Vehicle and structure film/hard point shield

Information

  • Patent Grant
  • 9027457
  • Patent Number
    9,027,457
  • Date Filed
    Monday, July 21, 2014
    10 years ago
  • Date Issued
    Tuesday, May 12, 2015
    9 years ago
  • CPC
  • US Classifications
    Field of Search
    • US
    • 089 036020
    • 089 036040
    • 089 036070
    • 089 036080
    • 089 036090
    • 089 920000
    • 089 929000
    • 089 930000
    • 089 939000
    • CPC
    • F41H5/0492
    • F41H5/1471
    • F41H5/013
    • F41H5/0414
    • F41H5/0428
    • F41H5/023
    • F41H7/02
    • F41H5/24
    • F41H5/026
  • International Classifications
    • F41H7/02
    • F41H5/04
Abstract
A shield includes a film with members intersecting at spaced nodes, a hard point fixed at least at select nodes, and a frame at least partially about the film for spacing the film from a vehicle or structure to be protected.
Description
FIELD OF THE INVENTION

The subject invention relates to ordnance shielding.


BACKGROUND OF THE INVENTION

Rocket propelled grenades (RPGs) and other ordnance are used by terrorist groups to target military vehicles and structures. See WO 2006/134407 incorporated herein by this reference.


Others skilled in the art have designed intercept vehicles which deploy a net or a structure in the path of an RPG in an attempt to change its trajectory. See U.S. Pat. Nos. 7,190,304; 6,957,602; 5,578,784; and 7,328,644 all incorporated herein by this reference. Related prior art discloses the idea of deploying an airbag (U.S. Pat. No. 6,029,558) or a barrier (U.S. Pat. No. 6,279,499) in the trajectory path of a munition to deflect it. These references are also included herein by this reference.


Many such systems require detection of the RPG and deployment of the intercept vehicle quickly and correctly into the trajectory path of the RPG.


Static armor such as shown in U.S. Pat. Nos. 5,170,690; 5,191,166; 5,333,532; 4,928,575; and WO 2006/134,407 is often heavy and time consuming to install. When a significant amount of weight is added to a HMMWV, for example, it can become difficult to maneuver and top heavy. Such an armor equipped vehicle also burns an excessive amount of fuel.


Moreover, known static systems do not prevent detonation of the RPG. One exception is the steel grille armor of WO 2006/134,407 which is said to destroy and interrupt the electrical energy produced by the piezoelectric crystal in the firing head of the RPG. Bar/slat armor is also designed to dud an RPG. But, bar/slat armor is also very heavy. Often, a vehicle designed to be carried by a specific class of aircraft cannot be carried when outfitted with bar/slat armor. Also, if the bar/slat armor is hit with a strike, the RPG still detonates. Bar/slat armor, if damaged, can block doors, windows, and access hatches of a vehicle.


Chain link fence type shields have also been added to vehicles. The chain link fencing, however, is not sufficiently compliant to prevent detonation of an RPG if it strikes the fencing material. Chain like fencing, although lighter than bar/slat armor, is still fairly heavy. Neither bar/slat armor nor the chain link fence type shield is easy to install and remove.


Despite the technology described in the above prior art, Rocket Propelled Grenades (RPGs) and other threats used by enemy forces and insurgents remain a serious threat to troops on the battlefield, on city streets, and on country roads. RPG weapons are relatively inexpensive and widely available throughout the world. There are varieties of RPG warhead types, but the most prolific are the PG-7 and PG-7M which employ a focus blast or shaped charge warhead capable of penetrating considerable armor even if the warhead is detonated at standoffs up to 10 meters from a vehicle. A perfect hit with a shaped charge can penetrate a 12 inch thick steel plate. RPGs pose a persistent deadly threat to moving ground vehicles and stationary structures such as security check points.


