Vehicle and structure shield with a cable frame

Information

  • Patent Grant
  • 8468927
  • Patent Number
    8,468,927
  • Date Filed
    Thursday, September 22, 2011
    13 years ago
  • Date Issued
    Tuesday, June 25, 2013
    11 years ago
Abstract
An ordinance, such as a rocket propelled grenade, shield includes a net with hard points at select nodes of the net and cable guides on the side of the net. Cables under tension extend through the cable guides supporting the net typically in conjunction with a top cross bar, spaced top struts, and spaced bottom struts. This framis design facilitates entering and exiting the vehicle or structure.
Description
FIELD OF THE INVENTION

The subject invention relates to ordnance shielding.


BACKGROUND OF THE INVENTION

Rocket propelled grenades (RPGs) and other ordnance are used by terrorist groups to target military vehicles and structures. See WO 2006/134407 incorporated herein by this reference.


Others skilled in the art have designed intercept vehicles which deploy a net or a structure in the path of an RPG in an attempt to change its trajectory. See U.S. Pat. Nos. 7,190,304; 6,957,602; 5,578,784; and 7,328,644 all incorporated herein by this reference. Related prior art discloses the idea of deploying an airbag (U.S. Pat. No. 6,029,558) or a barrier (U.S. Pat. No. 6,279,499) in the trajectory path of a munition to deflect it. These references are also included herein by this reference.


Many such systems require detection of the RPG and deployment of the intercept vehicle quickly and correctly into the trajectory path of the RPG.


Static armor such as shown in U.S. Pat. Nos. 5,170,690; 5,191,166; 5,333,532; 4,928,575; and WO 2006/134,407 is often heavy and time consuming to install. When a significant amount of weight is added to a HMMWV, for example, it can become difficult to maneuver and top heavy. Such an armor equipped vehicle also burns an excessive amount of fuel.


Moreover, known static systems do not prevent detonation of the RPG. One exception is the steel grille armor of WO 2006/134,407 which is said to destroy and interrupt the electrical energy produced by the piezoelectric crystal in the firing head of the RPG. Bar/slat armor is also designed to dud an RPG. But, bar/slat armor is also very heavy. Often, a vehicle designed to be carried by a specific class of aircraft cannot be carried when outfitted with bar/slat armor. Also, if the bar/slat armor is hit with a strike, the RPG still detonates. Bar/slat armor, if damaged, can block doors, windows, and access hatches of a vehicle.


Chain link fence type shields have also been added to vehicles. The chain link fencing, however, is not sufficiently compliant to prevent detonation of an RPG if it strikes the fencing material. Chain like fencing, although lighter than bar/slat armor, is still fairly heavy. Neither bar/slat armor nor the chain link fence type shield is easy to install and remove.


Despite the technology described in the above prior art, Rocket Propelled Grenades (RPGs) and other threats used by enemy forces and insurgents remain a serious threat to troops on the battlefield, on city streets, and on country roads. RPG weapons are relatively inexpensive and widely available throughout the world. There are varieties of RPG warhead types, but the most prolific are the PG-7 and PG-7M which employ a focus blast or shaped charge warhead capable of penetrating considerable armor even if the warhead is detonated at standoffs up to 10 meters from a vehicle. A perfect hit with a shaped charge can penetrate a 12 inch thick steel plate. RPGs pose a persistent deadly threat to moving ground vehicles and stationary structures such as security check points.


Heavily armored, lightly armored, and unarmored vehicles have been proven vulnerable to the RPG shaped charge. Pick-up trucks, HMMWV's, 2½ ton trucks, 5 ton trucks, light armor vehicles, and M118 armored personnel carriers are frequently defeated by a single RPG shot. Even heavily armored vehicles such as the M1 Abrams Tank have been felled by a single RPG shot. The PG-7 and PG-7M are the most prolific class of warheads, accounting for a reported 90% of the engagements. RPG-18s, RPG-69s, and RPG-7Ls have been reported as well, accounting for a significant remainder of the threat encounters. Close engagements 30 meters away occur in less than 0.25 seconds and an impact speed ranging from 120-180 m/s. Engagements at 100 meters will reach a target in approximately 1.0 second and at impact speeds approaching 300 m/s.


The RPG-7 is in general use in Africa, Asia, and the Middle East and weapon caches are found in random locations making them available to the inexperienced insurgent. Today, the RPG threat in Iraq is present at every turn and caches have been found under bridges, in pickup trucks, buried by the road sides, and even in churches.


Armor plating on a vehicle does not always protect the occupants in the case of an RPG impact and no known countermeasure has proven effective. Systems designed to intercept and destroy an incoming threat are ineffective and/or expensive, complex, and unreliable.


Chain link fencing has been used in an attempt to dud RPGs by destroying the RPG nose cone. See, for example, DE 691,067. See also published U.S. Patent Application No. 2008/0164379. Others have proposed using netting to strangulate the RPG nose cone. See published U.S. Application No. 2009/0217811 and WO 2006/135432.


WO 2006/134407, insofar as it can be understood, discloses a protective grid with tooth shaped members. U.S. Pat. No. 6,311,605 discloses disruptive bodies secured to armor. The disruptive bodies are designed to penetrate into an interior region of a shaped charge to disrupt the formation of the jet. The shaped charge disclosed has a fuse/detonator mechanism in its tail end.


BRIEF SUMMARY OF THE INVENTION

No known prior art, however, discloses a net supporting a spaced array of hard points at a set off distance from a vehicle or a structure wherein the hard points are designed to dig or tear into the nose cone of an RPG and dud it.


