Vascular treatment systems, cooling devices, and methods for cooling vascular structures

Information

  • Patent Grant
  • 11154418
  • Patent Number
    11,154,418
  • Date Filed
    Tuesday, October 18, 2016
    7 years ago
  • Date Issued
    Tuesday, October 26, 2021
    2 years ago
Abstract
Treatment systems, methods, and apparatuses for improving the appearance of skin and other treatments are described. Aspects of the technology are directed to improving the appearance of skin by reducing a vascular structure. A non-invasive cooling device can cover and cool the vascular structure to affect the blood vessels of the vascular structure.
Description
INCORPORATION BY REFERENCE OF COMMONLY-OWNED APPLICATIONS AND PATENTS

The following commonly assigned U.S. Patent Applications, U.S. patents, and International Publication are incorporated herein by reference in their entirety:


U.S. Patent Publication No. 2008/0287839 entitled “METHOD OF ENHANCED REMOVAL OF HEAT FROM SUBCUTANEOUS LIPID-RICH CELLS AND TREATMENT APPARATUS HAVING AN ACTUATOR”;


U.S. Pat. No. 6,032,675 entitled “FREEZING METHOD FOR CONTROLLED REMOVAL OF FATTY TISSUE BY LIPOSUCTION”;


U.S. Patent Publication No. 2007/0255362 entitled “CRYOPROTECTANT FOR USE WITH A TREATMENT DEVICE FOR IMPROVED COOLING OF SUBCUTANEOUS LIPID-RICH CELLS”;


U.S. Pat. No. 7,854,754 entitled “COOLING DEVICE FOR REMOVING HEAT FROM SUBCUTANEOUS LIPID-RICH CELLS”;


U.S. Pat. No. 8,337,539 entitled “COOLING DEVICE FOR REMOVING HEAT FROM SUBCUTANEOUS LIPID-RICH CELLS”;


U.S. Patent Publication No. 2008/0077201 entitled “COOLING DEVICES WITH FLEXIBLE SENSORS”;


U.S. Pat. No. 9,132,031 entitled “COOLING DEVICE HAVING A PLURALITY OF CONTROLLABLE COOLING ELEMENTS TO PROVIDE A PREDETERMINED COOLING PROFILE”;


U.S. Patent Publication No. 2009/0118722, filed Oct. 31, 2007, entitled “METHOD AND APPARATUS FOR COOLING SUBCUTANEOUS LIPID-RICH CELLS OR TISSUE”;


U.S. Patent Publication No. 2009/0018624 entitled “LIMITING USE OF DISPOSABLE SYSTEM PATIENT PROTECTION DEVICES”;


U.S. Pat. No. 8,523,927 entitled “SYSTEM FOR TREATING LIPID-RICH REGIONS”;


U.S. Patent Publication No. 2009/0018625 entitled “MANAGING SYSTEM TEMPERATURE TO REMOVE HEAT FROM LIPID-RICH REGIONS”;


U.S. Patent Publication No. 2009/0018627 entitled “SECURE SYSTEMS FOR REMOVING HEAT FROM LIPID-RICH REGIONS”;


U.S. Patent Publication No. 2009/0018626 entitled “USER INTERFACES FOR A SYSTEM THAT REMOVES HEAT FROM LIPID-RICH REGIONS”;


U.S. Pat. No. 6,041,787 entitled “USE OF CRYOPROTECTIVE AGENT COMPOUNDS DURING CRYOSURGERY”;


U.S. Pat. No. 8,285,390 entitled “MONITORING THE COOLING OF SUBCUTANEOUS LIPID-RICH CELLS, SUCH AS THE COOLING OF ADIPOSE TISSUE”;


U.S. Pat. No. 8,275,442 entitled “TREATMENT PLANNING SYSTEMS AND METHODS FOR BODY CONTOURING APPLICATIONS”;


U.S. patent application Ser. No. 12/275,002 entitled “APPARATUS WITH HYDROPHILIC RESERVOIRS FOR COOLING SUBCUTANEOUS LIPID-RICH CELLS”;


U.S. patent application Ser. No. 12/275,014 entitled “APPARATUS WITH HYDROPHOBIC FILTERS FOR REMOVING HEAT FROM SUBCUTANEOUS LIPID-RICH CELLS”;


U.S. Pat. No. 8,603,073 entitled “SYSTEMS AND METHODS WITH INTERRUPT/RESUME CAPABILITIES FOR TREATING SUBCUTANEOUS LIPID-RICH CELLS”;


U.S. Pat. No. 8,192,474 entitled “TISSUE TREATMENT METHODS”;


U.S. Pat. No. 8,702,774 entitled “DEVICE, SYSTEM AND METHOD FOR REMOVING HEAT FROM SUBCUTANEOUS LIPID-RICH CELLS”;


U.S. Pat. No. 8,676,338 entitled “COMBINED MODALITY TREATMENT SYSTEMS, METHODS AND APPARATUS FOR BODY CONTOURING APPLICATIONS”;


U.S. Patent Publication No. 2011/0238050 entitled “HOME-USE APPLICATORS FOR NON-INVASIVELY REMOVING HEAT FROM SUBCUTANEOUS LIPID-RICH CELLS VIA PHASE CHANGE COOLANTS, AND ASSOCIATED DEVICES, SYSTEMS AND METHODS”;


U.S. Patent Publication No. 2011/0238051 entitled “HOME-USE APPLICATORS FOR NON-INVASIVELY REMOVING HEAT FROM SUBCUTANEOUS LIPID-RICH CELLS VIA PHASE CHANGE COOLANTS, AND ASSOCIATED DEVICES, SYSTEMS AND METHODS”;


U.S. Patent Publication No. 2012/0239123 entitled “DEVICES, APPLICATION SYSTEMS AND METHODS WITH LOCALIZED HEAT FLUX ZONES FOR REMOVING HEAT FROM SUBCUTANEOUS LIPID-RICH CELLS”;


U.S. Patent Publication No. 2014/0277219 entitled “MULTI-MODALITY TREATMENT SYSTEMS, METHODS AND APPARATUS FOR ALTERING SUBCUTANEOUS LIPID-RICH TISSUE”;


U.S. Patent Publication No. 2014/0277302 entitled “TREATMENT SYSTEMS WITH FLUID MIXING SYSTEMS AND FLUID-COOLED APPLICATORS AND METHODS OF USING THE SAME”;


U.S. Patent Publication No. 2013/0116759 entitled “COOLING DEVICE HAVING A PLURALITY OF CONTROLLABLE COOLING ELEMENTS TO PROVIDE A PREDETERMINED COOLING PROFILE;”


U.S. Patent Publication No. 2013/0116758 entitled “MONITORING THE COOLING OF SUBCUTANEOUS LIPID-RICH CELLS, SUCH AS THE COOLING OF ADIPOSE TISSUE;”


U.S. Patent Publication No. 2013/0158636 entitled “COOLING DEVICE FOR REMOVING HEAT FROM SUBCUTANEOUS LIPID-RICH CELLS;”


U.S. Patent Publication No. 2013/0066309 entitled “TISSUE TREATMENT METHODS;”


U.S. patent application Ser. No. 14/808,245 entitled “TISSUE TREATMENT METHODS;”


U.S. patent application Ser. No. 14/825,841 entitled “COOLING DEVICE HAVING A PLURALITY OF CONTROLLABLE COOLING ELEMENTS TO PROVIDE A PREDETERMINED COOLING PROFILE;”


U.S. Patent Publication No. 2014/0005760 entitled “CRYOPROTECTANT FOR USE WITH A TREATMENT DEVICE FOR IMPROVED COOLING OF SUBCUTANEOUS LIPID-RICH CELLS;”


U.S. Patent Publication No. 2013/0079684 entitled “METHOD OF ENHANCED REMOVAL OF HEAT FROM SUBCUTANEOUS LIPID-RICH CELLS AND TREATMENT APPARATUS HAVING AN ACTUATOR;”


U.S. Patent Publication No. 2014/0067025 entitled “SYSTEM FOR TREATING LIPID-RICH SYSTEMS;”


U.S. Patent Publication No. 2014/0316393 entitled “COMBINED MODALITY TREATMENT SYSTEMS, METHODS AND APPARATUS FOR BODY CONTOURING APPLICATIONS;”


U.S. Patent Publication No. 2013/0245731 entitled “SYSTEMS AND METHODS WITH INTERRUPT/RESUME CAPABILITIES FOR TREATING SUBCUTANEOUS LIPID-RICH CELLS;”


U.S. Patent Publication No. 2014/0257443 entitled “DEVICE, SYSTEM AND METHOD OF REMOVING HEAT FROM SUBCUTANEOUS LIPID-RICH CELLS;”


U.S. Patent Publication No. 2015/0216720 entitled “TREATMENT SYSTEMS, METHODS, AND APPARATUSES FOR IMPROVING THE APPEARANCE OF SKIN AND PROVIDING FOR OTHER TREATMENTS;”


U.S. Patent Publication No. 2015/0216816 entitled “COMPOSITIONS, TREATMENT SYSTEMS AND METHODS FOR IMPROVED COOLING OF LIPID-RICH TISSUE;”


U.S. Patent Publication No. 2015/0216719 entitled “TREATMENT SYSTEMS AND METHODS FOR TREATING CELLULITE AND FOR PROVIDING OTHER TREATMENTS;”


U.S. patent application Ser. No. 14/662,181 entitled “TREATMENT SYSTEMS, DEVICES, AND METHODS FOR COOLING TARGETED TISSUE;”


U.S. patent application Ser. No. 14/710,407 entitled “TREATMENT SYSTEMS WITH ADJUSTABLE GAP APPLICATORS AND METHODS FOR COOLING TISSUE;”


U.S. patent application Ser. No. 14/705,868 entitled “TREATMENT SYSTEMS, SMALL VOLUME APPLICATORS, AND METHODS FOR TREATING SUBMENTAL TISSUE;”


U.S. patent application Ser. No. 14/829,424 entitled “STRESS RELIEF COUPLINGS FOR CRYOTHERAPY APPARATUSES;”


U.S. patent application Ser. No. 14/855,017 entitled “TREATMENT SYSTEMS, METHODS, AND APPARATUSES FOR ALTERING THE APPEARANCE OF SKIN;”


International Publication No. 2015/117032 entitled “TREATMENT SYSTEMS AND METHODS FOR AFFECTING GLANDS AND OTHER TARGETED STRUCTURES;”


U.S. Provisional Patent Application No. 62/153,896 entitled “SYSTEMS AND METHODS FOR MONITORING COOLING OF SKIN AND TISSUE TO IDENTIFY FREEZE EVENTS;” and


U.S. Provisional Patent Application No. 62/221,490 entitled “TRANSCUTANEOUS TREATMENT SYSTEMS, COOLING DEVICES, AND METHOD FOR COOLING NERVES.”


TECHNICAL FIELD

The present disclosure relates generally to treatment systems, cooling devices, and methods for cooling vascular structures. In particular, several embodiments are directed to vascular treatment systems, thermoelectric devices, and methods for reducing or eliminating vascular irregularities located along a subject's skin and for performing other treatments.


BACKGROUND

Port wine stains, hemangioma, telangiectasia, vascular malformations, and other tissue anomalies are often considered visually unappealing and difficult to treat. For example, port wine stains are defects caused by enlarged, ectatic dermal blood vessels that result in pink, red, or purple cutaneous lesions, typically present at birth. Hemangioma is a benign tumor formed by abnormal blood vessels, which often produce a red birthmark on or under the surface of the skin. Telangiectasia refers to a collection of visible dilated cutaneous blood vessels often located near the surface of the skin. Vascular malformations, such as dilated blood vessels, are often visible to the naked eye.


In conventional light-based therapies, light from a laser or a flashlamp is used to coagulate blood in abnormal vascular structures and/or to thermally injure blood vessel. For example, lasers can generate enough heat to burn tissue (e.g., to destroy targeted blood vessels), resulting in an improved appearance. Essentially, lasers burn tissue. Unfortunately, the heat generated during conventional light therapies may cause significant discomfort or pain during and after the treatment session, as well as undesired pigmentation alteration (e.g., temporary reddening, permanent hyperpigmentation or hypopigmentation, etc.), blistering (e.g., blistering due to heat-induced separation between dermal and epidermal layers), and scarring. Additionally, equipment for performing light-based procedures is expensive and often requires frequent complicated calibration, resulting in high operating costs. To limit adverse effects, trained personnel are required to operate the equipment, due to difficulty in controlling dosage and difficulty in visually inspecting a treatment site and determining whether clinical endpoints have been reached. Accordingly, there is a need for more effective treatments of skin irregularities caused by vascular malformations and other tissue conditions.





BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings, identical reference numbers identify similar elements or acts.



FIG. 1 is a schematic cross-sectional view of tissue with a non-invasive applicator in thermal contact with an exposed surface of a subject's skin.



FIG. 2 is a partially schematic, isometric view of a treatment system for treating an area of the subject's skin in accordance with an embodiment of the technology.



FIG. 3 is a cross-sectional view of a connector taken along line 3-3 of FIG. 2.



FIGS. 4A-4C illustrate a method of treating a targeted anomaly in accordance with an embodiment of the technology.



FIG. 5A illustrates a skin anomaly located along a subject's face.



FIG. 5B shows the subject after a protective element has been applied.



FIG. 5C is a schematic cross-sectional view of tissue and the applied protective element taken along line 5C-5C of FIG. 5B.



FIG. 5D shows an applicator applied to the protective element and the subject's skin.



FIG. 5E is a schematic cross-sectional view of tissue, the protective element, and the applicator taken along line 5E-5E of FIG. 5D.



FIG. 6 is a flow diagram illustrating a method for treating a treatment site in accordance with embodiments of the technology.



FIG. 7 is a schematic block diagram illustrating computing system software modules and subcomponents of a computing device suitable to be used in treatment systems in accordance with embodiments of the technology.





DETAILED DESCRIPTION
A. Overview

The present disclosure describes treatment systems and methods for treating features located along a subject's skin and at other locations. Some treatment methods can include applying a non-invasive applicator to a patient and transcutaneously cooling/heating tissue to reduce, eliminate, or otherwise alter targeted features to improve the appearance of a treatment site. The targeted features can be skin irregularities, malformations, or the like. Several of the details set forth below are provided to describe the following examples and methods in a manner sufficient to enable a person skilled in the relevant art to practice, make, and use them. Several of the details and advantages described below, however, may not be necessary to practice certain examples and methods of the technology. Additionally, the technology may include other examples and methods that are within the scope of the technology but are not described in detail.


At least some embodiments are directed to reducing or eliminating skin irregularities considered to be visually unappealing. The skin irregularities can be port wine stains, a collection of irregular blood vessels, vascular malformations, or the like. Cold therapy can be used to lighten or reduce the visibility (e.g., visibility to the naked eye) of the skin irregularities by, for example, destroying target vascular structures, constricting blood vessels, and/or reducing blood flow associated with the skin irregularities. Cooling/heating of the subject's skin can be controlled to achieve the desired effect. To treat a port wine stain, the subject's skin can be cooled to a temperature low enough to reduce ectatic blood vessels and thereby lighten the port wine stain. The cooling/heating profile and severity and number of treatments can be selected based on the characteristics of the port wine stain and the desired visual appearance of the target site.


