Embodiments of the present invention are directed generally to stent devices, and more particularly, to stents for vascular applications, including diametrical reduction and valve replacement in vascular applications. Some of the embodiments of the present invention are also directed to applications and methods of use for such stents, as well as methods of manufacture for such stents.
It is well-known that a section of the lumen of a corporeal duct may be restored by means of a tubular extension. Such an extension, which may be referred to as a “stent”, is deformable between a contracted state and a deployed state. In a contracted state, the stent is capable of introduction and movement along a corporeal duct up to the site to be treated, while the deployed state enables the stent to rest against the wall of the conduit at the site to be treated and restores the section of the conduit. Such a stent may also be used for implanting a prosthetic system in a corporeal duct, for instance a cardiac valve, or to isolate an arterial hernia.
It is also well-known to plug a hole in a corporeal wall by means of a two-collar implant, currently denominated as “plug”, each of these collars resting against one of the faces of the wall to be treated.
There exist numerous models of stents or of plugs, notably stents formed by laser-cutting a thin sheet of appropriate metal material or formed by braiding several metal wires, notably made of memory-shape alloy. The shortcoming of these stents and plugs lies in their being relatively difficult to produce.
One of the shortcoming of known stents is their lack of adaptability with regard to variations in diameter of vessels in which they are used. Thus, stents of different diameters must be produced for treating different corporeal ducts having different diameters. Moreover, current stents include ends which are relatively aggressive which may have significant damaging consequences.
The document EP 0 857 471 describes several structures of stents, where two with a “trellis mesh” are difficult to produce and exhibit no adaptability of diameter or of shape. This document also describes a stent formed by a single wire whereof each strand runs helicoidally from one end to the other of the stent and is braided to the others strands. At the ends of the stent, each strand connects to the following strand by an elbow. Though this design addresses some concerns of prior art stents, the embodiments disclosed in the document do not address concerns related to the adaptability of the diameter, the shape of the stent and the character of the aggressiveness of the ends of stents.
The document US 20021169498 describes a stent with a “trellis mesh” structure, considered as difficult to produce and exhibiting no adaptability of diameter or of shape.
Accordingly, embodiments of the present invention address the above noted concerns of prior art implants (e.g., stents). To that end, some of the embodiments of the present invention remedy the shortcomings of the prior art stents and provide stents which can be adapted to a plurality of different diameter vessels and openings. Embodiments of the present invention may be implanted into a patient via any one of transcatheter, percutaneous, transventricular, transatrial and trans-vacular/mini-invasive insertion.
To that end, some embodiments of the present invention provide a medical implant such as a stent which reduces the diameter of a vascular structure. Such a reduced diameter may be used for the placement of a valve either directly, or upon placement of a second stent in the reduced diameter. Such embodiments may also include a covering (e.g., PTFE membrane) to avoid blood going in between the wires of the stent. Such embodiments allow a gradient between the proximal and distal portions of the vessel area to which the stent is positioned. In addition, such stents may be used with a second stent in the restricted diameter (for example), for deploying a valve or other device.
Some embodiments of the present invention provide a method of production of a medical implant with mesh-like structure, notably a “stent” or a “plug”, relatively easy to implement and enabling the realization of implants which are perfectly functional.
With regard to the method of manufacturing stents according to some embodiments of the present invention, one method may include forming a stent structure by running a strand of wire helicoidally from one end to the other of the structure and interlacing the strand with other strands previously arranged. Such a method may include forming a loop between each strand at each end of the structure and setting the free ends of the first and of the last strand significantly back from the ends of the structure.
Another embodiment of the invention is a method which may include: using a single wire to form a tubular mesh-like structure, forming a first strand wherein the free end of the first strand is set back from a first location corresponding to a first end of the structure. The method also includes running the first strand along a helicoid path up to a second location corresponding to a second end of the structure, the first strand forming a loop at this second location, thus singling out a second strand. The method may further include one or more (and preferably all) of the following additional steps:
Producing a structure from a single wire, combined to the arrangement of the loops between each strand of wire and to the setting of the free ends of the first and of the last strand significantly back from the ends of the structure, enables the strands to be slid against one another in some embodiments of the invention. This sliding motion may be made possible by, for example, clamping or expanding loops, according to the diameter or the shape given to the structure. The latter is preferably deformable in its diameter as well as in its shape, and remains non-aggressive to the walls of a corporeal duct regardless of the diameter and/or the shape given thereto.