Heavily armored, lightly armored, and unarmored vehicles have been proven vulnerable to the RPG shaped charge. Pick-up trucks, HMMWV's, 2½ ton trucks, 5 ton trucks, light armor vehicles, and M118 armored personnel carriers are frequently defeated by a single RPG shot. Even heavily armored vehicles such as the M1 Abrams Tank have been felled by a single RPG shot. The PG-7 and PG-7M are the most prolific class of warheads, accounting for a reported 90% of the engagements. RPG-18s, RPG-69s, and RPG-7Ls have been reported as well, accounting for a significant remainder of the threat encounters. Close engagements 30 meters away occur in less than 0.25 seconds and an impact speed ranging from 120-180 m/s. Engagements at 100 meters will reach a target in approximately 1.0 second and at impact speeds approaching 300 m/s.


The RPG-7 is in general use in Africa, Asia, and the Middle East and weapon caches are found in random locations making them available to the inexperienced insurgent. Today, the RPG threat is present at every turn and caches have been found under bridges, in pickup trucks, buried by the road sides, and even in churches.


Armor plating on a vehicle does not always protect the occupants in the case of an RPG impact and no known countermeasure has proven effective. Systems designed to intercept and destroy an incoming threat are ineffective and/or expensive, complex, and unreliable.


Chain link fencing has been used in an attempt to dud RPGs by destroying the RPG nose cone. See, for example, DE 691,067. See also published U.S. Patent Application No. 2008/0164379. Others have proposed using netting to strangulate the RPG nose cone. See published U.S. Application No. 2009/0217811 and WO 2006/135432.


WO 2006/134407, insofar as it can be understood, discloses a protective grid with tooth shaped members. U.S. Pat. No. 6,311,605 discloses disruptive bodies secured to armor. The disruptive bodies are designed to penetrate into an interior region of a shaped charge to disrupt the formation of the jet. The shaped charge disclosed has a fuse/detonator mechanism in its tail end.


BRIEF SUMMARY OF THE INVENTION

Applicant's pending U.S. Patent Application Publication No. 2009/0266227, incorporated herein by this reference, discloses a novel vehicle protection system. The following reflects an enhancement to such a system.


A film supports a spaced array of hard points at a set off distance from a vehicle or a structure and the hard points are designed to dig or tear into the nose cone of an RPG and dud it.


Featured is a shield comprising a film including members intersecting at spaced nodes, a hard point fixed at least at select nodes, and a frame at least partially about the film for spacing the film from a vehicle or structure to be protected.


The film may include at least two plies and then the hard points may be located at select nodes between two plies of the film. In one example, each node includes opposing cup-shaped portions. The plies can be welded together. One benefit of this design is the hard points can be unitary members.


In another version, each hard point includes two halves joined together on opposite sides of a film node. Preferably, the halves have the same configuration. In one version, a pin extends through a film node and is secured on each end to a hard point half.


One shield manufacturing method includes forming a first film ply to include, members intersecting at nodes, placing a hard point at least at select nodes, and placing a second film including members intersecting at nodes over the first film ply and the hard points fixing the hard points at their respective nodes.


Another shield manufacturing method comprises forming a film to include members intersecting at nodes, fabricating hard points each including two halves joinable together, and joining together the hard point halves at least at select nodes of the film to fix the hard points at their respective nodes.


The subject invention, however, in other embodiments, need not achieve all these objectives and the claims hereof should not be limited to structures or methods capable of achieving these objectives.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

Other objects, features, and advantages will occur to those skilled in the art from the following description of a preferred embodiment and the accompanying drawings, in which:



FIG. 1 is a schematic top view showing an example of a vehicle or structure shield in accordance with the invention;



FIG. 2 is a schematic exploded top view showing a node of the shield of FIG. 1;



FIG. 3 is a schematic three-dimensional top view showing an example of another shield in accordance with the invention;



FIG. 4 is an exploded three dimensional schematic view showing a node of the shield of FIG. 3;



FIG. 5 is a schematic cross sectional side view of a node of the shield shown in FIG. 3;



FIG. 6 is a schematic cross sectional view showing another example of a hard point configuration in accordance with the invention; and



FIG. 7 is a schematic three-dimensional front view showing a vehicle equipped with a shield in accordance with the example of FIG. 1.