Various aspects of the technology are directed to devices that cool/heat a target region for a period of time selected to localize thermal effects to affect targeted structures. The devices can be thermoelectric devices capable of cooling targeted vascular structures to a temperature low enough and for a period of time long enough so as to substantially affect the vascular structures. The skin surface and/or targeted structures can be cooled to a temperature equal to or lower than about −40° C., −35° C., −30° C., −25° C., −20° C., −15° C., −10° C., −5° C., −2° C., or −1° C. for a treatment period equal to or longer than about 30 seconds, 1 minute, 2 minutes, 3 minutes, 4 minutes, 5 minutes, 7 minutes, 10 minutes, 12 minutes, 15 minutes, 30 minutes, 45 minutes, or 1 hour. In some procedures, the skin surface is cooled to a temperature lower than about −5° C. and higher than about −25° C. or −30° C. for about 2 minutes to about 20 minutes. Target vascular structures directly below the cooled skin can be thermally injured, destroyed, or otherwise altered. For example, a majority of the blood vessels of a visible vascular malformation can be destroyed via cold injury. In other procedures, the treatment period can be shorter than about 30 seconds, or shorter than or equal to about 1, 2, 3, 4, 5, 7, 10, 15, 20, 25, 30, 35, 40, 45, 50, or 55 minutes, or shorter than or equal to about 1 or 2 hours. Cold therapy at these treatment temperatures and treatment times using transcutaneous cooling devices can be effective in damaging blood vessel cells so as to significantly injure the blood vessels, especially when the cooling device is applied with sufficient pressure to reduce or limit blood flow in the vessels so as to maximize a cooling effect on the cells from the cooling device. Applied pressure can prevent or limit warm blood flow from heating or otherwise preventing the cooling device from cooling the vessel cells. The cold therapy can be controlled to either produce a freeze or non-freeze injury.


When treating certain regions (e.g., regions along the face), it is often undesirable to unduly injure the epidermis, subcutaneous fat, or facial muscle. In an extreme case, if the epidermis is overly frozen or damaged, hyperpigmentation (skin darkening) or hypopigmentation (skin lightening) can result, which is often undesirable. Cryoprotectants, heating (e.g., periodic heating cycles in between cooling cycles or at the end of a single cooling cycle) and other techniques can be used to protect the epidermis (or other non-targeted tissue) to avoid, minimize, or limit hyperpigmentation and/or hypopigmentation either immediately after the treatment or hours, a day, days, or weeks thereafter. Additionally or alternatively, devices can have a temperature-controlled surface sized and configured to transcutaneously cool vascular structures (e.g., dermal blood vessels) while minimizing or limiting cold injury to non-targeted tissue, such as epidermal tissue. Cryoprotectants can be applied to the subject's skin to inhibit or prevent freezing of non-targeted tissue, such as epidermal tissue, where the cryoprotectant is absorbed, while allowing deeper tissue with reduced or no concentration of cryoprotectant to freeze and be more damaged than the epidermal tissue. The shape, configuration, thermal properties, and cooling capabilities of the applicator can be selected based on characteristics of the treatment site, targeted structures, etc.


A treatment session can include different procedures for treating different treatment sites. For example, a first procedure can be performed to reduce the visibility of a port wine stain, and the same or different procedure can be used to treat vascular malformations, such as spider veins, at another site. Conformable or contoured thermoelectric devices can be applied to highly contoured regions around, for example, the eyes, face, neck, etc. Non-conformable and flat applicators can be used for sites which are relatively flat. Treatment systems can also have multiple thermoelectric devices, each configured to be sequentially or concurrently applied at specific locations along the subject's body.


Some aspects of the technology are directed to treatment methods that include producing one or more freeze zones that affect targeted structures. The freeze zones can be located in one or more layers of tissue. The location, severity, and extent of freeze injury can be controlled to achieve the desired alteration. For example, a sufficient number of blood vessels can be injured to reduce the visibility of the blood vessels. In certain procedures, a majority or substantially all of the injured blood vessels can be part of a visible vascular structure which is being targeted. Blood vessels can be destroyed, injured, and/or sufficiently affected so that the treatment site has a normal, healthy appearance. In some procedures, blood vessels that supply blood to a target vascular structure can be cooled to cause constriction so as to reduce the flow rate of blood into the target vascular structure. This process can reduce the visibility of the vascular structure. Non-targeted tissue (e.g., subcutaneous fat or other tissue) can be substantially unaffected by the therapy, or affected to a lesser extent than the target vascular structure in the skin. The number of treatment sessions and severity of desired thermal effects can be selected based on characteristics of the target tissue, location of the treatment region (e.g., along face, neck, back, legs, etc.), and/or desired effect. Any number of treatments can be performed to address post-treatment vascular recurrence, such as blood vessel recurrence.


In some non-invasive procedures, one or more treatment regions can be transcutaneously cooled to reduce the visibility of vascular formation. In some procedures, blood vessels can be injured to inhibit blood flow into a targeted vascular structure. Additionally or alternatively, target structures that are part of a vascular formation can be transcutaneously cooled and injured to reduce the number and/or sizes of the target structures. Advantageously, non-invasive procedures can be performed to improve the appearance of the treatment site while avoiding, minimizing, or limiting problems often caused by conventional light therapies, such as laser therapy. For example, non-invasive procedures disclosed herein can be performed without causing pain, blistering, or other problems caused by heat generation associated with light therapy.


Some embodiments disclosed herein can be used for cosmetically beneficial alterations. For example, some treatment procedures may be for the sole purpose of altering a treatment region to achieve a cosmetically desirable look or other desirable cosmetic characteristic. Accordingly, at least some embodiments of the cosmetic procedures can be performed without providing any therapeutic effect or, in another embodiment, providing minimal therapeutic effect. For example, skin treatment procedures can be performed without restoring health, physical integrity, or the physical well-being of a subject. By isolating the thermal injury to the skin, deeper tissue can be unaffected or affected to a lesser extent than the targeted structures. Advantageously, treatments can be performed without visually inspecting the treatment site. Additionally, an applicator can monitor the treatment site, if desired, to maintain targeted treatment parameters.


A substance can be applied to the subject's skin to (a) provide thermal coupling between the subject's skin and cooling devices (e.g., cooling plates of cooling devices) to improve heat transfer therebetween, (b) selectively protect non-target tissues from freeze damage (e.g., damage due to crystallization), and/or (c) promote freeze events by increasing nucleation sites. The substance may be a fluid, a gel, or a paste and may be hygroscopic, thermally conductive, and biocompatible. In some embodiments, the substance can be a cryoprotectant that reduces or inhibits cell destruction. As used herein, “cryoprotectant,” “cryoprotectant agent,” and “composition” mean substances (e.g., compositions, formulations, compounds, etc.) that assist in preventing freezing of tissue compared to an absence of the substances(s). In one embodiment, the cryoprotectant allows, for example, the cooling device to be pre-cooled prior to being applied to the subject for more efficient treatment. Further, the cryoprotectant can also enable the device to be maintained at a desired low temperature while preventing ice from forming on a surface (e.g., heat-exchanging surface of an applicator). Yet another aspect of the technology is that the cryoprotectant may prevent the treatment device from freezing to the skin of the patient or subject. Additionally or alternatively, the cryoprotectant can allow microscopic crystals to form in the tissue but can limit crystal growth that would cause cell destruction, and in some embodiments, the cryoprotectant can allow for enhanced uptake or absorption and/or retention in target tissue prior to and during the introduction of cooling.


Reference throughout this specification to “one example,” “an example,” “one embodiment,” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the example is included in at least one example of the present technology. Thus, the occurrences of the phrases “in one example,” “in an example,” “one embodiment,” or “an embodiment” in various places throughout this specification are not necessarily all referring to the same example. The headings provided herein are for convenience only and are not intended to limit or interpret the scope or meaning of the technology.


B. Cryotherapy


FIG. 1 is a schematic cross-sectional view of tissue with a non-invasive applicator 40 applied to a treatment region. The applicator 40 can cool the subject's skin to a temperature low enough and for a period of time long enough so as to substantially affect and injure a target vascular structure 42 (shown in dot dashed line). The target vascular structure 42 may have significantly more blood vessels than the normal tissue has. Blood vessels can be thermally-injured to reduce the number of functioning blood vessels, to constrict blood vessels, or to otherwise reduce blood circulating at the treatment region. By normalizing circulating blood flow to match the blood flow of the surrounding normal tissue, the targeted vascular structure 42 can be reduced or eliminated to provide a normal appearance at the treatment site.


The illustrated target vascular structure 42 is located generally beneath the epidermis 44 and can include, for example, blood vessels, capillary vessels in the dermal layer 46, veins (e.g., varicose veins), vascular malformations, and/or other structures. For example, the target vascular structure 42 can be a port wine stain, which often has about 5× to 10× more blood vessels than surrounding normal tissue. One or more treatments can be performed to selectively destroy a sufficient number of blood vessels to achieve a desired reduction in visibility of the port wine stain. For example, if a port wine stain has about 5× more blood vessels than the surrounding normal tissue, the applicator 40 can be used to destroy about 80% of the blood vessels. As such, the port wine stain can be substantially eliminated so that the treatment has a generally healthy appearance. The target vascular structure 42 can also be located in other layers, such as the epidermis 44, connective layer 50, or subcutaneous tissue 52.


The applicator 40 can produce a cooling zone 80 (shown in dashed line) of tissue at or below a target temperature. The location, size, and depth of the cooling zone 80 can be selected to avoid injuring non-targeted tissue. In one procedure, the cooling zone 80 comprises most of the tissue directly between the targeted vascular structure 42 and the skin surface 86. Adjacent tissue may also be cooled but can be at a sufficiently high temperature to avoid permanent thermal injury. Additionally or alternatively, a cryoprotectant or other protective means can be used to inhibit thermal injury to non-targeted tissue. The target temperature for the zone 80 can be equal to or lower than −40° C., −30° C., −20° C., −10° C., −5° C., −3° C., 0° C., 2° C., 5° C., or the like.


The applicator 40 can include a thermal element 90, temperature-controlled surface 102, and sensors 107. The thermal element 90 can include, without limitation, thermoelectric elements, fluid channels through which coolant flows, resistive heaters, energy emitters, and/or other elements capable of heating and/or cooling. In some embodiments, the thermal element 90 includes Peltier device(s) 94 (e.g., a single Peltier element, an array of Peltier elements, etc.), or the like. A heat-exchanging plate 96 can facilitate heat transfer between the thermal element 90 and the skin surface 86. In non-thermoelectric embodiments, the thermal element 90 can include fluid channels for cooling/heating using only temperature-controlled liquid.


The temperature-controlled surface 102 can be part of the heat-exchanging plate 96, a separate metal surface, or other suitable surface. In one embodiment, the surface 102 can be the surface of an interface layer. The area of the surface 102 can be equal to or larger than about 2 cm2, 3 cm2, 4 cm2, 5 cm2, 6 cm2, 7 cm2, 8 cm2, 9 cm2, 10 cm2, 12 cm2, 15 cm2, 20 cm2, or 25 cm2 to limit the size (e.g., width, depth, etc.) of the cooling zone 80. The temperature-controlled surface 102 can have a polygonal shape, a circular shape, an elongated shape (e.g., elliptical shape), or other shape selected to provide the desired cooling zone.


The sensors 107 can be configured to monitor temperatures, applied forces, and/or tissue contact. In some embodiments, the sensors 107 can be temperature sensors, pressure sensors, contact sensors, or other detection elements. The number and types of sensors can be selected based on the location and characteristics of the targeted features.


The effect of cooling blood vessels can be the selective injury, damage, reduction, and/or thickening of the walls of blood vessels. In some procedures, the applicator 40 can cool the exposed skin surface and/or the targeted structures to a temperature in a range from about −50° C. to about 10° C., about −40° C. to about −2° C., about −25° C. to about 0° C., about −25° C. to about −5° C., about −20° C. to about −5° C., or other suitable temperature ranges. In some treatments, the exposed skin surface can be at a temperature less than about −5° C. and greater than about −25° C. or −30° C. The treatment region can be cooled/heated any number of times. Periods of heating/cooling can be equal to or shorter than about 1 minute, 2 minutes, 3 minutes, 4 minutes, 5 minutes, 10 minutes, 20 minutes, 30 minutes, 40 minutes, 50 minutes, 1 hour, 90 minutes, 2 hours, etc. In one procedure, the treatment region can be continuously or intermittently cooled for a cooling period to injure blood vessels, and then continuously or intermittently heated for a heating period to further injure the blood vessels.


One expected advantage of techniques disclosed herein is that vascular features visible to the naked eye can be selectively reduced or eliminated due to a reduction in the volume of blood contained in the vascular features. The cold injury to the vascular features can be a non-freezing injury or a freezing injury. During procedures that require sustained exposure to cold temperatures, methods of protecting the overlying tissue (typically epidermal skin cells overlying the target vascular features) from freeze damage may include improving the freeze tolerance and/or freeze avoidance of these cells by applying cryoprotectant to zones where freeze protection is desired. For example, cryoprotectants can be topically applied to inhibit or prevent freeze damage to tissue between the cooled surface 102 and the target vascular structure 42. Additionally, or alternatively, periodic heating can be used to protect shallow non-targeted tissue.


C. Treatment Systems


FIG. 2 shows a treatment system 100 that includes the applicator 40, a connector 104, and a control module 106. The subject 103 or operator can manually hold the applicator 40 against the subject 103. Alternatively, restraining means can hold the applicator 40 against the subject 103 and can be, for example, a strap system, a helmet, or the like. The connector 104 can provide energy (e.g., electrical energy) and fluid (e.g., coolant) from the control module 106 to the applicator 40. An operator can use the control module 106 to control operation of the applicator 40.



FIG. 3 is a cross-sectional view of the connector 104 taken along line 3-3 of FIG. 2 in accordance with at least some embodiments of the technology. The connector 104 can include a main body 179, a supply fluid line or lumen 180a (“supply fluid line 180a”), and a return fluid line or lumen 180b (“return fluid line 180b”). The main body 179 may be configured (via one or more adjustable joints) to “set” in place for the treatment of the subject 103. The supply and return fluid lines 180a, 180b can be conduits comprising, in whole or in part, polyethylene, polyvinyl chloride, polyurethane, and/or other materials that can accommodate circulating coolant, such as water, glycol, synthetic heat transfer fluid, oil, refrigerant, and/or any other suitable heat-conducting fluid. In one embodiment, each fluid line 180a, 180b can be a flexible hose surrounded by the main body 179. The connector 104 can also include one or more electrical lines 112 for providing power to the applicator 40 and one or more control lines 116 for providing communication between the control module 106 (FIG. 2) and the applicator 40 (FIGS. 1 and 2). In various embodiments, the connector 104 can include a bundle of fluid conduits, a bundle of power lines, wired connections, and other bundled and/or unbundled components selected to provide ergonomic comfort, minimize unwanted motion (and thus potential inefficient removal of heat from the subject 103), and/or to provide a pleasing aesthetic appearance to the treatment system 100.


Referring again to FIG. 2, the control module 106 can include a fluid chamber or reservoir 105 (illustrated in phantom line), a power supply 110 (illustrated in phantom line), and a controller 114 carried by a housing 124 with wheels 126. The control module 106 can include a refrigeration unit, a cooling tower, a thermoelectric chiller, heaters, or any other device capable of controlling the temperature of coolant in the fluid chamber 105. The coolant can be continuously or intermittently delivered to the applicator 40 via the supply fluid line 180a (FIG. 3) and can circulate through the applicator 40 to absorb heat. For example, the applicator 40 can be a thermoelectric device through which the coolant flows to cool components of the applicator 40. The coolant, which has absorbed heat, can flow from the applicator 40 back to the control module 106 via the return fluid line 180b (FIG. 3). For warming periods, the control module 106 can heat the coolant such that warm coolant is circulated through the applicator 40. Alternatively, a municipal water supply (e.g., tap water) can be used in place of or in conjunction with the control module 106.


