The present invention relates to modeling of vascular structures, and in particular to extracting a vessel tree from medical images of vascular anatomy.
Vascular problems of human bodies can cause deadly medical events such as heart attacks and strokes. The buildup of plaque inside a vascular system, for example, can lead to strokes or coronary heart disease. One important step for detecting and analyzing vessel anomalies and pathologies such as aneurysms, stenosis and plaques involves the extraction of vascular structures such as coronary and cerebral arteries.
Blood vessels can be imaged by means of angiography, which provides a powerful technique for identifying and tracking vascular diseases. Angiography is typically performed using computer tomography (CT), magnetic resonance imaging (MRI), or the like. Thereby two- or three-dimensional angiographic data or images can be obtained.
The manual segmentation of vascular structures is an exhaustive task. Therefore, computer-based segmentation algorithms have been developed to extract patient-specific vasculature models from imaging data, for example from angiographic images. With such computer-based segmentation the vasculature can be differentiated from non-vascular structures, background or even noise in an automated manner. However, the presence of branchings in vessels, such as the bifurcations 12 illustrated in
A method for vasculature segmentation is proposed in the article “Vessel Tractography Using an Intensity based Tensor Model with Branch Detection” of S. Cetin et al., published 2013 in the IEEE Transactions on Medical Imaging (vol. 32, issue 2). Therein described is a technique using second order tensors for modeling the vasculature. With an initial segmentation step a 3D segmented volume is produced, followed by a separate branch detection scheme.
However, there still exists a need for a fast and robust vasculature segmentation technique.
According to one aspect of the invention, a method is disclosed for modeling vascular structures. Accordingly, a model of vasculature structures is obtained, or in other words, the method provides a technique for performing vasculature modeling. Preferably, according to the present invention, a vessel tree is extracted from medical images of vascular anatomy.
An image of at least one vessel is provided. Preferably, said image is a medical image of vascular anatomy, an angiographic image or a vascular image obtained with any vascular imaging modality. Multiple measurements from this image are obtained for a first point P1 of the image, which measurements are preferably directional measurements. It will be appreciated that the number of measurements obtained for a point of said image depends on the image quality, as well as on the complexity of the furcations present in the image. As an example, 64 measurements or directional measurements are obtained for the first point P1, i.e. 64 measurements with different orientations are obtained for the first point P1. In another example, 128 or 256 measurements or directional measurements are obtained for the first point P1. Preferably, the first point P1 is located on the at least one vessel of the provided image. Accordingly, the measurements are preferably obtained for a point which is located on the at least one vessel. Further preferred the first point P1 is located on a centerline of the at least one vessel. Thus, a centerline of a vessel is tracked with the present invention.
A four-dimensional tensor is fitted to the measurements. Preferably, the tensor is fitted holistically to the obtained multiple measurements. A vessel direction is determined based on said four-dimensional tensor fitted to the measurements. Preferably, a number of existing vessel directions present at the first point P1 is thereby determined. A model of the vascular structure is generated based on at least the determined vessel direction or preferably based on the determined vessel directions, if more than one vessel direction is determined (e.g. at a vessel furcation). The determined vessel direction is denoted as ĝ herein.
The image can be obtained by any suitably means, such as for example by means of MRI, CT, or the like. Thus, in a preferred embodiment, the providing the image comprises obtaining the image by means of an image modality, which modality is preferably suited for imaging vascular anatomy. Preferably, the image is a three-dimensional image and the measurements are formed in three dimensions, such that extensive information on the vessel structure can be obtained. Preferably, the measurements are formed on a unit 2-sphere in three dimensions. Preferably the measurements are formed at the first point P1, further preferred for multiple orientations. It will be appreciated that the multiple orientations may correspond to the multiple measurements. The measurements or measured values provide information about the first point P1 of the image, and can for example provide information about intensity values at this first point P1. By using a four-dimensional tensor for modeling vascular structures, it is possible to obtain a vascular structure that can model asymmetric junction scenarios, such as they are for example present in a bifurcation. Accordingly, n-furcations of vascular structures are modeled using a tensor, preferably a higher-order tensor, embedded in 4D. It is thus advantageously possible to model both antipodal asymmetry and the symmetry of a vessel n-furcation in an accurate and very fast manner, with a computation time per dataset or image of less than 30 seconds.
