Sep 2005 | B2 |
6939353 | Que et al. | Sep 2005 | B2 |
6945970 | Pepin | Sep 2005 | B2 |
6960227 | Jones et al. | Nov 2005 | B2 |
6989024 | Hebert et al. | Jan 2006 | B2 |
7001369 | Griffin et al. | Feb 2006 | B2 |
7011675 | Hemerick et al. | Mar 2006 | B2 |
7025758 | Klint | Apr 2006 | B2 |
7074236 | Rabkin et al. | Jul 2006 | B2 |
7104979 | Jansen et al. | Sep 2006 | B2 |
7147656 | Andreas et al. | Dec 2006 | B2 |
7163523 | Devens, Jr. et al. | Jan 2007 | B2 |
7166088 | Heuser | Jan 2007 | B2 |
7166099 | Devens, Jr. | Jan 2007 | B2 |
7166100 | Jordan et al. | Jan 2007 | B2 |
7172575 | El-Nounou et al. | Feb 2007 | B2 |
7228878 | Chen et al. | Jun 2007 | B2 |
7306624 | Yodfat et al. | Dec 2007 | B2 |
7323000 | Monstdt et al. | Jan 2008 | B2 |
7331948 | Skarda | Feb 2008 | B2 |
7357812 | Andreas et al. | Apr 2008 | B2 |
7371248 | Dapolito et al. | May 2008 | B2 |
7402151 | Rosenman et al. | Jul 2008 | B2 |
7427288 | Sater | Sep 2008 | B2 |
7438712 | Chouinard | Oct 2008 | B2 |
7445684 | Pursley | Nov 2008 | B2 |
7473271 | Gunderson | Jan 2009 | B2 |
7473272 | Pryor | Jan 2009 | B2 |
7481804 | Devens, Jr. | Jan 2009 | B2 |
7507229 | Hewitt et al. | Mar 2009 | B2 |
7524322 | Monstdt et al. | Apr 2009 | B2 |
7556634 | Lee et al. | Jul 2009 | B2 |
7556710 | Leeflang et al. | Jul 2009 | B2 |
7569046 | Zhou | Aug 2009 | B2 |
7572290 | Yodfat et al. | Aug 2009 | B2 |
7582079 | Wendlandt et al. | Sep 2009 | B2 |
7597830 | Zhou | Oct 2009 | B2 |
7621904 | McFerran et al. | Nov 2009 | B2 |
7641646 | Kennedy, II | Jan 2010 | B2 |
7651520 | Fischell et al. | Jan 2010 | B2 |
7655031 | Tenne et al. | Feb 2010 | B2 |
7674411 | Berg et al. | Mar 2010 | B2 |
7691138 | Stenzel et al. | Apr 2010 | B2 |
7708704 | Mitelberg et al. | May 2010 | B2 |
7717953 | Kaplan et al. | May 2010 | B2 |
7758624 | Dorn et al. | Jul 2010 | B2 |
7766820 | Core | Aug 2010 | B2 |
7766896 | Kornkven Volk et al. | Aug 2010 | B2 |
7780646 | Farnholtz | Aug 2010 | B2 |
7815600 | Al-Marashi et al. | Oct 2010 | B2 |
7815608 | Schafersman et al. | Oct 2010 | B2 |
7815628 | Devens, Jr. | Oct 2010 | B2 |
7828790 | Griffin | Nov 2010 | B2 |
7867267 | Sullivan et al. | Jan 2011 | B2 |
7879022 | Bonnette et al. | Feb 2011 | B2 |
7942925 | Yodfat et al. | May 2011 | B2 |
7955370 | Gunderson | Jun 2011 | B2 |
7981148 | Aguilar et al. | Jul 2011 | B2 |
7993385 | Levine et al. | Aug 2011 | B2 |
8025692 | Feeser | Sep 2011 | B2 |
8034095 | Randolph et al. | Oct 2011 | B2 |
8042720 | Shifrin et al. | Oct 2011 | B2 |
8048104 | Monstadt et al. | Nov 2011 | B2 |
8066754 | Malewicz | Nov 2011 | B2 |
8083791 | Kaplan et al. | Dec 2011 | B2 |
8088140 | Ferrera et al. | Jan 2012 | B2 |
8092508 | Leynov et al. | Jan 2012 | B2 |