A pressurization device 117 can provide suction via a vacuum line 119 (FIG. 3) and can include one or more pumps. A vacuum can be used to draw the subject's skin against the applicator 40. Air pressure can either be controlled with a regulator between the pressurization device 117 and the applicator 40, or pressure may be reduced up to the maximum capacity of the pressurization device 117. In other embodiments, the applicator 40 may not provide any vacuum.


An operator can control operation of the treatment system 100 using an input/output device 118 of the controller 114. The controller 114 can be programmed to modify operation of the applicator 40 based upon temperature at the treatment region, applied pressure, and/or other monitored parameters. The input/output device 118 can display the status of the procedure (e.g., percentage of procedure completed), the state of operation of the applicator 40 or other information. The power supply 110 can provide a direct current voltage for powering electrical elements of the applicator 40 via the electrical line 112 (FIG. 3). In some embodiments, the controller 114 can exchange data with the applicator 40 via a wireless or an optical communication link and can monitor and adjust treatment based on one or more treatment profiles and/or patient-specific treatment plans, such as those described, for example, in commonly assigned U.S. Pat. No. 8,275,442. Each treatment profile can include one or more segments, and each segment can include specified durations (e.g., 1 minute, 2 minutes, 3 minutes, 4 minutes, 5 minutes, 7 minutes, 10 minutes, 15 minutes, 20 minutes, 30 minutes, 1 hour, 2 hours, etc.), a target profile, etc. Treatment profiles can be selected based upon the targeted treatment site. For example, treatment profiles to lighten port wine stains may be different from treatment profiles for long-lasting or permanent lightening of spider veins. An operator can monitor and control thermal parameters, including (1) cooling rate, (2) end (e.g., minimum) temperature, (3) time held at the minimum temperature (e.g., hold time), (4) temperature profiles, and/or (5) warming or thawing rates.


D. Methods of Treatment


FIGS. 4A-4C illustrate a method of treating a targeted area in accordance with an embodiment of the technology. FIGS. 5A-5E illustrate another method of treating a targeted area. Generally, the subject's skin can be cooled to a temperature low enough to maintain a cooled state or frozen state for a period of time long enough to affect targeted structures. The characteristics of the event (e.g., cooling event or freeze event) can be controlled to manage thermal effects. Such characteristics can include, without limitation, the amount of cooling or freezing, density and distribution of ice crystals, freezing rate, etc. Freeze events can include partially or completely freezing tissue and/or structures to destroy, reduce, disrupt, modify, or otherwise affect targeted structures or the supporting anatomical features, such as supporting vascular structures. In some procedures, to treat skin vascular malformations, a subject's skin can be cooled to produce a localized partial freeze event in a portion of skin with vascular malformations. The level of freezing can be controlled to manage tissue damage (if any) to non-targeted tissue, damage of targeted tissue (e.g., to avoid excess damage to targeted tissue), and so forth. The subject's skin can be continuously or periodically cooled/heated to adjust the level of freezing. For example, the skin surface can be cooled or heated to increase or decrease, respectively, the number and/or sizes of ice crystals at the target region. Details of specific procedures are discussed in connection with FIGS. 4A to 5E.



FIG. 4A illustrates a facial vascular structure or anomaly 200 that can be treated in accordance with embodiments of the disclosure. The applicator 40 (shown in phantom line) can overlay the highly visible facial vascular structure 200 that may have an unattractive appearance. The facial vascular anomaly 200 can be, for example, a vascular malformation, a network or collection of abnormal blood vessels, a port wine stain, a group of relatively large capillary vessels, and so forth. The vascular structure 200, for example, can occupy more than 50%, 60%, 70%, 80%, 90%, or 99% of an area of the treatment region to be cooled.


The applicator 40 can apply sufficient pressure to reduce, limit, or eliminate blood flow to and/or through the targeted vascular anomaly 200 to improve cooling efficiency because blood circulation is one mechanism for maintaining a constant body temperature. Blood flow through the epidermis, dermis, and subcutaneous tissue is a heat source that can counteract the cooling of the vascular anomaly 200. If the blood flow is not reduced, cooling the vascular anomaly 200 would require not only removing the specific heat of the vascular tissue (e.g., walls of the vessels) but also that of the blood circulating through the vascular vessels. Thus, reducing or eliminating blood flow through the vascular anomaly 200 can improve the efficiency of cooling of the vessel walls. In some procedures, the applied pressure can be greater than or equal to systolic blood pressure in the skin. The applied pressure, for example, may be higher than the systolic pressure to impede or block the blood flow into and through the vascular anomaly 200 before, during, and/or after cooling. In some embodiments, one or more straps, restraints, and/or harnesses can be used to hold the applicator 40 firmly against the treatment region to maintain a threshold pressure sufficient to inhibit blood flow through the vascular anomaly 200.


The applicator 40 can also detect partial or total freeze events in the patient's tissue. After detecting the partial or total freeze event, the applicator 40 can operate to maintain a partially or totally frozen state of the tissue for a period of time long enough to alter targeted vascular structures. In one embodiment, the period of time is longer than a predetermined threshold period of time, such as 10 seconds, 20 seconds, 1 minute, or other selected period of time. If the epidermis is overly frozen, hyperpigmentation (skin darkening) or hypopigmentation (skin lightening) can result, which is often undesirable. The applicator 40 can be controlled so as to not cause hypopigmentation and/or hyperpigmentation more than a day following treatment.



FIG. 4B shows the treatment region after the vascular anomaly 200 has been lightened due to cold therapy. The applicator 40 can be used to further cool the vascular anomaly 200 to further reduce the visibility of the vascular anomaly 200 until it is not visible to the naked eye. FIG. 4C shows the subject after the vascular structures at the treatment region have been sufficiently altered to match the vascular structures in the surrounding healthy tissue.



FIGS. 5A-5E show another method for treating a treatment region. FIG. 5A illustrates a facial vascular anomaly 300 that can be targeted in accordance with embodiments of the disclosure. FIGS. 5B and 5C show the treatment region after a protective element 302 has been applied to the subject. The protective element 302 can have an opening 308 formed to allow access to the vascular anomaly 300 and can be made, in whole or in part, of foam, rubber, or other thermally insulating material. A cryoprotectant can be applied to the exposed skin to help protect non-targeted tissues, such as the epidermis located at the opening 308. FIGS. 5D and 5E show an applicator 40 cooling tissue to affect the vascular anomaly 300. If the temperature-controlled surface area 316 is relatively large, the protective element 302 can inhibit cooling of the surrounding non-targeted tissue 312 and thereby localize cooling. In some embodiments, the protective element 302 is pre-loaded or otherwise carries cryoprotectant or other substance and can be an absorbent member, a pouch, etc. A separate element (e.g., an absorbent member with cryoprotectant, a pouch filled with cryoprotectant, etc.) can be placed within the opening 308. This allows for different compositions to be delivered to the treatment site and the surrounding tissue. In some embodiments, the protective element 302 can include one or more heaters, energy delivery elements, and/or other active elements that can periodically or continuously delivery energy to tissue (e.g., non-targeted tissue). Other techniques and components can be used to control heating/cooling, freeze injury, or the like.



FIG. 6 is a flow diagram illustrating a method 240 for improving the appearance of a subject in accordance with embodiments of the disclosure. Generally, an early stage of the method 240 can include applying a non-invasive cooling device to the surface of the subject's skin. The cooling device can be used to apply pressure to the treatment region to restrict blood flow in the vascular formation and to cool tissue. The cooling can substantially affect and injure the target vascular structure as discussed in connection with FIGS. 4A to 5E. Details of the method 240 are discussed below.


At block 244, an applicator (e.g., a thermoelectric applicator 40) is applied to the treatment region. The thermoelectric applicator 40 is positioned along the subject's skin surface to substantially cover a vascular formation and, in some procedures, covers at least about 50%, 60%, 70%, 80%, 90%, 95%, 99%, or 100% of the area of the vascular formation.


At block 246, the thermoelectric applicator can be used apply pressure to the treatment region. The applied pressure can be a constant or variable pressure that is sufficient to inhibit blood flow. In some procedures, the pressure can be applied before beginning a cooling cycle. The applicator 40 can include one or more openings through which a vacuum is drawn to pull the skin through the opening 308 and against the temperature-controlled surface area 316.


At block 248, the thermoelectric applicator can cool the skin surface to affect target structures to reduce or eliminate visible blood vessels and thereby reduce their visibility. The targeted structures can include, for example, arterial blood vessels, venous blood vessels, capillaries, vascular structures with abnormal characteristics (e.g., irregular shapes), a group of vessels, or the like. To treat port wine stains or other capillary vascular malformations, the targeted vascular structure can be a collection of ectatic vessels. To treat hemangioma or spider veins, the targeted vascular structure can be an abnormally dense collection of blood vessels (e.g., dilated blood vessels).


Without being bound by theory, the effect of cooling is believed to result in, for example, cell destruction, membrane disruption, cell shrinkage, disabling, damaging, removing, killing or other methods of cell alteration. Such alteration is believed to stem from one or more mechanisms acting alone or in combination. For example, cells of vascular structures (e.g., cells in blood vessel walls) can be destroyed via necrosis, apoptosis, or other suitable mechanism. Cold-induced vessel necrosis can be achieved during a cooling cycle. The temperature profile, cryoprotectant, and other treatment parameters can be used to selectively destroy abnormal vessels via necrosis. The damaged or destroyed vessels can be replaced with small arterioles and venules that are similar to the arterioles and venules located in surrounding normal skin. Additional treatments can be performed to target such new vessel structures due to revascularization. In cold-induced apoptosis procedures, blood vessels can be gradually destroyed after completing a cooling cycle. Apoptosis, also referred to as “programmed cell death” is a genetically-induced death mechanism by which cells self-destruct without causing damage to surrounding tissues.


In some embodiments, the skin surface can be cooled to a temperature lower than about −5° C. and higher than about −25° C. or −30° C. for a period of time sufficiently long to substantially affect a significant portion of the vascular formation. In some procedures, the period of time is sufficiently long to substantially injure a majority of blood vessels in the vascular formation. For example, at least 60%, 70%, 80%, 90%, and 95% of the total number of vessels that form the targeted vascular formation can be damaged or destroyed. The period of time can be about 1 minute to about 30 minutes, about 2 minutes to about 45 minutes, about 5 minutes to about 60 minutes or other period of time selected based on the treatment temperature profile. In certain treatments, the skin surface can be cooled to a temperature equal to or lower than about 10° C., 5° C., 0° C., −5° C., −10° C., −12° C., −15° C., −20° C., −30° C., or −35° C. for a period of time equal to or less than about 1 minute, 5 minutes, 10 minutes, 20 minutes, 30 minutes, 40 minutes, 50 minutes, 1 hour, 2 hours, or other suitable period of time. The patient may also experience a wound healing response, such as vessel recurrence that causes discoloration. Additional treatments can be performed to compensate for such wound healing response. Accordingly, any number of treatments can be performed to keep the number of working blood vessels at or below an threshold level. Repeatedly injuring vessels can result in permanent reduction of the functioning of blood vessels and, in some embodiments, the inhibition or prevention of body signaling that causes generation of blood vessels. Advantageously, the skin can be cooled while keeping pain or discomfort at or below an acceptable level.


Any number of treatment sessions can be performed to address post-treatment blood vessel recurrence because vessels may return as a result of angiogenesis. In some treatment plans, each treatment session can destroy a percentage of the total number of abnormal vessels. Multiple treatment sessions can be performed to destroy a desired amount of the abnormal vessels. In some procedures, substantially all of the abnormal vessels can be destroyed so that the treatment site has a normal appearance. The overall reduction in the number and/or size of the vessels can be selected to achieve a desired appearance.


Targeted features can be supercooled so as to not create any partial or total freeze event. Alternatively, a partial or total freeze event in a cooling zone (e.g., cooling zone 80 of FIG. 1) can be maintained by continuously or periodically cooling the patient's tissue to keep a target volume of targeted features at or below a treatment temperature. For example, a cryoprotectant can be used to inhibit or prevent freezing of non-targeted tissue. If the targeted features are in the epidermis, a cryoprotectant can be used to protect the dermis and deeper tissue. If the targeted features are in the dermis, a cryoprotectant can be used to protect the epidermis and/or deeper tissue. For example, a cryoprotectant can be used to protect the epidermis and another cryoprotectant can be used to protect the connective tissue and/or subcutaneous tissue.


The treatment site can be periodically or continuously monitored using the sensors (e.g., sensors 107 of FIG. 1). The sensors can be temperature sensors, pressure sensors, or other sensors capable of monitoring treatment. Temperature sensors can be thermistors, heat flux sensors, optical sensors, or the like. Optical sensors can be capable of detecting changes in the optical characteristics of tissue caused by treatment. Freezing of tissue can cause such optical changes. The optical sensor can include one or more energy emitters (e.g., light sources, light emitting diodes, etc.), detector elements (e.g., light detectors), or other components for non-invasively monitoring optical characteristics of tissue. In place of or in conjunction with monitoring using optical techniques, tissue can be monitored using electrical and/or mechanical techniques because changes in electrical impedance and/or mechanical properties of the tissue can be detected and may indicate tissue changes.


Real-time collection and processing of such feedback can be used in concert with treatment administration to effectively control cooling/heating of tissue. The sensor measurements can indicate other changes or anomalies that can occur during treatment administration. For example, an increase in temperature detected by one or more sensors can indicate a freezing event at the skin or underlying tissue (i.e., dermal tissue). An increase in temperature as detected by the sensors can also indicate movement associated with the thermoelectric applicator. Methods and systems for collection of feedback data and monitoring of temperature measurements are described in commonly assigned U.S. Pat. No. 8,285,390.


In some procedures, a controller (e.g., controller 114 of FIG. 2) is programmed to cause the applicator to detect the pressure applied to the subject and to control operation of the applicator based on the detected pressure. The sensors can be mechanical or optical pressure sensors capable of detecting the pressure applied to the subject's skin. If the pressure is reduced, blood flow into and through the treatment region can increase and tend to warm the target vascular structures. To counteract such warming, heat transfer rate from the subject's skin to the applicator can be increased. The temperature of the temperature-controlled surface (e.g., surface 102 of FIG. 1) can be increased or decreased to compensate for changes at the treatment region. In some procedures, the sensors 107 can be or include at least one temperature sensor and at least one pressure sensor. The controller can control operation of the thermoelectric applicator based on the detected temperature and pressure.


Suitable cryoprotectants and processes for implementing cryoprotectants are described in commonly assigned U.S. Patent Publication No. 2007/0255362. The cryoprotectant may additionally include a thickening agent, a pH buffer, a humectant, a surfactant, and/or other additives and adjuvants as described herein. Freezing point depressants may include, for example, propylene glycol (PG), polyethylene glycol (PEG), dimethyl sulfoxide (DMSO), or other suitable alcohol compounds. In a particular embodiment, a cryoprotectant may include propylene glycol, glycerin (a humectant), and ethanol. In another embodiment, a cryoprotectant may include propylene glycol, hydroxyethyl cellulose (a thickening agent), and water. In a further embodiment, a cryoprotectant may include polypropylene glycol, glycerin, and ethanol. The freezing point depressant may also include ethanol, propanol, iso-propanol, butanol, and/or other suitable alcohol compounds. Certain freezing point depressants (e.g., PG, PPG, PEG, etc.) may also be used to improve spreadability of the cryoprotectant and to provide lubrication. The freezing point depressant may lower the freezing point of tissue and/or body liquids/lipids to about 0° C. to −50° C., about 0° C. to −40° C., or about 0° C. to −30° C. In other embodiments, the freezing point of the liquids/lipids can be lowered to about −10° C. to about −40° C., about −10° C. to about −30° C., or about −10° C. to about −20° C. In certain embodiments, the freezing point of the liquids/lipids can be lowered to a temperature below about 0° C., −5° C., −10° C., −12° C., −15° C., −20° C., −30° C., or −35° C.


