Vascular suturing device

Abstract
A surgical device of suturing vascular vessels is described, as well as methods for suturing tissue employing the surgical device. In one form the device includes a distal member for insertion into a vascular vessel puncture wound. The distal member contains a suture and needle engaging fitting. At least one needle is advanced through tissue adjacent the puncture wound and into the needle engaging fitting to draw lengths of suture material which can then be used to close the puncture wound. In another form the device includes at least one needle advanceable through tissue and into a needle capture element within a distal end of the surgical device to draw lengths of suture material which can then be used to close various puncture wounds, particularly in vascular tissue. In still another form the device includes at least one needle advanceable through tissue to drawn lengths of suture material which can then be used to close various puncture wounds, particularly in vascular tissue. A foot is pivotal between a non-deployed position and a deployed position where it engages vascular tissue on a distal side of the vessel.
Description
BACKGROUND OF THE INVENTION

The present invention generally relates to surgical instruments and methods of suturing tissue.


A number of diagnostic and treatment procedures are conducted intravascularly. Typically, a catheter is introduced into the vascular system at a convenient access location and is then guided to the target treatment site. The Seldinger Technique is one of the well-known early examples of this type of procedure which can include catheterization and angioplasty techniques. Procedures such as this require a vascular access. Typically an introducer sheath with or without a guide wire is inserted through a puncture wound in a vessel such as the femoral artery at a location near the groin. A catheter and other instrumentation can then be inserted through the sheath and guided to the targeted treatment site. After the diagnostic and/or treatment procedure has been completed, the puncture wound must be closed. Closing the wound can be difficult because of the substantial bleeding that can occur through an open wound in the vascular vessel. One technique for hemostasis includes applying pressure near or upstream of the puncture site. This approach suffers from many deleterious effects, not the least of which are that it can be time consuming and extremely uncomfortable—even painful—for the patient because the pressure is applied directly on or adjacent to the traumatized site. Frequently anticoagulants are employed for the original diagnostic/treatment procedures. This delays clot formation during the procedure, and this effect lasts through the initial recovery period, lengthening the time during which pressure must be applied to the wound for up to twelve hours or more. During this initial recovery period, it is imperative that the patient remain still, further adding to the patient's discomfort.


Alternatively, the puncture wound can be closed with sutures. This can be extremely difficult because the vascular vessel with the puncture lies underneath the patient's outer skin. Some vascular vessels, notably the femoral artery, appear to be relatively large; however, in practice, even the largest arteries cannot be readily sutured. Therefore, devices have been developed to facilitate subcutaneous suturing of arteries and veins. These devices can extend through the outer tissue to the puncture wound in the vascular vessel. Needles are then deployed from the device to suture the tissue adjacent the puncture wound.


Certain devices are inserted through the wound and initially deploy needles to pierce the tissue in from outside the vascular vessel and continue on into a depository in the portion of the device located within the lumen of the vessel. The suturing device can be removed from the vessel (and the patient) by withdrawing the needles and suture material at the same time. These devices leave an inverted suture path after completion of the closure. The suture material runs from the exterior tissue surrounding the puncture wound back up through the wound itself which is then tied off. Some complications may arise resulting from this type of closure, including oozing, excessive bleeding, and, on rare occasions, knot loosening. It would be preferred to provide a suturing device that allows the suture path to extend across the puncture opening internal of the vessel membrane with the suture knot overlying the exterior of the closed wound.


Furthermore, while the above-described techniques are regularly performed, as with any surgical procedure, they involve considerable risk to patients. These particular procedures entail delicate and intricate procedures. The physical condition of the patient and, importantly, the condition of the patient's vascular system can greatly impact the risks and prognosis. For example, a patient's vascular vessels may be more or less compliant. This can cause further complications making suturing of the puncture wound more difficult. Many current suturing devices cannot accommodate and support non-compliant vascular tissue because the sutures can be misplaced, not attach sufficient tissue, or pull out making wound closure more risky for these patients. Devices which can Support tissue and facilitate correct suture placement would reduce some of the risks attendant with this procedure.


In view of the above background, there remain needs for improved and/or alternative methods and devices for closing vascular opening or punctures. The present invention is addressed to these needs.


SUMMARY OF THE INVENTION

The present invention relates to suturing device and the use thereof. Various aspects of the invention are novel, nonobvious, and provide various advantages. While the actual nature of the invention covered herein can only be determined with reference to the claims appended hereto, certain forms and features, which are characteristic of the preferred embodiments disclosed herein, are described briefly as follows.


In one form, the present invention provides a suturing device for suturing an opening in a vascular vessel. The device comprises a proximal member that can be configured as an elongate body with a needle channel extending at least partway therethrough and sized to receive at least one needle; a distal member configured to be inserted within a lumen of a vascular vessel, where the distal member has a receptacle located therein and a length of suture material with a needle engaging fitting positioned in the receptacle; and an intermediate member disposed between the proximal member and the distal member. In one embodiment, the intermediate member defines a tissue receiving area and has a first opening providing a passageway to the channel and a second opening providing a passageway into the receptacle. In other embodiments, the distal member defines a substantially linear longitudinal axis and the intermediate member can deviate from that longitudinal axis. In other embodiments, the intermediate defines a tissue receiving area that provides a linear needle pathway through the tissue receiving area.


In another form, the present invention provides a suturing device for suturing an opening in a vascular vessel. The suturing device comprises: a proximal member including an elongate body having a needle channel therethrough sized to receive at least one needle and including a needle cartridge slidably mounted thereon configured to contain two or more needles; a distal member configured to be inserted within a lumen of a vascular vessel and having a receptacle located therein and a length of suture material with a needle engaging fitting positioned in the receptacle; an intermediate member disposed between the proximal member and the distal member, where the intermediate member defines a tissue receiving area and has a first opening providing a passageway to the channel and a second opening providing a passageway into the receptacle, and a length of suture material comprising a needle engaging fitting positioned in the receptacle to engage a needle entering from the second opening.


In yet another form, the present invention provides A method of suturing an opening in a vascular vessel, said method comprising: inserting a vascular suturing device through the opening in the vascular vessel, said suturing device comprising a proximal member having a needle channel and a needle therein; a distal member configured to be inserted into the lumen of the vascular vessel, the distal member having a cavity therein and a length of suture material disposed in the cavity; and a connecting member between the proximal and distal members, the connecting member angled or curved to offset the channel and the cavity from the opening in the vascular vessel and having a first opening into the needle channel and a second opening into the cavity; sufficiently advancing the needle through the needle channel to pierce a portion of tissue adjacent the opening in the vessel and extend into the cavity of the distal member; and capturing the suture within the cavity with the needle; and retracting the needle carrying a first portion of the suture back through the tissue and the channel.


In another form, the present invention provides a suturing device for suturing. The suturing device provides particular advantages, for suturing a wall portion of a vascular vessel. The device comprises: a proximal member including an elongate body with a channel sized to receive a needle therein; a distal member comprising a receptacle therein, where the distal member is configured to be inserted into a vascular vessel, and wherein the receptacle is sized to receive at least one needle therein; an intermediate member disposed between the proximal member and distal member, where the intermediate member defines a tissue receiving area and provides a first passageway from the channel to the tissue receiving area and second passageway from the receptacle in the distal member to the tissue receiving area. In preferred embodiments a needle capture element positioned in the receptacle of the distal member. The needle capture element is configured to secure a needle inserted into the receptacle.


In another form, the present invention provides a method of suturing vascular tissue adjacent an opening in a vascular vessel. The method uses a suturing device which can be inserted through the opening in the vascular vessel. The device comprises: a proximal member with a needle channel formed therein; a distal member configured to be inserted into the lumen of the vascular vessel, where the distal member has a receptacle that includes a needle capture element and which is sized to receive at least one needle; and an intermediate member disposed between the proximal member and the distal member. The intermediate member defines a tissue receiving area and is configured to provide a linear needle pathway between the channel and the receptacle. A needle is advanced through or along the needle channel to pierce the vascular tissue drawing a portion of the length of suture material through the vascular tissue. The needle is further advanced so that a portion of the needle engages with the needle capture element in the receptacle. Preferable the needle capture element prevents and in adverting dislodging of the needle from the receptacle during the surgical procedure. However, the same needle capture element also allows the surgeon to remove the needle when and if desired.


In another form the present invention provides a suturing device for suturing an opening in a vascular vessel. The device comprises: a proximal member including an elongate body with a needle channel therethrough sized to receive at least one needle; a distal member configured to be inserted within a lumen of a vascular vessel, where the distal member has a receptacle to receive one or more of the needles after located they have passed through the tissue; an intermediate member disposed between the proximal member and the distal member and defining a tissue receiving area with a first opening providing a passageway to the channel and a second opening providing a passageway into the receptacle; and a foot pivotally mounted on the intermediate member to engage with a portion of the tissue.


In another form the present invention provides a method of suturing an opening in a vascular vessel. The method comprises: inserting a suturing device through the opening in the vascular vessel wherein the suturing device comprises a proximal member having a needle channel therein; a distal member configured to be inserted into the lumen of the vascular vessel with a receptacle therein sized to receive at least one needle; an intermediate member disposed between the proximal and distal member and having a first opening providing a passageway way to the needle channel and a second opening providing a second passageway into the receptacle and wherein the intermediate member is angled or curved to offset the needle channel and the receptacle from the opening in the vascular vessel; and a foot pivotally mounted on the intermediate member. The method also comprises: deploying the foot to contact vascular tissue adjacent the opening; and advancing a first needle through the needle channel to pierce a portion of vascular tissue at a first suture site adjacent the opening in the vascular vessel and into the receptacle in the distal member. Additionally the device can be relocated within the vessel to advance a second needle and length of suture material through the tissue. The ends of the two lengths of suture material can be pulled taut to close the wound or opening the vessel. A surgical knot or other knot replacement technology can be utilized to complete the wound closure.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an exploded view of one embodiment of a suturing device in accordance with the present invention.



FIG. 1A is an illustration of suture material suitable for use in the suturing device of FIG. 1 accordance with the present invention.



FIG. 2 is a cross-sectional view of the suturing device of FIG. 1 including the suture material of FIG. 1A.



FIG. 3 is a perspective view of a ferrule and a needle for use with the suturing device in accordance with the present invention.



FIG. 4 is a cross-sectional view of the ferrule engaged with the needle of FIG. 3.



FIG. 5 is an enlarged, cross-sectional view of the intermediate member of the suturing device of FIG. 1 with the suture material of FIG. 1A.



FIG. 6 is a radial cross-sectional view taken along section line 6-6 of the intermediate member illustrated in FIG. 5.



FIG. 7 is an enlarged cross-sectional view of an alternative embodiment of a connector member with suture material and two laterally disposed ferrules in accordance with the present invention.



FIG. 8 is a plan view of an alternative embodiment of a suturing device with a needle cartridge for use in accordance with the present invention.



FIGS. 9-16 illustrate the use of the suturing device of FIG. 1 to suture vascular tissue.



FIG. 17 is a perspective view of a hollow needle for use in the suturing devices described herein.



FIGS. 18-20 illustrate the use of the suturing device of FIG. 1 with a hollow needle of FIG. 17.



FIG. 21 is a perspective view of one embodiment of a suture securing device for use in the present invention.



FIG. 22 is a perspective view of an alternative embodiment of a suture securing device for use in the present invention.



FIG. 23 is a cross-sectional view of one embodiment of a suturing device with a needle capture element in accordance with the present invention.



FIG. 24 is an enlarged view in cross section of the distal member of the suturing device of FIG. 23.



FIG. 25 is an enlarged view in cross section of the distal member of the suturing device of FIG. 23 with a needle disposed within a receptacle in the distal member.



FIG. 26 is an enlarged view in cross section of an intermediate member with needle engaging projections of an alternative suturing device in accordance with the present invention.



FIG. 27 is an enlarged view in cross section of the distal member illustrated in FIG. 26 with a needle disposed in the receptacle.



FIG. 28 is a plan view of an alternative embodiment of a suturing device with a needle cartridge for use in accordance with the present invention.



FIGS. 29-34 illustrate methods of use of the suturing device according to the present invention.



FIG. 35 is a perspective view of one embodiment of a suture securing device for use in the present invention.



FIG. 36 is a perspective view of an alternative embodiment of a suture securing device for use in the present invention.



FIG. 37 is a perspective view of one embodiment of a suturing device with an articulating foot according to the present invention.