Preferably, the four-dimensional tensor is a higher-order tensor, which is further preferred of third or fourth order. With such higher-order tensors branching points can be naturally modeled. Accordingly, using higher-order tensor embedded in four dimensions, it is possible to extract whole vascular trees in an efficient manner. It will be appreciated that the four-dimensional tensor can be of even higher order, such as e.g. of fifth or sixth order.
Preferably the three dimensions of the four-dimensional tensor define an orientation vector on a unit-2 sphere. In another preferred embodiment, three dimensions of the four-dimensional tensor are the three dimensions of an orientation vector on a unit 2-sphere. Preferably a fourth dimension of the four-dimensional space, on which the tensor is constructed, is defined as a sharpening function, which sharpening function is preferably a sigmoid function. This utilization of a sigmoid function can provide a high pass filter on the measurements by sharpening the measurements. Further preferred, an argument of the sharpening function, such as e.g. an argument of the sigmoid function, includes at least one of the measurements, or the respective measurements. Similarly, in another preferred embodiment, the sharpening function is a Gompertz function. Further preferred, an argument of said Gompertz function includes at least one of the measurement, or the respective measurements. In a general manner, any function providing suppression of measurements when the image is not symmetric along the sampled measurement is suitable.
In a preferred embodiment, the obtaining of the measurements comprises that intensity measurements from inside a cylinder are calculated, which cylinder is having an axis passing through the first point P1. Preferably, the obtaining of the measurements further comprises that an intensity value of a sphere placed inside the cylinder and an intensity value of the rest of the cylinder are calculated. Further preferred, the sphere is spanned around the first point P1. Preferably, the step of obtaining the measurements comprises squaring a difference of the intensity value of the sphere and the intensity value of the rest of the cylinder. Accordingly, with this intensity-based method a vessel can be traced in a fast manner.
Preferably the obtaining the measurements comprises that image gradient magnitudes are calculated on a side surface of a circular cylinder. This calculating the image gradient magnitudes preferably comprises calculating an image gradient vector on a circle point fk being located on the side surface of the circular cylinder, which circular cylinder is preferably having an axis passing through the first point P1. Preferably, the first point P1 is located on a centerline of the at least one vessel, such that the axis of the circular cylinder is preferably passing through a respective centerline point. Further preferred, the calculating the image gradient magnitudes comprises calculating a scalar product of the image gradient vector and a unit vector pointing from the circle point fk to the axis of the circular cylinder. Further preferred the unit vector is perpendicular to the axis of the circular cylinder. The resulting measurements are advantageously less sensitive to noise due to this flux-based measurement model. Further preferred the obtaining the measurements comprises accumulating the image gradient magnitudes.
Preferably the four-dimensional tensor is fitted to the measurements utilizing an estimation technique, which is preferably a least-squares technique. Thereby a suitable four-dimensional tensor can be estimated from the measurements in a fast and accurate manner. Likewise the tensor components of said four-dimensional tensor can be estimated via a least-squares estimator. It will be appreciated that also other estimation techniques may be applied, such as e.g. non-linear estimation techniques.
Preferably the vessel direction is determined by decomposing the four-dimensional tensor, which is fitted to the measurements, into its components. Thus, the determining the vessel direction preferably comprises decomposing the four-dimensional tensor into its components. For the purpose of this decomposition, a so-called Tucker decomposition is preferably utilized. Alternatively or additionally, the four-dimensional tensor is decomposed into its components by decomposing the four-dimensional tensor into at least one rank-1 term. Thereby the four-dimensional tensor representation is decomposed into an optional isotropic part, at least one rank-1 terms representing at least one individual fiber peak, as well as a small residual covering among others noise. With these techniques the four-dimensional tensor can be efficiently evaluated for vascular n-furcation modeling. The rank-1 approximation method thereby further reduces the computation time for modeling vascular structures in the sense of the present invention, while the Tucker decomposition proved to be even faster in the context of the present invention. It will be appreciated that several vessel directions may be determined for a given point, for example if a bifurcation is present at said given point.