DETAILED DESCRIPTION OF THE INVENTION

In a state of the art hard point shield developed by the applicant, each hard point secures within it a net node.


There may be other desirable ways of fashioning hard points and spacing them from a vehicle or structure which can be implemented in certain circumstances.



FIG. 1, for example, shows two plies 5a, 5b of film defining spaced members 10a-10e intersecting spaced members 10d-10f at nodes n in a grid like fashion. At the nodes, sandwiched between the two plies, is a hard point 12. Here, each node n includes opposing cupped shaped portions as shown at 20 in FIG. 2 for ply 22. Hard points are placed in the cups of one ply, the other ply is placed on the first ply, and they are sealed, laminated, welded, and/or glued together. In one example, the first ply is vacuum formed to define the cupped shaped nodes, the hard points are positioned in their respective cup shaped nodes, and the top ply is then vacuum formed over the hard points and ultrasonically welded to the first ply. Now, the hard points can be unitary in construction, e.g., sharp edged and corned members as at 30 in FIG. 2.


In FIG. 3, film 40 is single ply in construction and includes members intersecting at nodes as shown. Again, a hard point is fixed at each node. The film could be manufactured as shown in FIG. 3 or could be produced as a solid sheet of material and then be processed by cutting out the portions shown at 42.


In this example, each hard point may have two halves joined together on opposite sides of each node. FIG. 4 shows an example where node n is defined by intersecting film members 44a and 44b. Hard point half 50a includes face 52a with opening 54a therein. Face 52a also includes pointed teeth 56a thereon. Hard point half 50b is similarly constructed and has the same configuration. Pin 60, FIGS. 4-5 locks the two hard points halves at the node on opposite sides of the film ply as shown in FIG. 5 where pin 60 pierces the film at the node and is press fit into both hard point halves 50a and 50b. The pointed teeth on each hard point also serve to lock each hard point to the film material. Pin 60 can first be driven into hard point half 50a. Pin 60 then pierces the film and is driven into hard point half 50b.



FIG. 6 shows another hard point design where each hard point half 70a, 70b, includes a pin 72, pin receiving cavity 74, and teeth 76. In this way, the hard point halves mate together about a film node.


In FIG. 7, the film/hard point shield 81 is secured in frame 80 attached to vehicle 82 in such a fashion that the shield is spaced between 100 mm and 600 mm from the vehicle. The film could include a plastic or fabric border and hook and loop touch fastener can be used to secure the border to the metal frame, or similar methods may be used.


The film used may include polymer material such as polyethylene, 0.4 mm thick. The film members in these examples were 7 mm wide and spaced 80 mm apart.


One goal is to make the film members strong enough so that, in the field, the hard points are configured in space adjacent the vehicle to be protected and stay that way as the vehicle maneuvers, is transported, and the like. At the same time, the film members should be weak enough so that an incoming RPG, if it strikes a film member, does not detonate and instead breaks the plastic member. In one example, the breaking strength of each film member is around 330N.


The hard points, when assembled (if assembly is necessary) may be made of steel or tungsten. In one example, each hard point weighed between 10-80 grams, was 12.7 mm-19 mm across and between 12.7 mm-25 mm tall. Preferably, each hard point was between 80 mm-130 mm apart from an adjacent hard point.


The benefits of the design set forth herein may include easier manufacturability and lower cost. The film material supports the spaced array of hard points at a set of distance from a vehicle or structure and the hard points are designed to dig or tear into the nose cone of an RPG and dud it. Such a shield can be manufactured by forming a first film ply to include members interfacing at nodes and placing a hard point at least at select nodes. Then, a second film ply including members intersecting at nodes is placed over the first film ply and the hard points are fixed at their respective nodes. In another example, a film made of one or more plies includes members intersecting at nodes and the hard points each include two halves joinable together at least at select nodes of the film.


Although specific features of the invention are shown in some drawings and not in others, this is for convenience only as each feature may be combined with any or all of the other features in accordance with the invention. The words “including”, “comprising”, “having”, and “with” as used herein are to be interpreted broadly and comprehensively and are not limited to any physical interconnection. Moreover, any embodiments disclosed in the subject application are not to be taken as the only possible embodiments.