FIG. 38 is an enlarged fragmentary view of the intermediate member of the suturing device illustrated in FIG. 37.



FIG. 39 is a plan view of the suturing device illustrated in FIG. 37.



FIG. 40 is a cross-section view taken on line 40-40 of the suturing device illustrated in FIG. 39.



FIG. 41 is a longitudinal cross-sectional view along section 41-41 of the suturing device illustrated in FIG. 40 illustrating the intermediate member with the articulating foot in a non-deployed position.



FIG. 42 is a fragmentary cross-section view of the suturing device illustrated in FIG. 37 with the foot in a first, non-deployed position.



FIG. 43 is a fragmentary cross-section view of the suturing device illustrated in FIG. 37 illustrating the intermediate member with the articulating foot in a second or deployed position.



FIGS. 44-47 illustrate use of the suturing device of FIG. 37.



FIG. 48 is a perspective view of one embodiment of a suture securing device for use in the present invention.



FIG. 49 is a perspective view of an alternative embodiment of a suture securing device for use in the present invention.



FIG. 50 is a perspective view of one embodiment of a suturing device with a needle capture element in accordance with the present invention.





DETAILED DESCRIPTION OF THE INVENTION


FIG. 1 is an exploded view of one embodiment of a suturing device 10 for suturing vascular vessels in accordance with the present invention. Device 10 includes a proximal member 12, a distal member 14, and an intermediate member 16 located therebetween. Device 10 includes one or more needles 18 advanceable through a portion of the proximal and distal members. A needle pusher 26 can either push or engage needle 18 to advance it through a channel 24 in the proximal member and through vascular tissue adjacent the puncture wound. In one form, suture material can be attached to needle 18 which is then advanced in a distal direction through tissue. In other forms, suture material can be located within distal member to be snared by a needle to be withdrawn in a proximal direction through tissue. A second needle and subsequent needles can be similarly configured and manipulated to place sutures through tissue adjacent a puncture wound in a vascular vessel. The suture material(s) threaded through the vascular tissue can be drawn taut closing the puncture wound. A surgical knot or other suture securing device can complete the wound closure.


As used herein, the term “proximal” refers to a direction toward the surgeon and away from the patient or a location closer to the surgeon, while the term “distal” refers to a direction towards the patient and away from the surgeon or a location closer to the patient.


Proximal member 12 is provided as an elongated portion with a substantially cylindrical or oval radial cross section. Member 12 includes a first end of sufficient dimensions to be readily grasped by the surgeon to manipulate the device during the procedures. Proximal member 12 can also include a gripping portion to facilitate handling during the surgical procedure. Needle channel 24 runs longitudinally along at least a portion of proximal member. In one embodiment, channel 24 extends along the entire length of proximal member from a first end positioned proximal to the surgeon to a second end adjacent to intermediate member 16. In this embodiment, one or more needle(s) 18 and needle pusher(s) 26 can be inserted into and retrieved from channel 24 at the first end. In other embodiments, channel 24 extends only partly through the proximal member 12. Needle channel 24 can be centrally located along proximal member 12. In preferred embodiments, proximal member 12 includes a single needle channel 24 through which one, two, three, or more needles can be advanced. Alleviating multiple needle channels within the suturing device provides a more compact member, which can be particularly advantageous for subcutaneous procedures.


Channel 24 is sized and dimensioned to allow one or more needles 18 to be advanceable therethrough and into vascular tissue around the puncture wound. Furthermore, channel 24 can be either partly or completely encased within the body of proximal member 12. However, in a preferred embodiment, channel 24 is not encased within the body of proximal member 12. Rather, channel 24 is provided as a slot formed into the surface of proximal member 12. Preferably the slot is configured to retain one or more needles within the slot. For example, the slot can be formed to have an opening at the exterior surface of proximal member that is narrower than the diameter of the needles (and optionally the pusher) while the internal portion or diameter of the slot can be dimensioned to permit facile movement of the needle therethrough. An exit opening is located at the distal end of channel 24.


Proximal member 12 includes a blood return line or lumen 25 that terminates in a fitting 27, for example, a luer lock that can be mated to a syringe. Alternatively, blood return lumen 25 can terminate in a valve or shunt to control and stop blood flow therethrough. It is preferable that blood return lumen 25 be transparent to allow visible observation of blood originating from inside the vascular vessel. This can facilitate proper placement of the device for suturing.


Distal member 14 is sized and/or configured to be received within an opening or wound leading to a lumen of a patient's vascular vessel. Therefore, it is preferable that at least distal member 14 be formed of a flexible or elastomeric material that is biocompatible—particularly with blood. In a preferred embodiment, proximal member 12 and distal member 14 define a longitudinal axis. In additional embodiments, distal member 14 can be coated or impregnated with a lubricant, bioactive agent, such as an anticoagulant material, and the like. In certain embodiments, distal member 14 is composed of a biocompatible polymeric material commonly used for catheters, such as silicone rubber, polyolefin polyurethane, polytetrafluoroethylene, and the like.



FIG. 1A illustrates one or more lengths of suture material 20 that can be included in receptacle 22 of distal member 14 in accordance with one embodiment of the present invention. The lengths of suture material 20 can include one or more fittings 21, 23, for example, a ferrule or cuff of porous or mesh material, to engage the needle.


Distal member 14 includes a receptacle 22. Receptacle 22 is sized to receive at least one length of suture material 20 with a corresponding fitting 21, as specifically shown in FIG. 2. Preferably receptacle 22 is sized to hold one, two, or more separate lengths of suture material. Each length of suture material can include either a single fitting 21 or two fittings—one on each end. In a preferred embodiment, receptacle 22 is provided as a multi-stage or tapered recess. Each fitting is positioned within a receptacle to allow for ready deployment and subsequent engagement with needle 18 advancing from channel 24 in proximal member 12. Preferably the fittings are releasably retained so that needles advancing into receptacle 22 can sequentially engage the fittings without forcing that fitting distally further or deeper into the receptacle. In one form, this can include a shoulder or abutment 30 extending from the internal wall of receptacle 22 to abut a distal end of a fitting. In other embodiments, this can include configuring the internal dimensions of receptacle 22 to taper or decrease in diameter in the distal direction. In other embodiments, a multi-stage receptacle 22 or stepped internal walls receptacle 22 can prevent movement of the fittings in the distal direction. In still other embodiments, the fittings are loaded within the receptacle 22 to bear against the suture material which is packed within the end of receptacle 22. In this embodiment, the bulk of suture material in receptacle 22 can inhibit or prevent distal movement of the fittings upon initial engagement with needle 18.



FIGS. 3 and 4 illustrate a portion of needle 18 and fitting 21 in the form of a ferrule 44 . . . Needle 18 includes a distal tip 32 and a proximal end 34. Distal tip 32 is configured as a tissue piercing point or a barbed tip. Needle 18 is configured to grab suture material located in the lumen of the vessel and withdraw the suture material through vascular tissue. In the preferred embodiment, distal tip 32 is configured to securely engage with ferrule 44 which, in turn, is attached to a length of suture. Ferrule 44 can be extremely small, having roughly a diameter similar to or slightly larger than that of the suture material 20. Alternatively, ferrule 44 can have approximately the same diameter as the diameter of needle shaft 35. In this embodiment, distal tip 32 has a smaller diameter to allow it to be received inside ferrule 44. Distal needle tip 32 includes at least one recessed engagement surface or shoulder 37 configured to matingly engage with a corresponding engagement surface 38 provided on or in ferrule 44. In one form, the engagement surface is a tab extending into the interior of ferrule 44. In other embodiments, the engagement surface is a shoulder extending radially inward in ferrule 44 or a groove partly or completely encircling an interior wall of ferrule 44. Fitting 23 also may be in the form of a ferrule 46 shown in FIGS. 5 and 6. Ferrule 46 may have similar needle retention features.



FIGS. 5 and 6 show that the ferrules 44 and 46 need not be the same size—particularly the same diameter. In this regard certain advantages can be gained by providing the proximally located ferrule 44 with a diameter greater than that of the distally located ferrule 46. For example, this will allow sufficient room for the suture material extending from ferrule 44 to extend along side of ferrule 46—between ferrule 46 and an internal wall section of receptacle 22. In other considerations, the suture material from the proximally located ferrule 44 can be disposed between that ferrule and the next distally located ferrule 46. Ferrules 44 and 46 can also be tapered or “streamlined” to allow them to be readily pulled through a small needle puncture site in tissue as described below.


In one embodiment, the length of suture material which is attached to the different ferrules on each end can include different color codings for the different ends. This allows a surgeon to differentiate which sutures are attached to which ferrules to facilitate tying suitable knots to close puncture 96 in the vessel.


One or more of needles 18 and ferrules 44, 46 for use in the present invention can be provided as substantially described in U.S. Pat. No. 6,136,010 issued to Modesitt et al. and/or U.S. Pat. No. 6,368,334 issued to Sauer, which are incorporated herein by reference in their entirety.


Proximal end 34 of needle 18 can be free and configured to be handled by a surgeon. Alternatively, proximal end 34 can be engageable or secured to a needle pusher 26 shown in FIG. 2. In yet another embodiment, proximal end 34 can be integral or formed as a single unit with needle pusher 26. In either embodiment, needle pusher 26 is sized to be positioned within channel 24 and can further include a projection 36 to allow the surgeon to advance the needle pusher/needle combination along channel 24. In a preferred embodiment, needle pusher 26 is configured such that the surgeon can sequentially advance needle 18 in a proximal direction towards the patient and in a distal direction away from the patient.


Referring back to FIG. 2, distal member 14 can also include a lumen 39 extending at least partially therethrough. Preferably, lumen 39 is separate from receptacle 22. Lumen 39 can be provided to receive or follow a guide wire left in place after a particular diagnostic or treatment procedure. This can allow the facile insertion of distal member 14 into the patient's vascular vessel. In a preferred embodiment, an opening 40 receives a guide wire (not shown) that extends through lumen 39 and exits through a side opening 41 of distal member 14 to permit the guide wire to extend out without interfering with the needles, needle path, or suture material. The guide wire can be removed after placement of the suture device or left in as desired or considered medically prudent by the surgeon.


Intermediate member 16 is located between proximal member 12 and distal member 14. Intermediate member 16 defines a tissue-receiving area 45. In the illustrated embodiment, intermediate member is configured to include an arcuate portion or a crooked section. The arcuate portion or crook thus defines a concave interior surface 47 and a convex exterior surface 48. Intermediate member 16 includes a first opening 50 providing access from the channel 24 to the tissue receiving area 45 and a second opening 52 from the receptacle 22 providing to the tissue receiving area 45. Preferably, first and second openings 50 and 52 are linearly or axially aligned. Intermediate member 16 can be composed of a biocompatible material that is substantially resistant to deformation and therefore can maintain the linearity between channel 24 and receptacle/chamber 22 and the respective first and second openings 50 and 52. Examples of suitable materials include TEFLON, NYLON, polyamids, and the like.


Intermediate member 16 also includes means and structure for reliable positioning of the device during surgery to facilitate closing the vascular puncture wound with sutures. Part of the positioning structure includes an opening 54 providing fluid communication to blood return lumen 25 in proximal member 12. In a preferred embodiment, opening 54 is located on a portion of the convex surface of the crook opposite the tissue receiving area 45. When the distal member 14 of the device is suitably positioned within the lumen of a vascular vessel, opening 54 is also located in the interior of the lumen. This permits blood from the vessel to enter blood return lumen 25, which can then be visibly observed by the surgeon. If blood is not observed in blood return lumen 25, then the distal member may not have been inserted to a sufficient depth into the lumen of the vascular vessel.


Additionally, a ridge or stop 56 extends from the concave surface into the tissue receiving region. Stop 56 is configured to bear against vascular tissue adjacent the puncture wound. In a preferred embodiment, first opening 50 is adjacent stop 56 permitting needle 18 to pierce tissue adjacent thereto. Stop 56 is sized to bear against the vascular tissue and avert further insertion of the device 10 into the vascular vessel. When provided together, stop 56 and opening 50 with blood return lumen 25 cooperate to ensure accurate placement of the suturing device in the patient's vascular vessel. Ridge or stop 56 can also extend radially about the entire circumference of intermediate member 16.