Pending U.S. Patent Application Publication No. 2009/0266227, incorporated herein by this reference, discloses a novel vehicle protection system. The following reflects an enhancement to such a system.


In the field, if a hard point net is placed over a door, window, or other means of ingress or egress, it can be a slow process to remove the net from the frame and open the door or window in order to enter or exit the vehicle or structure. The same is true if it is desirable to remove one or more hard point nets and their frames for maneuvers, staging operations, transportation of a vehicle, or the like. The tubular frame members also add some weight to the vehicle or structure. Also, the frame members, if struck by an RPG, may cause detonation of the RPG.


In various aspects of the invention, in some embodiments, ingress and egress are made easier and a lighter weight system is provided. The subject invention results from the at least partial realization that, in one preferred embodiment, hard point nets with one or more cables serving as the frame components allow easier ingress, egress, provide improved coverage, and results in a lighter weight system. When two adjacent nets share the same cable, hard point coverage is even further improved.


The invention, in one example, includes a shield comprising a net including hard points at select nodes of the net. One or more sides of the net include a plurality of cable guides such as eyelets and at least one cable under tension extends through the cable guides supporting the net.


One specific design, the eyelets include a peripheral groove for receiving a net chord therein, the hard points include a body portion with a cavity and a plug received in the cavity, and a net chord extends between the plug and the body portion, around the eyelet groove, and back between the plug and the body portion. Typically, the hard points include slots in the body portion for the net chords.


Besides the cable(s), the framis for the net may include a top cross bar for supporting the net. In one version, spaced top struts interconnect the top cross bar with the vehicle or structure. In one example, the top cross bar includes a tensioning mechanism for the cable.


If the vehicle or structure includes a door, both top struts can be connected to the door or, alternatively, one top strut can be connected to the door and one top strut can be connected to the vehicle or structure. In the later design, the top struts are preferably pivotable with respect to the top cross bar and with respect to the door or vehicle structure.


The framis for the net, in some examples, includes spaced bottom struts for opposing sides of the net. In one example, the bottom struts are foldable with respect to the vehicle or structure and/or include a shock absorbing device. In one version, each bottom strut is connected to a net cable but the net cable is removable from its associated bottom strut. In but one example, a pin is removably received in a bottom strut and connected to the net. In one design, a cable extends through cable guides at the top and bottom of a first side of the net, over to a second side of the net and through cable guides at the bottom and top of the second side, to the top of the net, then through cable guides at the middle on the second side, then to the bottom of the net, over to the first side of the net, through cable guides of at the middle of the first side of the net, and then to the top of the net.


In another example, a member is provided for tensioning sides of the net and typically resides between the net and the vehicle or structure.


In several examples, a tray on the vehicle or structure is provided for storing the net. Typically, there are cable guides on opposing sides of the net and spaced cables, one on each side of the net. An adjacent net can be provided with cable guides and a cable then extends through the cable guides of both nets.


The invention also features a shield comprising a net with opposing sides of the net including a plurality of cable guides for supporting the net when a cable is provided under tension through the cable guides on each side of the net.


A method of manufacturing a shield, in accordance with one example, includes running chords of a net through a body portion of a hard point, direction the chord to a cable guide, redirecting the chord back between through the body portion of the hard point; and forcing a plus into the body portion of the hard point locking the chord therein. Preferably, the net chord is directed about the cable guide.


The invention also features a method of manufacturing a shield comprising securing hard points at select nodes of a net, adding cable guides to one or more sides of the net, and providing at least one cable under tension through the cable guides to support the net in a spaced relation with respect to a vehicle or structure.


One method includes supporting the net by a top cross bar and interconnecting the top cross bar with the vehicle or structure using spaced top struts. The method may further comprise making the top struts foldable with respect to the vehicle or structure. The method typically includes tensioning at least one cable. A method may include supporting the net via spaced bottom struts, making the bottom struts foldable with respect to the vehicle or structure, and/or equipping each bottom strut with a shock absorbing device. A bottom fabric portion may be provided for the net.


In one method, a member is provided for tensioning sides of the net and typically the member is placed between the net and the vehicle or structure.


The subject invention, however, in other embodiments, need not achieve all these objectives and the claims hereof should not be limited to structures or methods capable of achieving these objectives.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

Other objects, features and advantages will occur to those skilled in the art from the following description of a preferred embodiment and the accompanying drawings, in which:



FIG. 1 is a schematic three-dimensional exploded view showing an example of a hard point net and a frame for the hard point net;



FIG. 2 is a schematic front view showing another frame structure for a hard point net attached at the front of a vehicle;



FIG. 3 is a schematic three-dimensional front view showing an example of two nets sharing the same cable wherein each net is attached to the cable via cable guides in accordance with an embodiment of the subject invention;



FIG. 4 is a schematic view showing a portion of one side (the top, bottom, or left or right hand side) of a hard point net in accordance with an example of the subject invention;



FIG. 5A is a schematic rearview showing a portion of a hard point in accordance with one preferred embodiment of the subject invention;



FIG. 5B is a schematic front view of the hard point portion shown in FIG. 5A;



FIG. 6 is a schematic three-dimensional front view showing additional structure associated with the two nets shown in FIG. 3;



FIG. 7 is a schematic three-dimensional front view showing an example of a hinged and pivotable frame structure and a net folded up in a tray in accordance with an example of the subject invention;



FIG. 8 is a schematic depiction showing an example of a hard point net over a door of a military vehicle in accordance with another example of the invention;