8109987 | Kaplan et al. | Feb 2012 | B2 |
8133266 | Thomas et al. | Mar 2012 | B2 |
8147534 | Berez et al. | Apr 2012 | B2 |
8159219 | Estrada et al. | Apr 2012 | B2 |
8187314 | Davis et al. | May 2012 | B2 |
8257432 | Kaplan et al. | Sep 2012 | B2 |
8298276 | Ozawa et al. | Oct 2012 | B2 |
8317850 | Kusleika | Nov 2012 | B2 |
8366763 | Davis et al. | Feb 2013 | B2 |
8382818 | Davis et al. | Feb 2013 | B2 |
8480701 | Monstadt | Jul 2013 | B2 |
8579958 | Kusleika | Nov 2013 | B2 |
8591566 | Newell et al. | Nov 2013 | B2 |
8597321 | Monstadt et al. | Dec 2013 | B2 |
8790387 | Nguyen et al. | Jul 2014 | B2 |
8968383 | Johnson et al. | Mar 2015 | B1 |
9072624 | Brown et al. | Jul 2015 | B2 |
20010020173 | Klumb et al. | Sep 2001 | A1 |
20010027310 | Parisi et al. | Oct 2001 | A1 |
20010029362 | Sirhan et al. | Oct 2001 | A1 |
20010044591 | Stevens et al. | Nov 2001 | A1 |
20010049547 | Moore | Dec 2001 | A1 |
20020029046 | Lorentzen Cornelius et al. | Mar 2002 | A1 |
20020049412 | Madrid et al. | Apr 2002 | A1 |
20020072789 | Hackett et al. | Jun 2002 | A1 |
20020107526 | Greenberg et al. | Aug 2002 | A1 |
20020111666 | Hart et al. | Aug 2002 | A1 |
20020138128 | Stiger et al. | Sep 2002 | A1 |
20020156459 | Ye et al. | Oct 2002 | A1 |
20020156460 | Ye et al. | Oct 2002 | A1 |
20020165523 | Chin et al. | Nov 2002 | A1 |
20030004539 | Linder et al. | Jan 2003 | A1 |
20030009208 | Snyder et al. | Jan 2003 | A1 |
20030050600 | Ressemann et al. | Mar 2003 | A1 |
20030191451 | Gilmartin | Oct 2003 | A1 |
20030212410 | Stenzel et al. | Nov 2003 | A1 |
20030212430 | Bose et al. | Nov 2003 | A1 |
20040024416 | Yodfat et al. | Feb 2004 | A1 |
20040092879 | Kraus et al. | May 2004 | A1 |
20040111095 | Gordon et al. | Jun 2004 | A1 |
20040143239 | Zhou et al. | Jul 2004 | A1 |
20040147903 | Latini | Jul 2004 | A1 |
20040158230 | Hunn et al. | Aug 2004 | A1 |
20040181174 | Davis et al. | Sep 2004 | A2 |
20040193140 | Griffin et al. | Sep 2004 | A1 |
20040193243 | Mangiardi et al. | Sep 2004 | A1 |
20040220585 | Nikolchev | Nov 2004 | A1 |
20040230285 | Gifford et al. | Nov 2004 | A1 |
20040260271 | Huyser et al. | Dec 2004 | A1 |
20040260384 | Allen | Dec 2004 | A1 |
20050033403 | Ward et al. | Feb 2005 | A1 |
20050070794 | Deal et al. | Mar 2005 | A1 |
20050090802 | Connors et al. | Apr 2005 | A1 |
20050096724 | Stenzel et al. | May 2005 | A1 |
20050119719 | Wallace et al. | Jun 2005 | A1 |
20050125051 | Eidenschink et al. | Jun 2005 | A1 |
20050131449 | Salahieh et al. | Jun 2005 | A1 |
20050143773 | Abrams et al. | Jun 2005 | A1 |
20050149160 | McFerran et al. | Jul 2005 | A1 |
20050182388 | Garabedian et al. | Aug 2005 | A1 |
20050182475 | Jen et al. | Aug 2005 | A1 |
20050228361 | Tremaglio | Oct 2005 | A1 |