One expected advantage of at least some techniques disclosed herein is that the target vascular structure at the treatment region can be reduced generally without collateral damage to non-vascular tissue, shallower layer(s) of tissue, etc. at the same region. Multiple cryoprotectants can be used to protect different types of tissue. As a result, vascular tissue, blood, or other targeted tissue can be affected while other non-targeted tissue or cells in the same region are generally not damaged even though the non-targeted tissue or cells may be subjected to even lower temperatures than those to which the targeted tissue or cells are exposed.


E. Suitable Computing Environments


FIG. 7 is a schematic block diagram illustrating subcomponents of a controller in accordance with an embodiment of the disclosure. A controller or computing device 700 can be the controller 114 of FIG. 2 or can be incorporated into applicators (e.g., applicator 40 of FIGS. 1 and 2). The controller 700 can include a computing device having a processor 701, a memory 702, input/output devices 703, and/or subsystems and other components 704. The computing device 700 can perform any of a wide variety of computing processing, storage, sensing, imaging, and/or other functions. Components of the computing device 700 may be housed in a single unit or distributed over multiple, interconnected units (e.g., through a communications network). The components of the computing device 700 can accordingly include local and/or remote memory storage devices and any of a wide variety of computer-readable media.


As illustrated in FIG. 7, the processor 701 can include a plurality of functional modules 706, such as software modules, for execution by the processor 701. The various implementations of source code (i.e., in a conventional programming language) can be stored on a computer-readable storage medium or can be embodied on a transmission medium in a carrier wave. The modules 706 of the processor can include an input module 708, a database module 710, a process module 712, an output module 714, and, optionally, a display module 716.


In operation, the input module 708 accepts an operator input 719 (e.g., characteristics of wrinkles, location of wrinkles, etc.) via the one or more input devices, and communicates the accepted information or selections to other components for further processing. The database module 710 organizes records, including patient records, treatment data sets, treatment profiles and operating records, and other operator activities; and it facilitates storing and retrieving of these records to and from a data storage device (e.g., internal memory 702, an external database, etc.). Any type of database organization can be utilized, including a flat file system, hierarchical database, relational database, distributed database, etc.


In the illustrated example, the process module 712 can generate control variables based on sensor readings 718 from sensors (e.g., sensors 107 of FIG. 1) and/or other data sources, and the output module 714 can communicate operator input to external computing devices and control variables to the controller. The display module 716 can be configured to convert and transmit processing parameters, sensor readings 718, output signals 720, input data, treatment profiles and prescribed operational parameters through one or more connected display devices, such as a display screen, printer, speaker system, etc.


In various embodiments, the processor 701 can be a standard central processing unit or a secure processor. Secure processors can be special-purpose processors (e.g., a reduced instruction set processor) that can withstand sophisticated attacks that attempt to extract data or programming logic. The secure processors may not have debugging pins that enable an external debugger to monitor the secure processor's execution or registers. In other embodiments, the system may employ a secure field programmable gate array, a smartcard, or other secure devices.


The memory 702 can be standard memory, secure memory, or a combination of both memory types. By employing a secure processor and/or secure memory, the system can ensure that data and instructions are highly secure and that sensitive operations such as decryption are shielded from observation. In various embodiments, the memory 702 can be flash memory, secure serial EEPROM, a secure field programmable gate array, or a secure application-specific integrated circuit. The memory 702 can store treatment plans or protocols, executable instructions (e.g., instructions executable by the processor 701), etc. In some procedures, the memory has instructions for commanding the thermoelectric applicator to perform the treatment protocol, or protocols, requested by the user. The user interface (e.g., input/output device 118 of FIG. 2 or input/output device 703 of FIG. 7) communicates with the controller to enable a user to request one of the treatment protocols. The treatment protocols include one or more blood vessel treatment protocols, vascular malformation treatment protocols, port wine stain treatment protocols, and/or capillary vessel treatment protocols. Each protocol can include treatment periods, temperature profiles, etc. for achieving a desired effect.


The effects of the treatment can be evaluated using subjective and/or objective methods. Subjective evaluations can be performed by visually inspecting the treatment region. Objective evaluations can be performed using laser Doppler (e.g., laser Doppler flowmetry), reflectance spectrometry, reflectance confocal microscopy, tristimulus colorimetry, cross-polarized diffuse reflectance, and/or various known techniques for qualitatively assessing the subject's tissue. In some procedures, qualitatively assessments can be performed to evaluate areas with vascular formations and a wide range of effects to vascular formations (e.g., when the formation is substantially affected and injured, percentage of destroyed vascular structures, area occupied by vascular formation, etc.). A multisession treatment protocol can be updated based on the evaluation to refine treatments. The systems disclosed herein or separate systems can be used to evaluate subjects. For example, applicators can have components for evaluating the treatment region before, during, and/or after the session. The configuration, components, and functionality of the applicators can be selected based on the desired evaluation.


The input/output device 118 can include, without limitation, a keyboard, a mouse, a stylus, a push button, a switch, a potentiometer, a scanner, an audio component such as a microphone, or any other device suitable for accepting user input, and can also include one or more video monitors, medium readers, audio devices such as a speaker, any combination thereof, and any other device or devices suitable for providing user feedback. For example, if the applicator 40 moves an undesirable amount during a treatment session, the input/output device 703 can alert the subject 103 (FIG. 2) and/or operator via an audible alarm. The input/output device (e.g., input/output device 118 of FIG. 2) can be a touch screen that functions as both an input device and an output device. The control panel can include visual indicator devices or controls (e.g., indicator lights, numerical displays, etc.) and/or audio indicator devices or controls. The control panel may be a component separate from the input and/or output device, may be integrated with one or more of the devices, may be partially integrated with one or more of the devices, may be in another location, and so on. In alternative embodiments, the controller can be contained in, attached to, or integrated with the cooling devices and applicators disclosed herein. In yet other embodiments, the various components can be fixedly installed at a treatment site. Further details with respect to components and/or operation of applicators, control modules (e.g., treatment units), and other components may be found in commonly assigned U.S. Patent Publication No. 2008/0287839.


The controller 700 can include any processor, Programmable Logic Controller, Distributed Control System, secure processor, and the like. A secure processor can be implemented as an integrated circuit with access-controlled physical interfaces, tamper resistant containment, means of detecting and responding to physical tampering, secure storage, and shielded execution of computer-executable instructions. Some secure processors also provide cryptographic accelerator circuitry. Suitable computing environments and other computing devices and user interfaces are described in commonly assigned U.S. Pat. No. 8,275,442, entitled “TREATMENT PLANNING SYSTEMS AND METHODS FOR BODY CONTOURING APPLICATIONS,” which is incorporated herein in its entirety by reference. The instructions can be for causing an applicator to cool the subject's skin to a temperature or temperature range for a predetermined period of time. The controller can store treatment plans corresponding to different types of targeted features and desired outcomes. Each treatment plan can include treatment parameters, such as threshold applied pressure, treatment temperature(s), cooling/heating periods, etc. The input/output device 118 of FIG. 2 can be used to select a treatment plan for a particular treatment site. For example, the controller 114 can store and execute different treatment plans for treating port wine stains at various locations along the patient's body. In some embodiments, the controller 700 is configured to receive output from a sensor (e.g., sensor 107 in FIG. 1) and to cause the thermoelectric cooler to continue to cool the surface of the subject's skin for a period of time after the sensor detects at least partial freezing of skin tissue. The period of time of further cooling can be 1 minute, 5 minutes, 10 minutes, or the like.


The controller 700 can store, determine, and/or monitor thermal cycles for sequentially cooling and heating a treatment site any number of times. The controller 700 can select the order and lengths of thermal cycles (e.g., heating cycles, cooling cycles, etc.), target parameters (e.g., temperatures, temperature ranges, etc.), and/or temperature profiles. After cooling, cooling devices can be actively or passively warmed to room temperature, skin temperature, or another suitable temperature. For example, the thermoelectric elements of the cooling devices can be passively (e.g., naturally) returned to room temperature before the applicator is removed from the subject.


The applicators in some embodiments can deliver energy (e.g., radiofrequency energy, ultrasound energy, etc.) to and remove heat from the target region. The application can be selected based on the treatment site of the subject, which can be human or other mammalian animal. A session may have a single stage of delivering energy that ceases prior to a single stage of removing heat from target nerve tissue. Additionally, sequential application of the stages of heating or cooling may occur multiple times so that multiple non-overlapping stages of energy delivery and heat removal occur. For example, thermal elements of an applicator can perform a heating cycle while other thermal elements of the applicator perform a cooling cycle. The controller 700 can store various executable programs for controlling applicators disclosed herein to perform a wide range of thermal cycles for blood vessel alteration, body contouring, treating cellulite, improving skin appearance, targeting glands, and/or performing other methods as described in, for example, U.S. patent application Ser. No. 14/611,127 entitled “TREATMENT SYSTEMS, METHODS, AND APPARATUS FOR IMPROVING THE APPEARANCE OF SKIN AND PROVIDING FOR OTHER TREATMENTS”, U.S. patent application Ser. No. 14/611,052 entitled “TREATMENT SYSTEMS AND METHODS FOR TREATING CELLULITE AND FOR PROVIDING OTHER TREATMENTS,” and International Patent Application No. PCT/US2015/013,971 entitled “TREATMENT SYSTEMS AND METHODS FOR AFFECTING GLANDS AND OTHER TARGETED STRUCTURES,” which are incorporated herein in their entireties by reference.


Different types of cooling techniques can be used to thermally affect targeted structures. For example, treatment systems and devices are disclosed herein to control thermal parameters such that tissue body fluids within the treatment site are supercooled to temperatures below the freezing point without forming or nucleating ice crystals so that a non-freezing treatment results. Alternatively or additionally, after a supercooling state exists, the supercooled tissue/body fluids can then be intentionally nucleated to create a freeze zone and to damage, reduce, disrupt, or otherwise affect the targeted cells or structures. Nucleation can be induced by delivering an alternating current to the tissue, applying a nucleating solution onto the surface of the skin (e.g., one that includes bacteria which initiate nucleation), and/or by creating a mechanical perturbation to the tissue, such as by use of vibration, ultrasound energy, etc. In some procedures, the surface of the subject's skin can be cooled to create a supercooled cooling zone that includes the target structure. The surface of the subject's skin can then be heated to warm non-targeted shallow tissue while the nerve tissue and/or surrounding body fluid remain in supercooled states. Nucleation can then be induced in the localized supercooled region without substantially freezing or altering the warmed shallow tissue. The controller 700 can store various executable programs for controlling applicators disclosed herein to perform these techniques.


F. Conclusion

Various embodiments of the technology are described above. It will be appreciated that details set forth above are provided to describe the embodiments in a manner sufficient to enable a person skilled in the relevant art to make and use the disclosed embodiments. Furthermore, features, structures, or characteristics of various embodiments may be combined in any suitable manner. For example, embodiments disclosed herein can be used with techniques, methods, compositions, devices, and systems disclosed in U.S. Pat. No. 7,367,341 entitled “METHODS AND DEVICES FOR SELECTIVE DISRUPTION OF FATTY TISSUE BY CONTROLLED COOLING” to Anderson et al. and U.S. Patent Publication No. 2005/0251120 entitled “METHODS AND DEVICES FOR DETECTION AND CONTROL OF SELECTIVE DISRUPTION OF FATTY TISSUE BY CONTROLLED COOLING” to Anderson et al., the entire disclosures of which are incorporated herein by reference. Moreover, one skilled in the art will recognize that there are a number of other technologies that could be used to perform functions similar to those described above. While processes or blocks are presented in a given order, alternative embodiments may perform routines having stages, or employ systems having blocks, in a different order, and some processes or blocks may be deleted, moved, added, subdivided, combined, and/or modified. Each of these processes or blocks may be implemented in a variety of different ways. Also, while processes or blocks are at times shown as being performed in series, these processes or blocks may instead be performed in parallel, or may be performed at different times. The headings provided herein are for convenience only and should not be used to interpret the scope or meaning of the described technology.


Unless the context clearly requires otherwise, throughout the description, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense, as opposed to an exclusive or exhaustive sense; that is to say, in a sense of “including, but not limited to.” Words using the singular or plural number also include the plural or singular number, respectively. Use of the word “or” in reference to a list of two or more items covers all of the following interpretations of the word: any of the items in the list, all of the items in the list, and any combination of the items in the list. Furthermore, the phrase “at least one of A, B, and C, etc.” is intended in the sense that one having ordinary skill in the art would understand the convention (e.g., “a system having at least one of A, B, and C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). In those instances where a convention analogous to “at least one of A, B, or C, etc.” is used, in general such a construction is intended in the sense that one having ordinary skill in the art would understand the convention (e.g., “a system having at least one of A, B, or C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.).


Any patents, applications and other references, including any that may be listed in accompanying filing papers, are incorporated herein by reference. Aspects of the described technology can be modified, if necessary, to employ the systems, functions, and concepts of the various references described above to provide yet further embodiments. These and other changes can be made in light of the above Detailed Description. While the above description lists certain embodiments and describes the best mode contemplated, no matter how detailed the description, various changes can be made. Implementation details may vary considerably, while still being encompassed by the technology disclosed herein. As noted above, particular terminology used when describing certain features or aspects of the technology should not be taken to imply that the terminology is being redefined herein to be restricted to any specific characteristics, features, or aspects of the technology with which that terminology is associated. The various aspects and embodiments disclosed herein are for purposes of illustration and are not intended to be limiting, with the true scope and spirit being indicated by the following claims.