FIG. 9 is a highly schematic view showing how the cabling of the hard point net shown in FIG. 8 is routed through the eyelets of the net in order to prevent hour glassing of the hard point net;



FIG. 10 is a schematic enlarged depiction showing a portion of the top of the hard point net shown in FIG. 8;



FIG. 11 is a schematic close-up depiction of a portion of the bottom of the hard point net shown in FIG. 8;



FIG. 12 is a schematic cross-sectional view showing several of the primary components associated with the tensioning subassembly for the net shown in FIG. 8;



FIG. 13 is a schematic cross sectional depiction of the left hand side of the top cross bar assembly shown in FIG. 12;



FIG. 14 is a schematic three dimensional view of the cable redirecting structure shown in FIG. 13;



FIG. 16 is a schematic three dimensional side view of a cable retaining pin as shown in FIG. 8;



FIG. 17 is a schematic side view of the cable retaining pin shown in FIG. 16 extending through a cable retainer as shown in FIG. 11;



FIG. 18 is a schematic three dimensional view showing another example of a framis for a net shield in accordance with the invention;



FIG. 19 is a schematic depiction showing a portion of the bottom of a net shield in accordance with another example of the invention;



FIG. 20 is a schematic depiction showing one side of still another framis structure for the net shield shown in FIG. 19;



FIG. 21 is a schematic top view showing an example of net shield systems attachable to adjacent doors of a military vehicle in accordance with the invention;



FIG. 22 is a schematic depiction showing a unique method of attaching a top cross member net shield supporting structure to the door of a vehicle and the vehicle itself; and



FIG. 23 is a schematic depiction showing a supplemental pulley for tensioning one or more cables supporting a net shield in accordance with still another example of the invention.





DETAILED DESCRIPTION OF THE INVENTION

Aside from the preferred embodiment or embodiments disclosed below, this invention is capable of other embodiments and of being practiced or being carried out in various ways. Thus, it is to be understood that the invention is not limited in its application to the details of construction and the arrangements of components set forth in the following description or illustrated in the drawings. If only one embodiment is described herein, the claims hereof are not to be limited to that embodiment. Moreover, the claims hereof are not to be read restrictively unless there is clear and convincing evidence manifesting a certain exclusion, restriction, or disclaimer.



FIG. 1 shows an example net subsystem 10 and including an array of hard points 12 configured to impact a projectile (e.g., the nose cone of an RPG) striking net 14. In this example, there is a hard point 12 at each node of the net defined by intersecting net chords 14. Frame 16 includes mounting brackets 18a-18d attached to rearwardly extending members 19a and 19b. The function of frame 16 and net 14 is to position hard points 12 in a spaced relationship with respect to a vehicle or structure and to space the hard points 12 apart from each other in an array. When an RPG impacts net 14, hard points 12 may angle inwardly towards the nose of the RPG tearing into it and duding the electronics and/or electrical or electronic signals associated with the arming or detonation mechanisms of the RPG. By flexible, we generally mean a net which does not retain its shape unless supported in some fashion. When not attached to frame 16, net 14 can be rolled and then folded and/or net 14 can be bunched up.


Preferably, net subsystem 10 is removeably secured to frame 16 and frame 16 is removeably secured to a vehicle (e.g., a HMMWV vehicle). In one particular example, tubular frame members 22a-22d include hook type fasteners secured to the outside thereof and the fabric net periphery 24, FIG. 1 includes loop type fasteners on the inside thereof. Loop type fasteners are also secured to the rear of frame 16 mounting brackets 18a-18d and corresponding pads or patches 28a-28d, FIG. 2, adhered to vehicle 20, include outer faces with hook type fasteners. The hook and loop fastening mechanisms, however, maybe reversed and other flexible fastener subsystems may also be used. The hook and loop fastening subsystems of U.S. Pat. Nos. 4,928,575; 5,170,690; 5,191,166; and 5,333,532 are preferred.



FIG. 2 shows another type of frame structure 16′ attached to the front of vehicle 20.


If the frame structure of FIG. 1 or 2 is placed over a door, window, portal, or other means of ingress or egress, however, it can make ingress to and egress from the vehicle or structure more complicated and/or slower and it can add time to conducting certain maneuvers, staging operations, transportation, or the like if the net and/or frame members need to be disassembled from the vehicle. The frame members shown in FIGS. 1 and 2 can also add weight to the vehicle and can cause detonation of an RPG or other ordinance.


As shown in FIG. 3, new net 10a with hard points 12 at the nodes of the net also includes cable guides such as eyelets or grommets 40a, in this particular example, on one side of the net and eyelets 40b on the opposite side of the net. Cable 42a under tension extends through eyelets 40a and cable 42b under tension extends through eyelets 40b. The cables 42a and 42b may be made of metal, fabric, rope material, or the like. Bottom strut members 46a and 46b provide tension to cables 40a and 40b. Quick release pin 50b, for example, releasably couples cable 42b to strut member 46b and pin 50b can be pulled along with quick release pin 50a (which couples cable 42a to member 46a) and net 10 can then be rolled upwards providing for fairly quick and easy ingress to and egress from vehicle portal 60. Deploying the shield is also a fairly quick procedure. Struts 46a and 46b are typically secured to a vehicle below windows or portals 60 and are foldable with respect to the vehicle body.


Strut members 46a and 46b may also be designed to be easily removed from the vehicle structure via quick release pins and/or the like. Members 46 could also be pivotably attached to the vehicle or structure. Other means for securing the net to the one or more cables can also be used and there are other ways possible for tensioning the cables.