The absence of welded spots between the strands and the deformability of the loops in some embodiments of the present invention also has as an advantage of enabling significant variation of the angles formed by the strands therebetween. The multiples sides of these strands enable wider variability of the different diameters which the structure may exhibit, and hence the production of a stent having wider range of variations in diameter. Accordingly, this allows such stents to be used for treating a wider range of diameters of corporeal ducts.
The loops formed by the wire at the ends of said structure partake of these wider possibilities of deformation and are moreover non-aggressive for the wall of the corporeal duct treated. The setting of the free ends of the first and of the last strand back from the ends of the stent enable many adaptations of the diameter and/or of the shape of the stent without risking that these ends protrude beyond the ends of the stent and should not form sharp excrescences for the corporeal duct to be treated.
The formed structure may also be used as a blank for the production of a stent or of a “plug” of specific shapes. The method may then comprise: deformation of the tubular structure to form a specific shape of stent or of the “plug” to produce (and provide stabilization) the tubular structure in the new shape.
Preferably, interlacing a strand with other encountered strands is performed as a braiding process, i.e. this strand runs alternately on a strand on its way then under the following strand, and so on. This braiding allows the structure to be used as a stent or to serve as a blank for the production of other implants (e.g., plugs). The braiding also enables a reliable stop of the first and of the last strands formed by the wire.
The wire used may be a shape memory alloy, in particular a nickel-titanium alloy, known under the designation “NITINOL”, having a diameter ranging from, for example, 0.15 to 0.5 mm. The diameter of the structures which may be produced by the method according to the invention very widely, and may range from 5 to 100 mm (for example). The method may include the step of placing on the structure a means for longitudinal shortening of the structure—that is, the ability to switch from an elongated state to a shortened state. Longitudinal shortening may also enable the deployment of the structure or facilitate the deployment of the structure. The means for accomplishing longitudinal shortening may include an elastic means—for instance, a band made of elastic material, notably of silicon. The elastic material may be a shape memory alloy enabling the switch from an elongated state to a shortened state by changing the temperature of the body.
At least one radio-opaque wire or marker may be added to the structure of a stent according to any of the embodiments of the invention, and particularly to the wire-based structures. Such radio-opaque markers may be comprised of: any metallic thread having sufficient cross-sectional area to perform the intended function (e.g., between about 0.2 and 1.0 mm). The radio-opaque marker increases the radio-opacity of a stent in one or more areas to help orientate the device. For example, in a valved stent/implant, the radio-opaque marker(s) may be placed in a strategic area of the stent (e.g., the front of one or more commissures) of the stent. Such placement of the marker allows for an ideal orientation of the valved stent since the maker can be related to the commissure of the patient valve being replaced. Specifically, a surgeon need rotate the delivery system of the stent to align the marker with the area of interest. The commissure of the patient may be native or bioprosthetic if the patient has already undergone a replacement of a cardiac valve.
The longitudinal shortening means may be engaged through two loops formed at the ends of the structure. The method may include covering the structure with a watertight flexible wall, using, for example, a Teflon sheet, which may be sewed to the structure. Because of the watertight aspect, the structure may be used to isolate an arterial hernia when in place.
Another embodiment of the present invention is directed to a medical implant which may include a stent having a tubular first wall structure of a first diameter, where at least one end portion of the first wall structure is formed into a second diameter.
Another embodiment of the present invention is directed to a medical implant which may include a self-expanding stent having a tubular first wall structure of a first diameter, where each end portion of the first wall structure is formed into a second wall structure of a second diameter larger than the first diameter. The implant may also include a membrane covering for covering at least the first wall structure, and the stent may be formed of interlaced, helicoidally wound wire forming a mesh-like structure.