Claims
  • 1. A me thod for affecting a target vascular structure at a treatment region of a subject's skin surface having a target area and a non-target area, comprising: applying a thermoelectric applicator to the treatment region such that the thermoelectric applicator overlays the target area of the skin surface and the non-target area of the skin surface; andnoninvasively cooling the target area of the skin surface to a temperature low enough and for a period of time long enough using the thermoelectric applicator so as to substantially affect and injure the target vascular structure while selectively protecting the non-targeted area of the skin surface, which surrounds the target vascular structure and underlies the thermoelectric applicator, from being affected by the cooling of the skin surface, and wherein the target vascular structure includes blood vessels, vascular malformations, port wine stains, and/or capillary vessels.
  • 2. The method of claim 1, wherein the thermoelectric applicator is applied over the treatment region with sufficient pressure to substantially limit blood flow in the target vascular structure such that the target vascular structure is more effectively affected and injured by the low temperature.
  • 3. The method of claim 2, wherein the skin surface is cooled to the temperature, which is less than −5° C. and greater than −25° C. or −30° C. for 2 minutes to 20 minutes such that the target vascular structure is cooled sufficiently to produce a freeze injury thereto and to substantially affect and injure a majority of blood vessels in the target vascular structure.
  • 4. The method of claim 1, wherein applying the thermoelectric applicator to the treatment region includes: locating the target vascular structure; andpositioning the thermoelectric applicator at the treatment region based on a location of the target vascular structure, and wherein the target vascular structure occupies more than either 50%, 60%, 70%, 80%, 90%, or 99% of an area of the treatment region.
  • 5. The method of claim 1, wherein applying the thermoelectric applicator to the treatment region includes positioning a cooling surface of the thermoelectric applicator over a majority of the vascular formation, and wherein the cooling surface has an area equal to or larger than about either 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20, or 25 cm2.
  • 6. A method for affecting a vascular formation in a skin surface of the subject, comprising: positioning a non-invasive thermoelectric cooling applicator along the skin surface of the subject based on a position of the vascular formation such that a cooling surface of the non-invasive thermoelectric cooling applicator substantially covers the vascular formation and the vascular formation occupies more than 50% of a skin surface area covered by the cooling surface;selecting a target region of the skin surface area covered by the cooling surface and corresponding to the vascular formation;protecting a non-targeted region of the subject's skin that is covered by the cooling surface and surrounds the target region;applying pressure to the thermoelectric cooling applicator so as to restrict blood flow in the vascular formation; andcooling the selected target region of the skin surface area using the non-invasive thermoelectric cooling applicator such that the selected target region is at a temperature lower than −5° C. and higher than −25° C. or −30° C. for a period of time sufficiently long to substantially affect the vascular formation without substantially affecting non-targeted skin tissue at the non-targeted region underlying the cooling surface and surrounding the vascular formation, wherein the vascular formation is blood vessels, vascular malformations, port wine stains, and/or capillary vessels.
  • 7. The method of claim 6, wherein the period of time is 2 minutes to 20 minutes.
  • 8. The method of claim 6, wherein positioning the non-invasive thermoelectric cooling applicator along the subject's skin surface includes: applying a temperature-controlled surface of the non-invasive thermoelectric cooling applicator over the vascular formation, and wherein the temperature-controlled surface has an area equal to or larger than either 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20 or 25 cm2.
  • 9. The method of claim 6, further comprising using a control unit that controls a temperature of the thermoelectric cooling applicator and a length of time the skin surface is cooled such that the vascular formation is substantially affected and injured.
  • 10. The method of claim 6, further comprising applying sufficient pressure to the vascular formation using the thermoelectric cooling applicator to restrict blood flow in the vascular formation such to enhance the effect to the vascular formation caused by the cooling of the skin.
  • 11. The method of claim 6, further comprising controlling the thermoelectric cooling applicator to provide a temperature and a treatment time such that a significant number of blood vessels in the vascular formation are injured to an extent to substantially reduce blood flow therethrough after a day following a treatment and a majority of capillary vessels are damaged while doing minimal injury to other skin structures outside of the vascular formation.
  • 12. The method of claim 6, further comprising using at least one of a cryoprotectant or a protective element to protect the non-targeted skin tissue, wherein the protective element comprises a thermally insulating material.
  • 13. The method of claim 6, further comprising: applying material to the skin surface at the non-targeted region while leaving the skin surface at the selected target region unprotected,wherein the selected target region and the non-target region are concurrently cooled by the cooling surface.
  • 14. A method for affecting a target vascular structure at a treatment region of a subject's skin, comprising: identifying a target area and a non-target area of the treatment region of a subject's skin;shaping a protective element based on the identification of the target area of the treatment region;applying the protective element to the treatment region such that the protective element exposes the target area and overlays the non-target area, andapplying a thermoelectric applicator to the protective element and the target area such that the protective element is directly between the thermoelectric applicator and the non-targeted tissue, wherein the protective element inhibits heat transfer between the non-targeted tissue and the thermoelectric applicator to prevent thermal injury to the non-targeted tissue while the applicator noninvasively cools the target area of the skin surface to a temperature less than −5° C. and greater than −25° C. or −30° C., wherein the target vascular structure is blood vessels, vascular malformations, port wine stains, and/or capillary vessels.
CROSS-REFERENCE TO RELATED APPLICATION

The present application claims the benefit of and priority under 35 U.S.C. § 119(e) to U.S. Provisional Patent Application No. 62/243,529, filed Oct. 19, 2015, which is incorporated herein by reference in its entirety.