In another preferred embodiment the method comprises the steps of selecting an initial seed point and estimating a vessel radius of the selected initial seed point. Preferably, the initiate the seed point is located on the at least one vessel. Accordingly, the extraction of the vessel tree starts from this initial seed point. The selection is preferably done by an operator or user, while the following tracing of the vessel is performed in a fast and automated manner. Accordingly, the inventive method is not only fast, but also provides an easy user interaction with a single seed selection. The initial seed selection can also be automated by further pre-processing and segmentation, such as by segmenting the known anatomy in the heart (e.g. ostium) for coronary arteries, or using a brain atlas to locate a seed point for the cerebral arteries.
In a further preferred embodiment the method comprises after the determining the vessel direction that a vessel thickness is estimated along the vessel direction. Preferably, this estimation of the vessel thickness is performed along the determined vessel direction. Preferably, said estimating is based on a geometrical model applied to the measurements, which model is further preferred a cylindrical, conical, and/or spherical model. Preferably, said estimation of the vessel thickness comprises that image gradient magnitudes are accumulated. The image gradient magnitudes are in turn preferably calculated on a surface or a side surface of a cylinder having in axis coinciding with the determined vessel direction. Accordingly, a cylinder is aligned such that it points into the direction of the vessel direction which was determined in advance. Preferably, the radius of the cylinder is varied for estimating an optimal vessel thickness. By utilizing such a simple maximum norm criterion of cylindrical measurements over a range of radii, the thickness of the vessel lumen can be estimated fast and reliable. Further preferred, the generating the model of the vessel structure is further based on in the vessel thickness. Accordingly, an informative model of the vascular structure can be obtained, whereby both tubular sections and n-furcations of the vascularities are modeled in a simultaneous manner. By determining both the vessel direction, i.e. vessel centerline, and thickness (or radius) of the vessel, a surface of the vessel can easily be defined and incorporated into the modeling of the vessel tree.
Preferably the method further comprises after the determining the vessel direction or generation of the model the step of advancing to a second point P2 along the vessel direction. Afterwards, one or more of the above-outlined steps are repeated for the second point P2. Accordingly, the method features an iterative algorithm for tracing the vessel in an automated manner.
Preferably, with determining the vessel direction based on the four-dimensional tensor fitted to the measurements, at least three vessel directions are determined. In a particularly preferred embodiment the determining the vessel direction comprises detecting a branching of the at least one vessel at the first point P1 based on the four-dimensional tensor fitted to the measurements, and in particular based on the at least three vessel directions. Preferably, said branching is a bi-, tri- or generally an n-furcation of said at least one vessel. Accordingly, a number of principal directions of the vessel may preferably be estimated for the first point P1, wherein said first point P1 is preferably located on said vessel. The utilization of a four-dimensional tensor thereby allows for efficiently estimating such vessel branches, as it allows for modeling both symmetric and asymmetric situations. Preferably, said detection of a branching may comprise detecting several vessel directions for the first point P1, or detecting several principal directions for said first point P1. Based on the several directions, a vessel branching, such as for example a bifurcation, can be distinguished. Further preferred, the generating the model of the vascular structures is further based on said branching, i.e. the detected vessel branch.
According to another aspect of the invention an apparatus for modeling vascular structures is disclosed. A means is provided for providing an image of at least one vessel. A means is provided for obtaining multiple measurements from the image for a first point P1 of the image. A means is provided for fitting a four-dimensional tensor to the measurements. A means is provided for determining a vessel direction based on the four-dimensional tensor fitted to the measurements. A means is provided for generating a model of the vascular structures based on at least the vessel direction.
Another aspect of the disclosure provides and an apparatus comprising a processor and a memory storing a program and for memorizing data that is processed by the processor. The processor is thereby configured with the memory and the program to cause the apparatus at least to provide an image of at least one vessel. The processor further causes the apparatus to obtain multiple measurements from the image for a first point P1 of the image. The processor further causes the apparatus to fit a four-dimensional tensor to the measurements. Further, the processor causes the apparatus to determine a vessel direction based on the four-dimensional tensor fitted to the measurements. Further the processor causes the apparatus to generate a model of the vascular structures based on at least the vessel direction.
Another aspect of the disclosure provides a computer-readable medium comprising instructions to perform the steps of the inventive method described herein when executed on a computer.
In the following various aspects of the present invention are described more fully with reference to the accompanying drawings. The drawings are only for the purpose of illustrating preferred embodiments and are not to be construed as limiting the invention.
