The present disclosure relates to vehicles having doors.
Vehicles may include doors that either assist a user when opening and closing the door, or that are configured to open and close without requiring a vehicle user to physically pull a handle and move the door from an opened position to a closed position, or vice versa. The door may be connected to an actuator, such as an electric motor, that is configured to transition the door between the opened and closed positions. The actuator may be activated by a switch, button, sensor, etc. located on the car. Alternatively, the actuator may be activated remotely. For example, the actuator may be activated by pressing a button on a key fob.
A vehicle is provided. The vehicle includes a door that has a swing radius, a light-field camera, and a controller. The light-field camera is configured to detect the presence of an object within the swing radius of the door. The controller is programmed to prevent the door from transitioning between an opened position and a closed position in response to the light-field camera detecting the presence of an object in the swing radius of the door.
A vehicle is provided. The vehicle includes a door that has a swing radius, a light-field camera, and a controller. The light-field camera is configured to detect the presence of an object in the swing radius of the door by generating a depth map representative of the objects in a field-of-view of the camera. The controller is programmed to prevent the door from transitioning between an opened position and a closed position in response to the light-field camera detecting the presence of an object in the swing radius of the door.
A method is provided. The method includes detecting an object in, or on a trajectory towards, a swing radius of a door of a vehicle with a light-field camera, interrupting a transition of the door between an opened position and a closed position once the object has been detected in, or on a trajectory towards, the swing radius of the door, and reversing the transition of the door between the opened position and the closed position, once the transition of the door between the opened position and closed position has been interrupted.
Embodiments of the present disclosure are described herein. It is to be understood, however, that the disclosed embodiments are merely examples and other embodiments may take various and alternative forms. The figures are not necessarily to scale; some features could be exaggerated or minimized to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention. As those of ordinary skill in the art will understand, various features illustrated and described with reference to any one of the figures may be combined with features illustrated in one or more other figures to produce embodiments that are not explicitly illustrated or described. The combinations of features illustrated provide representative embodiments for typical applications. Various combinations and modifications of the features consistent with the teachings of this disclosure, however, could be desired for particular applications or implementations.
Referring to
The vehicle 10 may also include a light-field camera 20 (also known as a plenoptic camera). In the embodiment depicted in
The light-field camera 20 may be configured to detect the presence of several objects in the field-of-view of the light-field camera 20, generate a depth map based on the objects detected in the field-of-view of the light-field camera 20, detect the presence of an object in a swing radius 22 of the door 12, detect the presence of an object entering the field-of-view of the light-field camera 20, and determine if an object that is in the field-of-view of the light-field camera 20 is on a trajectory towards the swing radius 22 of the door 12.
Light-field cameras 20 may include an array of sensors that are utilized to detect a desired electromagnetic frequency (e.g., visible light, infrared radiation, ultraviolet light, etc.). The array of sensors may include charge collecting sensors that operate by converting the desired electromagnetic frequency into a charge proportional to intensity of the electromagnetic frequency and the time that the sensor is exposed to the source. Charge collecting sensors, however, typically have a charge saturation point. When the sensor reaches the charge saturation point sensor damage may occur and/or information regarding the electromagnetic frequency source may be lost. To overcome potentially damaging the charge collecting sensors, a mechanism (e.g., shutter) may be used to proportionally reduce the exposure to the electromagnetic frequency source or control the amount of time the sensor is exposed to the electromagnetic frequency source. However, a trade-off is made by reducing the sensitivity of the charge collecting sensor in exchange for preventing damage to the charge collecting sensor when a mechanism is used to reduce the exposure to the electromagnetic frequency source. This reduction in sensitivity may be referred to as a reduction in the dynamic range of the charge collecting sensor, The dynamic range refers to the amount of information (bits) that may be obtained by the charge collecting sensor during a period of exposure to the electromagnetic frequency source.
In order to increase the dynamic range of the charge collecting sensor, the control circuit of the sensor may incorporate a mechanism or circuitry that clears the charge of the charge collecting sensor (e.g., a device that shorts the charge collecting sensor) once a selected charge level, below the saturation point of the charge collecting, sensor is obtained. The mechanism may also include a counter to track the number of clearing events. Since each clearing event correlates with a selected charge level of the charge collecting sensor, each clearing event will represent a value (amount) of the desired electromagnetic frequency being measured. The clearing events increase the dynamic range of the charge collecting sensor by allowing increased exposure to the electromagnetic frequency being measured while at the same time preventing the potential of blinding the sensor, which occurs once the sensor has been saturated. An example of using a clearing event to increase the dynamic range of a charge collecting sensor is shown in Prentice, et al., U.S. Pat. No. 6,069,377, the contents of which are hereby incorporated by reference in its entirety.
The light-field camera 20 may be in communication with a controller 24 of the vehicle 10. The controller 24 may be in communication with the actuator 14 of the door 12 and an activation device 26 that may be utilized to activate the actuator 14 in order to transition the door 12 between the opened position 16 and closed position 18. The activation device 26 may be a switch, button, sensor, or other appropriate device located internally or externally of the vehicle 10. For example, the activation device 26 may be a pushbutton switch located on the external portion of the door 12. Alternatively, the activation device 26 may remotely activate the actuator 14 in order to transition the door 12 between the opened position 16 and closed position 18. For example, the activation device may be a button on a key fob that communicates wirelessly with the controller 24 in order to activate the actuator 14.
