The present invention relates to a vehicle air-conditioning control method for controlling air-conditioning of the interior of a railway vehicle.
Generally known examples of a vehicle air-conditioning control method include that shown in
The air-conditioning control apparatus 26 has a microcomputer incorporated thereinto, and an air-conditioning reference temperature stored in a storage area is subjected to various corrections and is sequentially calculated. The various corrections are calculated on the basis of an in-vehicle temperature measured by an in-vehicle temperature sensor 28 provided inside the vehicle, an outside air temperature measured by an outside air temperature sensor 30 provided on the exterior of the vehicle, an in-vehicle humidity measured by a humidity sensor 29 provided inside the vehicle, and the occupancy rate of this vehicle, which is measured by a load-compensating sensor 31 provided in the vehicle.
Hitherto, regarding vehicle occupancy rate and outside air temperature, the vehicle occupancy rate and the outside air temperature when a vehicle is running are measured. Furthermore, there is a method in which inter-station vehicle occupancy rate information for each time zone, which is created in advance on the basis of actual results, has been stored in storage means as inter-station vehicle occupancy rate information on a day of the week basis, on a day of the month basis, on a vehicle operation form basis, or on a vehicle basis (see, for example, PTL 1).
In addition, there is a method in which control of air-conditioning performance is performed on the basis of an air-conditioning load, which is predicted on the basis of the environment information at the present time and the environment information stored in the past (see, for example, PTL 2).
However, such a vehicle air-conditioning control method of the related art has the following problems.
In a case where correction of an air-conditioning reference temperature is to be performed on the basis of a vehicle occupancy rate when a vehicle is running, since temperature control is performed in such a way that the number of operating units of air-conditioning compressors incorporated into an air-conditioning apparatus, the operating frequency thereof, and the driving time period thereof are controlled after correction is performed, or the running speed of an electric motor of an indoor fan is controlled so as to make the temperature inside the vehicle approach the air-conditioning reference temperature, it takes time from when the vehicle arrives at the next station until a target air-conditioning reference temperature at which passengers feel comfortable is reached after the vehicle occupancy rate changes.
Furthermore, in a case where correction of an air-conditioning reference temperature is to be performed on the basis of inter-station vehicle occupancy rate information for each time zone, which is created in advance on the basis of actual results stored in storage means in which inter-station vehicle occupancy rate information on a day of the week basis, on a day of the month basis, on a vehicle operation form basis, or on a vehicle basis is stored, there is a problem that a database that stores the information becomes large, hardware and software that predict an inter-station vehicle occupancy rate and the like are necessary, and it takes a lot of time to perform calculation processes. Furthermore, the stored inter-station vehicle occupancy rate has a problem in that a reliable vehicle occupancy rate cannot be predicted, and the inside of the vehicle cannot be air-conditioned comfortably.
In addition, also, in means for predicting an air-conditioning load on the basis of the environment information stored in the past, there is a problem that the database becomes large, hardware and software that predict an air-conditioning load on the basis of environment information are necessary, and it takes a lot of time to perform calculation processes.
The present invention is made to solve, problems described above.
The vehicle air-conditioning control method according to the present invention is a vehicle air-conditioning control method including: calculating an air-conditioning reference temperature for an interior of a vehicle on the basis of an in-vehicle temperature measured by an in-vehicle temperature sensor provided inside a vehicle that runs between stations, an outside air temperature measured by an outside air temperature sensor provided on the exterior of the vehicle, an in-vehicle humidity measured by a humidity sensor provided inside the vehicle, and a vehicle occupancy rate measured by a load-compensating sensor provided in the vehicle; determining an air-conditioning control pattern for performing air-conditioning of the inside of the vehicle on the basis of the air-conditioning reference temperature; and controlling a vehicle air-conditioning apparatus on the basis of the air-conditioning control pattern. The data of a preceding vehicle, which is measured between the next station and the station after the next station for a following vehicle, is transmitted to the following vehicle from a same train car of the preceding vehicle on the same line, which is assumed to be substantially the same environment as that in which the following vehicle is placed. The change of the air-conditioning control pattern based on the change of air-conditioning performance is performed before the arrival at the next station on the basis of the data received by the following vehicle. On the basis of the changed air-conditioning control pattern, a vehicle air-conditioning apparatus, in which the number of operating units of air-conditioning compressors incorporated thereinto, the operating frequency thereof, and the running time thereof are controlled, or a running speed of an electric motor of an indoor fan is controlled, the vehicle air-conditioning apparatus being mounted in the following vehicle, controls an air-conditioning apparatus so as to make the interior of the vehicle comfortable when the following vehicle departs from the next station.