FIG. 7 is a cross-sectional view of an intermediate member 70 of an alternative embodiment of a suture device. In this embodiment, fittings 72 and 73 are positioned radially or laterally displaced from each other in receptacle 74. A first fitting 72 is positioned axially aligned with second opening 75 in the distal member 76. A biasing element such as a leaf spring 77 can also be positioned in receptacle 74 to urge second fitting 73 into axial alignment with opening 75 once first fitting 72 has been displaced. Biasing element 77 can be a leaf spring as illustrated, an elastomeric projection, or other known biasing material suitable to urge fitting 72 into alignment as desired.



FIG. 8 is a perspective view of another embodiment of a suturing device 80 with a needle cartridge in accordance with the present invention. Device 80 includes a proximal member 81, a distal member 82, and an intermediate member 83 therebetween. Proximal member 81 includes a needle cartridge 84 slidably mounted in body 85. Needle cartridge 84 can include a plurality of needle slots, for example one, two, three, or more slots 86a, 86b, 86c . . . , each for a separate needle. Typically, the number of needles in needle cartridge 84 will coincide with the number of fittings with suture material in the receptacle in distal member 82. Each needle in needle cartridge 84 is individually advanceable through a central needle channel 87 along a length of proximal member 81. Needle cartridge 84 is laterally displaceable within body 85 to axially align the selected needle slot 86a, 86b, 86c . . . with a single needle channel. If desired, needle cartridge can be biased to automatically align the successive needle slots with the needle channel after the preceding needle has been advanced along the channel. Alternatively, suturing device 80, body 120, and/or cartridge 118 can include one or more of ratchetings, positive stops, or locks to individually align the desired needle slot with the channel. In other embodiments, needle cartridge 84 can be provided as a revolving barrel that can hold two, three, or more needles in respective needle slots radially disposed about the barrel. The barrel can be rotatably mounted on or about proximal member 81. Distal member 82 and intermediate member 83 can be configured substantially as described above for members 14 and 16, respectively.


Referring to FIGS. 9 through 14, use of the suturing device 10, will now be described. A puncture wound in a vascular vessel can be sutured closed using the suturing device 10. Suturing device 10 can be inserted distally into the vascular vessel. This can be accomplished with or without the use of a guide wire. In a procedure where a guide wire has been previously used, suturing device 10 can be threaded onto a guide wire 92 which extends from internal vessel lumen 94 through a puncture wound 96 in vessel 93 and through a portion of the overlying tissue 95 to be exposed to the surgeon. In that regard, side opening 41 of lumen 39 can be threaded onto guide wire 92 which then extends out through opening 40. Thus, the flexible portion of distal member 14 can be gingerly threaded into the lumen 94 of vessel 93. The distal member 14 of device 10 can be positioned within lumen 94 such that intermediate member 16 engages with a portion of the tissue surrounding puncture 96. Distal member 14 is advanced in a distal direction until blood is observed in blood return lumen 25. Additionally, when provided, stop 56 abuts or bears against the external surface of the vascular vessel. This can be detected by the increased resistance to further advancement of the device in the distal direction. Both blood return lumen 25 and stop 56 can be used to ascertain that the device has been correctly positioned within the lumen 94 of the vascular vessel 93 to allow suturing of puncture 96. It should be noted that observance of blood in needle channel 24 is an indication that device 10 has been inserted too far into the lumen such that first opening 50 is exposed to the interior or blood side of vessel 93. If desired, guide wire 92 can then be withdrawn from lumen 39 and out of vascular vessel 93—if it is no longer needed for subsequent procedures.


After the distal member 14 is positioned as desired, the vascular tissue adjacent the puncture wound is received within the tissue receiving area 45. As noted above, intermediate member 16 provides an essentially linear needle pathway between channel 24, receptacle 22, and the vascular tissue in the tissue receiving area 45. Consequently, when needle 18 is advanced through channel 24, it pierces the vascular tissue at a first suture site 97 adjacent the puncture wound 96.



FIG. 10 illustrates suturing device 10 at a first suture position with needle 18a advancing distally through channel 24 and piercing the vascular tissue of vessel 93 at a first suture site 97 on a first side of wound 96. From there, needle tip 32 advances into to receptacle 22 to engage in a first ferrule 44. Once engaged with ferrule 44, first needle 18a can then be withdrawn back through opening 52 in distal member 14 and through first suture site 97, drawing a length of suture material 20 through the vascular tissue in a proximal direction as illustrated in FIG. 1. Preferably the needle path in the proximal direction is the same as in the distal direction—provided that the suturing device has not been moved or dislocated. Needle 18a, including a length of suture material 20, can then be removed from suture device 10. Alternatively, needle 18a and/or a length of suture material can be retained with suture device 10 for subsequent retrieval and use in securing the wound closure.


Thereafter, suture device 10 is rotated into a second suture position as illustrated in FIG. 12. For example, suture device 10 may be rotated approximately 180° so that in the second suture position, suture device 10 is positioned to operate on a second side of puncture 96 diametrically opposite first suture site 97. After ensuring that the suturing device is correctly positioned, the procedure described above for needle 18a can be followed. At the second suture position, a second needle 18b is distally advanced using a needle pusher, either the same needle pusher or a second, different needle pusher, through channel 24 to engage in and pierce the vascular tissue 93 received within tissue receiving area 45 at second suture site 99. Again, needle 18b is advanced to enter receptacle 22 and there engage with second ferrule 46 as shown in FIG. 13. Withdrawal of the needle pusher concomitantly withdraws ferrule 46, and a length of suture 20 through second suture site 99 as shown in FIG. 14. Needle 18b and the attached ferrule 46 and length of suture material can be retrieved by the surgeon either by hand or received within a slot in the proximal member. Thereafter, if desired, the process can be repeated, rotating suturing device 10 through about 90° and again, advancing a needle to engage in a subsequent ferrule located in receptacle 22. This process can be repeated as desired and as provided with a number of needles and/or suture materials with ferrules in receptacle 22. It will be understood that in one embodiment, first and second lengths of suture materials are two ends of the same suture. In other embodiments, lengths of suture material are separate pieces of suture. Thereafter, device 10 can be withdrawn from the body as illustrated in FIG. 15.


As illustrated in FIG. 16 the lengths of suture material 20 can be gathered. The length of suture material can be separated from the needles. Pulling the lengths of suture material taut closes the wound 96 in the vessel 93. In this embodiment, the path of the suture material passes through vascular tissue on a first side of the wound into the lumen 94 of the vessel 93, across the wound 96—again in the lumen 94—and then out through the vascular tissue 93 on a second or opposite side of the wound. A surgical knot can be tied securing the wound closure. A knot pusher, for example, the knot pushers described in U.S. Pat. No. 5,304,184 issued to Hathaway et al., U.S. Pat. No. 5,746,755 issued to Wood et al., and U.S. Pat. No. 6,132,439 issued to Kontos, can be used to advance the loosely tied knot to the exterior surface of the vascular vessel. In selected embodiments, the surgeon can then tie a suitable surgical knot using the respective lengths of suture material to close the puncture wound 96. In other embodiments, the suture material can be secured using a variety of knot replacement technologies such as that disclosed in U.S. patent application Ser. No. 10/164,606 (US Patent Publication No. 2003/0229377) and in Ser. No. 10/305,923 (US Patent Publication No. 2004/0102809) and depicted in FIGS. 21 and 22. Each of the above-noted references are incorporated by reference in their entirety.



FIG. 17 is a perspective view of one embodiment of a hollow needle 88 for use in accordance with the present invention. Needle 88 includes a detachable tip 89, a hollow shaft 90, and a length of suture material 91. The length of suture material 91 extends out the proximal end of hollow needle 88. In one embodiment, one end of the suture material 91 is attached to needle tip 89. In this embodiment, the needle tip 89 can be used to pull suture material 91 through a portion of a suturing device or through vascular tissue as discussed more fully below.



FIGS. 18 through 20 illustrate the use of hollow needles with the suturing device 10. The suturing device 10 is inserted into the vascular vessel as described above and illustrated in FIG. 9. After suturing device 10 has been positioned within the lumen 94 as desired, needle 88 is advanced in the distal direction through needle channel 24 to pierce vascular tissue 93 adjacent the wound 96 in the vessel and then into recess 22 to engage with a first ferrule 44. Needle 88, the attached ferrule 44, and a length of suture material 20 are withdrawn in the proximal direction back through the needle path through a first suture site.


Suturing device 10 can be rotated about its longitudinal axis while maintaining the distal member within the vascular lumen to a second suturing position. FIG. 19 illustrates the advancement of hollow needle 88 along channel 24. Hollow needle 88 can pierce vascular tissue 93 at a second suture site. Needle tip 89 can then engage with the second ferrule 46 located in receptacle 22. Once engaged to second ferrule 46, needle tip 89 can be separated from shaft 90 by withdrawal of the needle shaft 90 back through the second suture site. The needle shaft can be received in or through channel 24. Suture material 91 is then connected to suture material 20 via ferrule 46 and needle tip 89. Suturing device 10 can then be removed from the vascular vessel and eventually from the patient.


Referring now FIG. 20, suture material 20 and 91 are connected together using second ferrule 46 and needle tip 89. The connected suture material can be pulled in either direction by 1) pulling on suture material 20 in the distal direction to draw ferrule 46, needle tip 89, and a portion of suture material 91 through the second suture site, or 2) pulling on suture material 91 in the distal direction to draw ferrule 46, needle tip 89, and a portion of suture material 20 through the second suture site. In yet other embodiments, the free ends of suture material 20 and 91 can be pulled taut to close the vascular wound. Preferably in this embodiment both of needle tip 89 and ferrule 46 (as well as the suture materials) are composed of a biodegradable material to biodegrade. Biodegradable materials for the ferrule, needle tips, and suture material are well known in the art and these materials are useful to prepare the components of the present invention.



FIG. 21 is a perspective view of a suture securing device 102 for use in the present invention. Suture clamping device 102 is described and illustrated in US Patent Publication No. 2004/0102809 which is incorporated herein by reference. In use, device 102 can secure ends of one, two, three or more lengths of suture material. Two lengths of suture material 104a and 104b are illustrated with device 102. The lengths of suture material are threaded into the flexible elements 105a and 105b which are then locked or fixed together clamping the suture material therein.



FIG. 22 shows another embodiment of suture clamping devices 106a and 106b for use in the present invention. Devices 106a and 106b are described in US Patent Publication No. 2003/0229377 which is incorporated herein by reference in its entirety. Devices 106a and 106b cooperate by separately clipping onto a selected length of suture material 104a or 104b which have previously pulled taut to close the wound 96 or complete the surgical procedure. The devices prevent the suture material from regressing back through the sutured tissue.



FIG. 23 shows a suturing device 110 for suturing vascular vessels in accordance with the present invention. Device 110 includes a proximal member 112, a distal member 114, and an intermediate member 116 located therebetween. Device 110 includes one or more needles 118a, 118b, 118c . . . disposable within needle channel 124 of proximal member 112. Each of needles 118a, 118b, 118c . . . can include a length of suture material 120a, 120b, 120c . . . secured to the proximal end of the needles. Needle pusher 126 can be used to advance the needles 118a, 118b, 118c, . . . through channel 124 out through first opening 150 into a tissue receiving area 145 defined by intermediate member 116. Preferably, proximal member 112 and/or distal member 114 define a longitudinal axis and (either/both) is/are essentially linear about this axis. In one embodiment, the intermediate member 116 can be configured to deviate from the lineality defined by either the proximal member (or the distal member). First opening 150 and second opening 152 in intermediate member can be axially aligned to permit needles 118a, 118b, 118c . . . to travel in an essentially linear needle path that extends through tissue received within tissue receiving area 145. In one form, suture material can be attached to the needle 118a. The needle is then advanced in a distal direction through tissue. A second needle 118b (and subsequent needles) can be similarly configured and manipulated to place sutures about tissue adjacent a puncture wound in a vascular vessel. The suture material(s) threaded through the vascular tissue can be drawn taut closing the puncture wound. A surgical knot or other suture securing device can complete the wound closure.


As used herein, the term “proximal” refers to a direction toward the surgeon and away from the patient or a location closer to the surgeon, while the term “distal” refers to a direction towards the patient and away from the surgeon or a location closer to the patient.