20050240254 | Austin | Oct 2005 | A1 |
20050273149 | Tran et al. | Dec 2005 | A1 |
20050277949 | Que et al. | Dec 2005 | A1 |
20060030835 | Sherman et al. | Feb 2006 | A1 |
20060036309 | Hebert et al. | Feb 2006 | A1 |
20060058865 | Case et al. | Mar 2006 | A1 |
20060064123 | Bonnette et al. | Mar 2006 | A1 |
20060074477 | Berthiaume et al. | Apr 2006 | A1 |
20060089618 | McFerran et al. | Apr 2006 | A1 |
20060095050 | Hartley et al. | May 2006 | A1 |
20060100687 | Fahey et al. | May 2006 | A1 |
20060116750 | Hebert et al. | Jun 2006 | A1 |
20060129166 | Lavelle | Jun 2006 | A1 |
20060178698 | McIntyre et al. | Aug 2006 | A1 |
20060184226 | Austin | Aug 2006 | A1 |
20060212042 | Lamport et al. | Sep 2006 | A1 |
20060217682 | Stivland et al. | Sep 2006 | A1 |
20060235502 | Belluche et al. | Oct 2006 | A1 |
20070027520 | Sherburne | Feb 2007 | A1 |
20070043430 | Stinson | Feb 2007 | A1 |
20070049903 | Jansen et al. | Mar 2007 | A1 |
20070078504 | Mialhe | Apr 2007 | A1 |
20070088323 | Campbell et al. | Apr 2007 | A1 |
20070100421 | Griffin | May 2007 | A1 |
20070117645 | Nakashima | May 2007 | A1 |
20070129706 | Katoh et al. | Jun 2007 | A1 |
20070161956 | Heuser | Jul 2007 | A1 |
20070185446 | Accisano | Aug 2007 | A1 |
20070203563 | Hebert et al. | Aug 2007 | A1 |
20070233224 | Leynov et al. | Oct 2007 | A1 |
20070239254 | Chia et al. | Oct 2007 | A1 |
20070239261 | Bose et al. | Oct 2007 | A1 |
20070250039 | Lobbins et al. | Oct 2007 | A1 |
20070250040 | Provost et al. | Oct 2007 | A1 |
20070255255 | Shah et al. | Nov 2007 | A1 |
20070255388 | Rudakov et al. | Nov 2007 | A1 |
20070270779 | Jacobs et al. | Nov 2007 | A1 |
20070299424 | Cumming et al. | Dec 2007 | A1 |
20070299500 | Hebert et al. | Dec 2007 | A1 |
20070299501 | Hebert et al. | Dec 2007 | A1 |
20070299502 | Hebert et al. | Dec 2007 | A1 |
20080009934 | Schneider et al. | Jan 2008 | A1 |
20080015558 | Harlan | Jan 2008 | A1 |
20080015678 | Kaplan et al. | Jan 2008 | A1 |
20080027528 | Jagger et al. | Jan 2008 | A1 |
20080033399 | Hunn et al. | Feb 2008 | A1 |
20080033528 | Satasiya et al. | Feb 2008 | A1 |
20080051705 | Von Oepen et al. | Feb 2008 | A1 |
20080051761 | Slazas et al. | Feb 2008 | A1 |
20080071301 | Matsuura et al. | Mar 2008 | A1 |
20080077229 | Andreas et al. | Mar 2008 | A1 |
20080082083 | Forde et al. | Apr 2008 | A1 |
20080091169 | Heideman et al. | Apr 2008 | A1 |
20080097398 | Mitelberg et al. | Apr 2008 | A1 |
20080108974 | Yee Roth | May 2008 | A1 |
20080132933 | Gerber | Jun 2008 | A1 |
20080140180 | Dolan et al. | Jun 2008 | A1 |
20080147001 | Al-Marashi | Jun 2008 | A1 |
20080147162 | Andreas et al. | Jun 2008 | A1 |
20080177249 | Heuser et al. | Jul 2008 | A1 |
20080188865 | Miller et al. | Aug 2008 | A1 |