According to the present invention of the vehicle air-conditioning control method, by taking means such as the above, a preceding vehicle transmits data detected thereby to a following vehicle, and the following vehicle creates an optimum in-vehicle environment on the basis of the data.
In
Examples of the data 6 of the B vehicle 2, which is received by the data receiving unit 14, include a vehicle operation form 16 of the B vehicle 2, position information 17 of the B vehicle 2, information on each train car 18 of the B vehicle 2, an in-vehicle temperature 19 in each train car 18, an in-vehicle humidity 20 in each train car 18, an outside air temperature 21 in each train car 18, and a vehicle occupancy rate 22 in each train car 18.
Among the above, the air-conditioning apparatus 8, the air-conditioning control apparatus 9, the in-vehicle temperature sensor 10, and the in-vehicle humidity sensor 11 are provided for each vehicle. Although
In addition, in
Descriptions will be given below, with reference to
The in-vehicle temperature sensor 10 of the A vehicle 1, which is provided inside the vehicle, measures the temperature inside the vehicle, and outputs an in-vehicle temperature sensor signal, which is the result of the measurement, to the air-conditioning control apparatus 9 of the A vehicle 1.
The in-vehicle humidity sensor 11 of the A vehicle 1, which is provided inside the vehicle, measures the humidity inside the vehicle, and outputs an in-vehicle humidity sensor signal, which is the result of the measurement, to the air-conditioning control apparatus 9 of the A vehicle 1.
The outside air temperature sensor 12 of the A vehicle 1, which is provided on the exterior of the vehicle, measures the temperature on the exterior of the vehicle, and outputs an outside air temperature sensor signal, which is the result of the measurement, to the air-conditioning control apparatus 9 of the A vehicle 1.
The load-compensating sensor 13 of the A vehicle 1, which is provided in the vehicle, detects the occupancy rate of the vehicle, and outputs a vehicle occupancy rate signal, which is the result of the measurement, to the air-conditioning control apparatus 9 of the A vehicle 1. For the load-compensating sensor 13, sensors in general use may be used and, for example, an electrical load-compensating sensor or a mechanical load-compensating sensor may be used.
Before a predetermined time prior to the time when the A vehicle 1 is expected to arrive at the Y station 4 next, the air-conditioning control apparatus 9 of the A vehicle 1 predicts the air-conditioning reference temperature when the A vehicle 1 will be running between the Y station 4 at which the A vehicle 1 arrives next, and the Z station 5 which is the station after the Y station on the basis of the data 6, such as the outside air temperature 21 and the vehicle occupancy rate 22 received from the B vehicle 2.
Then, the air-conditioning apparatus 8 is controlled on the basis of an air-conditioning control pattern corresponding to the air-conditioning reference temperature. However, in a case where the B vehicle 2 runs apart from the A vehicle 1 by a certain time (for example, 30 minutes) or more, the environments of the B vehicle 2 and the A vehicle 1 may have changed, and the embodiment is not performed. This time can be changed.
If, as in the related art, the air-conditioning reference temperature between the Y station 4 and the Z station 5 at the point of departure from the Y station 4 is set, the air-conditioning control pattern is changed, and the air-conditioning apparatus is controlled, it takes a time of T1 until the actual in-vehicle temperature reaches the air-conditioning reference temperature as shown in
In a case where Embodiment 1 is applied, as shown in
Since the vehicle air-conditioning control apparatus to which the vehicle air-conditioning control method according to Embodiment 1 has such a configuration as described above, it is possible to change, before the vehicle arrives at the next station, the air-conditioning control pattern to an air-conditioning control pattern corresponding to the air-conditioning reference temperature when the vehicle runs between the next station and the station after the next station. As a result, from the point when the vehicle arrives at the next station and departs from the next station, comfortable air-conditioning of the inside of the vehicle can be performed.
Embodiment 2 will be described with reference to
Although, in Embodiment 1, the timing at which the air-conditioning reference temperature is changed is set to be before the predetermined time prior to the arrival to the Y station 4, in Embodiment 2, the air-conditioning reference temperature is changed before a predetermined distance L1 from the Y station 4. The other points are the same as those described in Embodiment 1. The predetermined distance L1 can be changed.
Embodiment 3 will be described with reference to
In Embodiments 1 and 2 described above, the A vehicle 1 that follows changes the air-conditioning reference temperature on the basis of the data 6 received from the B vehicle 2 that runs ahead of the A vehicle 1. However, in a vehicle air-conditioning control apparatus to which Embodiment 3 is applied, when the position information 17 and the outside air temperature 21 are received from a preceding vehicle and the outside air temperature changes suddenly, a running speed of a ventilation fan is changed before a predetermined time prior to the time when the vehicle reaches the position at which the outside air temperature increases.