Proximal member 112 is provided as an elongated portion and can exhibit a substantially cylindrical or oval radial cross section. Member 112 includes a first end of sufficient dimensions to be readily grasped by the surgeon to manipulate the device during the procedures. Proximal member 112 can also include a gripping portion 135 to facilitate handling during the surgical procedure. Needle channel 124 runs longitudinally along at least a portion of proximal member 112. In one embodiment, channel 124 extends along the entire length of proximal member from a first end positioned proximal to the surgeon to a second end adjacent to intermediate member 116. In this embodiment, one or more needle(s) 118a, 118b, 118c, . . . and a needle pusher 126 and grip 136 can be inserted into and retrieved from channel 124 at the first end. In other embodiments, channel 124 extends only partly through the proximal member 112. Needle channel 124 can be centrally located along proximal member 112. In preferred embodiments, proximal member 112 includes a single needle channel 124 through which one, two, three, or more needles can be advanced. Alleviating multiple needle channels within the suturing device provides a more compact member, which can be particularly advantageous for subcutaneous procedures.


Channel 124 is sized and dimensioned to allow one or more needles 118a, 118b, 118c . . . to be advanceable therethrough and into vascular tissue around the puncture wound. Furthermore, channel 124 can be either partly or completely encased within the body of proximal member 112. However, in a preferred embodiment, channel 124 is not encased within the body of proximal member 112. Rather, channel 124 is provided as a slot formed into the surface of proximal member 112. Preferably the slot is configured to retain one or more needles within the slot. For example, the slot can be formed to have an opening at the exterior surface of proximal member that is narrower than the diameter of the needles (and optionally the pusher 126) while the internal portion or diameter of the slot can be dimensioned to permit facile movement of the needle therethrough. An exit opening is located at the distal end of channel 124.


Proximal member 112 includes a blood return line 125 that terminates in a fitting 127, for example, a luer lock that can be mated to a syringe. Alternatively, line 125 can terminate in a valve or shunt to control and stop blood flow therethrough. It is preferable that blood line 125 allow visible observation of blood originating from inside the vascular vessel. This can facilitate proper placement of the device for suturing.


Referring additionally to FIGS. 24 and 25, distal member 114 is sized and/or configured to be received within a lumen of a patient's vascular vessel similar to distal member 114. In additional embodiments, distal member 14 can be coated or impregnated with a lubricant, bioactive agent, such as an anticoagulant material, and the like. In certain embodiments, it is preferable that at least distal member 14 be formed of a flexible or elastomeric material that is biocompatible—particularly with blood. For example, distal member 14 can be composed of a biocompatible polymeric material commonly used for catheters, such as silicone rubber, polyethylene, polyolefin, polyurethane, polytetrafluoroethylene, polyvinyl chloride and the like.


Distal member 114 includes a receptacle 122 sized and configured to receive and retain at least one needle 118a, and preferably two or more needles 118b, 118c . . . Preferably, receptacle 122 is sized to retain one or more needles such that the proximal end of each of the needles does not extend beyond opening 152.


A needle catching element 123 located in receptacle 122 is provided to engage with at least a portion of needles 118a, 118b, 118c . . . Element 123 can be configured as a plug of pierceable material. The material can be any biocompatible material pierceable with a surgical needle. Representative examples include materials such as silicone rubber, polyethylene, or polyurethane. In certain embodiments, the plug of material is composed of the same material as that used to form the distal member. The plug of material can be friction fit, adhesively bound, or mechanically retained inside receptacle 122. In other embodiments, the plug of material can include a molded flap extending from an interior wall portion of receptacle 122. In still other embodiments, the needle catching element 123 can be integral with, or alternatively define, a bottom wall portion of receptacle 122. Needle capture element 123 can completely close off or block receptacle 122. In other forms, element 123 need not completely block receptacle 122.


Referring back to FIG. 23, distal member 14 can also include a lumen 139 extending at least partially therethrough. Preferably, lumen 139 is separate from receptacle 122. Lumen 139 can be provided to receive or follow a guide wire left in place after a particular diagnostic or treatment procedure. This can allow the facile insertion of distal member 114 into the patient's vascular vessel. In a preferred embodiment, lumen 139 exits through a side of distal member 114 at opening 140 to permit a guide wire (not shown) to extend out without interfering with the needles, needle path, or suture material. The guide wire can be removed after placement of the suture device or left in as desired or considered medically prudent by the surgeon.


Intermediate member 116 is located between proximal member 112 and distal member 114. Intermediate member 116 defines a tissue-receiving area 145. In the illustrated embodiment, intermediate member is configured to include an arcuate portion or a crooked section. The arcuate portion or crook can defines a concave interior surface 147 and a convex exterior surface 148. Intermediate member 116 includes a first opening 150 providing access from the channel 124 to the tissue receiving area 145 and a second opening 152 from the receptacle 122 providing to the tissue receiving area 145. Preferably, first and second openings 150 and 152 are linearly or axially aligned. Intermediate member 116 can be composed of a biocompatible material that is substantially resistant to deformation and therefore can maintain the linearity between channel 124 and receptacle/chamber 122 and the respective first and second openings 150 and 152. Examples of suitable materials include TEFLON, NYLON, polyamids, and the like.


Intermediate member 116 also includes means and structure for reliable positioning of the device during surgery to facilitate closing the vascular puncture wound with sutures. Part of the positioning structure includes an opening 154 providing fluid communication to blood return line 125 in proximal member 112. In a preferred embodiment, opening 154 is located on a portion of the convex surface 148 of the intermediate member 116 opposite the tissue receiving region 145. In use, with the distal member of the device suitably positioned within the lumen of a vascular vessel, opening 154 is also located in the interior of the lumen. This permits blood from the vessel to enter blood return line 125, which can then be visibly observed by the surgeon. If blood is not observed in blood return line 125, then the distal member may not have been inserted to a sufficient depth into the lumen of the vascular vessel.


Additionally, a ridge or stop 156 extends from the concave surface into the tissue receiving region. Stop 156 is configured to bear against vascular tissue adjacent the puncture wound. In a preferred embodiment, first opening 150 extends through a portion of stop 56 permitting needle 118 to pierce tissue adjacent thereto. Stop 156 is sized to bear against the vascular tissue and avert further insertion of the device 110 into the vascular vessel. When provided together, stop 156 and opening 150 with blood return line 125 cooperate to ensure accurate placement of the suturing device in the patient's vascular vessel. Ridge or stop 156 can also extend radially about the entire circumference of intermediate member 116.



FIG. 24 shows needle 118a entering opening 152 in distal member 114 and traversing receptacle 122 in response to distal movement of needle pusher 126.



FIG. 25 illustrates the capture of needle 118a within receptacle 122. Element 123 is positioned in receptacle 122 to engage with at least the distal tip 132 of needle 118a. Preferably element 123 is positioned at a location or depth within receptacle 122 such that the proximal end 134 of a captured needle does not extend out of opening 152 of receptacle 122 to snag on any tissue or other structure as the suturing device is manipulated and eventually removed from the vascular vessel.



FIGS. 26 and 27 illustrate partial views of an alternative embodiment of a suturing device 210 with a needle capture element 223. The illustrated distal and intermediate members 214 and 216 are configured similarly to distal and intermediate members 114 and 116. However, distal member 214 includes a receptacle 222. Receptacle 222 is configured to receive one or more needles therein. Needle capture element 223 comprises at least one projection 229 and preferably at a second projection 231 each extending radially inwardly from an interior wall portion 233. It will be understood that receptacle 222 can include a plurality of projections similarly configured as illustrated and/or described for projections 229 and 231. The projections 229 and 231 are configured to engage and capture or retain one or more needles 218 within the interior of receptacle 222. The projections 229 and 231 can frictionally engage the tips or sides of inserted needles to prevent their accidental dislodgement during surgical manipulation. In the illustrated embodiment, projections 229 and 231 are configured as a plurality of paired leaves projecting from the interior wall portion 233 of receptacle 222. It will be understand that in other embodiments, the leaves need not be paired; or, if paired, the leaves can be axially and/or radially offset from each other. In still other embodiments, projections 229 and 231 can be configured as protuberances, bumps, ridges, or threads extending from an internal wall portion of receptacle 222 to engage and retain one or needles 218 therein. Further, one or more of needles 118a, 118b, and 118c can include a recessed surface configured for engagement with at least one of the projections 229 and 231. For example, a needle can be configured with a barbed point or alternatively with a tip similar to a tip as described in connection with FIGS. 1-22 above.


Referring specifically to FIG. 27, a needle 218 with a length of suture material 220 is illustrated as captured within lumen 222. As can be observed in the illustration, a plurality of projections 229 and 231 frictionally engage with the sides of the inserted needle 218. Preferably, the projections 229 and 231 are angled in the distal direction from their point of connection to wall 233 of receptacle 222. This causes the frictional engagement resisting needle movement in a proximal direction to be greater than the frictional engagement resisting a needle movement in a distal direction. This engagement effectively prevents the inserted needle 218 from being dislodged by manipulation of suturing device 210 within the patient or upon withdrawing the suturing device from the vascular vessel.



FIG. 28 is a perspective view of another embodiment of a suturing device 80 with a needle cartridge in accordance with the present invention. Device 80 includes a proximal member 81, a distal member 82, and an intermediate member 83 therebetween. Proximal member 81 includes a needle cartridge 84 slidably mounted in body 85. Needle cartridge 84 can include a plurality of needle slots, for example, two, three, four, or more slots 86a, 86b, 86c . . . , each for a separate needle. Each needle in needle cartridge 84 is individually advanceable through a central needle channel along a length of proximal member 81. Needle cartridge 84 is slidably disposed within body 85 to axially align the selected needle slot 86a, 86b, 86c . . . with a single needle channel 87. If desired, needle cartridge 84 can be biased to automatically align the successive needle slots with the needle channel after the preceding needle has been advanced along the channel. Alternatively, suturing device 80, body 85, and/or cartridge 84 can include one or more of ratchetings, positive stops, or locks to individually align the desired needle slot with the channel. In other embodiments, needle cartridge 84 can be provided as a revolving barrel that can hold two, three, or more needles in respective needle slots radially disposed about the barrel. The barrel can be rotatably mounted on or about proximal member 81. Distal member 82 and intermediate member 83 can be configured substantially as described above for members 114 and 116, respectively.



FIGS. 29 through 34, illustrate the use of suturing device 10 for closure of a puncture wound 96 in a vascular vessel 93. A puncture wound in a vascular vessel can be sutured closed using the suturing device 110. Suturing device 110 can be inserted distally into the vascular vessel. This can be accomplished with or without the use of a guide wire. In a procedure where a guide wire has been previously used, suturing device can be threaded onto a guide wire 92 which extends from internal vessel lumen 94 through vessel 93 and a portion of the overlying tissue 95 to be exposed to the surgeon. In that regard, opening 140 of lumen 139 can be threaded onto guide wire 92 which then extends out through opening 140. Thus, the flexible portion of distal member 114 can be gingerly threaded into the lumen 94 of vessel 93. The distal member 114 of device 110 can be positioned within lumen 94 such that intermediate member 116 engages with a portion of the tissue surrounding puncture 96. Distal member 114 is advanced in a distal direction until blood is observed in blood return line 125. Additionally, when provided, stop 156 abuts or bears against the external surface of the vascular vessel. This can be detected by the increased resistance to further advancement of the device in the distal direction. Both blood return line 125 and stop 156 can be used to ascertain that the device has been correctly positioned within the lumen 94 of the vascular vessel 93 to allow suturing of puncture 96. It should be noted that observance of blood in needle channel 124 is an indication that device 110 has been inserted too far into the lumen 94 such that first opening 150 is exposed to the interior or blood side of vessel 93. If desired, guide wire 92 can then be withdrawn from lumen 139 and out of vascular vessel 93—if it is no longer needed for subsequent procedures.


After the distal member is positioned as desired, the vascular tissue adjacent the puncture wound is received within the tissue receiving area 145. As noted above, intermediate member 116 provides an essentially linear needle pathway between needle channel 124, receptacle 122, and the vascular tissue in the tissue receiving area 145. Consequently, when needle 118a is advanced through channel 124, it pierces the vascular tissue 93 at a first suture site 97 adjacent the puncture wound 96.



FIG. 30 illustrates suturing device 10 at a first suture position. Intermediate member 116 provides an essentially linear needle pathway between channel 124 and receptacle 122. A first needle 118a advancing through channel 124 using needle pusher 126 pierces vascular tissue in tissue receiving area 145 at the first suture site 97. Needle 118a trails a length of suture material 120a pulling it through the vascular at suture site 97 adjacent wound 96. From there, needle tip 132 is advanced into to receptacle 122 to engage needle capture element 123. Thereafter, needle 118a and optionally a portion of the suture material 120 are inserted into receptacle 122 where at least a portion of the needle 118a engages with needle capture element 123. Needle capture element 123 reliably retains needle 118a within receptacle 122 during the rest of the suturing procedure or until the surgeon decides to withdraw the needle.