In addition, any amendment presented during the prosecution of the patent application for this patent is not a disclaimer of any claim element presented in the application as filed: those skilled in the art cannot reasonably be expected to draft a claim that would literally encompass all possible equivalents, many equivalents will be unforeseeable at the time of the amendment and are beyond a fair interpretation of what is to be surrendered (if anything), the rationale underlying the amendment may bear no more than a tangential relation to many equivalents, and/or there are many other reasons the applicant can not be expected to describe certain insubstantial substitutes for any claim element amended.


Other embodiments will occur to those skilled in the art and are within the following claims.

Claims
  • 1. A shield comprising: a film including members intersecting at spaced nodes;hard points each including two halves on opposite sides of at least select film nodes, one said half including a pin, the other said half including a pin receiving cavity, said pin extending through a film node and received in the pin receiving cavity of the other half, thereby joining the halves together and locking the hard points to the film; anda frame at least partially about the film for spacing the film from a vehicle or structure to be protected.
  • 2. The shield of claim 1 in which said halves have the same configuration.
  • 3. The shield of claim 1 in which each of said halves include an opening therein.
  • 4. The shield of claim 1 in which each of said halves includes a pin.
  • 5. The shield of claim 1 in which each of said halves is multisided with sharp edges.
  • 6. The shield of claim 3 in which each of said halves include a face with teeth thereon.
  • 7. The shield of claim 1 in which the film is a single ply film.
  • 8. A shield manufacturing method comprising: forming a film to include members intersecting at nodes;fabricating hard points each including two halves on opposite sides of at least select nodes of the film;fabricating said halves to each include a pin receiving cavity; andjoining together the hard point halves via a pin through said at least at select nodes of the film to fix the hard points at their respective nodes.
  • 9. The method of claim 8 in which said halves have the same configuration.
  • 10. The method of claim 8 further including placing a pin in one hard point half, piercing a film node with the pin, and driving the pin into the other hard point half.
  • 11. The method of claim 8 in which said halves each includes a pin.
  • 12. The shield of claim 8 in which each of said halves is multisided with sharp edges.
  • 13. The shield of claim 8 in which each of said halves includes a face with teeth therein.
  • 14. A shield comprising: a film including members intersecting at spaced nodes;a hard point including two halves joined together on opposite sides of one of said film nodes; at least one pin extending through said film and into each of said hard point halves; anda frame at least partially about the film for spacing the film from a vehicle or structure to be protected.
  • 15. A shield comprising: a film including members intersecting at spaced nodes;hard points each including two halves on opposite sides of at least select film nodes, at least one fastener piercing the node and joining the two halves together on opposite sides of the node; anda frame at least partially about the film for spacing the film from a vehicle or structure to be protected.
  • 16. The shield of claim 15 in which the fastener is a pin.
RELATED APPLICATIONS

This application is a divisional of U.S. patent application Ser. No. 13/766,031 filed Feb. 13, 2013 which hereby claims the benefit of and priority thereto under 35 U.S.C. §§119, 120, 363, 365, and 37 C.F.R. §1.55 and §1.78, which application is incorporated herein by this reference. Related applications include U.S. patent application Ser. No. 12/807,532 filed Sep. 8, 2010; U.S. patent application Ser. No. 12/386,114 filed Apr. 14, 2009; U.S. Provisional Application Ser. No. 61/124,428 filed Apr. 16, 2008; and U.S. patent application Ser. No. 13/200,296 filed Sep. 22, 2011.