As shown more clearly in FIG. 4, hard points 12 preferably include a body portion 72 defining a cavity receiving plug 68 therein. Each eyelet 40 includes a peripheral groove as shown at 76 for receiving a net chord 14 therein. In this particular example, net chord 14 passes through slots 73a and 73c of body portion 72 of the hard point, around eyelet 40 and in its groove, and back through slot 73c and 73a of hard point body portion 72. Plug 68 is then press fit into the body portion. Note how closely the hard point is to eyelet 40. The coverage of the hard points is thus improved which results in increased protection especially when two nets 10a and 10b are placed adjacent each other as shown in FIG. 3. Cable 42b extends through the eyelets on the right hand side of net 10a and through the eyelets on the left hand side of net 10b. Other cable guide means, however, are possible. There are other ways to secure the cable guides to the net.



FIGS. 5A and 5B more clearly show hard point 12. Forward facing base portion 72 has cavity 70 receiving post or plug 68, FIG. 4 therein in a friction fit manner. This hard point is designed for nets including horizontal chords intersecting vertical chords. See FIGS. 1, 3 and 4. In this preferred design, the net chords are received through slots 73a-d in wall 74 of hard point 72. The slots, as shown for slot 73a, terminate in rounded portion 77 preventing wear of the net chords. Wall 74 in this embodiment defines a six-sided structure with six sharp corners 75a-75f which dig into the skin of an RPG ogive. Top surface 76 may be flat as shown or concave. Slots 73a and 73c receive a vertically extending chord while slots 73d and 73b receive a horizontally extending chord. In one specific design, the hard point and the plug were made of steel, hard point 72 was 0.625 inches from one edge to an opposite edge, and 0.72 inches tall. Cavity 70 was 0.499 inches in diameter and 0.34 inches deep. Five gram cylindrical plug 68, FIG. 4 was 0.35 inches tall, 0.500 inches in diameter and may include knurling on the outer wall surface thereof.


Side walls 74a-74f, FIGS. 5A-5B extend rearward from front face 76 defining cavity 70 surrounded by the side walls. Opposing sidewalls 74a and 74d have slots (73a, 73c) in the middle of each side wall. Slots 73d, and 73b, in turn, are between adjacent sidewalls 74b and 74c and 74f and 74e, respectively. Sidewall 74b and 74c are between opposing sidewalls 74a and 74b on one side of member 72 while sidewall 74f and 74e are between opposing sidewalls 74a and 74d on the opposite side of member 72′.


In this specific design, the base portion 72 and plug were made of hardened steel (e.g., ASTM A108 alloy 12L14) and combined weighed between 10 and 80 grams. A base portion with more or less sides is also possible. For a six sided design, the area of face 76, FIG. 5B, is typically about 0.5 in.2, e.g. between 0.1 and 0.8 in.2. Sidewalls 74a-f typically have an area of 0.37 in.2, e.g., between 0.1 and 0.8 in.2. Slots 73a-d may be 0.05-0.15 inches wide and between 0.2 and 0.8 inches long.


Manufacturing of a net with hard points in accordance with the subject invention is thus simplified. A net node is placed in cavity 70, FIG. 5A with the net chords exciting through slots 73a-73d and a plug is then driven in to cavity 70 to lock the node of the net in the hard point. The hard points are typically made of conductive material and may include a protective rust resistant non-reflective, conductive coating (zinc plating, flat olive in color). In one example shown in FIGS. 5A-5B, base portion 72 weighed 30 grams and was machined from 0.625 hex bar stock. Walls 74a-74f were 0.72″ tall. Slots 73a-73d were 0.080 inches across and 0.350″ in length. These dimensions will vary, however, depending on the design of the net.


There are trade offs in the design of the hard points and also the net. The aspect ratio of the hard points, their size, center of gravity, mass, and the like all play an important role. Hard points which are too large, for example, and a net mesh size which is too small, results in too much surface area to be stricken by an RPG, possibly detonating the RPG. Hard points which are too small may not sufficiently damage the RPG ogive and dud the RPG. Steel is a good material choice for the hard points because steel is less expensive. Tungsten, on the other hand, may be used because it is heavier and denser, but tungsten is more expensive. Other materials are possible. The hard points may be 0.5 inch to 0.75 inches across and between 0.5 inches and 1 inch tall.


It is preferred that the net node is placed at the center of gravity at the hard point. The length of the hard point is preferably chosen so that when an RPG strikes the net, the hard point tumbles 90 degrees and digs into the RPG ogive. The moment of inertia of the hard point is designed accordingly. In still other designs, the hard point may have more or less than six sides. The hard points may weigh between 10 to 80 grams although in testing 60 grams was found to be optimal, e.g., a 30 gram base portion and a 30 gram plug. Hard points between 10 and 40 grams are typical.


The net material may be polyester which provides resistance to stretching, ultraviolet radiation resistance, and durability in the field. Kevlar or other engineered materials can be used. A knotted, knotless, braided, or ultracross net may be used. The chord diameter may be 1.7 to 1.9 mm. Larger net chords or multiple chords are possible; however, the chord(s) design should be constrained to beneath threshold force to dynamic break loads typical of RPG impact and engagements. The typical net mesh size may be 176 mm (e.g., a square opening 88 mm by 88 mm) for a PG-7V RPG and 122 mm for a PG-7 VM model RPG. But, depending on the design, the net mesh size may range from between 110 and 190 mm.