Another embodiment of the present invention is directed to an implant system comprising a first self-expanding stent which may include a tubular first wall structure of a first diameter, where at least one end portion of the first wall structure is formed into a second diameter. The system may also include a second balloon expandable stent comprising a tubular structure, where the balloon expandable stent may be deployed within a portion first wall structure.
Another embodiment of the present invention is directed to a method for implanting a medical device and may include providing a self-expanding stent capable upon expansion of forming a tubular first wall structure of a first diameter, wherein each end portion of the first wall structure form into a second wall structure of a second diameter larger than the first diameter, loading the self-expanding stent into a delivery system, the stent being enclosed by a sheath, inserting the delivery system over a guide-wire, a portion of the guide-wire lying adjacent an area of interest for implanting the stent, advancing the stent to the area of interest, deploying a distal end of the stent out from the sheath, pushing the delivery system in distal end direction such that distal end of the stent is turned backward toward the proximal end of the stent, deploying the tubular first wall structure of the stent, and deploying the proximal end of the stent.
Another embodiment of the present invention is directed to a method for implanting a medical device. The method may include deploying a first stent within a designated area of a patient, the first stent comprising a tubular first wall structure of a first diameter, where at least one end portion of the first wall structure is formed into a second diameter. The method may also include deploying a second stent comprising a second tubular structure within the first wall structure of the first stent.
Another embodiment of the invention is directed to a method for implanting a medical device may include deploying a first self-expanding stent within a designated area of a patient, where the first stent comprising a tubular first wall structure of a first diameter. At least one end portion of the wall may be formed into a second diameter. The method may also include calibrating the wall structure of the first diameter to a predetermined diameter.
Another embodiment of the present invention is directed to a method for treating a staged right ventricular outflow tract stenosis of a patient. The method may include deploying a first stent proximate a ventricular setpal defect of a patient, where the first stent comprises a tubular first wall structure of a first diameter, the at least one end portion of the first wall structure may be formed into a second diameter and a conical portion, at least the conical portion includes a membrane covering, and the defect may be sealed by the membrane/conical portion.
Another embodiment of the invention is directed to a method for closing a cardiac defect in a patient and may include providing a stent comprising a self-expanding medical implant having a tubular structure of a first diameter and at least one end portion formed into a disk having a second diameter, where the stent includes a membrane covering at least the disk. The method may also include deploying the stent within the cardiac defect.
Another embodiment of the invention is directed to a self-expanding valve replacement implant for a patient and may include a first tubular wall structure of a first diameter and a Valsalva portion corresponding in shape to the Valsalva portion of the valve area of the valve being replaced in a patient.
Another embodiment of the invention is directed to a medical implant which may include a first stent having a first tubular wall structure of a first diameter and a second separate stent comprising a second tubular wall structure of a second diameter. The at least one of the first stent and the second stent may include a plurality of prolongations which connect the first stent and the second stent in spaced apart arrangement.
Another embodiment of the present invention is directed to a method of restricting a diameter of a vessel. The method may include providing a self-expanding stent having a tubular first wall structure of a first diameter, where each end portion of the first wall structure is formed into a second wall structure of a second diameter larger than the first diameter and a membrane covers at least the first wall structure. The method may also include deploying the stent within a vessel.
In yet another embodiment of the present invention, a system for implanting a medical device is provided, and may include a self-expanding stent capable upon expansion of forming a tubular first wall structure of a first diameter, where each end portion of the first wall structure form into a second wall structure of a second diameter larger than the first diameter, a delivery system having a sheath capable of loading the self-expanding stent, and a guide-wire upon which the delivery system is guided to an area of interest in a patient for implanting the stent. Upon the delivery system being advanced to the area of interest, the distal end of the stent is deployed from the sheath, the delivery system is pushed in the distal end direction such that distal end of the stent is turned backward toward the proximal end of the stent.
The invention will be better understood, and other characteristics and advantages thereof will appear, with reference to the appended schematic drawing, representing, for non limiting exemplification purposes, several structures of implant obtained by the method concerned.