US Referenced Citations (709)
Number Name Date Kind
681806 Mignault et al. Sep 1901 A
889810 Robinson et al. Jun 1908 A
1093868 Leighty Apr 1914 A
2516491 Swastek Jul 1950 A
2521780 Dodd et al. Sep 1950 A
2726658 Chessey Dec 1955 A
2766619 Tribus et al. Oct 1956 A
2851602 Cramwinckel et al. Sep 1958 A
3093135 Hirschhorn Jun 1963 A
3132688 Nowak May 1964 A
3133539 Eidus et al. May 1964 A
3282267 Eidus Nov 1966 A
3341230 Louis Sep 1967 A
3502080 Hirschhorn Mar 1970 A
3566871 Richter et al. Mar 1971 A
3587577 Zubkov et al. Jun 1971 A
3591645 Selwitz Jul 1971 A
3692338 Nick Sep 1972 A
3703897 Mack et al. Nov 1972 A
3710784 Taylor Jan 1973 A
3786814 Armao Jan 1974 A
3827436 Andera et al. Aug 1974 A
3942519 Shock Mar 1976 A
3948269 Zimmer Apr 1976 A
3986385 Johnston et al. Oct 1976 A
3993053 Grossan Nov 1976 A
4002221 Buchalter Jan 1977 A
4008910 Roche Feb 1977 A
4026299 Sauder May 1977 A
4140130 Storm Feb 1979 A
4149529 Copeland et al. Apr 1979 A
4178429 Scheffer Dec 1979 A
4202336 Van Gerven May 1980 A
4266043 Fujii et al. May 1981 A
4269068 Molina May 1981 A
4381009 Del Bon Apr 1983 A
4396011 Mack et al. Aug 1983 A
4459854 Richardson et al. Jul 1984 A
4470263 Lehovec et al. Sep 1984 A
4483341 Witteles Nov 1984 A
4528979 Marchenko et al. Jul 1985 A
4531524 Mioduski Jul 1985 A
4548212 Leung Oct 1985 A
4555313 Duchane et al. Nov 1985 A
4585002 Kissin Apr 1986 A
4603076 Bowditch et al. Jul 1986 A
4614191 Perler et al. Sep 1986 A
4644955 Mioduski Feb 1987 A
4664110 Schanzlin May 1987 A
4700701 Montaldi Oct 1987 A
4718429 Smidt Jan 1988 A
4741338 Miyamae May 1988 A
4758217 Gueret Jul 1988 A
4764463 Mason et al. Aug 1988 A
4802475 Weshahy Feb 1989 A
4832022 Tjulkov et al. May 1989 A
4846176 Golden Jul 1989 A
4850340 Onishi Jul 1989 A
4869250 Bitterly Sep 1989 A
4880564 Abel et al. Nov 1989 A
4905697 Heggs et al. Mar 1990 A
4906463 Cleary et al. Mar 1990 A
4930317 Klein Jun 1990 A
4935345 Guilbeau et al. Jun 1990 A
4961422 Marchosky et al. Oct 1990 A
4962761 Golden Oct 1990 A
4990144 Blott et al. Feb 1991 A
5007433 Hermsdoerffer et al. Apr 1991 A
5018521 Campbell et al. May 1991 A
5024650 Hagiwara et al. Jun 1991 A
5065752 Sessions et al. Nov 1991 A
5069208 Noppel et al. Dec 1991 A
5084671 Miyata et al. Jan 1992 A
5108390 Potocky et al. Apr 1992 A
5119674 Nielsen Jun 1992 A
5139496 Hed Aug 1992 A
5143063 Fellner Sep 1992 A
5148804 Hill et al. Sep 1992 A
5158070 Dory Oct 1992 A
5160312 Voelkel Nov 1992 A
5169384 Bosniak et al. Dec 1992 A
5197466 Marchosky et al. Mar 1993 A
5207674 Hamilton May 1993 A
5221726 Dabi et al. Jun 1993 A
5264234 Windhab et al. Nov 1993 A
5277030 Miller Jan 1994 A
5314423 Seney et al. May 1994 A
5327886 Chiu Jul 1994 A
5330745 McDow Jul 1994 A
5333460 Lewis et al. Aug 1994 A
5334131 Omandam et al. Aug 1994 A
5336616 Livesey et al. Aug 1994 A
5339541 Owens Aug 1994 A
5342617 Gold et al. Aug 1994 A
5351677 Kami et al. Oct 1994 A
5358467 Milstein et al. Oct 1994 A
5362966 Rosenthal et al. Nov 1994 A
5363347 Nguyen Nov 1994 A
5372608 Johnson Dec 1994 A
5386837 Sterzer Feb 1995 A
5411541 Bell et al. May 1995 A
5427772 Hagan et al. Jun 1995 A
5433717 Rubinsky et al. Jul 1995 A
5456703 Beeuwkes, III et al. Oct 1995 A
5472416 Blugerman et al. Dec 1995 A
5486207 Mahawili Jan 1996 A
5497596 Zatkulak Mar 1996 A
5501655 Rolt et al. Mar 1996 A
5505726 Meserol Apr 1996 A
5505730 Edwards et al. Apr 1996 A
5507790 Weiss Apr 1996 A
5514105 Goodman, Jr. et al. May 1996 A
5514170 Mauch May 1996 A
5516505 McDow May 1996 A
5531742 Barken Jul 1996 A
5558376 Woehl Sep 1996 A
5562604 Yablon et al. Oct 1996 A
5571801 Segall et al. Nov 1996 A
5575812 Owens et al. Nov 1996 A
5603221 Maytal Feb 1997 A
5628769 Saringer May 1997 A
5634890 Morris Jun 1997 A
5634940 Panyard Jun 1997 A
5647051 Neer Jul 1997 A
5647868 Chinn Jul 1997 A
5650450 Lovette et al. Jul 1997 A
5651773 Perry et al. Jul 1997 A
5654279 Rubinsky et al. Aug 1997 A
5654546 Lindsay et al. Aug 1997 A
5660836 Knowlton et al. Aug 1997 A
5665053 Jacobs Sep 1997 A
5672172 Zupkas Sep 1997 A
5700284 Owens et al. Dec 1997 A
5725483 Podolsky Mar 1998 A
5733280 Avitall Mar 1998 A
5741248 Stern et al. Apr 1998 A
5746702 Gelfget et al. May 1998 A
5746736 Tankovich May 1998 A
5755663 Larsen et al. May 1998 A
5755753 Knowlton et al. May 1998 A
5755755 Panyard May 1998 A
5759182 Varney et al. Jun 1998 A
5759764 Polovina et al. Jun 1998 A
5769879 Richards et al. Jun 1998 A
5785955 Fischer Jul 1998 A
5792080 Ookawa et al. Aug 1998 A
5800490 Patz et al. Sep 1998 A
5802865 Strauss Sep 1998 A
5814040 Nelson et al. Sep 1998 A
5817050 Klein et al. Oct 1998 A
5817149 Owens et al. Oct 1998 A
5817150 Owens et al. Oct 1998 A
5830208 Muller et al. Nov 1998 A
5833685 Tortal et al. Nov 1998 A
5844013 Kenndoff et al. Dec 1998 A
5853364 Baker, Jr. et al. Dec 1998 A
5865841 Kolen et al. Feb 1999 A
5871524 Knowlton Feb 1999 A
5871526 Gibbs et al. Feb 1999 A
5885211 Eppstein et al. Mar 1999 A
5891617 Watson et al. Apr 1999 A
5895418 Saringer Apr 1999 A
5901707 Gon.cedilla.alves May 1999 A
5902256 Benaron May 1999 A
5919219 Knowlton et al. Jul 1999 A
5944748 Mager et al. Aug 1999 A
5948011 Knowlton et al. Sep 1999 A
5954680 Augustine et al. Sep 1999 A
5964092 Tozuka et al. Oct 1999 A
5964749 Eckhouse et al. Oct 1999 A
5967976 Larsen et al. Oct 1999 A
5980561 Kolen et al. Nov 1999 A
5986167 Arteman et al. Nov 1999 A
5989286 Owens et al. Nov 1999 A
5997530 Nelson et al. Dec 1999 A
6017337 Pira Jan 2000 A
6023932 Johnston Feb 2000 A
6032675 Rubinsky Mar 2000 A
6039694 Larson et al. Mar 2000 A
6041787 Rubinsky Mar 2000 A
6047215 McClure et al. Apr 2000 A
6049927 Thomas et al. Apr 2000 A
6051159 Hao et al. Apr 2000 A
6071239 Cribbs et al. Jun 2000 A
6074415 Der Ovanesian Jun 2000 A
6093230 Johnson et al. Jul 2000 A
6102885 Bass Aug 2000 A
6104952 Tu et al. Aug 2000 A
6104959 Spertell et al. Aug 2000 A
6106517 Zupkas Aug 2000 A
6113558 Rosenschein et al. Sep 2000 A
6113559 Klopotek Sep 2000 A
6113626 Clifton et al. Sep 2000 A
6120519 Weber et al. Sep 2000 A
6139544 Mikus et al. Oct 2000 A
6150148 Nanda et al. Nov 2000 A
6151735 Koby et al. Nov 2000 A
6152952 Owens et al. Nov 2000 A
6171301 Nelson et al. Jan 2001 B1
6180867 Hedengren et al. Jan 2001 B1
6226996 Weber et al. May 2001 B1
6241753 Knowlton Jun 2001 B1
6264649 Whitcroft et al. Jul 2001 B1
6273884 Altshuler et al. Aug 2001 B1
6290988 Van Vilsteren et al. Sep 2001 B1
6311090 Knowlton Oct 2001 B1
6311497 Chung Nov 2001 B1
6312453 Stefanile et al. Nov 2001 B1
6350276 Knowlton Feb 2002 B1
6354297 Eiseman Mar 2002 B1
6357907 Cleveland et al. Mar 2002 B1
6375673 Clifton et al. Apr 2002 B1
6377854 Knowlton Apr 2002 B1
6377855 Knowlton Apr 2002 B1
6381497 Knowlton Apr 2002 B1
6381498 Knowlton Apr 2002 B1
6387380 Knowlton May 2002 B1
6401722 Krag Jun 2002 B1
6405090 Knowlton Jun 2002 B1
6413255 Stern Jul 2002 B1
6425912 Knowlton Jul 2002 B1
6426445 Young et al. Jul 2002 B1
6430446 Knowlton Aug 2002 B1
6430956 Haas et al. Aug 2002 B1
6438424 Knowlton Aug 2002 B1
6438954 Goetz et al. Aug 2002 B1
6438964 Giblin Aug 2002 B1
6453202 Knowlton Sep 2002 B1
6458888 Hood et al. Oct 2002 B1
6461378 Knowlton Oct 2002 B1
6470216 Knowlton Oct 2002 B1
6471693 Carroll et al. Oct 2002 B1
6475211 Chess et al. Nov 2002 B2
6478811 Dobak, III et al. Nov 2002 B1
6494844 Van Bladel et al. Dec 2002 B1
6497721 Ginsburg et al. Dec 2002 B2
6508831 Kushnir Jan 2003 B1
6514244 Pope et al. Feb 2003 B2
6519964 Bieberich Feb 2003 B2
6523354 Tolbert Feb 2003 B1
6527765 Kelman et al. Mar 2003 B2
6527798 Ginsburg et al. Mar 2003 B2
6544248 Bass Apr 2003 B1
6547811 Becker et al. Apr 2003 B1
6548297 Kuri-Harcuch et al. Apr 2003 B1
6551255 Van Bladel et al. Apr 2003 B2
6551341 Boylan et al. Apr 2003 B2
6551348 Blalock et al. Apr 2003 B1
6551349 Lasheras et al. Apr 2003 B2
6569189 Augustine et al. May 2003 B1
6585652 Lang et al. Jul 2003 B2
6592577 Abboud et al. Jul 2003 B2
6605080 Altshuler et al. Aug 2003 B1
6607498 Eshel Aug 2003 B2
6620187 Carson et al. Sep 2003 B2
6620188 Ginsburg et al. Sep 2003 B1
6620189 Machold et al. Sep 2003 B1
6623430 Slayton et al. Sep 2003 B1
6626854 Friedman et al. Sep 2003 B2
6632219 Baranov et al. Oct 2003 B1
6635053 Lalonde et al. Oct 2003 B1
6643535 Damasco et al. Nov 2003 B2
6645162 Friedman et al. Nov 2003 B2
6645229 Matsumura et al. Nov 2003 B2
6645232 Carson Nov 2003 B2
6648904 Altshuler et al. Nov 2003 B2
6656208 Grahn et al. Dec 2003 B2
6660027 Gruszecki et al. Dec 2003 B2
6662054 Kreindel et al. Dec 2003 B2
6682550 Clifton et al. Jan 2004 B2
6685731 Kushnir et al. Feb 2004 B2
6694170 Mikus et al. Feb 2004 B1
6695874 Machold et al. Feb 2004 B2
6697670 Chornenky Feb 2004 B2
6699237 Weber et al. Mar 2004 B2
6699266 Lachenbruch et al. Mar 2004 B2
6699267 Voorhees et al. Mar 2004 B2
6718785 Bieberich Apr 2004 B2
6741895 Gafni et al. May 2004 B1
6743222 Durkin et al. Jun 2004 B2
6746474 Saadat Jun 2004 B2
6749624 Knowlton Jun 2004 B2
6753182 Kadkade et al. Jun 2004 B1
6764493 Weber et al. Jul 2004 B1
6764502 Bieberich Jul 2004 B2
6789545 Littrup et al. Sep 2004 B2
6795728 Chornenky et al. Sep 2004 B2
6820961 Johnson Nov 2004 B2
6821274 McHale et al. Nov 2004 B2
6840955 Ein Jan 2005 B2
6849075 Bertolero et al. Feb 2005 B2
6878144 Altshuler et al. Apr 2005 B2
6889090 Kreindel May 2005 B2
6892099 Jaafar et al. May 2005 B2
6904956 Noel Jun 2005 B2
6918903 Bass Jul 2005 B2
6927316 Faries, Jr. et al. Aug 2005 B1
6942022 Blangetti et al. Sep 2005 B2
6945942 Van Bladel et al. Sep 2005 B2
6948903 Ablabutyan et al. Sep 2005 B2
6969399 Schock et al. Nov 2005 B2
7005558 Johansson et al. Feb 2006 B1
7006874 Knowlton et al. Feb 2006 B2
7022121 Stern et al. Apr 2006 B2
7037326 Lee May 2006 B2
7054685 Dimmer et al. May 2006 B2
7060061 Altshuler et al. Jun 2006 B2
7077858 Fletcher et al. Jul 2006 B2
7081111 Svaasand et al. Jul 2006 B2
7083612 Littrup et al. Aug 2006 B2
7096204 Chen et al. Aug 2006 B1
7112712 Ancell Sep 2006 B1
7115123 Knowlton et al. Oct 2006 B2
7141049 Stern et al. Nov 2006 B2
7183360 Daniel et al. Feb 2007 B2
7189252 Krueger Mar 2007 B2
7192426 Baust et al. Mar 2007 B2
7204832 Altshuler et al. Apr 2007 B2
7220778 Anderson et al. May 2007 B2
7229436 Stern et al. Jun 2007 B2
7258674 Cribbs et al. Aug 2007 B2
7267675 Stern et al. Sep 2007 B2
7276058 Altshuler et al. Oct 2007 B2
7318821 Lalonde et al. Jan 2008 B2
7331951 Eshel et al. Feb 2008 B2
7347855 Eshel et al. Mar 2008 B2
7367341 Anderson et al. May 2008 B2
7532201 Quistgaard et al. May 2009 B2
7572268 Babaev Aug 2009 B2
7604632 Howlett et al. Oct 2009 B2
7613523 Eggers et al. Nov 2009 B2
7615016 Barthe et al. Nov 2009 B2
7713266 Elkins et al. May 2010 B2
7780656 Tankovich Aug 2010 B2
7799018 Goulko Sep 2010 B2
7824437 Saunders Nov 2010 B1
7828831 Tanhehco et al. Nov 2010 B1
7850683 Elkins et al. Dec 2010 B2
7854754 Ting et al. Dec 2010 B2
7862558 Elkins et al. Jan 2011 B2
RE42277 Jaafar et al. Apr 2011 E
7938824 Chornenky et al. May 2011 B2
7959657 Harsy et al. Jun 2011 B1
7963959 Da Silva et al. Jun 2011 B2
7967763 Deem et al. Jun 2011 B2
7993330 Goulko Aug 2011 B2
7998137 Elkins et al. Aug 2011 B2
RE42835 Chornenky et al. Oct 2011 E
RE43009 Chornenky et al. Dec 2011 E
8133180 Slayton et al. Mar 2012 B2
8133191 Rosenberg et al. Mar 2012 B2
8192474 Levinson Jun 2012 B2
8246611 Paithankar et al. Aug 2012 B2
8275442 Allison Sep 2012 B2
8285390 Levinson et al. Oct 2012 B2
8333700 Barthe et al. Dec 2012 B1
8337539 Ting et al. Dec 2012 B2
8366622 Slayton et al. Feb 2013 B2
8372130 Young et al. Feb 2013 B2
8397518 Vistakula et al. Mar 2013 B1
8414631 Quisenberry et al. Apr 2013 B2
8433400 Prushinskaya et al. Apr 2013 B2
8506486 Slayton et al. Aug 2013 B2
8523775 Barthe et al. Sep 2013 B2
8523791 Castel Sep 2013 B2
8523927 Levinson et al. Sep 2013 B2
8535228 Slayton et al. Sep 2013 B2
8603073 Allison Dec 2013 B2
8636665 Slayton et al. Jan 2014 B2
8641622 Barthe et al. Feb 2014 B2
8663112 Slayton et al. Mar 2014 B2
8672848 Slayton et al. Mar 2014 B2
8676332 Fahey Mar 2014 B2
8690778 Slayton et al. Apr 2014 B2
8690779 Slayton et al. Apr 2014 B2
8690780 Slayton et al. Apr 2014 B2
8702774 Baker et al. Apr 2014 B2
8758215 Legendre et al. Jun 2014 B2
8764693 Graham et al. Jul 2014 B1
8834547 Anderson et al. Sep 2014 B2
9149322 Knowlton Oct 2015 B2
9855166 Anderson Jan 2018 B2
20010005791 Ginsburg et al. Jun 2001 A1
20010007952 Shimizu Jul 2001 A1
20010023364 Ahn Sep 2001 A1
20010031459 Fahy et al. Oct 2001 A1
20010039439 Elkins et al. Nov 2001 A1
20010045104 Bailey, Sr. et al. Nov 2001 A1
20010047196 Ginsburg et al. Nov 2001 A1
20020026226 Ein Feb 2002 A1
20020032473 Kushnir et al. Mar 2002 A1
20020042607 Palmer et al. Apr 2002 A1
20020049483 Knowlton Apr 2002 A1
20020058975 Bieberich May 2002 A1
20020062142 Knowlton May 2002 A1
20020068338 Nanda et al. Jun 2002 A1
20020068874 Zuckerwar et al. Jun 2002 A1
20020082668 Ingman Jun 2002 A1
20020103520 Latham Aug 2002 A1
20020107558 Clifton et al. Aug 2002 A1
20020117293 Campbell Aug 2002 A1
20020120315 Furuno et al. Aug 2002 A1
20020128648 Weber et al. Sep 2002 A1
20020151830 Kahn Oct 2002 A1
20020151887 Stern et al. Oct 2002 A1
20020156509 Cheung Oct 2002 A1
20020161357 Anderson Oct 2002 A1
20020188286 Quijano et al. Dec 2002 A1
20020198518 Mikus et al. Dec 2002 A1
20030032900 Ella Feb 2003 A1
20030044764 Soane et al. Mar 2003 A1
20030055414 Altshuler et al. Mar 2003 A1
20030062040 Lurie et al. Apr 2003 A1
20030069618 Smith, III et al. Apr 2003 A1
20030077326 Newton et al. Apr 2003 A1
20030077329 Kipp et al. Apr 2003 A1
20030079488 Bieberich May 2003 A1
20030100936 Altshuler et al. May 2003 A1
20030109908 Lachenbruch et al. Jun 2003 A1
20030109910 Lachenbruch et al. Jun 2003 A1
20030109911 Lachenbruch et al. Jun 2003 A1
20030109912 Joye et al. Jun 2003 A1
20030114885 Nova et al. Jun 2003 A1
20030120268 Bertolero et al. Jun 2003 A1
20030125649 McIntosh et al. Jul 2003 A1
20030187488 Kreindel et al. Oct 2003 A1
20030199226 Sommer et al. Oct 2003 A1
20030199859 Altshuler et al. Oct 2003 A1
20030220594 Halvorson et al. Nov 2003 A1
20030220635 Knowlton et al. Nov 2003 A1
20030220674 Anderson Nov 2003 A1
20030236487 Knowlton Dec 2003 A1
20040002705 Knowlton et al. Jan 2004 A1