As shown in FIG. 31 suturing device 110 is rotated into a second suture position. Suture device 110 can be rotated approximately 180° so that in the second suture position, suture device 110 is positioned to operate on a second side of wound 96 diametrically opposite first suture site 97.



FIG. 32 illustrates suturing device 110 in the second suture position. A second needle 118b can be advanced through or along receptacle 122 using the needle pusher 126, either the same needle pusher or a second, different needle pusher. Needle 118b exits first opening 150 to pierce vascular tissue received in the tissue receiving area 145 at a second suture site 100. Continuing the advancement of needle 118b through the needle path draws the attached suture material 120b through second suture site 100 adjacent wound 96. Thereafter at least a portion of needle 118b is captured and retained by needle capture element 123 within receptacle 122. If desired, suturing device 110 can again be repositioned to draw suture material through a third and any desired subsequent suturing sites. It will be understood that suture material 120a and 120b can be opposite ends of the same piece of suture material. Alternatively, suture material 120a and 120b can be two separate lengths of suture material.



FIG. 33 illustrates device 110 being removed in a distal direction from vascular vessel 93. As suture device 110 is withdrawn in the distal direction, needles 118a and 118b remain embedded within the needle catching element 123 in receptacle 122. Consequently, the attached lengths of suture material 120a and 120b are pulled in a distal direction through the vascular tissue at the first and second suture sites 97 and 100, respectively and then out through the wound 96. One implementation of the suturing device can be a common length of suture material 120 attached to the proximal ends of needles 118a and 118b. As illustrated in FIG. 12, the resulting suture path extends from the proximal side of vessel 94 across the wound opening and through the first and second suture sites 97 and 100 into the lumen 94. The suture material 120 then extends out through wound opening 96 back to the distal side of vessel 93.



FIG. 34 depicts wound closure. The free ends of the suture material 120 can be gathered and a suture knot tied. As with the other procedures described above, a knot pusher 115, knot boxes as described in WO 01/19258, and knot replacement technologies (see FIGS. 13 and 14) can be used to close the wound and secure the suture material. The lengths of suture material can be gathered. The length of suture material can be separated from the needles. Pulling the lengths of suture material taut closes the wound in the vessel. A surgical knot can be tied securing the wound closure. A knot pusher, for example, the knot pushers described in U.S. Pat. No. 5,304,184 issued to Hathaway et al., U.S. Pat. No. 5,746,755 issued to Wood et al., and U.S. Pat. No. 6,132,439 issued to Kontos, can be used to advance the loosely tied knot to the exterior surface of the vascular vessel. In selected embodiments, the surgeon can then tie a suitable surgical knot using the respective lengths of suture material to close the puncture wound 96.


In other embodiments, the suture material can be secured using a variety of knot replacement technologies such as that disclosed in U.S. patent application Ser. No. 10/164,606 (US Patent Publication No. 2003/0229377) and in Ser. No. 10/305,923 (US Patent Publication No. 2004/0102809) and depicted in FIGS. 13 and 14. Each of the above-noted references are incorporated by reference in their entirety.



FIG. 35 is a perspective view a suturing securing device 102 for use in the present invention. Suture securing device 102 is described and illustrated in US Patent Publication No. 2004/0102809 which is incorporated herein by reference. In use device 102 can secure ends of one, two, three or more lengths of suture material. Two lengths of suture material 120a and 120b are illustrated with device 102. The lengths of suture material are threaded into the flexible elements 105a and 105b which are then locked or fixed together securing the suture material therein.



FIG. 36 is another embodiment of suture securing devices 106a and 106b for use in the present invention. Devices 106a and 106b are described in US Patent Publication No. 2003/0229377 which is incorporated herein by reference in its entirety. Devices 106a and 106b cooperate by separately clipping onto a selected length of suture material 104a or 104b which have previously pulled taut to close wound or complete the surgical procedure. The devices prevent the suture material from regressing back through the sutured tissue.



FIGS. 37 and 38 illustrate another embodiment of a suturing device 310 for use in the present invention. Suturing device 310 includes a proximal member 312, a distal member 314, and an intermediate member 316 disposed therebetween. Proximal member 312 is provided as an elongated portion and can exhibit a substantially cylindrical or oval radial cross section. Member 312 includes a first end of sufficient dimensions to be readily grasped by the surgeon to manipulate the device during the procedures. Proximal member 312 can also include a gripping portion to facilitate handling during the surgical procedure. A needle channel 324 runs longitudinally along at least a portion of proximal member. In one embodiment, channel 324 extends along the entire length of proximal member from a first end positioned proximal to the surgeon to a second end adjacent to intermediate member 316. In this embodiment, one or more needle(s) 318 and needle pusher(s) 326 can be inserted into and retrieved from channel 324 at the first end. In other embodiments, channel 324 extends only partly through the proximal member 312. Needle channel 324 can be centrally located along proximal member 312. In preferred embodiments, proximal member 312 includes a single needle channel 324 through which one, two, three, or more needles can be advanced. Alleviating multiple needle channels within the suturing device provides a more compact member, which can be particularly advantageous for subcutaneous procedures.


As used herein, the term “proximal” refers to a direction toward the surgeon and away from the patient or a location closer to the surgeon, while the term “distal” refers to a direction towards the patient and away from the surgeon or a location closer to the patient.


Channel 324 is sized and dimensioned to allow one or more needles 318 to be advanceable therethrough and into vascular tissue around the puncture wound. Furthermore, channel 324 can be either partly or completely encased within the body of proximal member 312. However, in a preferred embodiment, channel 324 is not encased within the body of proximal member 312. Rather, channel 324 is provided as a slot formed into the surface of proximal member 312. Preferably the slot is configured to retain one or more needles within the slot. For example, the slot can be formed to have an opening at the exterior surface of proximal member that is narrower than the diameter of the needles (and, optionally, the pusher) while the internal portion or diameter of the slot can be dimensioned to permit facile movement of the needle therethrough. An exit opening is located at the distal end of channel 324.


Proximal member 312 includes a blood return line 325 that terminates in a fitting 327, for example, a luer lock that can be mated to a syringe. Alternatively, line 325 can terminate in a valve or shunt to control and stop blood flow therethrough. It is preferable that blood line 325 allow visible observation of blood originating from inside the vascular vessel. This can facilitate proper placement of the device for suturing.


Suturing device 310 comprises a needle cartridge 384 slidably mounted in a body 385 disposed on proximal member 312. Needle cartridge 384 can include two, three, four or more needle slots 386a, 386b, and 386c . . . for needles 318a, 318b, 318c, . . . Each of needles 318a, 318b, 318c, in needle cartridge 384 is individually advanceable through a central needle channel 324 along a length of proximal member 312. Needle cartridge 384 is slidably disposed within body 385 to axially align the selected needle slot 386a, 386b, 386c with needle channel 324. If desired, needle cartridge 384 can be biased to automatically align the successive needle slots with channel 324 after the preceding needle has been advanced. Alternatively, body 385 and/or cartridge 384 can include one or more of ratchetings, positive stops, or locks to align the desired needle slot with channel 324. In other embodiments, needle cartridge 384 can be provided as a revolving barrel that can hold two, three, or more needles in respective needle slots radially disposed about the barrel. The barrel can be rotatably mounted on or about proximal member 312.


A needle pusher 326 can either push or engage needle 318 to advance it through a channel 324 in the proximal member and through vascular tissue adjacent the puncture wound. In a preferred embodiment, needle pusher 326 in conjunction with needle cartridge can be configured such that the surgeon can sequentially advance needles 318a, 318b, and 318c, . . . in a proximal direction towards the patient.


Each of needles 318a, 318b, 318c, . . . can be attached to a length of suture material prior to be being loaded into the needle cartridge. The length of suture material can be attached adjacent to either the distal end of the proximal end. Preferably, the length of suture material is attached adjacent to the proximal end. In another embodiment, a single length of suture material is attached at one end to a first needle and at a second end to a second needle. The distal end of the needle can be configured to pierce tissue such as vascular tissue. The distal end can taper to a point, be configured as a barbed tip or include recessed surfaces to engage in either fittings or the needle capture elements. Examples of needles with recessed surfaces are illustrated and described in connection with FIGS. 1-22 above and examples of needles suitable for use with a needle capture element are illustrated and described in connection with FIGS. 23-36 above. The proximal end 34 of needle can be free and configured to be handled by a surgeon. Alternatively, proximal end can be engageable or secured to needle pusher 326. In a preferred embodiment, needle pusher 326 is configured such that the surgeon can sequentially advance needle 318 in a proximal direction towards the patient and in a distal direction away from the patient.


Suturing device 310 includes distal member 314. In certain embodiments, distal member 314 and/or proximal member 312 is/are linear and define a longitudinal axis. Distal member 314 is sized and/or configured to be received within an opening or wound to a lumen of a patient's vascular vessel. Therefore, it is preferable that at least distal member 314 be formed of a flexible or elastomeric material that is biocompatible—particularly with blood. In additional embodiments, distal member 314 can be coated or impregnated with a lubricant, bioactive agent, such as an anticoagulant material, and the like. In certain embodiments, distal member 314 is composed of a biocompatible polymeric material commonly used for catheters, such as silicone rubber, polyolefin polyurethane, polytetrafluoroethylene, and the like.


Referring specifically to FIGS. 38 and 39, intermediate member 316 is positioned between proximal member 312 and distal member 314. Intermediate member 316 is configured to include an arcuate portion or a crooked section 317. An articulating foot 360 is pivotally secured to intermediate member 316 via pivot pin 361. Preferably, foot 360 is adjacent to the tissue receiving area 345 defined by intermediate member 316. Lever 362 located axially on proximal member 312 operates to position foot 360 between a first, non-deployed position to a second, deployed position back again to the first, non-deployed position (see FIGS. 42 and 43). In certain embodiments, foot 360 is symmetric about pivot pin 361 extending in both the proximal direction and the distal direction the about the same length—measured from the center of pivot pin 361. In other embodiments, foot 360 is asymmetric in the longitudinal direction in that either the proximal end 363 or the distal end 364 extends further from pivot pin 361 than the other end. It will also be understood that proximal end 363 can, but need not, be the mirror image of distal end 364. (See FIG. 42.)


Intermediate member 316 also includes means and structure for reliable positioning of the device during surgery to facilitate closing the vascular puncture wound with sutures. Part of the positioning structure includes an opening 354 providing fluid communication to blood return line 325 in proximal member 312. In a preferred embodiment, opening 354 (see FIG. 40) is located on a portion of the convex surface of the crook opposite the tissue receiving region. In use, with the distal member of the device suitably positioned within the lumen of a vascular vessel, opening 354 is also located in the interior of the lumen. This permits blood from the vessel to enter blood return line 325, which can then be visibly observed by the surgeon. If blood is not observed in blood return line 325, then the distal member may not have been inserted to a sufficient depth into the lumen of the vascular vessel.


Additionally, a ridge or stop 356 extends from the concave surface into the tissue receiving region. Stop 356 is configured to bear against vascular tissue adjacent the puncture wound. In a preferred embodiment, first opening 350 extends through a portion of stop 356 permitting needle 318 to pierce tissue adjacent thereto. Stop 356 is sized to bear against the vascular tissue and avert further insertion of the device 310 into the vascular vessel. When provided together, stop 356 and opening 354 (with blood return line 325) cooperate to ensure accurate placement of the suturing device in the patient's vascular vessel. Ridge or stop 356 can also extend radially about the entire circumference of intermediate member 316.


Referring now to FIGS. 39 and 40, foot 360 is illustrated as nesting within a depression 365 formed in the lateral surface 366 of intermediate member 316. In this embodiment, foot 360 is configured to provide or complete the circular or oval radial external profile of member 316 to facilitate insertion and use of the device to suture wounds in vascular vessel.



FIG. 41 is a cross-sectional view of suturing device 310. Foot 360 can be controlled or deployed by lever 362 using cable 367 that extends from foot 360 through an interior channel or lumen in member 312 to connect to one end of lever 360. Foot 360 can, but need not, include a biasing element such as a spring 365 to either urge foot to reside in the first deployed position or the second non-deployed position. As illustrated, spring 365 urges lever 362 and foot 360 to a non-deployed position. It will be understood that cable 367 can also extend along side of member 312 without requiring a separate channel or lumen.