This application claims priority to EP application no. 06290707.6 of the same title, which is a continuation-in-part to U.S. patent application Ser. No. 10/514,329, filed Jul. 6, 2005, which is a national stage application of PCT application no. PCT/FR03/03296, filed Nov. 5, 2003, which claims priority to French application no. FR 02 14522, filed Nov. 20, 2002. Each of the foregoing disclosures is herein incorporated by reference.
While some of the embodiments of the present invention are described herein as being manufactured according to the structures illustrated in
For simplification purposes, the portions or element present on the different devices and structures will be designated by the same numeric references and will not be described again.
The chuck 1 may also comprise a hole 4 provided slightly recessed from one of its ends 1b. The chuck 1 is intended to be used for producing a mesh-like tubular structure 10 as shown on
To produce the structure 10, an appropriate length of wire 11 is cut, for instance four meters, and one end 11a of wire is attached to the chuck 1 by engagement in the hole 4 and around the end edge of the chuck 1 then twisting this end 11a around itself.
The wire 11 may then be run around a stud 3 of the end 1b slightly offset angularly, then along the wall of the chuck 1, along a helicoid path running above holes 2 aligned on this path. The first strand 11b of wire thus formed runs along the wall of the chuck 1 then is engaged around the stud 3 corresponding to the end 1a, by forming a loop around this stud 3, thus singling out a second strand 11c.
As shown on
As can be deduced from
Each strand is braided with the others strands on its way, i.e. runs alternately over a strand on its way then below the following strand, and so on. This braiding is facilitated by the holes 2 and by the conformation of the free end 11e of the wire 11 into a hook. The last strand is braided with the strands on its way, then the end of this strand is cut to the desired length, so that it is set back from the corresponding end of the chuck 1, i.e. the end 1a in the example represented.
The first strand 11b is then cut to the desired length, so that its end is set back from the end 1b, then the studs 3 are extracted from the holes which receive said studs in order to free the structure 10 and to enable to remove said studs from the chuck 1 by a sliding motion.
According to such embodiments, the structure 10 thus constituted does not comprise any welding spots between the strands of wire 11, nor braids at its ends, but loops 12. The absence of welding spots between the strands and the existence of these loops 12 enable to slide the strands against one another when antagonistic stresses are exerted transversally on the structure 10, and this sliding enables a significant variation of the angles formed by the strands therebetween and hence of the diameter which said structure 10 may acquire.
The latter may be used as such and constitute an extension of corporeal duct currently denominated as “stent”. After production as aforementioned, it is exposed in such a case to one or several thermal treatments enabling to stabilize its form and to confer supra-elastic properties thereto.
This stent has hence wider possibilities of variations in diameter, which enable it to be used for treating a wider range of diameters of corporeal ducts. The structure 10 may also be deformed to constitute a stent of smaller or of larger diameter, or a stent of particular shape, for instance with a median narrowing. An appropriate contention device, holding the structure 10 in the shape to obtain before thermal treatment, is used in each case, i.e. a contention tube for the production of a stent of smaller diameter, a chuck of diameter larger than the chuck 1 for the production of a stent of larger diameter, or an appropriate shape in the other cases.
One of the portions 20 is preferably dismountable with respect to the portion 21, to enable retraction of the structure 10 obtained outside the chuck 1. A structure 10 as shown on
One or several contention wires 22 is then used to form the narrowed median portion 17 of the structure 10, as shown on
The implant 23 is of the type currently designated as a “plug”, liable to plug a hole in a corporeal wall 100, for example, notably an interventricular hole in a heart. The implant includes a median portion 25 intended to be engaged in said hole, one or two collars 26 adjoining this central portion 25, liable to rest against said wall 100, on both sides thereof, and a material sheet blanking the opening formed by the median portion 25, notably a Teflon sheet.
In the case of this implant 23, shown on
As previously, the structure 10 thus deformed is placed in a contention device which maintains it in this shape and is then exposed to a single or to various appropriate thermal treatments stabilizing its shape and conferring super elastic properties thereto. The implant 24 receives also a watertight sheet which covers said implant, notably made of Teflon.
As appears from the foregoing, the invention provides a method of production of a medical implant with mesh-like structure, notably of a “stent” or of a “plug”, relatively easy to implement and enabling the realization of implants 10, 23, 24 remaining perfectly functional.