The preferred spacing or standoff from the net to the vehicle is between 4 and 24 inches, (e.g., 6-12 inches) but may be between 4 and 60 centimeters. Larger standoffs may extend the footprint of the vehicle and thus be undesirable. Too close a spacing may not insure closing of the electrical circuitry of the RPG ogive by the hard points. The struts and the like are designed to result in the desired spacing.


It is desirable that the net material and mesh size be chosen and the net designed such that an RPG ogive, upon striking a net chord, does not detonate. RPGs are designed to detonate at a certain impact force. Preferably, the breaking strength of the net chord material is around 240 lbs so that an RPG, upon striking a net chord or chords, does not detonate. The net is thus designed to be compliant enough so that it does not cause detonation of the RPG. Instead, the hard points dig into the RPG ogive and dud the RPG before it strikes the vehicle or structure.


This design is in sharp contrast to a much more rigid chain link fence style shield which causes detonation of the RPG if the RPG strikes a wire of the fence. The overall result of the subject invention is a design with more available surface area where duding occurs as opposed to detonation.



FIG. 6 shows another design with top cross member 100 attached to vehicle 102 over portals 60a and 60b via rearwardly extending top struts such as struts 104a and 104b. Cross member 100 supports the top of both nets 10a and 10b (with or without a fabric border) and also the top of cable 42b, cable 42c, and the like. Velcro and the like can be used to secure the top of the nets 10a and 10b to cross member 100.



FIG. 7 shows door 110 of the vehicle and top cross member 100′ supported over door 110 attached to the vehicle by pivoting top struts 112a and 112b which can be quickly locked in place and then released. Hard point net 10 can thus be stored in tray 114 which is positioned over door 110. Cables 42 are supported by top frame member 100′ and at both bottom ends by members such as struts 46a, 46b, FIG. 3. In this way, a hard point net or other flexible shield can be deployed and also quickly stowed for ingress and egress through door 110, FIG. 7, for various maneuvers, staging operations, and the like. Velcro wraps 120a, 120b, and 120c are also shown in FIG. 7 for securing net fabric periphery 122 about folding top cross member 100′.


The result, in various embodiments, is a lighter weight system which is easy to deploy and then deactivate and stow. In some embodiments, coverage of the hard points is also improved.



FIG. 8 shows an example for a vehicle door net shield including top cross bar 100″ pivotably secured over the door via spaced top struts foldably connected to the vehicle body or roof and extending rearwardly of top cross bar 100 as shown, for example, for top strut 112b. The bottom struts such as strut 46b′ are foldable and may include shock absorbing portion 200. Here, the net 10′ includes fabric bottom 202. Top cross bar 100″ includes therein spring loaded tensioning member 206, FIG. 9 and cable redirecting structure 207. Cable 208 is secured to tensioner 206, extends out of top cross bar 100″ as shown at 210 and extends through the top third or so of the eyelets as shown at 212 skipping the middle third eyelets as shown at 214 and then again extends through the bottom third or so of the eyelets as shown at 216 on the right hand side of net shield 10. The cable then extends through a cable retainer discussed below with reference to FIG. 11, through fabric bottom portion 202, through another cable retainer, and up through the bottom third group of eyelets 218 or so on the left hand side of net shield 10, skipping the middle third group of eyelets 220, and extending through the top third or so of the eyelets 222 on the left hand side of net shield 10, again into top cross bar member 100′, around cable redirecting mechanism 207. Then, as shown at 224, cable 208 skips the top third or so of the eyelets on the left hand side of net shield 222, extends through the middle third group of eyelets 220, and skips the bottom third group of eyelets or so on the left hand side of net shield 218. The cable then extends back through the cable retainer at the bottom left hand side of the net, through fabric portion 202, through the cable retainer on the right hand side of the bottom of the net, and then skips the bottom third eyelets or so as shown at 216, extends through the middle third group of eyelets as shown at 214, skips the top third group of eyelets or so as shown at 212, and, as shown at 226, the cable enters the right hand side of top cross bar member 100″ and is secured to tensioning member 206.


In this manner, hour glassing of the opposing sides of net shield 100 is prevented. FIG. 10 more clearly depicts the cable portion 210 which extends through the top third group of eyelets and cable portion 226 which skips the top third group of eyelets. FIG. 11 depicts pin 230a extending through grommet 232a, through cable retainer 236a, and into bottom strut 46b′ and secured therein via quick release pin 234a extending through hole 238a, FIG. 16-17, in pin shaft 230a. FIG. 12 shows top cross bar member 100, tensioning mechanism 206 with spring(s) 225 and FIG. 13 more clearly shows cable redirecting member 207 (typically in the form of a pin secured within top cross bar member 100″). FIG. 14 also shows tensioning mechanism 206, spring(s) 225 and slider 226. The cable as shown at FIG. 9 is secured to slider 206 as shown in FIG. 12. FIG. 15 more clearly shows cable redirecting pin 207.



FIG. 18 depicts an example with simpler top cross bar 300, folding spaced top struts 302a and 302b interconnecting top cross bar 300 with tray structure 308 itself securable to a vehicle or structure. Fabric bottom 303 is also shown as are folding bottom struts 304a and 304b. Member 310, in this example, between the vehicle or structure and the net, is configured to tension cable sides 312a and 312b apart to prevent hour glassing. Member 310 may be a slat or bar type structure which rests against the vehicle or structure.


