The present invention relates generally to devices and methods for providing a seal between a vehicle and a structure. More particularly, the present invention relates to dock seals and shelters that engage trucks at loading docks.
Structures, such as the loading docks of warehouses and office buildings, typically accommodate the loading and unloading of items from delivery trucks. When a delivery or pick-up is made, a delivery truck is usually backed up to a loading dock and the rear doors of the truck are opened. Then, workers are able to travel back and forth between the loading dock and the truck's storage compartment as the workers load items into or unload items from the truck.
Unfortunately, when weather conditions are adverse, rain, snow, sleet, wind, cold air or warm air enters the loading dock through gaps that are present between the loading dock and the rear of the delivery truck being loaded or unloaded. Further, when the rear doors of the truck are opened and folded back against the sides of the truck, unconditioned air and moisture can enter through gaps between the doors and the sides of the trucks (i.e., “hinge gaps”). This leaves items in the truck and the workers who are loading or unloading the truck exposed to the unfavorable weather conditions. This also makes efficient heating or cooling of the loading dock difficult.
In addition, if items in the truck are perishable (e.g., foodstuffs), exposing the items to the unfavorable weather conditions could lead to spoilage. Even further, when there are gaps between the loading dock and the truck, unscrupulous workers may steal items from the truck by passing the items through the gaps to cohorts standing outside of the truck.
Accordingly, it would desirable to provide apparatuses for providing seals between vehicles, such as delivery trucks, and structures, such as loading docks, that would prevent the structures from being exposed to adverse weather conditions. It would also be desirable to provide methods for forming such seals between such vehicles and structures.
The forgoing needs are met, to a great extent, by certain embodiments of the present wherein, in one aspect thereof an engaging mechanism is provided. The engaging mechanism includes a receiving member configured to accommodate insertion of a portion of a vehicle therein. The engaging mechanism also includes a resilient member connected to the receiving member. The engaging mechanism further includes a belt connected to the resilient member. Further, the engaging mechanism includes a deformable medium connected to the receiving member.
Another engaging mechanism is also provided. The engaging mechanism includes receiving means for receiving a portion of a vehicle therein. The engaging mechanism also includes first sealing means for creating a seal against a first surface of the vehicle. The engaging mechanism further includes second sealing means for creating a seal against a second surface of the vehicle. In addition, the engaging mechanism includes pulling means, detached from the second sealing means, for pulling the first sealing means toward the first surface of the vehicle when the portion of the vehicle is received within the receiving means.
A method of sealing a vehicle to a structure is also provided. The method includes pushing a first deformable medium into a distinct second deformable medium with a vehicle, thereby deforming the first deformable medium and the second deformable medium. The method also includes pulling a resilient member connected to the first deformable medium toward a side of the vehicle using the first deformable medium as the first deformable medium is deformed.
There has thus been outlined, rather broadly, certain embodiments of the invention in order that the detailed description thereof herein may be better understood, and in order that the present contribution to the art may be better appreciated. There are, of course, additional embodiments of the invention that will be described below and which will form the subject matter of the claims appended hereto.
In this respect, before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and to the arrangements of the components set forth in the following description or illustrated in the drawings. The invention is capable of embodiments in addition to those described and of being practiced and carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein, as well as the abstract, are for the purpose of description and should not be regarded as limiting.
As such, those skilled in the art will appreciate that the conception upon which this disclosure is based may readily be utilized as a basis for the designing of other structures, methods and systems for carrying out the several purposes of the present invention. It is important, therefore, that the claims be regarded as including such equivalent constructions insofar as they do not depart from the spirit and scope of the present invention.
Certain embodiments of the present invention will now be described with reference to the drawing figures, in which like reference numerals refer to like parts throughout. The attached figures and following description will explain in detail embodiments of the invention. Some of these embodiments will provide a method and apparatus that will allow a cargo vehicle to be connected to a loading dock in a manner that will reduce air loss form the interior of the loading dock and vehicle to the outside.
The engaging mechanism 16 illustrated in
As illustrated in
Although the receiving member 18 in
The resilient member 24 is illustrated in
According to certain embodiments of the present invention, the resilient member 24 is pliable and can bend either towards the sidewall 20 illustrated in
For the sake of simplicity in describing operation and interaction between the belt 26 and the vehicle 10, the belt 26 is described in the singular. However, as shown in
Once the vehicle 10 is sealed to the fixed structure 14, large items (e.g., pallets loaded with freight) are often transported between the interior of the vehicle 10 and the fixed structure 14 during loading and unloading of the vehicle 10. In many cases, fork trucks are used to transport the large items and the fork trucks are often driven at least partially into the interior of the vehicle 10.