US Referenced Citations (137)
Number Name Date Kind
1198035 Huntington Sep 1916 A
1204547 Corrado et al. Nov 1916 A
1229421 Downs Jun 1917 A
1235076 Stanton Jul 1917 A
1274624 Steinmetz Aug 1918 A
1367249 Goodyear Feb 1921 A
1385897 Tresidder Jul 1921 A
1552269 Brocker Sep 1925 A
2238779 Mosebach Apr 1941 A
2296980 Carmichael Sep 1942 A
2308683 Forbes Jan 1943 A
2322624 Forbes Jun 1943 A
3608034 Bramley et al. Sep 1971 A
3633936 Huber Jan 1972 A
3656790 Truesdell Apr 1972 A
3656791 Truesdell Apr 1972 A
3733243 Crawford May 1973 A
3893368 Wales, Jr. Jul 1975 A
3950584 Bramley Apr 1976 A
3992628 Karney Nov 1976 A
4051763 Thomanek Oct 1977 A
4157411 Thomson Jun 1979 A
4253132 Cover Feb 1981 A
4262595 Longerich Apr 1981 A
4358984 Winblad Nov 1982 A
4399430 Kitchen Aug 1983 A
4411462 Buehrig et al. Oct 1983 A
4688024 Gadde Aug 1987 A
4768417 Wright Sep 1988 A
4912869 Govett Apr 1990 A
4928575 Smirlock et al. May 1990 A
4950198 Repko, Jr. Aug 1990 A
5007326 Gooch, Jr. et al. Apr 1991 A
5025707 Gonzalez Jun 1991 A
5069109 Lavan, Jr. Dec 1991 A
5078117 Cover Jan 1992 A
5094170 Raynaud et al. Mar 1992 A
5170690 Smirlock et al. Dec 1992 A
5191166 Smirlock et al. Mar 1993 A
5279199 August Jan 1994 A
5291715 Basile Mar 1994 A
5333532 Smirlock et al. Aug 1994 A
5342021 Watson Aug 1994 A
5370035 Madden, Jr. Dec 1994 A
5394786 Gettle et al. Mar 1995 A
5400688 Eninger et al. Mar 1995 A
5435226 McQuilkin Jul 1995 A
5441239 Watson Aug 1995 A
5524524 Richards et al. Jun 1996 A
5578784 Karr et al. Nov 1996 A
5583311 Rieger Dec 1996 A
5609528 Kehoe Mar 1997 A
5622455 Anderson et al. Apr 1997 A
5646613 Cho Jul 1997 A
5705058 Fischer Jan 1998 A
5725265 Baber Mar 1998 A
5739458 Girard Apr 1998 A
5750918 Mangolds et al. May 1998 A
5792976 Genovese Aug 1998 A
5842939 Pui et al. Dec 1998 A
5898125 Mangolds et al. Apr 1999 A
5924723 Brantman et al. Jul 1999 A
5988036 Mangolds et al. Nov 1999 A
6029558 Stevens et al. Feb 2000 A
6119574 Burkey et al. Sep 2000 A
6128999 Sepp et al. Oct 2000 A
6279449 Ladika et al. Aug 2001 B1
6279499 Griffith St. et al. Aug 2001 B1
6282860 Ramirez Sep 2001 B1
6311605 Kellner et al. Nov 2001 B1
6325015 Garcia et al. Dec 2001 B1
6374565 Warren Apr 2002 B1
6375251 Taghaddos Apr 2002 B1
6394016 Swartout et al. May 2002 B2
6499796 Eenhoorn Dec 2002 B1
6595102 Stevens et al. Jul 2003 B2
6626077 Gilbert Sep 2003 B1
6672220 Brooks et al. Jan 2004 B2
6782792 Edberg et al. Aug 2004 B1
6805035 Edberg et al. Oct 2004 B2
6854374 Breazeale Feb 2005 B1
6901839 Edberg et al. Jun 2005 B2
6904838 Dindl Jun 2005 B1
6925771 Lee et al. Aug 2005 B2
6957602 Koenig et al. Oct 2005 B1
7177518 Chun Feb 2007 B2
7190304 Carlson Mar 2007 B1
7244199 Romano Jul 2007 B1
7308738 Barvosa-Carter et al. Dec 2007 B2
7318258 Chun Jan 2008 B2
7328644 Vickroy Feb 2008 B2
7412916 Lloyd Aug 2008 B2
7415917 Lloyd Aug 2008 B2
7513186 Ravid et al. Apr 2009 B2
7866248 Moore, III et al. Jan 2011 B2