20040006328 Anderson Jan 2004 A1
20040009936 Tang et al. Jan 2004 A1
20040024437 Machold et al. Feb 2004 A1
20040030332 Knowlton et al. Feb 2004 A1
20040034341 Altshuler et al. Feb 2004 A1
20040039312 Hillstead et al. Feb 2004 A1
20040044384 Leber et al. Mar 2004 A1
20040049178 Abboud et al. Mar 2004 A1
20040073079 Altshuler Apr 2004 A1
20040074629 Noel Apr 2004 A1
20040077977 Ella et al. Apr 2004 A1
20040082886 Timpson Apr 2004 A1
20040093042 Altshuler et al. May 2004 A1
20040104012 Zhou et al. Jun 2004 A1
20040106867 Eshel et al. Jun 2004 A1
20040133251 Altshuler et al. Jul 2004 A1
20040162596 Altshuler et al. Aug 2004 A1
20040176667 Mihai et al. Sep 2004 A1
20040186535 Knowlton Sep 2004 A1
20040199226 Shadduck Oct 2004 A1
20040206365 Knowlton Oct 2004 A1
20040210214 Knowlton Oct 2004 A1
20040210287 Greene Oct 2004 A1
20040215294 Littrup et al. Oct 2004 A1
20040249427 Nabilsi et al. Dec 2004 A1
20040259855 Anderson et al. Dec 2004 A1
20040260209 Ella et al. Dec 2004 A1
20040260210 Ella et al. Dec 2004 A1
20040260211 Maalouf Dec 2004 A1
20040267339 Yon et al. Dec 2004 A1
20050010197 Lau et al. Jan 2005 A1
20050033957 Enokida Feb 2005 A1
20050049526 Baer Mar 2005 A1
20050049543 Anderson et al. Mar 2005 A1
20050049661 Koffroth Mar 2005 A1
20050065531 Cohen Mar 2005 A1
20050113725 Masuda May 2005 A1
20050143781 Carbunaru et al. Jun 2005 A1
20050145372 Noel Jul 2005 A1
20050149153 Nakase et al. Jul 2005 A1
20050154314 Quistgaard Jul 2005 A1
20050154431 Quistgaard et al. Jul 2005 A1
20050159986 Breeland et al. Jul 2005 A1
20050177075 Meunier et al. Aug 2005 A1
20050182462 Chornenky et al. Aug 2005 A1
20050187495 Quistgaard et al. Aug 2005 A1
20050187597 Vanderschuit Aug 2005 A1
20050203446 Takashima Sep 2005 A1
20050215987 Slatkine Sep 2005 A1
20050222565 Manstein Oct 2005 A1
20050251117 Anderson et al. Nov 2005 A1
20050251120 Anderson et al. Nov 2005 A1
20050261753 Littrup et al. Nov 2005 A1
20050277859 Carlsmith et al. Dec 2005 A1
20050283144 Shiono et al. Dec 2005 A1
20060030778 Mendlein et al. Feb 2006 A1
20060035380 Saint-Leger Feb 2006 A1
20060036300 Kreindel Feb 2006 A1
20060041704 Choi Feb 2006 A1
20060074313 Slayton Apr 2006 A1
20060079852 Bubb et al. Apr 2006 A1
20060094988 Tosaya et al. May 2006 A1
20060106836 Masugi et al. May 2006 A1
20060111613 Boutillette et al. May 2006 A1
20060122509 Desilets Jun 2006 A1
20060189964 Anderson et al. Aug 2006 A1
20060195168 Dunbar et al. Aug 2006 A1
20060200063 Munro et al. Sep 2006 A1
20060206040 Greenberg et al. Sep 2006 A1
20060206110 Knowlton et al. Sep 2006 A1
20060234899 Nekmard et al. Oct 2006 A1
20060259102 Slatkine Nov 2006 A1
20060265032 Hennings et al. Nov 2006 A1
20060270745 Hunt et al. Nov 2006 A1
20060293734 Scott et al. Dec 2006 A1
20070010811 Stern et al. Jan 2007 A1
20070010861 Anderson et al. Jan 2007 A1
20070032561 Lin et al. Feb 2007 A1
20070038156 Rosenberg Feb 2007 A1
20070055156 Desilets et al. Mar 2007 A1
20070055173 DeLonzor et al. Mar 2007 A1
20070055179 Deem et al. Mar 2007 A1
20070055180 Deem et al. Mar 2007 A1
20070055181 Deem et al. Mar 2007 A1
20070073367 Jones et al. Mar 2007 A1
20070078502 Weber et al. Apr 2007 A1
20070100398 Sloan May 2007 A1
20070106342 Schumann May 2007 A1
20070129714 Elkins et al. Jun 2007 A1
20070135876 Weber Jun 2007 A1
20070141265 Thomson Jun 2007 A1
20070179482 Anderson Aug 2007 A1
20070198071 Ting et al. Aug 2007 A1
20070219540 Masotti et al. Sep 2007 A1
20070233226 Kochamba Oct 2007 A1
20070239075 Rosenberg et al. Oct 2007 A1
20070239150 Zvuloni et al. Oct 2007 A1
20070249519 Guha et al. Oct 2007 A1
20070255187 Branch Nov 2007 A1
20070255274 Stern et al. Nov 2007 A1
20070255362 Levinson Nov 2007 A1
20070265585 Joshi et al. Nov 2007 A1
20070265614 Stern et al. Nov 2007 A1
20070270925 Levinson Nov 2007 A1
20070282249 Quisenberry et al. Dec 2007 A1
20070282318 Spooner et al. Dec 2007 A1
20080014627 Merchant et al. Jan 2008 A1
20080046047 Jacobs Feb 2008 A1
20080058784 Manstein et al. Mar 2008 A1
20080077201 Levinson et al. Mar 2008 A1
20080077202 Levinson Mar 2008 A1
20080077211 Levinson Mar 2008 A1
20080097207 Cai et al. Apr 2008 A1
20080139901 Altshuler et al. Jun 2008 A1
20080140061 Toubia et al. Jun 2008 A1
20080140371 Warner Jun 2008 A1
20080161892 Mercuro et al. Jul 2008 A1
20080183164 Elkins Jul 2008 A1
20080188915 Mills et al. Aug 2008 A1
20080248554 Merchant et al. Oct 2008 A1
20080269851 Deem et al. Oct 2008 A1
20080287839 Rosen et al. Nov 2008 A1
20080300529 Reinstein Dec 2008 A1
20080312651 Pope et al. Dec 2008 A1
20090012434 Anderson Jan 2009 A1
20090018623 Levinson et al. Jan 2009 A1
20090018624 Levinson et al. Jan 2009 A1
20090018625 Levinson et al. Jan 2009 A1
20090018626 Levinson et al. Jan 2009 A1
20090018627 Levinson et al. Jan 2009 A1
20090024023 Welches et al. Jan 2009 A1
20090076488 Welches et al. Mar 2009 A1
20090112134 Avni Apr 2009 A1
20090118722 Ebbers et al. May 2009 A1
20090149929 Levinson et al. Jun 2009 A1
20090149930 Schenck Jun 2009 A1
20090171253 Davenport Jul 2009 A1
20090171334 Elkins et al. Jul 2009 A1
20090221938 Rosenberg et al. Sep 2009 A1
20090226424 Hsu Sep 2009 A1
20090276018 Brader Nov 2009 A1
20090281464 Cioanta et al. Nov 2009 A1
20090299234 Cho et al. Dec 2009 A1
20090306749 Mulindwa Dec 2009 A1
20090312676 Rousso et al. Dec 2009 A1
20090312693 Thapliyal et al. Dec 2009 A1
20090326621 El-Galley Dec 2009 A1
20100015190 Hassler Jan 2010 A1
20100028969 Mueller et al. Feb 2010 A1
20100030306 Edelman et al. Feb 2010 A1
20100036295 Altshuler et al. Feb 2010 A1
20100042087 Goldboss et al. Feb 2010 A1
20100049178 Deem et al. Feb 2010 A1
20100081971 Allison Apr 2010 A1
20100087806 Da Silva et al. Apr 2010 A1
20100152824 Allison Jun 2010 A1
20100168726 Brookman Jul 2010 A1
20100179531 Nebrigic et al. Jul 2010 A1
20100198064 Perl et al. Aug 2010 A1
20100217349 Fahey et al. Aug 2010 A1
20100241023 Gilbert Sep 2010 A1
20100268220 Johnson et al. Oct 2010 A1
20100280582 Baker et al. Nov 2010 A1
20110009860 Chornenky et al. Jan 2011 A1
20110040235 Castel Feb 2011 A1
20110040299 Kim et al. Feb 2011 A1
20110046523 Altshuler et al. Feb 2011 A1
20110060323 Baust et al. Mar 2011 A1
20110066083 Tosaya et al. Mar 2011 A1
20110066216 Ting et al. Mar 2011 A1
20110077557 Wing et al. Mar 2011 A1
20110077723 Parish et al. Mar 2011 A1
20110112405 Barthe et al. May 2011 A1
20110112520 Kreindel May 2011 A1
20110144631 Elkins et al. Jun 2011 A1
20110152849 Baust et al. Jun 2011 A1
20110172651 Altshuler et al. Jul 2011 A1
20110189129 Qiu et al. Aug 2011 A1
20110196395 Maschke Aug 2011 A1
20110196438 Mnozil et al. Aug 2011 A1
20110202048 Nebrigic et al. Aug 2011 A1
20110238050 Allison et al. Sep 2011 A1
20110238051 Levinson et al. Sep 2011 A1
20110257642 Griggs, III Oct 2011 A1
20110288537 Halaka Nov 2011 A1
20110300079 Martens et al. Dec 2011 A1
20110301585 Goulko Dec 2011 A1
20110313411 Anderson Dec 2011 A1
20110313412 Kim et al. Dec 2011 A1
20120010609 Deem et al. Jan 2012 A1
20120016239 Barthe et al. Jan 2012 A1
20120022518 Levinson Jan 2012 A1
20120022622 Johnson et al. Jan 2012 A1
20120035475 Barthe et al. Feb 2012 A1
20120035476 Barthe et al. Feb 2012 A1
20120041525 Karni Feb 2012 A1
20120046547 Barthe et al. Feb 2012 A1
20120053458 Barthe et al. Mar 2012 A1
20120065629 Elkins et al. Mar 2012 A1
20120083862 Altshuler et al. Apr 2012 A1
20120089211 Curtis Apr 2012 A1
20120101549 Schumann Apr 2012 A1
20120109041 Munz May 2012 A1
20120158100 Schomacker Jun 2012 A1
20120209363 Williams, III et al. Aug 2012 A1
20120233736 Tepper et al. Sep 2012 A1
20120239123 Weber et al. Sep 2012 A1
20120253416 Erez et al. Oct 2012 A1
20120259322 Fourkas et al. Oct 2012 A1
20120277674 Clark, III et al. Nov 2012 A1
20120310232 Erez Dec 2012 A1
20130018236 Altshuler et al. Jan 2013 A1
20130019374 Schwartz Jan 2013 A1
20130035680 Ben-Haim et al. Feb 2013 A1
20130066309 Levinson Mar 2013 A1
20130073017 Liu et al. Mar 2013 A1
20130079684 Rosen et al. Mar 2013 A1
20130116758 Levinson et al. May 2013 A1
20130116759 Levinson et al. May 2013 A1
20130150844 Deem et al. Jun 2013 A1
20130158440 Allison Jun 2013 A1
20130158636 Ting et al. Jun 2013 A1
20130166003 Johnson et al. Jun 2013 A1
20130190744 Avram et al. Jul 2013 A1
20130238062 Ron et al. Sep 2013 A1
20130245507 Khorassani Sep 2013 A1
20130253384 Anderson et al. Sep 2013 A1
20130253493 Anderson et al. Sep 2013 A1
20130253494 Anderson et al. Sep 2013 A1
20130253495 Anderson et al. Sep 2013 A1
20130253496 Anderson et al. Sep 2013 A1
20130303904 Barthe et al. Nov 2013 A1
20130303905 Barthe et al. Nov 2013 A1
20130331914 Lee et al. Dec 2013 A1
20140005759 Fahey et al. Jan 2014 A1
20140005760 Levinson et al. Jan 2014 A1
20140067025 Levinson et al. Mar 2014 A1
20140142469 Britva et al. May 2014 A1
20140200487 Ramdas et al. Jul 2014 A1
20140200488 Seo et al. Jul 2014 A1
20140222121 Spence et al. Aug 2014 A1
20140277219 Nanda Sep 2014 A1
20140277302 Weber et al. Sep 2014 A1
20140277303 Biser et al. Sep 2014 A1
20140303697 Anderson Oct 2014 A1
20150209174 Abreu Jul 2015 A1
20150216719 DeBenedictis Aug 2015 A1
20150216720 DeBenedictis et al. Aug 2015 A1
20150216816 O'Neil et al. Aug 2015 A1
20150223975 Anderson Aug 2015 A1
20150283022 Lee et al. Oct 2015 A1
20150328077 Levinson Nov 2015 A1
20150335468 Rose et al. Nov 2015 A1
20150342780 Levinson et al. Dec 2015 A1
20160051308 Pennybacker et al. Feb 2016 A1
20160051401 Yee et al. Feb 2016 A1
20160135985 Anderson May 2016 A1
20160296269 Rubinsky Oct 2016 A1
20160324684 Levinson et al. Nov 2016 A1
20170007309 DeBenedictis et al. Jan 2017 A1
20170079833 Frangineas, Jr. et al. Mar 2017 A1
20170165105 Anderson Jun 2017 A1
20170196731 DeBenedictis et al. Jul 2017 A1
20170224528 Berg Aug 2017 A1
20170239079 Root et al. Aug 2017 A1
20170325992 DeBenedictis et al. Nov 2017 A1
20170325993 Jimenez Lozano et al. Nov 2017 A1
20170326042 Ze et al. Nov 2017 A1
20170326346 Jimenez et al. Nov 2017 A1
20180185081 O'Neil et al. Jul 2018 A1
20180185189 Weber et al. Jul 2018 A1
20180263677 Hilton et al. Sep 2018 A1
20180271767 Jimenez Lozano et al. Sep 2018 A1
20180310950 Yee et al. Nov 2018 A1
20190125424 Debenedictis et al. May 2019 A1
20190142493 Debenedictis et al. May 2019 A1
Foreign Referenced Citations (176)
Number Date Country
2011253768 Jun 2012 AU
2441489 Mar 2005 CA
2585214 Oct 2007 CA
333982 Nov 1958 CH
86200604 Oct 1987 CN
2514795 Oct 2002 CN
2514811 Oct 2002 CN
1511503 Jul 2004 CN
1741777 Mar 2006 CN
1817990 Aug 2006 CN
2843367 Dec 2006 CN
2850584 Dec 2006 CN
2850585 Dec 2006 CN
200970265 Nov 2007 CN
101259329 Sep 2008 CN
101309657 Nov 2008 CN
532976 Sep 1931 DE
2851602 Jun 1980 DE
4213584 Nov 1992 DE
4224595 Jan 1994 DE
4238291 May 1994 DE
4445627 Jun 1996 DE
19800416 Jul 1999 DE
263069 Apr 1988 EP
0397043 Nov 1990 EP
0406244 Jan 1991 EP
560309 Sep 1993 EP
0598824 Jun 1994 EP
1030611 Aug 2000 EP
1201266 May 2002 EP
1568395 Aug 2005 EP
2260801 Dec 2010 EP
2289598 Mar 2011 EP
2527005 Nov 2012 EP
854937 Apr 1940 FR
2744358 Aug 1997 FR
2745935 Sep 1997 FR
2767476 Feb 1999 FR
2776920 Oct 1999 FR
2789893 Aug 2000 FR
2805989 Sep 2001 FR
387960 Feb 1933 GB
2120944 Dec 1983 GB
2202447 Sep 1988 GB
2248183 Apr 1992 GB
2263872 Aug 1993 GB
2286660 Aug 1995 GB
2323659 Sep 1998 GB
58187454 Nov 1983 JP
S6094113 Jun 1985 JP
62082977 Apr 1987 JP
63076895 Apr 1988 JP
01223961 Sep 1989 JP
03051964 Mar 1991 JP
03259975 Nov 1991 JP
04093597 Mar 1992 JP
06261933 Sep 1994 JP
07194666 Aug 1995 JP
07268274 Oct 1995 JP
09164163 Jun 1997 JP
10216169 Aug 1998 JP
10223961 Aug 1998 JP
2000503154 Mar 2000 JP
3065657 Jul 2000 JP
2001046416 Feb 2001 JP
2002125993 May 2002 JP
2002224051 Aug 2002 JP
2002282295 Oct 2002 JP
2002290397 Oct 2002 JP
2002543668 Dec 2002 JP
2003190201 Jul 2003 JP
2004013600 Jan 2004 JP
2004073812 Mar 2004 JP
2004159666 Jun 2004 JP
2005039790 Feb 2005 JP
2005065984 Mar 2005 JP
2005110755 Apr 2005 JP
2005509977 Apr 2005 JP
3655820 Jun 2005 JP
2005520608 Jul 2005 JP
2005237908 Sep 2005 JP
2005323716 Nov 2005 JP
2006026001 Feb 2006 JP
2006130055 May 2006 JP
2006520949 Sep 2006 JP
2007270459 Oct 2007 JP
2008532591 Aug 2008 JP
2009515232 Apr 2009 JP
2009189757 Aug 2009 JP
200173222 Dec 1999 KR
1020040094508 Nov 2004 KR
20090000258 Jan 2009 KR
1020130043299 Apr 2013 KR
1020140038165 Mar 2014 KR
2036667 Jun 1995 RU
532976 Nov 1978 SU
0476644 Feb 2002 TW
8503216 Aug 1985 WO
9114417 Oct 1991 WO
9300807 Jan 1993 WO
9404116 Mar 1994 WO
9623447 Aug 1996 WO
9626693 Sep 1996 WO
9636293 Nov 1996 WO
9637158 Nov 1996 WO
9704832 Feb 1997 WO
9705828 Feb 1997 WO
9722262 Jun 1997 WO
9724088 Jul 1997 WO
9725798 Jul 1997 WO
9748440 Dec 1997 WO
9829134 Jul 1998 WO
9831321 Jul 1998 WO
9841156 Sep 1998 WO
9841157 Sep 1998 WO
9909928 Mar 1999 WO
9916502 Apr 1999 WO
9938469 Aug 1999 WO
9949937 Oct 1999 WO
0044346 Aug 2000 WO
0044349 Aug 2000 WO
0065770 Nov 2000 WO
0067685 Nov 2000 WO
0100269 Jan 2001 WO
0113989 Mar 2001 WO
0114012 Mar 2001 WO
0134048 May 2001 WO
0205736 Jan 2002 WO
02102921 Dec 2002 WO
03007859 Jan 2003 WO
03078596 Sep 2003 WO
03079916 Oct 2003 WO
2004000098 Dec 2003 WO
2004080279 Sep 2004 WO
2004090939 Oct 2004 WO
2005033957 Apr 2005 WO
2005046540 May 2005 WO
2005060354 Jul 2005 WO
2005096979 Oct 2005 WO
2005112815 Dec 2005 WO
2006066226 Jun 2006 WO
2006094348 Sep 2006 WO
2006106836 Oct 2006 WO
2006116603 Nov 2006 WO
2006127467 Nov 2006 WO
2007012083 Jan 2007 WO
2007028975 Mar 2007 WO
2007041642 Apr 2007 WO
2007101039 Sep 2007 WO
2007127924 Nov 2007 WO
2007145421 Dec 2007 WO
2007145422 Dec 2007 WO
2008006018 Jan 2008 WO
2008039556 Apr 2008 WO
2008039557 Apr 2008 WO
2008055243 May 2008 WO
2008143678 Nov 2008 WO
2009011708 Jan 2009 WO
2009026471 Feb 2009 WO
2010077841 Jul 2010 WO
2010127315 Nov 2010 WO
2012012296 Jan 2012 WO
2012103242 Aug 2012 WO
2013013059 Jan 2013 WO
2013075006 May 2013 WO
2013075016 May 2013 WO
2013190337 Dec 2013 WO
2014151872 Sep 2014 WO
2014191263 Dec 2014 WO
2015117001 Aug 2015 WO
2015117005 Aug 2015 WO
2015117026 Aug 2015 WO
2015117032 Aug 2015 WO
2015117036 Aug 2015 WO
2016028796 Feb 2016 WO
2016048721 Mar 2016 WO
Non-Patent Literature Citations (86)
Entry