The controller 24 may be programmed to prevent the door from transitioning between the opened position 16 and closed position 18 in response to the light-field camera 20 detecting an object in or on a trajectory towards the swing radius 22 of the door 12. The controller 24 may be further programmed interrupt the transition of the door 12 between the opened position 16 and closed position 18 in response to an object entering the field-of-view of the light-field camera 20. Alternatively, the controller 24 may be programmed to interrupt the transition of the door 12 between the opened position 16 and closed position 18 in response to an object that both enters the field-of-view of the light-field camera 20 and is on a trajectory towards the swing radius 22 of the door 12. In the instances where the controller 24 interrupts the transition of the door 12 between the opened position 16 and closed position 18, the controller 24 may be further programmed to return the door 12 to the position (whether the opened position 16 or closed position 18) that the door 12 was transitioning from in response to the interruption.
While illustrated as one controller, the controller 24 may be part of a larger control system and may be controlled by various other controllers throughout the vehicle 10, such as a vehicle system controller (VSC). It should therefore be understood that the controller 24 and one or more other controllers can collectively be referred to as a “controller” that controls various functions of the vehicle 10 and/or actuators in response to signals from various sensors. Controller 24 may include a microprocessor or central processing unit (CPU) in communication with various types of computer readable storage devices or media. Computer readable storage devices or media may include volatile and nonvolatile storage in read-only memory (ROM), random-access memory (RAM), and keep-alive memory (KAM), for example. KAM is a persistent or non-volatile memory that may be used to store various operating variables while the CPU is powered down. Computer-readable storage devices or media may be implemented using any of a number of known memory devices such as PROMs (programmable read-only memory), EPROMs (electrically PROM), EEPROMs (electrically erasable PROM), flash memory, or any other electric, magnetic, optical, or combination memory devices capable of storing data, some of which represent executable instructions, used by the controller in controlling the vehicle.
The light-field camera 20 may be configured to detect electromagnetic radiation including visible light, infrared radiation, near-infrared radiation, or ultraviolet light. An illumination source 28 may be used to illuminate the field-of-view of the light-field camera 20. The illumination source 28 may be configured to illuminate the field-of-view of the light-field camera 20 with visible light, infrared radiation, near-infrared radiation, or ultraviolet light, to correspond to the type of electromagnetic radiation that the light-field camera 20 is configured to detect.
The vehicle 10 may also include a display 30 that is configured to display a field-of-view of the light-field camera 20. The display 30 may be in communication with the light-field camera 20 directly or via the controller 24. If the light-field camera 20 is facing away from a back end of the vehicle 10, as shown in the first embodiment depicted in
Referring to
It should be understood that the components in alternative embodiments that have like identifies or call-out numbers, whether one or more prime symbols (′) are included or not included, should be construed as having the same characteristics as the like numbers in the other embodiments unless otherwise indicated.
Referring to
Although the light-field cameras are depicted as either facing the back end of the vehicle or the sides of the vehicle, it should be understood that the light-field cameras could be relocated to any position on the vehicle. For example, the cameras may be positioned to maximize the field-of-view at or near a door, or the cameras may be positioned on a rear view or side mirrors, such that the light-field cameras may additionally act as surrogates for the mirrors in conjunction with a display device.
Although the embodiments depict either one or two light-field cameras, one or more cameras may be used depending on specific applications. For example, some vehicles may include more than two doors that require a light-field camera to monitor each of the doors, some light-field cameras may be capable of monitoring more than one door, or multiple light field cameras may be required to monitor one door.
Referring to
If the door 12 is not transitioning between the opened position 16 and closed position 18 at step 108, the method 100 moves on to step 110 where the door 12 is prevented from transitioning between the opened position 16 and closed position 18, if an attempt to initiate a transition between the opened position 16 and closed position 18 is made. If the door 12 is transitioning between the opened position 16 and closed position 18 at step 108, the method moves on to step 112 where the transition of the door 12 between the opened position 16 and closed position 18 is interrupted. After step 112, the method may optionally move on to step 114 where the door 12 is returned to the position (either opened 16 or closed 18) that the door 12 was transitioning from. Returning the door 12 to the position that the door 12 was transitioning from, may also be referred to as reversing the transition of the door between the opened position and the closed position.
The method 100 should not be construed as limited to the description of
The words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the disclosure. As previously described, the features of various embodiments may be combined to form further embodiments of the invention that may not be explicitly described or illustrated. While various embodiments could have been described as providing advantages or being preferred over other embodiments or prior art implementations with respect to one or more desired characteristics, those of ordinary skill in the art recognize that one or more features or characteristics may be compromised to achieve desired overall system attributes, which depend on the specific application and implementation. These attributes may include, but are not limited to cost, strength, durability, life cycle cost, marketability, appearance, packaging, size, serviceability, weight, manufacturability, ease of assembly, etc. As such, embodiments described as less desirable than other embodiments or prior art implementations with respect to one or more characteristics are not outside the scope of the disclosure and may be desirable for particular applications.