7866250 Farinella et al. Jan 2011 B2
8011285 Farinella et al. Sep 2011 B2
8132495 Joynt Mar 2012 B2
20010032577 Swartout et al. Oct 2001 A1
20010048102 Telles Dec 2001 A1
20020134365 Gray Sep 2002 A1
20030217502 Hansen Nov 2003 A1
20040016846 Blackwell-Thompson et al. Jan 2004 A1
20050011396 Burdette et al. Jan 2005 A1
20050016372 Kilvert Jan 2005 A1
20050278098 Breed Dec 2005 A1
20060065111 Henry Mar 2006 A1
20060112817 Lloyd Jun 2006 A1
20070057495 Tesch et al. Mar 2007 A1
20070089597 Ma Apr 2007 A1
20070180983 Farinella et al. Aug 2007 A1
20080164379 Wartmann et al. Jul 2008 A1
20080258063 Rapanotti Oct 2008 A1
20090084284 Martinez et al. Apr 2009 A1
20090104422 Sampson Apr 2009 A1
20090173250 Marscher et al. Jul 2009 A1
20090178597 Silwa, Jr. Jul 2009 A1
20090217811 Leeming Sep 2009 A1
20090266226 Beach et al. Oct 2009 A1
20090266227 Farinella et al. Oct 2009 A1
20090308238 Schwartz Dec 2009 A1
20100282935 Zannoni Nov 2010 A1
20100288114 Soukos Nov 2010 A1
20100294124 Wentzel Nov 2010 A1
20100307328 Hoadley et al. Dec 2010 A1
20110067561 Joynt Mar 2011 A1
20110079135 Farinella et al. Apr 2011 A1
20110136087 Corridon Jun 2011 A1
20110179944 Farinella et al. Jul 2011 A1
20110185614 Laney et al. Aug 2011 A1
20110192014 Holmes, Jr. et al. Aug 2011 A1
20110203453 Farinella et al. Aug 2011 A1
20110252955 Radstake et al. Oct 2011 A1
20120011993 Malone et al. Jan 2012 A1
20120046916 Farinella et al. Feb 2012 A1
20120067199 Farinella et al. Mar 2012 A1
20120180639 Farinella et al. Jul 2012 A1
Foreign Referenced Citations (18)
Number Date Country
691067 May 1940 DE
2206404 Feb 1972 DE
2409876 Sep 1975 DE
2507351 Sep 1976 DE
3722420 Jan 1989 DE
3735426 May 1989 DE
3834367 Apr 1990 DE
4437412 Sep 1995 DE
0655603 May 1995 EP
0872705 Oct 1998 EP
0902250 Mar 1999 EP
2695467 Mar 1994 FR
2449055 Nov 2008 GB
WO 9930966 Jun 1999 WO
WO 2006134407 Dec 2006 WO
WO 2006135432 Dec 2006 WO
WO 2008070001 Jun 2008 WO
WO 2008079001 Jul 2008 WO
Non-Patent Literature Citations (6)
Entry
Written Opinion of the International Searching Authority mailed Jan. 7, 2010 for International Application No. PCT/US2009/002363, 5 pages, unnumbered.
Written Opinion of the International Searching Authority mailed, dated Dec. 23, 2011 for International Application No. PCT/US2011/01462, 6 pages, unnumbered.
File History of U.S. Patent Publication No. 2008/0164379 (through Mar. 1, 2011), 304 pages, unnumbered.
Written Opinion of the International Searching Authority mailed Nov. 13, 2012 for International Application No. PCT/US2011/01459, 5 pages, unnumbered.
Written Opinion of the International Searching Authority mailed Jan. 31, 2013 for International Application No. PCT/US 2012/63207 (six (6) pages total).
Written Opinion of the International Searching Authority mailed May 30, 2014 for International Application No. PCT/US 2014/015785 (five (5) pages total).
Divisions (1)
Number Date Country
Parent 13766031 Feb 2013 US
Child 14336223 US