FIG. 42 illustrates intermediate member 316 with foot 360 in a non-deployed position. Movement of lever 362 causes foot 360 to rotate about pin 361 to a deployed position to support the vascular tissue from inside the vessel lumen as illustrated in FIG. 43. It should be apparent to those skilled in the art that a variety of mechanical interconnections may be used to translate the movement of lever 362 into rotation of foot 360 about end 361. In addition to the cable connection 367, it may be possible to employ a rack which engages a cog on foot 360 so that when the rack is displaced longitudinally the foot 360 rotates from the non-deployed to the deployed condition.



FIGS. 44 through 47 illustrate use of suturing device 310 in accordance with the present invention. Distal end 314 of suturing device 310 can be initially inserted into a vascular vessel 94. For this procedure it will be understood that device 310 includes the blood return line 325, opening 352 and stop 356 for device 10 that operate in cooperation to ensure accurate placement of the suturing device in the patient's vascular vessel. However for the purposes of clarity, these elements have not been illustrated in the present drawing.


Once distal member 314 and at least a portion of intermediate member 316 have been inserted into the vascular vessel as desired, foot 360 can be deployed. In certain embodiments, intermediate member 316 is inserted sufficiently deeply (distally) into the lumen 93 of vessel 94 so that the foot 360 is completely enveloped within the interior of lumen 93 to facilitate deployment of foot 360. This positioning allows facile deployment of foot 360 such at the tissue engaging surfaces 368 and 369 of ends 363 and 364, respectively readily support and bear against inner or distal vascular tissue adjacent the wound 96 without catching on vascular tissue surrounding the wound. Deployment lever 362 on proximal member 312 can be pivotally rotated urging the cable 367 to deploy foot 360. Once foot 360 has been fully deployed, the suturing device 310 can be withdrawn in the proximal direction, if necessary, to allow the upper surfaces 368 and 369 of the foot to support and even exert slight pressure on the internal tissue of the vascular vessel as shown in FIG. 45. Thereafter, a needle 318a can be advanced though a needle channel 324 in proximal member 312 using needle pusher 326 to pierce vascular tissue adjacent the wound 96 at a first puncture site 97 and into receptacle 322. Needle 318a can remain within receptacle 322 during further manipulation of the device during wound closure.


Referring now to FIG. 46, suturing device 310 can be rotated about its longitudinal axis to a second suturing position. In general, the same procedure as described above can be employed for the present embodiment. However, slight modifications of the procedure can facilitate the use of the present device. First distal member 314 need not be removed or completely removed from the lumen 94 of vessel 93. However, it may be preferable to retract foot 360 to the non-deployed position prior to rotation of the device to the second suturing position. This can reduce the risk that foot 360 will exert unnecessary force and/or torque on the vascular tissue, which could cause injury such as tears or over extension of the tissue. Once the device is repositioned at the second suture position, foot 360 can be re-deployed using lever 362 as described above.


As illustrated in FIG. 46, a second needle 318b can be advanced through the needle channel 324 using needle pusher 326 to pierce vascular tissue at a second puncture site 99. Second needle 318b can be further advanced into receptacle 322.


After the first and second needles 318a and 318b have pulled suture material through the vascular tissue, the suturing device 310 can be withdrawn from the vessel. This results in a suture path that extends in a distal direction through the wound in the vessel to a first suture site in the vascular tissue; out through the first suture site in a proximal direction; across the wound on the proximal side of the tissue to a second suture site; then in a distal direction through the second suture site back into the lumen of the vessel and from there back out in the proximal direction through the wound as illustrated in FIG. 47. If needles 318a and 318b have a single piece of suture material 320 connected to their proximal end; the suture material illustrated in FIG. 11 is a single strand with two ends extending through the puncture wound 96. If needles 318a and 318b have separate suture material connected to their proximal end, there would be a different configuration. Furthermore, if the suture needles are configured to capture a needle retention element the needle capture element as illustrated and described in connection with FIGS. 23-36 above, the suture material will take still a different path. In any event, accurate positioning of the suturing device 310 is enabled with the deployable foot 360.


Once the device 310 is sufficiently removed or completely removed, the needles 318a, 318b and the attached suture material can be gathered in an appropriate fashion depending upon the number of individual lengths of suture material. When desired, the needles can be separated from the suture material. The suture material is gathered to gather to effect wound closure. A suture knot can be tied by hand. A loosely tied knot can be advanced to the external surface of the vessel using a knot pusher. Alternatively, a knot box can be used to form a knot which is then advanced to the external surface of the vessel. Examples of suitable knot boxes are illustrated and described in WO 01/19258, which is incorporated herein by reference.


Alternatively, one or more knot replacement technologies such can be used to secure closure of the wound using the suture material. Consequently, the suture knot or suture securing devices can be positioned across the proximal side of the wound to effect closure.



FIG. 21 is a perspective view of a suture securing device 102 for use in the present invention. Suture securing device 102 is described and illustrated in US Patent Publication No. 2004/0102809 which is incorporated herein by reference. In use, device 102 can secure ends of one, two, three or more lengths of suture material. Two lengths of suture material 104a and 104b are illustrated with device 102. The lengths of suture material are threaded into the flexible elements 105a and 105b which are then locked or fixed together securing the suture material therein.



FIG. 22 is another embodiment of suture securing devices 106a and 106b for use in the present invention. Devices 106a and 106b are described in US Patent Publication No. 2003/0229377 which is incorporated herein by reference in its entirety. Devices 106a and 106b cooperate by separately clipping onto a selected length of suture material 104a or 104b which have previously pulled taut to close wound or complete the surgical procedure. The devices prevent the suture material from regressing back through the sutured tissue.



FIG. 48 shows still other embodiment in which the receptacle 322 is sized to receive one two or more needles 318a, 318b, 318c, which can be retained without any further modifications. Receptacle 322 includes one or more needle capture elements, for example, one or more plugs 123 or pierceable material elements or projection(s) that can be pierced by needles advanced into receptacle 322. In this embodiment, needle 318a is captured within the receptacle reducing the risk of dislocation during manipulation of the suturing device. Examples of suitable needle capturing elements are illustrated and described in connection with FIGS. 23-36 above.


As shown in FIGS. 49 and 50, one or more needle engaging fittings attached to suture material can be positioned within receptacle 322. In this embodiment, needles 318a, 318b, 318c, . . . can each include a recessed surface 337 suitable for engaging with tabs 338 on fittings 344 in the receptacle 322. Fittings 44 may be attached to suture material 320, also at least partially contained within receptacle 322. Examples of suitable fittings and needles are illustrated and described in connection with FIGS. 1-22 above.


The present invention provides a variety of means, devices and methods for closing wounds in tissue and is particularly but not exclusively suitable for vascular tissue. It will be understood that the present invention contemplates modifications as would occur to those skilled in the art without departing from the spirit of the present invention. In addition, the various structures, elements, and procedural steps or stages have been described with reference to specified embodiments and devices. Each of the individual or a combination of the structures, elements, and procedural steps or stages are contemplated to be combinable with each of the other embodiments and devices described herein and as such are contemplated to be within the scope of the present invention.


All publications, patents, and patent applications cited in this specification are herein incorporated by reference as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference and set forth in its entirety herein. Further, any theory of operation, proof, or finding stated herein is meant to further enhance understanding of the present invention and is not intended to make the scope of the present invention dependent upon such theory, proof, or finding.