In FIG. 19, net 320 includes bottom fabric portion 321 with spaced buckles such as buckle 320a attached thereto. The sides of the net again include a cable as shown for cable 330. The framis for this version includes spaced, typically foldable bottom struts as shown for strut 322a with hook portion 334a releasably receiving buckle 322 therein. Each side cable then extends to top cross member 340 which is configured to tension the side cables. For example, top cross bar member 340 may be configured to roll with respect to frame portion 342 via handle 344 in order to tension cable 330 by winding it about the top cross bar member after which handle 334 could be locked with respect to structure 332 which, as discussed above, typically includes net storage tray 344. This may be similar to a window shade type device. In still other examples, the net shield is extended and retracted in a manner which is similar to awnings on trailers. See U.S. Pat. Nos. 6,494,246 and 5,192,111 incorporated herein by this reference. In the example shown in FIGS. 19 and 20, handle 344 is released, the side cables such as cable 330 is released from being in a state of tension, and buckle 322a is easily removed from bottom strut 322a in order to fold net shield 320, FIG. 19 up into tray 344.



FIG. 21 shows an example where spaced top struts 350a and 350b attached to door 352 to secure cross member 354 thereto may interfere with door 356 when both doors are open. As shown, door 356 typically also includes spaced top struts 358a and 358b supporting top cross bar 360. In order to address this potential problem, FIG. 22 shows a design for door 370 of a vehicle or structure hinged thereto via hinges 372a, 372b, and 372c and opened in the direction shown by arrow 374. In this design, top strut 376a is pivotable with respect to vehicle body, roof, or structure 380 and pivotable with respect to top cross bar member 382. Strut member 376a may also be foldable upwards with respect to structure 380 and/or releasable from cross bar member 382. Top strut member 376b, in contrast, is secured to and pivotable with respect to the top of door 370 and also pivotable with respect to cross bar member 382. As in previous designs, cross bar member 382 supports the top of a net shield. The bottom of the net can be supported by struts as shown, for example, with respect to FIG. 8 attached to the bottom of door 370. In this way, if there are adjacent doors in the vehicle, then the net shield frame for one door will not interfere with the net shield frame of the adjacent door when one or both of the doors are open.



FIG. 23 shows an example where an extra cabled pulley 390 is provided attached to a portion of the vehicle in order to tension a side cable or cables as shown at 392.


Although specific features of the invention are shown in some drawings and not in others, this is for convenience only as each feature may be combined with any or all of the other features in accordance with the invention. The words “including”, “comprising”, “having”, and “with” as used herein are to be interpreted broadly and comprehensively and are not limited to any physical interconnection. Moreover, any embodiments disclosed in the subject application are not to be taken as the only possible embodiments.


In addition, any amendment presented during the prosecution of the patent application for this patent is not a disclaimer of any claim element presented in the application as filed: those skilled in the art cannot reasonably be expected to draft a claim that would literally encompass all possible equivalents, many equivalents will be unforeseeable at the time of the amendment and are beyond a fair interpretation of what is to be surrendered (if anything), the rationale underlying the amendment may bear no more than a tangential relation to many equivalents, and/or there are many other reasons the applicant can not be expected to describe certain insubstantial substitutes for any claim element amended.


Other embodiments will occur to those skilled in the art and are within the following claims.