As a fork truck backs away from the interior of the vehicle 10, the interior of the sidewall 20 of the vehicle is sometimes bumped and the resilient member 24 is sometimes inadvertently snagged or hooked by the fork truck. Therefore, according to certain embodiments of the present invention, the resilient member 24 is configured to bend away from the sidewall 20 without breaking. Also, according to these embodiments, the spring 35 is configured to bend away from the support 36. Therefore, in these embodiments, when the fork truck stops snagging or hooking the resilient member 24, the spring 35 moves back against the support 36, the resilient member 24 snaps back against the interior of the sidewall 20 and neither the spring 35, the resilient member 24 nor any other portion of the engaging mechanism 16 is broken.
According to certain embodiments of the present invention, the resilient member 24 has a non-uniform composition and/or geometry. For example, the resilient member 24 may be thicker at the fixed end 27 thereof than at the free end 25 thereof. As another example, the resilient member 24 may be made from a polymer whose composition changes gradually between the free end 25 and the fixed end 27.
When the resilient member 24 has a non-uniform geometry or composition and is pushed against by a fork truck backing out of a vehicle 10, the resilient member 24 typically exerts a restorative force against the fork truck. As one would expect, the amount of restorative force exerted is typically dependent upon where on resilient member 24 the fork truck pushes (i.e., where the fork truck applies a distortive force to the resilient member 24). For example, if the resilient member 24 is thinner at the free end 25 thereof, the receiving member 24 will exert a lower restorative force upon a portion of a fork truck that pushes against the free end 25 of the resilient member 24 than if the portion of the fork truck were to push closer to the fixed end 27. Thus, according to certain embodiments of the present invention, when a portion of the fork truck pushes against the resilient member 24 and pulls it away from the sidewall 20 of the vehicle 10, the resilient member 24 can readily bend backward and allow the fork truck to travel past the engaging mechanism 16.
As illustrated in
In
According to certain embodiments of the present invention, the belt 26 includes one or more webbed portions (i.e., portions that include porous webbing). Typically, such webbed portions allow for air to circulate through the engaging mechanism 16. Also, since porous webbing is often relatively inexpensive, the use of porous webbing may lower the overall cost of the engaging mechanism 16. However, solid belts and belts with alternate geometries are also within the scope of the present invention.
The receiving-member-adjacent deformable medium 28 illustrated in
In some embodiments of the present invention, the receiving member 18 deforms as the hinge 22, sidewall 20 and door 12 of the vehicle 10 back into it along with the belt 26. This deformation of the receiving member 18 aids in creating a seal around a gap between the sidewall 20 and the door 12.
According to certain embodiments of the present invention, the receiving-member-adjacent deformable medium 28 and the belt 26 are completely separate components and are completely detached from each other. However, according to other embodiments of the present invention, the belt 26 and the receiving-member-adjacent deformable medium 28 abut each other. In such embodiments, the receiving-member-adjacent deformable medium 28 can also fill up all of the space between the receiving member 18 and the belt 26.
The first fastener 30 illustrated in
The receiving member 18 and the resilient member 24 are illustrated in
When the receiving member 18 and the resilient member 24 are both formed from a single component 50 as illustrated in
As illustrated in
No particular restrictions are made on the geometries or materials used in either of the engaging mechanism support 36 or the wall support 38. Any structure capable of supporting the components of the engaging mechanism 16 illustrated in
As illustrated in
The wall support 58 has a first flexible hinge 60 connected to a first end thereof and a second flexible hinge 62 located at a second end thereof. According to certain embodiments of the present invention, the first hinge 60 and the second hinge 62 are each made from fiberglass. However, including a metal, an elastomer or any other suitable material in the first hinge 60 and second hinge 62 is also within the scope of the present invention.
Unlike the engaging mechanism support 36 and wall support 38 illustrated in
According to certain embodiments of the present invention, the layers 66, 67 include one or more laminate sheets positioned on one or more faces of the core 64, 65. According to some of these embodiments, each core 64, 65 includes a foam material and each of the laminate sheets in the layers 66, 67 includes a polymer material (e.g., acrylonitrile butadiene styrene or another plastic). The layers 66, 67 may extend around the perimeters of the cores 64, 65 and often completely encase the cores 64, 65, thereby protecting the cores 64, 65 from ambient conditions. However, according to certain embodiments of the present invention, one or more laminate sheets are positioned adjacent to each side of each core 64, 65, thereby “sandwiching” each of the cores 64, 65 between two separate portions of the layers 66, 67.
The layers 66, 67 may, according to other embodiments of the present invention, take the form of a non-polymeric material. For example, the layers 66, 67 may include steel (e.g., galvanized steel), fiberglass, wood or aluminum. According to these embodiments, the layers 66, 67 often take the form of casings (e.g., rectangular boxes) into which foam that solidifies into the cores 64, 65 is injected into.
A variety of methods are available to manufacture panel assemblies such as the one illustrated in
The above steps may be implemented, for example, by laminating one or more polymer sheets onto the first side of the first panel (e.g., engaging mechanism support 56) to form the first layer (e.g., layer 66). If the first layer includes two separate portions on opposite sides of the first core, one or more polymer sheets may be adhered to each side of the first foam core.