Claims
  • 1. A suturing device for suturing an opening in a vascular vessel, said device comprising: a proximal member including an elongated body having a single needle channel configured to receive a plurality of needles one at a time therethrough;a distal member configured to be inserted within a lumen of the vascular vessel, said distal member having a receptacle located therein;an intermediate member disposed between the proximal member and the distal member, said intermediate member defining a tissue receiving area and having a first opening providing a passageway to the single needle channel and a second opening providing a passageway into the receptacle;a length of suture material comprising a first end having a first needle engaging fitting and a second end having a second needle engaging fitting, the first needle engaging fitting and the second needle engaging fitting being positioned in the receptacle, wherein the receptacle in said distal member is substantially in line with the longitudinal axis of said needle channel and the entire length of suture is positioned in the receptacle and wherein the first needle engaging fitting has a cross-sectional diameter greater than that of the second needle engaging fitting within the receptacle.
  • 2. The device of claim 1 wherein each of the first needle engaging fitting and the second needle engaging fittings comprises a ferrule having a needle engaging tab.
  • 3. The device of claim 2 wherein the ferrule comprises a cylindrical housing having a plurality of needle engaging tabs extending radially into the cylindrical housing.
  • 4. The device of claim 2 further comprising a needle having a recessed engaging surface configured to engage with the plurality of needle engaging tabs.
  • 5. The device of claim 1 wherein the first needle engaging fitting is disposed proximally to the second needle engaging fitting within the receptacle.
  • 6. The device of claim 1 further comprising a cartridge slidably mounted on the proximal member and containing a plurality of needles.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a U.S. Nationalization of PCT Application Number PCT/US2006/028358 entitled “Vascular Suturing Device”, filed Jul. 21, 2006, which is a continuation of U.S. patent application Ser. No. 11/199,338, entitled “Vascular Suturing Device”, filed Aug. 8, 2005 now abandoned ; and of Ser. No. 11/199,496 now U.S. Pat. No. 8,083,754, entitled “Vascular Suturing Device with Needle Capture”, filed Aug. 8, 2005; and of U.S. patent application Ser. No. 11/199,515 now U.S. Pat. No. 7,883,517, entitled “Vascular Suturing Device”, filed Aug. 8, 2005, each of which is incorporated herein by reference in its entirety.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2006/028358 7/21/2006 WO 00 9/10/2008
Publishing Document Publishing Date Country Kind
WO2007/019016 2/15/2007 WO A
US Referenced Citations (510)
Number Name Date Kind
312408 Wackerhagen Feb 1885 A
597165 Hall Jan 1898 A
659422 Shidler Oct 1900 A
989231 Davis Apr 1911 A
1574362 Callahan Sep 1922 A
1625602 Gould et al. Apr 1927 A
1940351 Howard Mar 1933 A
2012776 Roeder Aug 1935 A
2131321 Hart Oct 1937 A
2127903 Bowen Aug 1938 A
2371978 Perham Mar 1945 A
2397823 Walter Apr 1946 A
RE22857 Ogburn Mar 1947 E
2595086 Larzelere Nov 1948 A
2588589 Tauber Mar 1952 A
2646045 Priestley Jul 1953 A
2692599 Creelman Oct 1954 A
2941489 Fischbein Jun 1960 A
2959172 Held Nov 1960 A
3033156 Verlish May 1962 A
3104666 Hale et al. Sep 1963 A
3197102 Bates et al. Jul 1965 A
3359983 Northey Dec 1967 A
3413397 Bierbaum et al. Nov 1968 A
3422181 Chirgwin, Jr. Jan 1969 A
3470875 Johnson Oct 1969 A
3485234 Stevens Dec 1969 A
3630205 Listner Dec 1971 A
3653388 Tenckhoff Apr 1972 A
3665926 Flores May 1972 A
3776237 Hill et al. Dec 1973 A
3802438 Wolvek Apr 1974 A
3587115 Shiley Jun 1974 A
3820544 Semm Jun 1974 A
3840017 Violante Oct 1974 A
3874388 King et al. Apr 1975 A
3878848 Hiebert Apr 1975 A
3918455 Coplan Nov 1975 A
3926194 Greenberg et al. Dec 1975 A
3939820 Grayzel Feb 1976 A
3985138 Jarvik Oct 1976 A
4018228 Goosen Apr 1977 A
4069825 Akiyama Jan 1978 A
4109658 Hughes Aug 1978 A
4128100 Wendorff Dec 1978 A
4135623 Thyen Jan 1979 A
4161951 Scanlan, Jr. Jul 1979 A
4168073 LaRue Sep 1979 A
4182339 Hardy, Jr. Jan 1980 A
4185636 Gabbay et al. Jan 1980 A
4216776 Downie et al. Aug 1980 A
4217665 Bex et al. Aug 1980 A
4235177 Arbuckle Nov 1980 A
4235238 Ogiu et al. Nov 1980 A
4316469 Kapitanov Feb 1982 A
4317445 Robinson Mar 1982 A
4411654 Boarini et al. Oct 1983 A
4412832 Kling et al. Nov 1983 A
4437465 Nomoto et al. Mar 1984 A
4469101 Coleman et al. Sep 1984 A
4492229 Grunwald Jan 1985 A
4493323 Albright et al. Jan 1985 A
4553543 Amarasinghe Nov 1985 A
4586614 Ger May 1986 A
4587969 Gillis May 1986 A
4596559 Fleischhacker Jun 1986 A
4610248 Rosenberg Sep 1986 A
4629450 Suzuki et al. Dec 1986 A
4651733 Mobin-Uddin Mar 1987 A
4655211 Sakamoto et al. Apr 1987 A
4702250 Ovil et al. Oct 1987 A
4723549 Wholey et al. Feb 1988 A
4738666 Fuqua Apr 1988 A
4744364 Kensey May 1988 A
4748982 Horzewski et al. Jun 1988 A
4782954 Reynolds Nov 1988 A
4803984 Narayanan et al. Feb 1989 A
4836205 Barrett Jun 1989 A
4845851 Warthen Jul 1989 A
4848341 Ahmad Jul 1989 A
4852568 Kensey Aug 1989 A
4890612 Kensey Jan 1990 A
4898155 Ovil et al. Feb 1990 A
4911164 Roth Mar 1990 A
4917089 Sideris Apr 1990 A
4926860 Stice et al. May 1990 A
4929246 Sinofsky May 1990 A
4935027 Yoon Jun 1990 A
4950285 Wilk Aug 1990 A
4957498 Caspari et al. Sep 1990 A
4966600 Songer et al. Oct 1990 A
4981149 Yoon et al. Jan 1991 A
4983168 Moorehead Jan 1991 A
4984581 Stice Jan 1991 A
5002563 Pyka et al. Mar 1991 A
5009643 Reich et al. Apr 1991 A
5021059 Kensey et al. Jun 1991 A
5037433 Wilk et al. Aug 1991 A
5041129 Hayhurst et al. Aug 1991 A
5047039 Avant et al. Sep 1991 A
5059201 Asnis Oct 1991 A
5061274 Kensey Oct 1991 A
5074874 Yoon et al. Dec 1991 A
5078721 McKeating Jan 1992 A
5080664 Jain Jan 1992 A
5100419 Ehlers Mar 1992 A
5100422 Berguer et al. Mar 1992 A
5100432 Matsutani Mar 1992 A
5108421 Fowler Apr 1992 A
5109780 Slouf et al. May 1992 A
5129882 Weldon et al. Jul 1992 A
5129912 Noda et al. Jul 1992 A
5129913 Ruppert Jul 1992 A
5144961 Chen et al. Sep 1992 A
5147373 Ferzli Sep 1992 A
5156788 Chesterfield et al. Oct 1992 A
5160339 Chen et al. Nov 1992 A
5163946 Li Nov 1992 A
5169041 Tan Dec 1992 A
5171251 Bregen et al. Dec 1992 A
5176691 Pierce Jan 1993 A
5178629 Kammerer Jan 1993 A
5192294 Blake, III Mar 1993 A
5192301 Kamiya et al. Mar 1993 A
5192302 Kensey et al. Mar 1993 A
5201744 Jones Apr 1993 A
5207703 Jain May 1993 A
5211650 Noda May 1993 A
5217470 Weston Jun 1993 A
5217485 Liv et al. Jun 1993 A
5219358 Bendel et al. Jun 1993 A
5222974 Kensey et al. Jun 1993 A
5234443 Phan et al. Aug 1993 A
5234445 Walker et al. Aug 1993 A
5237985 Hodgson et al. Aug 1993 A
5242427 Bilweis Sep 1993 A
5250033 Evans et al. Oct 1993 A
5250053 Snyder Oct 1993 A
5250054 Li Oct 1993 A
5254105 Haaga Oct 1993 A
5254113 Wilk Oct 1993 A
5254126 Filipi et al. Oct 1993 A
5258003 Ciaglia et al. Nov 1993 A
5259846 Granger et al. Nov 1993 A
5275616 Fowler Jan 1994 A
5279311 Snyder Jan 1994 A
5281236 Bognato et al. Jan 1994 A
5281237 Gimpelson Jan 1994 A
5284485 Kammerer et al. Feb 1994 A
5285945 Brinkerhoff et al. Feb 1994 A
5289963 McGarry et al. Mar 1994 A
5290284 Adair Mar 1994 A
5290297 Phillips Mar 1994 A
5290310 Makower et al. Mar 1994 A
5292309 VanTassel et al. Mar 1994 A
5292327 Dodd et al. Mar 1994 A
5292332 Lee Mar 1994 A
5293881 Green et al. Mar 1994 A
5295993 Green Mar 1994 A
5300085 Yock Apr 1994 A
5304184 Hathaway et al. Apr 1994 A
5304185 Taylor Apr 1994 A
5306254 Nash et al. Apr 1994 A
5312024 Grant et al. May 1994 A
5312423 Rosenbluth et al. May 1994 A
5318578 Hasson Jun 1994 A
5320629 Noda et al. Jun 1994 A
5320632 Heidmueller Jun 1994 A
5330445 Haaga Jul 1994 A
5330491 Walker et al. Jul 1994 A
5334217 Das Aug 1994 A
5336229 Noda Aug 1994 A
5336230 Leichtling et al. Aug 1994 A
5336231 Adair Aug 1994 A
5342369 Harryman, II Aug 1994 A
5354312 Brinkerhoff et al. Oct 1994 A
5364407 Poll Nov 1994 A
5364408 Gordon Nov 1994 A
5368595 Lewis Nov 1994 A
5368601 Sauer et al. Nov 1994 A
5374275 Bradley et al. Dec 1994 A
5374278 Chesterfield et al. Dec 1994 A
5376096 Foster Dec 1994 A
5383896 Gershony et al. Jan 1995 A
5383905 Golds et al. Jan 1995 A
5385569 Swor Jan 1995 A
5387221 Bisgaard Feb 1995 A
5387227 Grice Feb 1995 A
5391176 de la Torre Feb 1995 A
5391182 Chin Feb 1995 A
5395332 Ressemann et al. Mar 1995 A
5395349 Quiachon et al. Mar 1995 A
5397310 Chu et al. Mar 1995 A
5397325 Delia Badia et al. Mar 1995 A
5397326 Mangum Mar 1995 A
5403329 Hinchcliffe Apr 1995 A
5403331 Chesterfield et al. Apr 1995 A
5403338 Milo Apr 1995 A
5405352 Weston Apr 1995 A
5411481 Allen et al. May 1995 A
5413571 Katsaros et al. May 1995 A
5417684 Jackson et al. May 1995 A
5417699 Klein et al. May 1995 A
5419765 Weldon et al. May 1995 A
5425705 Evard et al. Jun 1995 A
5425737 Burbank et al. Jun 1995 A
5425740 Hutchinson, Jr. Jun 1995 A
5431666 Sauer et al. Jul 1995 A
5433700 Peters Jul 1995 A
5452733 Sterman et al. Sep 1995 A
5454822 Schob et al. Oct 1995 A
5454834 Boebel et al. Oct 1995 A
5458574 Machold et al. Oct 1995 A
5462560 Stevens Oct 1995 A
5462561 Voda Oct 1995 A
5464426 Bonutti Nov 1995 A
5466241 Leroy et al. Nov 1995 A
5470338 Whitfield et al. Nov 1995 A
5474568 Scott Dec 1995 A
5476469 Hathaway et al. Dec 1995 A
5476470 Fitzgibbons, Jr. Dec 1995 A
5478309 Sweezer et al. Dec 1995 A
5478353 Yoon Dec 1995 A
5480407 Wan et al. Jan 1996 A
5486190 Green Jan 1996 A
5489295 Piplani et al. Feb 1996 A
5496332 Sierra et al. Mar 1996 A
5507744 Tay et al. Apr 1996 A
5507755 Gresl et al. Apr 1996 A
5507757 Sauer et al. Apr 1996 A
5507758 Thomason et al. Apr 1996 A
5509902 Raulerson Apr 1996 A
5520655 Davila et al. May 1996 A
5520665 Fleetwood May 1996 A
5520691 Branch May 1996 A
5520702 Sauer et al. May 1996 A
5527321 Hinchliffe Jun 1996 A
5527322 Klein et al. Jun 1996 A
D372310 Hartnett Jul 1996 S
5531700 Moore et al. Jul 1996 A
5536273 Lehrer Jul 1996 A
5540701 Sharkey et al. Jul 1996 A
5540703 Barker, Jr. et al. Jul 1996 A
5540704 Gordon et al. Jul 1996 A
5545171 Sharkey et al. Aug 1996 A
5545178 Kensey et al. Aug 1996 A
5545180 Le et al. Aug 1996 A
5549618 Fleenor et al. Aug 1996 A
5549631 Bonutti Aug 1996 A
5554162 DeLange Sep 1996 A
5562684 Kammerer Oct 1996 A
5562686 Sauer et al. Oct 1996 A
5562688 Riza Oct 1996 A