The stent illustrated in
The same device shown in
The above noted methods of manufacture of stents may be used in making other embodiments of the invention as set out below. Accordingly,
As shown in
To that end, one of skill in the art will appreciate that the ends of the diametrical reducer stent may be manufactured in a number of different shapes, where the reduced diameter portion and ends may be configured differently.
The stent of
One particular advantage of some embodiments of the present invention is the implanting of stents, and in particular, deployment of diametrical reduction stents. Accordingly, X-ray images of the deployment of a stent according to some embodiments of the present invention are shown in
The stent system, as shown in
While some embodiments of the present invention present a multi-component, valved (or unvalved) stent system, other embodiments of the present invention may include diametrical reducer stents have a valve component sutured (or otherwise attached) into the tubular, reduced diameter portion of the stent. Such an embodiment is illustrated in
As shown in
This stent also preferably includes a covering (e.g., PTFE), covering at least the tubular portion and the portion of the Valsalva section (not shown).
The distance between the two interdependent components in the figures is short, but can be longer and may be made adjustable—via the prolongations noted above. Since the prologations may be fixed to the stent containing the valve at a precise level, the device is capable of being orientated. The larger diameter component 3004 acts as a holder and may be fixed to the wall of the ascending aorta, while the other stent component 3006 holds the valve 3007 to the annulus. Note that the prolongations 3008 can alternatively originate from the stent component 3006 containing the valve. One stent may be made of self expandable materiel and the other one (with the valve) is balloon expandable. This, as set out in other embodiments of the invention, allows a stepwise delivery with first positioning of stent 3004 to the ascending aorta and once the orientation is correct, the expansion of the balloons and of the valved stent component 3006. Alternatively, the 2 stents can be self-expandable or balloon expandable.
Example—Percutaneous Replacement of Atrioventricular Valves
Device description. A self-expandable symmetrical stent constructed from a 0.22-mm nitinol wire was designed. The overall length when deployed was 15 mm. It is formed by two flat disks 3102 and a tubular portion 3104. The disks and the central part had a spontaneous diameter of 40 mm and 18 mm, respectively (see
Device preparation. A naturally valved venous segment, harvested from the bovine jugular vein (Contegra, Medtronic Inc., Minneapolis, Minn.) was prepared and mounted into the tubular part of the self-expandable stent. To guarantee the sealing of the device, we sutured a polytetrafluoroethylene (PTFE) membrane, usually used for covered stents (Zeus Inc., Orangeburg, S.C.), on the outside of the ventricular disk (
The delivery system. The delivery system consisted of a “homemade” front-loading 18-F long sheath (Cook Inc., Charenton le Pont, France). For the purpose of the study, the distal tip of a dilator was cut off. A piece of catheter was fixed to this part to liberate space for stent placement. The length of this space (i.e., piece of catheter) was 5.5 cm, which was the length of the device when in the constrained position. At the tip of the catheter, a 1-cm-long dilator was attached to allow for a smooth transition between the tip and the sheath and to facilitate the tracking of the delivery system during its course. The sheath could freely slide over the device. No balloon was necessary to deliver the nitinol stent that spontaneously deployed at the time of uncovering.
Preparation of the animals. Animals were treated according to the European regulations (9), and the protocol was approved by the institutional ethics committee. Eight ewes weighing 60 to 70 kg were included. We intended to implant in the tricuspid position a device sheltering an 18-mm valve as a one-step procedure. Animals were divided into two equal groups according to the killing time points. General anesthesia was induced with 10 mg/kg of thiopental and maintained with isoflurane. Right jugular and femoral veins were prepared for catheterization.