Aguilar et al., “Modeling Cryogenic Spray Temperature and Evaporation Rate Based on Single-Droplet Analysis,” Eighth International Conference on Liquid Atomization and Spray Systems, Pasadena, CA, USA, Jul. 2000, 7 pages.
Al-Sakere, B. et al. “Tumor Ablation with Irreversible Electroporation,” PLoS One, Issue 11, Nov. 2007, 8 pages.
Alster, T. et al., “Cellulite Treatment Using a Novel Combination Radiofrequency, Infrared Light, and Mechanical Tissue Manipulation Device,” Journal of Cosmetic and Laser Therapy, vol. 7, 2005, pp. 81-85.
Ardevol, A. et al., “Cooling Rates of Tissue Samples During Freezing with Liquid Nitrogen,” Journal of Biochemical and Biophysical Methods, vol. 27, 1993, pp. 77-86.
Arena, C. B. et al., “High-Frequency Irreversible Electroporation (H-FIRE) for Non-Thermal Ablation Without Muscle Contraction,” BioMedical Engineering OnLine 2011, 10:102, Nov. 21, 2011, 21 pgs.
Becker, S. M. et al. “Local Temperature Rises Influence In Vivo Electroporation Pore Development: A Numerical Stratum Corneum Lipid Phase Transition Model,” Journal of Biomechanical Engineering, vol. 129, Oct. 2007, pp. 712-721.
Bohm, T. et al., “Saline-Enhanced Radiofrequency Ablation of Breast Tissue: an in Vitro Feasibility Study,” Investigative Radiology, vol. 35 (3), 2000, pp. 149-157.
Bondei, E. et al., “Disorders of Subcutaneous Tissue (Cold Panniculitis),” Dermatology in General Medicine, Fourth Edition, vol. 1, Chapter 108, 1993, Section 16, pp. 1333-1334.
Burge, S.M. et al., “Hair Follicle Destruction and Regeneration in Guinea Pig Skin after Cutaneous Freeze Injury,” Cryobiology, 27(2), 1990, pp. 153-163.
Coban, Y. K. et al., “Ischemia-Reperfusion Injury of Adipofascial Tissue: An Experimental Study Evaluating Early Histologic and Biochemical Alterations in Rats,” Mediators of Inflammation, 2005, 5, pp. 304-308.
Del Pino, M. E. et al. “Effect of Controlled Volumetric Tissue Heating with Radiofrequency on Cellulite and the Subcutaneous Tissue of the Buttocks and Thighs,” Journal of Drugs in Dermatology, vol. 5, Issue 8, Sep. 2006, pp. 714-722.
Donski, P. K. et al., “The Effects of Cooling no Experimental Free Flap Survival,” British Journal of Plastic Surgery, vol. 33, 1980, pp. 353-360.
Duck, F. A., Physical Properties of Tissue, Academic Press Ltd., chapters 4 & 5, 1990, pp. 73-165.
Duncan, W. C. et al., “Cold Panniculitis,” Archives of Dermatology, vol. 94, Issue 6, Dec. 1966, pp. 722-724.
Epstein, E. H. et al., “Popsicle Panniculitis,” The New England Journal of Medicine, 282(17), Apr. 23, 1970, pp. 966-967.
Fournier, L. et al. “Lattice Model for the Kinetics of Rupture of Fluid Bilayer Membranes,” Physical Review, vol. 67, 2003, pp. 051908-1-051908-11.
Gabriel, S. et al., “The Dielectric Properties of Biological Tissues: II. Measurements in the Frequency Range 10 Hz to 20 GHz,” Physics in Medicine and Biology, vol. 41, 1996, pp. 2251-2269.
Gage, A. “Current Progress in Cryosurgery,” Cryobiology 25, 1988, pp. 483-486.
Gatto, H. “Effects of Thermal Shocks on Interleukin-1 Levels and Heat Shock Protein 72 (HSP72) Expression in Normal Human Keratinocytes,” PubMed, Archives of Dermatological Research, vol. 284, Issue 7, 1992: pp. 414-417 [Abstract].
Hale, H. B. et al., “Influence of Chronic Heat Exposure and Prolonged Food Deprivation on Excretion of Magnesium, Phosphorus, Calcium, Hydrogen Ion & Ketones,” Aerospace Medicine, vol. 39—No. 9, Sep. 1968, pp. 919-926.
Heller Page, E. et al., “Temperature-dependent skin disorders,” Journal of the American Academy of Dermatology, vol. 18, No. 5, Pt 1, May 1988, pp. 1003-1019.
Hemmingsson, A. et al. “Attenuation in Human Muscle and Fat Tissue in Vivo and in Vitro,” Acra Radiologica Diagnosis, vol. 23, No. 2, 1982, pp. 149-151.
Henry, F. et al., “Les Dermatoses Hivernales,” Rev Med Liege, 54:11, 1999, pp. 864-866. [Abstract Attached].
Hernan, P. et al., “Study for the evaluation of the efficacy of Lipocryolysis (EEEL)”, Nov. 30, 2011.
Hernan, R. P., “A Study to Evaluate the Action of Lipocryolysis”, 33(3) CryoLellers, 2012, pp. 176-180.
Holland, DB. et al. “Cold shock induces the synthesis of stress proteins in human keratinocytes,” PubMed Journal of Investigative Dermatology; 101(2): Aug. 1993, pp. 196-199.
Holman, W. L. et al., “Variation in Cryolesion Penetration Due to Probe Size and Tissue Thermal Conductivity,” The Annals of Thoracic Surgery, vol. 53, 1992, pp. 123-126.
Hong, J.S. et al., “Patterns of Ice Formation in Normal and Malignant Breast Tissue,” Cryobiology 31, 1994, pp. 109-120.
Huang et al. “Comparative Proteomic Profiling of Murine Skin,” Journal of Investigative Dermatology, vol. 121(1), Jul. 2003, pp. 51-64.
Isambert, H. “Understanding the Electroporation of Cells and Artificial Bilayer Membranes,” Physical Review Letters, vol. 80, No. 15, 1998, pp. 3404-3707.
Jalian, H. R. et al., “Cryolipolysis: A Historical Perspective and Current Clinical Practice”, 32(1) Semin. Cutan. Med. Surg., 2013, pp. 31-34.
Kellum, R. E. et al., “Sclerema Neonatorum: Report of Case and Analysis of Subcutaneous and Epidermal-Dermal Lipids by Chromatographic Methods,” Archives of Dermatology, vol. 97, Apr. 1968, pp. 372-380.
Koska, J. et al., “Endocrine Regulation of Subcutaneous Fat Metabolism During Cold Exposure in Humans,” Annals of the New York Academy of Sciences, vol. 967, 2002,pp. 500-505.
Kundu, S. K. et al., “Breath Acetone Analyzer: Diagnostic Tool to Monitor Dietary Fat Loss,” Clinical Chemistry, vol. 39, Issue (1), 1993, pp. 87-92.
Kundu, S. K. et al., “Novel Solid-Phase Assay of Ketone Bodies in Urine,” Clinical Chemistry, vol. 37, Issue (9), 1991, pp. 1565-1569.
Kuroda, S. et al. “Thermal Distribution of Radio-Frequency Inductive Hyperthermia Using an Inductive Aperture-Type Applicator: Evaluation of the Effect of Tumor Size and Depth”, Medical and Biological Engineering and Computing, vol. 37, 1999, pp. 285-290.
Laugier, P. et al., “In Vivo Results with a New Device for Ultrasonic Monitoring of Pig Skin Cryosurgery: The Echographic Cryprobe,” The Society for Investigative Dermatology, Inc., vol. 111, No. 2, Aug. 1998, pp. 314-319.
Levchenko et al., “Effect of Dehydration on Lipid Metabolism” Ukrainskii Biokhimicheskii Zhurnal, vol. 50, Issue 1, 1978, pp. 95-97.
Lidagoster, MD et al., “Comparison of Autologous Fat Transfer in Fresh, Refrigerated, and Frozen Specimens: An Animal Model,” Annals of Plastic Surgery, vol. 44, No. 5, May 2000, pp. 512-515.
Liu, A. Y.-C. et al., “Transient Cold Shock Induces the Heat Shock Response upon Recovery at 37 C in Human Cells,” Journal of Biological Chemistry, , 269(20), May 20, 1994, pp. 14768-14775.
L'Vova, S.P. “Lipid Levels and Lipid Peroxidation in Frog Tissues During Hypothermia and Hibernation” Ukrainskii Biokhimicheskii Zhurnal, vol. 62, Issue 1, 1990, pp. 65-70.
Maize, J.C. “Panniculitis,” Cutaneous Pathology, Chapter 13, 1998, 327-344.
Malcolm, G. T. et al., “Fatty Acid Composition of Adipose Tissue in Humans: Differences between Subcutaneous Sites,” The American Journal of Clinical Nutrition, vol. 50, 1989, pp. 288-291.
Manstein, D. et al. “A Novel Cryotherapy Method of Non-invasive, Selective Lipolysis,” LasersSurg.Med 40:S20, 2008, p. 104.
Manstein, D. et al. “Selective Cryolysis: A Novel Method of Non-Invasive Fat Removal,” Lasers in Surgery and Medicine: The Official Journal of the ASLMS, vol. 40, No. 9, Nov. 2008, pp. 595-604.
Mayoral, “Case Reports: Skin Tightening with a Combined Unipolar and Bipolar Radiofrequency Device,” Journal of Drugs in Dermatology, 2007, pp. 212-215.
Mazur, P. “Cryobiology: the Freezing of Biological Systems,” Science, 68, 1970, pp. 939-949.
Merrill, T. “A Chill to the Heart: A System to Deliver Local Hypothermia Could One Day Improve the Lives of Heart-Attack Patients,” Mechanical Engineering Magazine, Oct. 2010, 10 pages.
Miklavcic, D. et al. “Electroporation-Based Technologies and Treatments,” The Journal of Membrane Biology (2010) 236:1-2, 2 pgs.
Moschella, S. L. et al., “Diseases of the Subcutaneous Tissue,” in Dermatology, Second Edition, vol. 2, 1985 Chapter 19, Section II (W.B. Saunders Company, 1980) pp. 1169-1181.
Murphy, J. V. et al., “Frostbite: Pathogenesis and Treatment” The Journal of Trauma: Injury, Infection, and Critical Care, vol. 48, No. 1, Jan. 2000, pp. 171-178.
Nagao, T. et al., “Dietary Diacylglycerol Suppresses Accumulation of Body Fat Compared to Triacylglycerol in Men a Double-Blind Controlled Trial,” The Journal of Nutrition, vol. 130, Issue (4), 2000, pp. 792-797.
Nagle, W. A. et al. “Cultured Chinese Hamster Cells Undergo Apoptosis After Exposure to Cold but Nonfreezing Temperatures,” Cryobiology 27, 1990, pp. 439-451.
Nagore, E. et al., “Lipoatrophia Semicircularis—a Traumatic Panniculitis: Report of Seven Cases and Review of the Literature,” Journal of the American Academy of Dermatology, vol. 39, Nov. 1998, pp. 879-881.
Nanda, G.S. et al., “Studies on electroporation of thermally and chemically treated human erythrocytes,” Bioelectrochemistry and Bioenergetics, 34, 1994, pp. 129-134, 6 pgs.
Narins, D.J. et al. “Non-Surgical Radiofrequency Facelift”, The Journal of Drugs in Dermatology, vol. 2, Issue 5, 2003, pp. 495-500.
Nielsen, B. “Thermoregulation in Rest and Exercise,” Acta Physiologica Scandinavica Supplementum, vol. 323 (Copenhagen 1969), pp. 7-74.
Nishikawa, H. et al. “Ultrastructural Changes and Lipid Peroxidation in Rat Adipomusculocutaneous Flap Isotransplants after Normothermic Storage and Reperfusion,” Transplantation, vol. 54, No. 5,1992, pp. 795-801.
Nurnberger, F. “So-Called Cellulite: An Invented Disease,” Journal of Dermatologic Surgery and Oncology, Mar. 1978, pp. 221-229.
Pease, G. R. et al., “An Integrated Probe for Magnetic Resonance Imaging Monitored Skin Cryosurgery,” Journal of Biomedical Engineering, vol. 117, Feb. 1995, pp. 59-63.
Pech, P. et al., “Attenuation Values, Volume Changes and Artifacts in Tissue Due to Freezing,” Acta Radiologica ,vol. 28, Issue 6, 1987, pp. 779-782.
Peterson, L. J. et al., “Bilateral Fat Necrosis of the Scrotum,” Journal of Urology, vol. 116, 1976, pp. 825-826.
Phinney, S. D. et al., “Human Subcutaneous Adipose Tissue Shows Site-Specific Differences in Fatty Acid Composition,” The American Journal of Clinical Nutrition, vol. 60, 1994, pp. 725-729.
Pierard, G.E. et al., “Cellulite: From Standing Fat Herniation to Hypodermal Stretch Marks,” The American Journal of Dermatology, vol. 22, Issue 1, 2000, pp. 34-37, [Abstract].
Pope, K. et al. “Selective Fibrous Septae Heating: An Additional Mechanism of Action for Capacitively Coupled Monopolar Radiofrequency” Thermage, Inc. Article, Feb. 2005, 6pgs.
Quinn, P. J. “A Lipid-Phase Separation Model of Low-Temperature Damage to Biological Membranes,” Cryobiology, 22, 1985, 128-146.
Rabi, T. et al., “Metabolic Adaptations in Brown Adipose Tissue of the Hamster in Extreme Ambient Temperatures,” American Journal of Physiology, vol. 231, Issue 1, Jul. 1976, pp. 153-160.
Renold, A.E. et al. “Adipose Tissue” in Handbook of Physiology, Chapter 15, (Washington, D.C., 1965) pp. 169-176.
Rossi, A. B. R. et al. “Cellulite: a Review,” European Academy of Dermatology and Venercology, 2000, pp. 251-262, 12 pgs.
Rubinsky, B. “Principles of Low Temperature Cell Preservation,” Heart Failure Reviews, vol. 8, 2003, pp. 277-284.
Rubinsky, B. et al., “Cryosurgery: Advances in the Application of low Temperatures to Medicine,” International Journal of Refrigeration, vol. 14, Jul. 1991, pp. 190-199.
Saleh, K.Y. et al., “Two-Dimensional Ultrasound Phased Array Design for Tissue Ablation for Treatment of Benign Prostatic Hyperplasia,” International Journal of Hyperthermia, vol. 20, No. 1, Feb. 2004, pp. 7-31.
Schoning, P. et al., “Experimental Frostbite: Freezing Times, Rewarming Times, and Lowest Temperatures of Pig Skin Exposed to Chilled Air,” Cryobiology 27, 1990, pp. 189-193.
Shephard, R. J. “Adaptation to Exercise in the Cold,” Sports Medicine, vol. 2, 1985, pp. 59-71.
Sigma-Aldrich “Poly(ethylene glycol) and Poly(ethylene oxide),” http://www.sigmaaldrich.com/materials-science/materialscience-;products.htmi?TablePage=2020411 0, accessed Oct. 19, 2012.
Smalls, L. K. et al. “Quantitative Model of Cellulite: Three Dimensional Skin Surface Topography, Biophysical Characterization, and Relationship to Human Perception,” International Journal of Cosmetic Science, vol. 27, Issue 5, Oct. 2005, 17 pgs.
Thermage, News Release, “Study Published in Facial Plastic Surgery Journal Finds Selective Heating of Fibrous Septae Key to Success and Safety of Thermage ThermaCool System,” Jun. 20, 2005, 2 pages.
ThermaCool Monopolar Capacitive Radiofrequency, The one choice for nonablative tissue tightening and contouring, Thermage, Inc. Tech Brochure, Nov. 30, 2005, 8 pgs.
Vallerand et al. “Cold Stress Increases Lipolysis, FFA Ra and TG/FFA Cycling in Humans,” Aviation, Space, and Environmental Medicine 70(1), 1999, pp. 42-50.
Wang, X. et al., “Cryopreservation of Cell/Hydrogel Constructs Based on a new Cell-Assembling Technique,” Sep. 5, 2009, 40 pages.
Wharton, D. A. et al., “Cold Acclimation and Cryoprotectants in a Freeze-Tolerant Antarctic Nematode, Panagrolaimus Davidi,”, Journal of Comparative Physiology, vol. 170, No. 4, Mar. 2000, 2 pages.
Winkler, C. et al., “Gene Transfer in Laboratory Fish: Model Organisms for the Analysis of Gene Function,” in Transgenic Animals, Generation and Use (The Netherlands 1997), pp. 387-395.
Young, H. E. et al. “Isolation of Embryonic Chick Myosatellite and Pluripotent Stem Cells” The Journal of Tissue Culture Methods, vol. 14, Issue 2, 1992, pp. 85-92.
Zelickson, B. et al., “Cryolipolysis for Noninvasive Fat Cell Destruction: Initial Results from a Pig Model”, 35 Dermatol. Sug., 2009, pp. 1-9.
Zouboulis, C. C. et al., “Current Developments and Uses of Cryosurgery in the Treatment of Keloids and Hypertrophic Scars,” Wound Repair and Regeneration, vol. 10, No. 2, 2002, pp. 98-102.
Examination Report for European Application No. 16790808.6; dated Oct. 31, 2019; 5 pages.
Related Publications (1)
Number Date Country
20170105869 A1 Apr 2017 US
Provisional Applications (1)
Number Date Country
62243529 Oct 2015 US