Claims
  • 1. A shield comprising: a net including hard points at select nodes of the net, said hard points including a body portion with a cavity and a plug received in the cavity; one or more sides of the net including a plurality of cable guides which include eyelets, said eyelets including a peripheral groove for receiving net material therein, said net material extending between the plug and the body portion, around the eyelet groove, and back between the plug and the body portion; and at least one cable under tension through the cable guides supporting the net.
  • 2. The shield of claim 1 in which said hard points include slots in the body portion for the net material.
  • 3. The shield of claim 1 further including a top cross bar for supporting the net.
  • 4. The shield of claim 3 further including spaced top struts interconnecting the top cross bar with a vehicle or structure.
  • 5. The shield of claim 4 in which said spaced top struts are foldable with respect to the vehicle or structure.
  • 6. The shield of claim 4 in which the vehicle or structure includes a door and both top struts are connected to the door.
  • 7. The shield of claim 4 in which the vehicle or structure includes a door and one top strut is connected to the door and one top strut is connected to the vehicle or structure.
  • 8. The shield of claim 7 in which the top struts are pivotable with respect to the top cross bar and with respect to the door or vehicle structure.
  • 9. The shield of claim 3 in which the top cross bar includes a tensioning mechanism for the cable.
  • 10. The shield of claim 1 further including spaced bottom struts for opposing sides of the net.
  • 11. The shield of claim 10 in which the bottom struts are foldable with respect to a vehicle or structure.
  • 12. The shield of claim 10 in which each bottom strut includes a shock absorbing device.
  • 13. The shield of claim 10 in which each bottom strut is connected to a net cable.
  • 14. The shield of claim 13 in which the net cable is removable from its bottom strut.
  • 15. The shield of claim 14 further including a pin removably received in a bottom strut and connected to the net.
  • 16. The shield of claim 15 in which the net includes a bottom fabric portion.
  • 17. The shield of claim 1 in which a cable extends through cable guides of a top and bottom on a first side of the net, over to a second side of the net and through cable guides of a bottom and top on said second side, to the top of the net, then through cable guides of a middle on said second side, then to the bottom of the net, over to the first side of the net, through cable guides of a middle of the first side of the net, and then to the top of the net.
  • 18. The shield of claim 1 further including a member for tensioning sides of the net.
  • 19. The shield of claim 18 in which the member is disposed between the net and a vehicle or structure.
  • 20. The shield of claim 1 further including a tray on a vehicle or structure for storing the net.
  • 21. The shield of claim 1 in which there are cable guides on opposing sides of the net and spaced cables, one on each side of the net.
  • 22. The shield of claim 21 further including an adjacent net with cable guides and a cable extends through the cable guides of both nets.
  • 23. A shield comprising: a net including hard points at select nodes of the net, said hard points including a body portion with a cavity and a plug received in the cavity; and opposing sides of the net including a plurality of cable guides which include eyelets, said eyelets including a peripheral groove for receiving net material therein, said net material extending between the plug and the body portion, around the eyelet groove, and back between the plug and the body portion for supporting the net when a cable is provided under tension through the cable guides on each side of the net.
  • 24. The shield of claim 23 in which said hard points include slots in the body portion for the net material.
  • 25. The shield of claim 23 further including a top cross bar for supporting the net.
  • 26. The shield of claim 25 further including spaced top struts interconnecting the top cross bar with a vehicle or structure.
  • 27. The shield of claim 26 in which said spaced top struts are foldable with respect to the vehicle or structure.
  • 28. The shield of claim 26 in which the vehicle or structure includes a door and both top struts are connected to the door.
  • 29. The shield of claim 26 in which the vehicle or structure includes a door and one top strut is connected to the door and one top strut is connected to the vehicle or structure.
  • 30. The shield of claim 29 in which the top struts are pivotable with respect to the top cross bar and with respect to the door or vehicle structure.
  • 31. The shield of claim 25 in which the top cross bar includes a tensioning mechanism for the cable.
  • 32. The shield of claim 23 further including spaced bottom struts for opposing sides of the net.
  • 33. The shield of claim 32 in which the spaced bottom struts are foldable with respect to a vehicle or structure.
  • 34. The shield of claim 32 in which each spaced bottom strut includes a shock absorbing device.
  • 35. The shield of claim 23 in which the net includes a bottom fabric portion.
  • 36. The shield of claim 23 further including a member for tensioning sides of the net.
  • 37. The shield of claim 36 in which the member is between the net and a vehicle or structure.
  • 38. The shield of claim 23 further including a tray on a vehicle or structure for storing the net.
  • 39. A method of manufacturing a shield, the method comprising: running net material through a body portion of a hard point; directing the net material to a cable guide; redirecting the net material back between through the body portion of the hard point; and forcing a plug into the body portion of the hard point locking the net material therein.
  • 40. The method of claim 39 in which the net material is directed about the cable guide.
  • 41. A method of manufacturing a shield, the method comprising: securing hard points at select nodes of a net; adding cable guides which include eyelets, said eyelets including a peripheral groove for receiving net material therein, to one or more sides of the net; and providing at least one cable under tension through the cable guides to support the net in a spaced relation with respect to a vehicle or structure; and extending net material between the plug and the body portion, around the eyelet groove, and back between the plug and the body portion.
  • 42. The method of claim 41 in which securing said hard points includes placing a net node in a hard point a body portion cavity and driving a plug into the cavity.
  • 43. The method of claim 41 in which said hard points include slots in the body portion for the net material.
  • 44. The method of claim 41 further including supporting the net by a top cross bar.
  • 45. The method of claim 44 further including interconnecting the top cross bar with a vehicle or structure using spaced top struts.
  • 46. The method of claim 45 further comprising making the top struts foldable with respect to the vehicle or structure.
  • 47. The method of claim 33 further including tensioning at least one cable.
  • 48. The method of claim 41 further including supporting the net via spaced bottom struts.
  • 49. The method of claim 48 further including making the bottom struts foldable with respect to a vehicle or structure.
  • 50. The method of claim 48 further including equipping each bottom strut with a shock absorbing device.
  • 51. The method of claim 48 further including providing a bottom fabric portion for the net.
  • 52. The method of claim 48 further including providing a member for tensioning sides of the net.
  • 53. The method of claim 52 including placing the member between the net and a vehicle or structure.
  • 54. The method of claim 48 further including providing a tray on a vehicle or structure for storing the net.
  • 55. The method of claim 41 in which there are cable guides on opposing sides of the net and spaced cables, one on each side of the net.
  • 56. The method of claim 55 further including an adjacent net with cable guides and said cable extends through the cable guides of both nets.
RELATED APPLICATIONS

This application is a continuation-in-part of U.S. patent application Ser. No. 12/807,532 filed Sept. 8, 2010 and hereby claims the benefit of and priority thereto under 35 U.S.C. §§119, 120, 363, 365, and 37 C.F.R. §1.55 and §1.78, which application is a continuation-in-part of U.S. patent application Ser. No. 12/386,114 filed Apr. 14, 2009 now U.S. Pat. No. 8,011,285, which claims the benefit of and priority to U.S. Provisional Application Ser. No. 61/124,428 filed Apr. 16, 2008.

Government Interests

This invention was made with U.S. Government support under Contract No. HR0011-09-C-0017 awarded by DARPA. The Government has certain rights in the invention.