5562728 Lazarus et al. Oct 1996 A
5567435 Hubbell et al. Oct 1996 A
5569269 Hart et al. Oct 1996 A
5569271 Hoel Oct 1996 A
5571120 Yoon Nov 1996 A
5573540 Yoon Nov 1996 A
5584842 Fogarty et al. Dec 1996 A
5591177 Lehrer Jan 1997 A
5591179 Edelstein Jan 1997 A
5591206 Moufarrege Jan 1997 A
5593421 Bauer Jan 1997 A
5603718 Xu Feb 1997 A
5607435 Sachdeva et al. Mar 1997 A
5609597 Lehrer Mar 1997 A
5611794 Sauer et al. Mar 1997 A
5613974 Andreas et al. Mar 1997 A
5613975 Christy Mar 1997 A
5624446 Harryman, II Apr 1997 A
5626588 Sauer et al. May 1997 A
5643289 Sauer et al. Jul 1997 A
5643295 Yoon Jul 1997 A
5643318 Tsukernik et al. Jul 1997 A
5649959 Hannam et al. Jul 1997 A
5662664 Gordon et al. Sep 1997 A
5669917 Sauer et al. Sep 1997 A
5676689 Kensey et al. Oct 1997 A
5700273 Buelna et al. Dec 1997 A
5707379 Fleenor et al. Jan 1998 A
5713910 Gordon et al. Feb 1998 A
5716369 Riza Feb 1998 A
5720574 Barella Feb 1998 A
5720757 Hathaway et al. Feb 1998 A
5722981 Stevens Mar 1998 A
5725552 Kotula et al. Mar 1998 A
5728109 Schulze et al. Mar 1998 A
5728114 Evans et al. Mar 1998 A
5728133 Kontos Mar 1998 A
5728151 Garrison et al. Mar 1998 A
5741276 Poloyko et al. Apr 1998 A
5741280 Fleenor Apr 1998 A
5746755 Wood et al. May 1998 A
5749890 Shaknovich May 1998 A
5755727 Kontos May 1998 A
5759188 Yoon Jun 1998 A
5766183 Sauer Jun 1998 A
5766186 Faraz et al. Jun 1998 A
5766217 Christy Jun 1998 A
5769862 Kammerer et al. Jun 1998 A
5779719 Klein et al. Jul 1998 A
5782860 Epstein et al. Jul 1998 A
5782861 Cragg et al. Jul 1998 A
5792151 Heck et al. Aug 1998 A
5792152 Klein et al. Aug 1998 A
5797928 Kogasaka Aug 1998 A
5797929 Andreas et al. Aug 1998 A
5799661 Boyd et al. Sep 1998 A
5810849 Kontos Sep 1998 A
5810850 Hathaway et al. Sep 1998 A
5814069 Schulze et al. Sep 1998 A
5817113 Gifford, III et al. Oct 1998 A
5820631 Nobles Oct 1998 A
5824010 McDonald Oct 1998 A
5824111 Schall et al. Oct 1998 A
5830125 Scribner et al. Nov 1998 A
5836955 Buelna et al. Nov 1998 A
5836956 Buelna et al. Nov 1998 A
5846253 Buelna et al. Dec 1998 A
5848714 Robson et al. Dec 1998 A
5855585 Kontos Jan 1999 A
5860963 Azam et al. Jan 1999 A
5860990 Nobles et al. Jan 1999 A
5860991 Klein et al. Jan 1999 A
5861005 Kontos Jan 1999 A
5871490 Schulze et al. Feb 1999 A
5871502 Suryadevara Feb 1999 A
5873876 Christy Feb 1999 A
5876411 Kontos Mar 1999 A
5897487 Ouchi Apr 1999 A
5897564 Schulze et al. Apr 1999 A
5902311 Andreas et al. May 1999 A
5904597 Doi et al. May 1999 A
5904690 Middleman et al. May 1999 A
5904697 Gifford, III et al. May 1999 A
5906631 Imran May 1999 A
5919207 Taheri Jul 1999 A
5921994 Andreas et al. Jul 1999 A
5928266 Kontos Jul 1999 A
5951590 Goldfarb Sep 1999 A
5954732 Hart et al. Sep 1999 A
5957936 Yoon et al. Sep 1999 A
5957937 Yoon Sep 1999 A
5957938 Zhu et al. Sep 1999 A
5964773 Greenstein Oct 1999 A
5964782 Lafontaine et al. Oct 1999 A
5972030 Garrison et al. Oct 1999 A
5976161 Kirsch et al. Nov 1999 A
5980539 Kontos Nov 1999 A
5997555 Kontos Dec 1999 A
6001109 Kontos Dec 1999 A
6022372 Kontos Feb 2000 A
6024747 Kontos Feb 2000 A
6036699 Andreas et al. Mar 2000 A
6042601 Smith Mar 2000 A
6048351 Gordon et al. Apr 2000 A
6048354 Lawrence Apr 2000 A
6048357 Kontos Apr 2000 A
6068603 Suzuki May 2000 A
6077276 Kontos Jun 2000 A
6077279 Kontos Jun 2000 A
6117144 Nobles et al. Sep 2000 A
6117145 Wood et al. Sep 2000 A
6126675 Shchervinsky et al. Oct 2000 A
6132439 Kontos Oct 2000 A
6132440 Hathaway et al. Oct 2000 A
6136010 Modesitt et al. Oct 2000 A
6139556 Kontos Oct 2000 A
6152936 Christy et al. Nov 2000 A
6165183 Kuehn et al. Dec 2000 A
6165204 Levinson et al. Dec 2000 A
6190396 Whitin et al. Feb 2001 B1
6197042 Ginn et al. Mar 2001 B1
6206893 Klein et al. Mar 2001 B1
6206895 Levinson et al. Mar 2001 B1
6245079 Nobles et al. Jun 2001 B1
6248124 Pedros et al. Jun 2001 B1
6296657 Brucker Oct 2001 B1
6348059 Hathaway et al. Feb 2002 B1
6355050 Andreas et al. Mar 2002 B1
6358258 Arcia et al. Mar 2002 B1
6395015 Borst et al. May 2002 B1
6428472 Haas Aug 2002 B1
6428549 Kontos Aug 2002 B1
6436109 Kontos Aug 2002 B1
6443963 Baldwin et al. Sep 2002 B1
6451031 Kontos Sep 2002 B1
6511489 Field et al. Jan 2003 B2
6517553 Klein et al. Feb 2003 B2
6533812 Swanson et al. Mar 2003 B2
6551330 Bain et al. Apr 2003 B1
6558399 Isbell et al. May 2003 B1
6562052 Nobles et al. May 2003 B2
6569185 Ungs May 2003 B2
6572629 Kalloo et al. Jun 2003 B2
6610072 Christy et al. Aug 2003 B1
6623509 Ginn Sep 2003 B2
6623510 Carley et al. Sep 2003 B2
6632237 Ben-David et al. Oct 2003 B2
6641592 Sauer et al. Nov 2003 B1
6663655 Ginn et al. Dec 2003 B2
6676685 Pedros et al. Jan 2004 B2
6695867 Ginn et al. Feb 2004 B2
6716228 Tal Apr 2004 B2
6743195 Zucker Jun 2004 B2
6743259 Ginn Jun 2004 B2
6749621 Pantages et al. Jun 2004 B2
6749622 McGuckin, Jr. et al. Jun 2004 B2
6837906 Ginn Jan 2005 B2
6846319 Ginn et al. Jan 2005 B2
6890343 Ginn et al. May 2005 B2
6896692 Ginn et al. May 2005 B2
6911034 Nobles et al. Jun 2005 B2
6939357 Navarro et al. Sep 2005 B2
6964668 Modesitt et al. Nov 2005 B2
6969397 Ginn Nov 2005 B2
7001400 Modesitt et al. Feb 2006 B1
7029480 Klein et al. Apr 2006 B2
7029481 Burdulis, Jr. et al. Apr 2006 B1
7048747 Arcia et al. May 2006 B2
7063710 Takamoto et al. Jun 2006 B2
7083635 Ginn Aug 2006 B2
7112225 Ginn Sep 2006 B2
7160309 Voss Jan 2007 B2
7179266 Kontos Feb 2007 B2
7229458 Boecker et al. Jun 2007 B2
7235087 Modesitt et al. Jun 2007 B2
7316704 Bagaoisan et al. Jan 2008 B2
7326230 Ravikumar Feb 2008 B2
7331979 Khosravi et al. Feb 2008 B2
7335220 Khosravi et al. Feb 2008 B2
7361183 Ginn Apr 2008 B2
7361185 O'Malley et al. Apr 2008 B2
7377927 Burdulis, Jr. et al. May 2008 B2
7390328 Modesitt Jun 2008 B2
7393363 Ginn Jul 2008 B2
7442198 Gellman et al. Oct 2008 B2
7445626 Songer et al. Nov 2008 B2
7449024 Stafford Nov 2008 B2
7462188 McIntosh Dec 2008 B2
7753923 St. Goar et al. Jul 2010 B2
7837696 Modesitt et al. Nov 2010 B2
7842047 Modesitt et al. Nov 2010 B2
7842048 Ma Nov 2010 B2
7842049 Voss Nov 2010 B2
7846170 Modesitt et al. Dec 2010 B2
7850701 Modesitt Dec 2010 B2
7883517 Pantages et al. Feb 2011 B2
20010046518 Sawhney Nov 2001 A1
20020045908 Nobles et al. Apr 2002 A1
20020095164 Andreas et al. Jul 2002 A1
20020099389 Michler et al. Jul 2002 A1
20020106409 Sawhney et al. Aug 2002 A1
20020177876 Roby et al. Nov 2002 A1
20030093093 Modesitt et al. May 2003 A1
20030195529 Takamoto et al. Oct 2003 A1
20040009205 Sawhney Jan 2004 A1
20040092964 Modesitt et al. May 2004 A1
20040093027 Fabisiak et al. May 2004 A1
20040097978 Modesitt et al. May 2004 A1
20040127940 Ginn et al. Jul 2004 A1
20040143290 Brightbill Jul 2004 A1
20040158127 Okada Aug 2004 A1
20040158287 Cragg et al. Aug 2004 A1
20040167511 Buehlmann et al. Aug 2004 A1
20040181238 Zarbatany et al. Sep 2004 A1
20040186487 Klein et al. Sep 2004 A1
20040191277 Sawhney et al. Sep 2004 A1
20040210251 Kontos Oct 2004 A1
20040215232 Belhe et al. Oct 2004 A1
20040225301 Roop et al. Nov 2004 A1
20040267193 Bagaoisan et al. Dec 2004 A1
20040267308 Bagaoisan et al. Dec 2004 A1
20050059982 Zung et al. Mar 2005 A1
20050070923 McIntosh Mar 2005 A1
20050075665 Brenzel et al. Apr 2005 A1
20050085851 Fiehler et al. Apr 2005 A1
20050085854 Ginn Apr 2005 A1
20050085855 Forsberg Apr 2005 A1
20050121042 Belhe et al. Jun 2005 A1
20050149117 Khosravi et al. Jul 2005 A1
20050177189 Ginn et al. Aug 2005 A1
20050222614 Ginn et al. Oct 2005 A1
20050245876 Khosravi et al. Nov 2005 A1
20050267528 Ginn et al. Dec 2005 A1
20050273137 Ginn Dec 2005 A1
20060034930 Khosravi et al. Feb 2006 A1
20060047313 Khanna et al. Mar 2006 A1
20060079914 Modesitt et al. Apr 2006 A1
20060100664 Pai et al. May 2006 A1
20060167477 Arcia et al. Jul 2006 A1
20060173469 Klein Aug 2006 A1
20060253037 Ginn et al. Nov 2006 A1
20060253072 Pai et al. Nov 2006 A1
20070032798 Pantages et al. Feb 2007 A1
20070032801 Pantages et al. Feb 2007 A1
20070060950 Khosravi et al. Mar 2007 A1
20070123817 Khosravi et al. May 2007 A1
20070276410 McIntosh Nov 2007 A1
20070282354 McIntosh Dec 2007 A1
20080009794 Bagaoisan et al. Jan 2008 A1
20080065151 Ginn Mar 2008 A1
20080065152 Carley Mar 2008 A1
20080287967 Andreas et al. Nov 2008 A1
20080319458 Reynolds Dec 2008 A1
20090036906 Stafford Feb 2009 A1
20090048615 McIntosh Feb 2009 A1
20090088779 Zung et al. Apr 2009 A1
20090157105 Zung et al. Jun 2009 A1
Foreign Referenced Citations (81)
Number Date Country
912619 May 1954 DE
4210724 Jul 1993 DE
9217932 Jul 1993 DE
4220283 Dec 1993 DE
10211360 Oct 2003 DE
0 140 557 May 1985 EP
0 207 545 Jan 1987 EP
0 474 887 Mar 1992 EP
0 478 358 Apr 1992 EP
0 478 887 Apr 1992 EP
0 542 126 May 1993 EP
0 568 098 Nov 1993 EP
0 589 409 Mar 1994 EP
0 624 343 Nov 1994 EP
0 669 101 Aug 1995 EP
0 669 102 Aug 1995 EP
0 669 103 Aug 1995 EP
0 684 012 Nov 1995 EP
0 812 571 Mar 1997 EP
0 941 698 Sep 1999 EP
1059544 Mar 1954 FR
2768324 Mar 1999 FR
51143386 Nov 1976 JP
5220794 Feb 1977 JP
2119866 May 1990 JP
542161 Feb 1993 JP
820810 Apr 1981 SU
993922 Feb 1983 SU
1093329 May 1984 SU
1174036 Aug 1985 SU
1544383 Feb 1990 SU
1648400 May 1991 SU
WO 8503858 Sep 1985 WO
WO 9405213 Mar 1994 WO
WO 9413211 Jun 1994 WO
WO 9427503 Dec 1994 WO
WO 9428801 Dec 1994 WO
WO 9505121 Feb 1995 WO
WO 9513021 May 1995 WO
WO 9525468 Sep 1995 WO
WO 9535065 Dec 1995 WO
WO 9609006 Mar 1996 WO
WO 9700046 Jan 1997 WO
WO 9703613 Feb 1997 WO
WO 9707745 Mar 1997 WO
WO 9710764 Mar 1997 WO
WO 9713461 Apr 1997 WO
WO 9717901 May 1997 WO
WO 9720505 Jun 1997 WO
WO 9727897 Aug 1997 WO
WO 9804195 Feb 1998 WO
WO 9842262 Oct 1998 WO
WO 9947049 Sep 1999 WO
WO 0012013 Mar 2000 WO
WO 0051498 Sep 2000 WO
WO 0069342 Nov 2000 WO
WO 0119259 Mar 2001 WO
WO 0135833 May 2001 WO
WO 0236021 May 2002 WO
WO 02062234 Aug 2002 WO
WO 03003925 Jan 2003 WO
WO 03094748 Nov 2003 WO
WO 03099134 Dec 2003 WO
WO 2005000126 Jan 2005 WO
WO 2005023119 Mar 2005 WO
WO 2005025430 Mar 2005 WO
WO 2005030060 Apr 2005 WO
WO 2005041782 May 2005 WO
WO 2005063129 Jul 2005 WO
WO 2005065549 Jul 2005 WO
WO 2005092204 Oct 2005 WO
WO 2005112782 Dec 2005 WO
WO 2006026116 Mar 2006 WO
WO 2006052611 May 2006 WO
WO 2006052612 May 2006 WO
WO 2006078578 Jul 2006 WO
WO 2006115901 Nov 2006 WO
WO 2006115904 Nov 2006 WO
WO 2006118877 Nov 2006 WO
WO 2007019016 Feb 2007 WO
WO 2007081836 Jul 2007 WO
Related Publications (1)
Number Date Country
20090005793 A1 Jan 2009 US
Continuations (3)
Number Date Country
Parent 11199338 Aug 2005 US
Child 11997379 US
Parent 11199496 Aug 2005 US
Child 11199338 US
Parent 11199515 Aug 2005 US
Child 11199496 US