In a case where a running vehicle enters a tunnel at an A spot and the outside air temperature increases suddenly, for example, and the vehicle air-conditioning control method of the related art is used, since the in-vehicle temperature increases for the time period of T3 as shown in
In a case where Embodiment 3 is applied, as shown in
Furthermore, in the above description, the running speed of the ventilation fan is controlled. However, the opening/closing of a damper provided in an outside air intake opening may be controlled, or the running speed of the indoor fan may be controlled.
A description will be given below, with reference to
In Embodiment 3 described above, the timing at which the running speed of the ventilation fan is changed is set to be before the predetermined time prior to the time when the outside air temperature increases suddenly. However, in Embodiment 4, the running speed of the ventilation fan is changed before a predetermined distance L2 from the spot where the outside air temperature increases suddenly. The other points are the same as those described in Embodiment 3. The predetermined distance L2 can be changed.
Although preferred Embodiments 1 to 4 of the present invention have been described in the foregoing while referring to the accompanying drawings, the present invention is not limited to such configurations. A person skilled in the art can conceive various changes or modifications within the scope of the technical concept described in the claims, and it should be understood that those changes or modifications fall within the technical scope of the present invention.
A vehicle, 2 B vehicle, 3 X station, 4 Y station, 5 Z station, 6 data transmitted from B vehicle, 7 service computer, 8 air-conditioning apparatus, 9 air-conditioning control apparatus, 10 in-vehicle temperature sensor, 11 in-vehicle humidity sensor, 12 outside air temperature sensor, 13 load-compensating sensor, 14 data receiving unit, 15 data transmission unit, 16 vehicle operation form information, 17 mileage information, 18 train car information, 19 in-vehicle temperature, 20 in-vehicle humidity, 21 outside air temperature, 22 vehicle occupancy rate, 23 pantograph, 24 auxiliary power-supply device, 25 air-conditioning apparatus, 26 air-conditioning control apparatus, 27 information control device, 28 vehicle temperature sensor, 29 outside air temperature sensor, 30 outside air temperature sensor, 31 load-compensating sensor
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2009/063087 | 7/22/2009 | WO | 00 | 1/6/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/010369 | 1/27/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2469555 | Hitchcock | May 1949 | A |
5104037 | Karg et al. | Apr 1992 | A |
5462481 | Riedel et al. | Oct 1995 | A |
20040152408 | Eckhardt | Aug 2004 | A1 |
Number | Date | Country |
---|---|---|
26 33 243 | Feb 1977 | DE |
0 149 450 | Jul 1985 | EP |
0 610 692 | Aug 1994 | EP |
2 267 146 | Nov 1993 | GB |
63-207766 | Aug 1988 | JP |
6-064536 | Mar 1994 | JP |
10-059178 | Mar 1998 | JP |
2000-071740 | Mar 2000 | JP |
2001-030903 | Feb 2001 | JP |
2001-088699 | Apr 2001 | JP |
2002-284005 | Oct 2002 | JP |
2003-285637 | Oct 2003 | JP |
2003-312474 | Nov 2003 | JP |
2004-291899 | Oct 2004 | JP |
2005-178426 | Jul 2005 | JP |
3842688 | Aug 2006 | JP |
2007-083872 | Apr 2007 | JP |
2009-007006 | Jan 2009 | JP |
02074600 | Sep 2002 | WO |
Entry |
---|
Machine translation of JP 3842688 translated Dec. 31, 2013. |
International Search Report (PCT/ISA/210) issued on Oct. 27, 2009, by Japanese Patent Office as the International Searching Authority for International Application No. PCT/JP2009/063087. |
Office Action (Notification of Reasons for Refusal) dated Jun. 19, 2012, issued in corresponding Japanese Patent Application No. 2011-523509, and an English Translation thereof. (5 pages). |
Office Action (Notification of the First Office Action) issued on Nov. 5, 2013, by the Chinese Patent Office in corresponding Chinese Patent Application No. 200980160525.9, and an English Translation of the Office Action. (7 pages). |
Extended European Search Report dated Sep. 26, 2013, issued by the European Patent Office in corresponding European Patent Application No. 09847554.4-1754 / 2457797. (5 pages). |
Number | Date | Country | |
---|---|---|---|
20120109429 A1 | May 2012 | US |