Percutaneous replacement of the tricuspid valve. Through the right jugular vein, a 5-F right Judkins coronary catheter (Cordis, Issy les Moulineaux, France) was advanced in the distal right pulmonary artery (PA). Through this catheter, a 0.035-inch extra-stiff guidewire (Amplatzer, Golden Valley, Minn.) was positioned distally. The valved device was loaded into the delivery system, inserted over the previously positioned wire, and advanced into the RV. As with devices for closure of atrial septal defects, the distal disk was deployed in the RV by pulling on the external sheath while maintaining the dilator in position. This disk was then applied to the tricuspid annulus by pulling on the external sheath and dilator. After deployment of the tubular part containing the valve, the second disk was delivered similarly in the RA (see also
Epicardial echocardiography imaging and cardiac catheterization. The RV and RA pressures were measured before and after device implantation. Angiographic evaluation consisted of an atrial injection and a right ventriculography. A small left thoracotomy was performed in all animals to allow for an epicardial echocardiography. Angiograms and echocardiography were initially performed to define the anatomy of the area of interest and to measure the maximum diameter of the tricuspid annulus. Studies were also repeated after implantation and before killing to confirm the appropriate position and sealing of the device and to verify the function of the implanted valves. In animals with tricuspid regurgitation, a RV angiography was performed through the RV because the regurgitation could be enhanced or created by the position of the catheter through the implanted valve.
Graft retrieval. Grafts were electively explanted one hour (group 1) and one month (group 2) after valve implantation. The subvalvular area was examined to determine the relationship between the cordae and the device and the position of the implanted device in relation to the tricuspid valve annulus. After cutting down the interventricular septum, the device was harvested with the RA and RV free wall and rinsed to remove excess intraluminal blood. Valvular competency was grossly tested by passing fluid in the graft. The RA was finally dissected and inspected macroscopically to look for injuries and for the position of the proximal disk.
RESULTS. The mean maximum diameter of the tricuspid annulus was 30 mm, ranging from 27 to 35 mm. The mean RA pressure increased from 5 to 7 mm Hg after valve implantation (range 4 to 8 mm Hg) (see
One-month evaluation (group 2). In group 2, all devices were successfully implanted. The mean RA pressure did not significantly change when comparing acute and chronic evaluations (7 vs. 7.3 mm Hg). There was no early or late stent migration (
DISCUSSION. No data are presently available on percutaneous valve replacement of atrioventricular valves. Before the availability of mitral homograft valves, semi-lunar valves were used for that indication. For percutaneous implantation the use of such valves is possible, but several difficulties must be resolved. First, the discrepancy between the size of the available transcatheter valve and the size of the annulus makes the use of current stent designs impossible. Second, the valve must be anchored to the annulus not to embolize. Third, in the case of percutaneous reduction of the annulus size, the device must ensure the perfect sealing of the gap between the true and reduced annulus diameters. Therefore, it was necessary to develop a device for this indication that fulfilled the previous criteria. For that purpose, we designed a new self-expandable stent formed of two disks separated by a tubular part. The diameter of the two disks was chosen to be slightly larger than the diameter of the tricuspid annulus to allow for anchoring. Mechanical fixation was ensured by trapping the annulus between the two disks. An 18-mm valve was sutured in the tubular part of the device.
Finally, the PTFE covering guaranteed the sealing of the careful echographic assessment before complete release of device. The implantation of these newly designed stents was the device. Although it has not seemed to be necessary to feasible in seven of eight ewes. The implantation of this time the delivery of the device in coordination with a newly designed device permitted the reduction of the specific phase of the cardiac cycle, it could be important to annulus diameter to the desired diameter with no significant avoid entrapment in the tricuspid cordae. Techniques of increase in RA pressure. This hemodynamic finding did not rapid ventricular pacing or vagal stimulation probably change in any animals with “late” killing time points. We need to be investigated further. No migration occurred failed to implant one valved device because it was trapped in early or during the follow-up. A significant paravalvular the tricuspid cordae. This should be avoided by a more leak occurred in one animal. At autopsy at one-month follow-up, the PTFE membrane was torn beside a weld fracture.
Having now described a few embodiments of the invention, it should be apparent to those skilled in the art that the foregoing is merely illustrative and not limiting, and it should be understood that numerous changes in size, shape and configuration of the disclosed embodiments may be introduced without departing from the true spirit of the invention as defined in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
06290707.6 | Apr 2006 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB07/02937 | 6/7/2007 | WO | 00 | 10/11/2007 |