20080188928 | Salahieh et al. | Aug 2008 | A1 |
20080221666 | Licata et al. | Sep 2008 | A1 |
20080234660 | Cumming et al. | Sep 2008 | A2 |
20080234795 | Snow et al. | Sep 2008 | A1 |
20080243225 | Satasiya et al. | Oct 2008 | A1 |
20080255541 | Hoffman et al. | Oct 2008 | A1 |
20080255653 | Schkolnik | Oct 2008 | A1 |
20080255654 | Hebert et al. | Oct 2008 | A1 |
20080262471 | Warnock | Oct 2008 | A1 |
20080262472 | Lunn et al. | Oct 2008 | A1 |
20080275426 | Holman et al. | Nov 2008 | A1 |
20080300667 | Hebert et al. | Dec 2008 | A1 |
20080312639 | Weber | Dec 2008 | A1 |
20090012500 | Murata et al. | Jan 2009 | A1 |
20090082609 | Condado | Mar 2009 | A1 |
20090105802 | Henry et al. | Apr 2009 | A1 |
20090125053 | Ferrera et al. | May 2009 | A1 |
20090132019 | Duffy et al. | May 2009 | A1 |
20090138066 | Leopold et al. | May 2009 | A1 |
20090143849 | Ozawa et al. | Jun 2009 | A1 |
20090149835 | Velasco et al. | Jun 2009 | A1 |
20090157048 | Sutermeister et al. | Jun 2009 | A1 |
20090160112 | Ostrovsky | Jun 2009 | A1 |
20090171319 | Guo et al. | Jul 2009 | A1 |
20090204196 | Weber | Aug 2009 | A1 |
20090240235 | Murata | Sep 2009 | A1 |
20090264985 | Bruszewski | Oct 2009 | A1 |
20090287182 | Bishop et al. | Nov 2009 | A1 |
20090287183 | Bishop et al. | Nov 2009 | A1 |
20090287187 | Legaspi et al. | Nov 2009 | A1 |
20090287292 | Becking et al. | Nov 2009 | A1 |
20090299333 | Wendlandt et al. | Dec 2009 | A1 |
20090299449 | Styrc | Dec 2009 | A1 |
20090318947 | Garcia et al. | Dec 2009 | A1 |
20100020354 | Ito | Jan 2010 | A1 |
20100036363 | Watanabe et al. | Feb 2010 | A1 |
20100049293 | Zukowski et al. | Feb 2010 | A1 |
20100049297 | Dorn | Feb 2010 | A1 |
20100057184 | Randolph et al. | Mar 2010 | A1 |
20100057185 | Melsheimer et al. | Mar 2010 | A1 |
20100069852 | Kelley | Mar 2010 | A1 |
20100087913 | Rabkin et al. | Apr 2010 | A1 |
20100094258 | Shimogami et al. | Apr 2010 | A1 |
20100094394 | Beach et al. | Apr 2010 | A1 |
20100094395 | Kellett | Apr 2010 | A1 |
20100100106 | Ferrera | Apr 2010 | A1 |
20100160863 | Heuser | Jun 2010 | A1 |
20100198334 | Yodfat et al. | Aug 2010 | A1 |
20100204770 | Mas et al. | Aug 2010 | A1 |
20100217235 | Thorstenson et al. | Aug 2010 | A1 |
20100256602 | Lippert et al. | Oct 2010 | A1 |
20100256603 | Lippert et al. | Oct 2010 | A1 |
20100262157 | Silver et al. | Oct 2010 | A1 |
20100268243 | Parker | Oct 2010 | A1 |
20100268328 | Stiger | Oct 2010 | A1 |
20100274270 | Patel et al. | Oct 2010 | A1 |
20100298931 | Quadri et al. | Nov 2010 | A1 |
20100331951 | Bei et al. | Dec 2010 | A1 |
20110009943 | Paul et al. | Jan 2011 | A1 |
20110022157 | Essinger et al. | Jan 2011 | A1 |
20110029065 | Wood et al. | Feb 2011 | A1 |