An adhesive or thermal method may be used, for example, to adhere one or more laminated sheets to the first core (e.g., core 64) to form the first layer (e.g., layer 66). As an alternative to using laminated sheets, a foam may be injected into a first casing to form the first foam core. When injecting the foam into the casing, a side of the casing into which the foam is injected typically includes the above-discussed first layer.
Once the first panel (e.g., engaging mechanism support 56) has been formed and the first layer (e.g., layer 66) has been attached to the first foam core, a second panel (e.g., wall support 58) is typically attached to the first panel using a first connector (e.g., a flexible hinge such as the flexible hinge 62 illustrated in
In addition to attaching the second panel to the first panel, an engaging mechanism (e.g., engaging mechanism 16) may be attached to the first panel. Typically, the engaging mechanism is formed to include a receiving member (e.g., receiving member 18) configured to accommodate insertion of a portion of a vehicle therein. The engaging member is also commonly formed to include a resilient member (e.g., resilient member 24) that is connected to the receiving member. Further, the engaging member is typically formed to include a belt (e.g., belt 26) that is connected to the resilient member. In addition, the engaging member is commonly formed to include a deformable member (e.g., deformable member 28) that is connected to the receiving member. Then, the engaging mechanism to usually attached at an end of the first panel that is opposite to where the second panel is attached.
Attached to the right side frame 70 is a right side curtain 76 and attached to the left side frame 72 is a left side curtain 78. The curtains 76, 78 extend substantially perpendicularly to the side frames 70, 72 when no vehicle is engaged in the shelter 68. As illustrated in
According to certain embodiments of the present invention, the right side frame 70, the left side frame 72 and/or the head frame 74 are made from galvanized steel and are fixedly attached to a loading dock or other fixed structure. According to these embodiments, the right side curtain 76 and the left side curtain 78 are typically made of vinyl fabric and the stays 80 are typically made of fiberglass.
According to other embodiments of the present invention, the right side frame 70 and the left side frame 72 can each include a foam pad 71 inside of a fabric cover 73. According to some of these embodiments, the head frame 74 is made from galvanized steel contained within a fiberglass cover 75. In these embodiments, the right side frame 70, the left side frame 72 and/or the head frame 74 are typically also fixedly attached to a loading dock or other fixed structure and the curtains 76, 78 are sewn to the side frames 70, 72.
According to other embodiments of the present invention, a method of sealing a vehicle to a structure is provided. Such a method is particularly applicable to sealing the rear portion of a delivery truck to a loading dock of a warehouse or office building. However, seals may be formed between other vehicles and structures according to the present invention. It should be noted that methods according to the present invention allow for partial or complete seals to be formed between vehicles and structures.
According to certain embodiments of the present invention, the method of sealing includes pushing a first deformable medium into a distinct second deformable medium with a vehicle, thereby deforming the first deformable medium and the second deformable medium. The first deformable medium may, for example, take the form of the belt 26 illustrated in
The above-described pushing step of the method may also include moving a first support relative to a fixed structure, wherein the first support is connected to the first deformable medium and to the fixed structure. In implementing the pushing step, the vehicle 10 illustrated in
The above pushing step may also include moving a second support relative to the first support, wherein the second support is connected between the first support and the first deformable medium. As illustrated in
According to certain embodiments of the present invention, the method of sealing a vehicle to a structure also includes pulling a resilient member connected to the first deformable medium towards a side of a vehicle using the first deformable medium as the first deformable medium is deformed. This pulling step may be implemented, for example, by deforming the belt 26 illustrated in
The above-described pulling step typically forms a seal between the resilient member and the side of the vehicle and may also seal the hinge gap. As illustrated in
It should be noted that, according to certain embodiments of the present invention, the above-discussed sealing methods and seals are not limited to those that provide hermetic sealing. More specifically, one of skill in the art will appreciate that, since delivery truck and loading dock geometries can fluctuate, not all engaging mechanisms and methods of sealing according to the present invention will fully prevent conditioned air from being lost to the outside. Rather, according to the present invention, a seal and/or a method of sealing hinders at least some, and sometimes all, of the conditioned air from being lost to the outside. In other words, for the purposes of this document, sealing means hindering air movement.
The many features and advantages of the invention are apparent from the detailed specification, and thus, it is intended by the appended claims to cover all such features and advantages of the invention which fall within the true spirit and scope of the invention. Further, since numerous modifications and variations will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation illustrated and described, and accordingly, all suitable modifications and equivalents may be resorted to, falling within the scope of the invention.
The present application is a continuation-in-part of U.S. patent application Ser. No. 10/615,296, filed Jul. 9, 2003, which in turn claims the benefit of priority to U.S. Provisional Patent Application No. 60/471,728, filed May 20, 2003. The entire contents of both of these applications is hereby incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60471728 | May 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10615296 | Jul 2003 | US |
Child | 11246209 | Oct 2005 | US |