With reference to
For obtaining a measurement according to this embodiment, an intensity mean value s(sph) of the sphere 20 as well as an intensity mean value s(cyl) of the rest of the cylinder 22 are calculated. Afterwards a difference between the intensity mean s(sph) of the sphere 20 and the intensity mean s(cyl) of the rest of the cylinder S2 are obtained, and the difference is squared afterwards.
Such intensity measurements are computed along several or multiple orientation vectors gi. As the intensity values of the vessel 10 are typically different than those of the non-vessel parts of the image, it is reasonable that the measurements resulting from
With reference to
Next, when sampling a set of orientation vectors gi over the unit-2 sphere, each measurement at a given direction in gi is modelled as a flux-based feature, which is created by an accumulation of image gradient magnitudes. Thereby, for each sampled point, such as point fk, an image gradient vector is obtained. Afterwards, a scalar product of this image gradient vector and a vector 32, pointing from said sampled point fk towards the axis of the hollow cylinder 30, is computed. Accordingly, by computing this scalar product, only those image gradient vectors are further considered which are not perpendicular to the vector 32 pointing from the sampled point fk towards the axis. Thus, if the axis is aligned along the true vessel direction, the image gradient vector at point fk is parallel to the vector 32, and the resulting scalar product is maximal. Preferably, diametrically opposed points on the hollow cylinder 30 can be paired for minimizing the effects of bright structures which may be situated near the vessels.
In this way, image gradient vectors are computed for all discretized points of each circle of the hollow cylinder 30. The accumulation of these image gradient magnitudes then results in the measurement. Again, such a flux-based measurement is computed for each sampled direction vector gi. As an example, two different direction vectors g3 and g4 are illustrated in
With reference to
In a preferred embodiment, S(g) is a measurement, g=[g1, g2, g3] is an orientation vector on the unit-2 sphere, and g4 is defined with a sigmoid function, with S(g) included in the argument of said sigmoid function. Utilizing this model in four dimensions lifts the limitation with symmetry of measurements. The sigmoid function is designed as a high pass filter on the measurements by sharpening the measurement along the highly varying directions since the absolute intensity variation along the vessel and the branches are expected to be more than the variation in other directions. The resulting four-dimensional vector p=[g1, g2, g3, g4] lies on the unit-3 sphere, which carry the tensor modeling to four-dimensional space. The four-dimensional space constructed on the 3-sphere is achieved by the g4 coordinates. It will be appreciated that also other forms of g4 would work as well, as long as they provide suppression of measurements when the image is not symmetrical along g.
For testing the inventive technique, the proposed algorithm was implemented in Matlab and C. Following experiments were run on an Intel processor Xeon X560 (2.67 GHz) CPU computer with 64 GB memory. The proposed algorithm needed less than 30 seconds for creating the whole vessel tree in the CTA data experiments of the Rotterdam evaluation framework. For an MRA experiment of cerebral vasculature extraction, the whole vessel tree is captured in about 60 seconds using a Tucker decomposition method for analyzing the four-dimensional tensors. Further, time is doubled using the rank-1 approximation method. Improvements in scores of the proposed method over previous ones can also be observed in all measures including overlap and accuracy. Moreover, the proposed algorithm proved to be the fastest among all participating methods of the Rotterdam Coronary Artery Algorithm Evaluation Framework. In addition, when comparing the proposed algorithm with previous methods, it is found that the proposed method is capable of finding more number of branches. Improvement in the performance of the vessel tractography approach could be observed in both applications to the coronary arteries and the cerebral arteries. It will be appreciated that the proposed vessel tractography method can also easily be adapted to other modalities, such as for example for the extraction of cerebral veins from venography image volumes.
With reference to
The skilled person understands that a number of vessel directions can be determined, if the sampled centerline point is located on e.g. a vessel furcation. For example, several principal directions can be extracted from the four-dimensional higher-order tensor. According to the present invention, each of the determined vessel directions can be subsequently tracked for extracting the whole vessel tree.
With reference to
With reference to
It will be appreciated that the functions described herein may be implemented in hardware or software or any combination thereof. If implemented in software, the functions may be stored as one or more instructions on a computer-readable medium. Further, the various operations of methods described above may be performed by any suitably means capable of performing the operations, such as various hardware and/or software components, circuits and/or modules. The modules may correspond to one or more processors and/or memory devices. Further, all functions and techniques described herein may be combined and/or performed in different order, depending on the individual application.