20110034987 | Kennedy | Feb 2011 | A1 |
20110054586 | Mayberry et al. | Mar 2011 | A1 |
20110093055 | Kujawski | Apr 2011 | A1 |
20110098804 | Yeung et al. | Apr 2011 | A1 |
20110106235 | Haverkost et al. | May 2011 | A1 |
20110112623 | Schatz | May 2011 | A1 |
20110152760 | Parker | Jun 2011 | A1 |
20110160763 | Ferrera et al. | Jun 2011 | A1 |
20110178588 | Haselby | Jul 2011 | A1 |
20110190862 | Bashiri et al. | Aug 2011 | A1 |
20110190865 | McHugo et al. | Aug 2011 | A1 |
20110208292 | Von Oepen et al. | Aug 2011 | A1 |
20110224650 | Itou et al. | Sep 2011 | A1 |
20110288626 | Straubinger et al. | Nov 2011 | A1 |
20110319904 | Hollett et al. | Dec 2011 | A1 |
20120029607 | McHugo et al. | Feb 2012 | A1 |
20120035700 | Leanna et al. | Feb 2012 | A1 |
20120053681 | Alkhatib et al. | Mar 2012 | A1 |
20120059449 | Dorn et al. | Mar 2012 | A1 |
20120065660 | Ferrera | Mar 2012 | A1 |
20120116494 | Leynov et al. | May 2012 | A1 |
20120123511 | Brown | May 2012 | A1 |
20120253447 | Hayasaka et al. | Oct 2012 | A1 |
20120316638 | Grad et al. | Dec 2012 | A1 |
20130085562 | Rincon et al. | Apr 2013 | A1 |
20130131775 | Hadley et al. | May 2013 | A1 |
20130172925 | Garcia et al. | Jul 2013 | A1 |
20130172979 | Fargahi | Jul 2013 | A1 |
20130226276 | Newell et al. | Aug 2013 | A1 |
20130226278 | Newell et al. | Aug 2013 | A1 |
20130261730 | Bose et al. | Oct 2013 | A1 |
20130274618 | Hou et al. | Oct 2013 | A1 |
20130274859 | Argentine | Oct 2013 | A1 |
20130282099 | Huynh | Oct 2013 | A1 |
20130304185 | Newell et al. | Nov 2013 | A1 |
20140025150 | Lim | Jan 2014 | A1 |
20140031918 | Newell et al. | Jan 2014 | A1 |
20140148893 | Kusleika | May 2014 | A1 |
20140171826 | Lampropoulos et al. | Jun 2014 | A1 |
20140172067 | Brown et al. | Jun 2014 | A1 |
20140194919 | Losordo et al. | Jul 2014 | A1 |
20140200648 | Newell et al. | Jul 2014 | A1 |
20150032198 | Folk | Jan 2015 | A1 |
20150066128 | Losordo | Mar 2015 | A1 |
20150066129 | Nageswaran et al. | Mar 2015 | A1 |
20150066130 | Haggstrom et al. | Mar 2015 | A1 |
20150066131 | Luong et al. | Mar 2015 | A1 |
20150080937 | Davidson | Mar 2015 | A1 |
20150164666 | Johnson et al. | Jun 2015 | A1 |
20170035592 | Haggstrom | Feb 2017 | A1 |
Number | Date | Country |
---|---|---|
102159157 | Aug 2011 | CN |
450221 | Oct 1991 | EP |
775470 | May 1997 | EP |
1637176 | Mar 2006 | EP |
1656963 | May 2006 | EP |
1656963 | May 2006 | EP |
1698369 | Sep 2006 | EP |
2078512 | Jul 2009 | EP |
1449622 | Sep 1976 | GB |
2179258 | Mar 1987 | GB |
2179258 | Mar 1987 | GB |
3272716 | Apr 2002 | JP |
2005110721 | Apr 2005 | JP |
2006021039 | Jan 2006 | JP |
WO-9601591 | Jan 1996 | WO |
WO-0107231 | Feb 2001 | WO |
WO-0149212 | Jul 2001 | WO |
WO-0189619 | Nov 2001 | WO |
WO-0236179 | May 2002 | WO |
WO-2007095031 | Aug 2007 | WO |
WO-2007117645 | Oct 2007 | WO |
WO-2009140545 | Nov 2009 | WO |
WO-2009140546 | Nov 2009 | WO |
WO-2010008571 | Jan 2010 | WO |
WO-2010027485 | Mar 2010 | WO |
WO-2010086320 | Aug 2010 | WO |
WO-2010123831 | Oct 2010 | WO |
WO-2010127838 | Nov 2010 | WO |
WO-2011014814 | Feb 2011 | WO |
WO-2011076408 | Jun 2011 | WO |
WO-2011095966 | Aug 2011 | WO |
WO-2011144351 | Nov 2011 | WO |
WO-2012040240 | Mar 2012 | WO |
WO-2012158152 | Nov 2012 | WO |
Entry |
---|
Kim, et al., “Sum of the Curve Indices for Estimating the Vascular Tortuousness of the Internal Carotid Artery,” Neurointervention 2009; 4: 101-106. |
Jankowitz, et al., “Measurement of Intracranial Arteries using Digital Subtraction Angiography with an Internal Control in 85 Patients,” University of Pittsburgh Medical Center, 2009. |
Osborn, “Diagnostic Cerebral Angiography, 2nd Edition,” 1999 Lippincott Williams & Wilkins, pp. 3-38, 31, 57-81, 83-116, 135-151, 173-194. |
Sugawara, et al., “Carotid-Femoral Pulse Wave Velocity: Impact of Different Arterial Path Length Measurements,” Artery Res, Mar. 2010, 4(1): 27-31. |
Covidien's Pipeline Embolization Device and Delivery System Product Description and Instructions for Use, Jun. 2010. |
U.S. Appl. No. 14/635,456, filed Mar. 2, 2015. |
U.S. Appl. No. 14/541,094, filed Mar. 15, 2015. |
DuPont Product and Properties Handbook Teflon FRP Jan. 1998, accessed Jun. 14, 2016 from http:/www.rjchase.com/fep—handbook.pdf. |
International Search Report and Written Opinion dated Jun. 13, 2016; International Application No. PCT/US2016/020382; 12 pages. |
Plastics International Hardness Scale—Durometer Comparisons of Materials 2016, accessed Jun. 14, 2016 from http:/www.plasticsintl.com/polyhardness.htm. |
Thermal tech Equipment Shore Durometer Conversion Chart, accessed Jun. 14, 2016 from http:/www.ttequip/knowledgelibrary/TechPageShoreDurometerConversionChart.htm. |
International Search Report and Written Opinion from PCT/US2014/050270 dated Nov. 18, 2014. |
Misumi Properties and Characteristics—Polyurethane—Tensile Strength http://us.misumiec.com/maker/misumi/mech/ roduct/ur/detail.html accessed Apr. 19, 2016. |
Wikipedia Polyether block amide—Tensile Strength https://en.wikipedia.org/wiki/polyether—block—amide accessed Apr. 19, 2016. |
WS Hampshire Inc. Typical Properties of PTFE—Tensile Strength; http://catalog.wshamshire.com/asset/psg—teflon—ptfe.pdf accessed Apr. 19, 2016. |
Number | Date | Country | |
---|---|---|---|
20150164666 A1 | Jun 2015 | US |
Number | Date | Country | |
---|---|---|---|
61870755 | Aug 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14040463 | Sep 2013 | US |
Child | 14636039 | US |