US Referenced Citations (184)
Number Name Date Kind
461983 Parker Oct 1891 A
1198035 Huntington Sep 1916 A
1204547 Corrado et al. Nov 1916 A
1229421 Downs Jun 1917 A
1235076 Stanton Jul 1917 A
1274624 Steinmetz Aug 1918 A
1367249 Goodyear Feb 1921 A
1385897 Tolmie Jul 1921 A
1552269 Brooker Sep 1925 A
2100211 Feitosa Nov 1937 A
2238779 Mosebach Apr 1941 A
2296980 Carmichael Sep 1942 A
2308683 Forbes Jan 1943 A
2322624 Forbes Jun 1943 A
2347653 Zuckermann May 1944 A
2348387 Hume May 1944 A
3129632 Starr Apr 1964 A
3608034 Bramley et al. Sep 1971 A
3633936 Huber Jan 1972 A
3656790 Truesdell Apr 1972 A
3656791 Truesdell Apr 1972 A
3733243 Crawford May 1973 A
3893368 Wales, Jr. Jul 1975 A
3931965 Grant Jan 1976 A
3950584 Bramley Apr 1976 A
3961789 Tabacheck Jun 1976 A
3992628 Karney Nov 1976 A
4051763 Thomanek Oct 1977 A
4157411 Thomson Jun 1979 A
4253132 Cover Feb 1981 A
4262595 Longerich Apr 1981 A
4358984 Winblad Nov 1982 A
4399430 Kitchen Aug 1983 A
4411462 Buehrig et al. Oct 1983 A
4625668 Fitch Dec 1986 A
4688024 Gadde Aug 1987 A
4768417 Wright Sep 1988 A
4912869 Govett Apr 1990 A
4928575 Smirlock et al. May 1990 A
4950198 Repko, Jr. Aug 1990 A
4986389 Halligan et al. Jan 1991 A
4997185 Bartasius Mar 1991 A
5007326 Gooch, Jr. et al. Apr 1991 A
5025707 Gonzalez Jun 1991 A
5039159 Bonner Aug 1991 A
5069109 Lavan, Jr. Dec 1991 A
5078117 Cover Jan 1992 A
5094170 Raynaud et al. Mar 1992 A
5170690 Smirlock et al. Dec 1992 A
5191166 Smirlock et al. Mar 1993 A
5192111 Hanemaayer Mar 1993 A
5197239 Glynn et al. Mar 1993 A
5215310 Allbright Jun 1993 A
5269623 Hanson Dec 1993 A
5279199 August Jan 1994 A
5291715 Basile Mar 1994 A
5321922 Popp et al. Jun 1994 A
5333532 Smirlock et al. Aug 1994 A
5342021 Watson Aug 1994 A
5370035 Madden, Jr. Dec 1994 A
5394786 Gettle et al. Mar 1995 A
5400688 Eninger et al. Mar 1995 A
5435226 McQuilkin Jul 1995 A
5441239 Watson Aug 1995 A
5524524 Richards et al. Jun 1996 A
5578784 Karr et al. Nov 1996 A
5583311 Rieger Dec 1996 A
5609528 Kehoe Mar 1997 A
5622455 Anderson et al. Apr 1997 A
5646613 Cho Jul 1997 A
5705058 Fischer Jan 1998 A
5725265 Baber Mar 1998 A
5739458 Girard Apr 1998 A
5750918 Mangolds et al. May 1998 A
5792976 Genovese Aug 1998 A
5842939 Pui et al. Dec 1998 A
5898125 Mangolds et al. Apr 1999 A
5924723 Brantman et al. Jul 1999 A
5947831 McCarthy Sep 1999 A
5984121 Cole Nov 1999 A
5988036 Mangolds et al. Nov 1999 A
6029558 Stevens et al. Feb 2000 A
6062617 Marks May 2000 A
6119574 Burkey et al. Sep 2000 A
6128999 Sepp et al. Oct 2000 A
6131873 Blazon et al. Oct 2000 A
6279499 Griffith, Sr. et al. Aug 2001 B1
6282860 Ramirez Sep 2001 B1
6311605 Kellner et al. Nov 2001 B1
6325015 Garcia et al. Dec 2001 B1
6374565 Warren Apr 2002 B1
6375251 Taghaddos Apr 2002 B1
6394016 Swartout et al. May 2002 B2
6443489 Ehrenberger et al. Sep 2002 B1
6494246 Blevins Dec 2002 B1
6499796 Eenhoorn Dec 2002 B1
6595102 Stevens et al. Jul 2003 B2
6626077 Gilbert Sep 2003 B1
6647855 Christiansen et al. Nov 2003 B1
6672220 Brooks et al. Jan 2004 B2
6782792 Edberg et al. Aug 2004 B1
6805035 Edberg et al. Oct 2004 B2
6805187 Padiak et al. Oct 2004 B2
6854374 Breazeale Feb 2005 B1
6901839 Edberg et al. Jun 2005 B2
6904838 Dindl Jun 2005 B1
6925771 Lee et al. Aug 2005 B2
6951348 Enders Oct 2005 B2
6957602 Koenig et al. Oct 2005 B1
7169718 Rexroad Jan 2007 B1
7177518 Chun Feb 2007 B2
7190304 Carlson Mar 2007 B1
7244199 Romano Jul 2007 B1
7302739 Christiansson Dec 2007 B2
7308738 Barvosa-Carter et al. Dec 2007 B2
7318258 Chun Jan 2008 B2
7328644 Vickroy Feb 2008 B2
7412916 Lloyd Aug 2008 B2
7415917 Lloyd Aug 2008 B2
7513186 Ravid et al. Apr 2009 B2
7866248 Moore, III et al. Jan 2011 B2
7866250 Farinella et al. Jan 2011 B2
7971422 Shnayder et al. Jul 2011 B2
8011285 Farinella et al. Sep 2011 B2
8082835 Soukos Dec 2011 B2
8132495 Joynt Mar 2012 B2
8172707 Cox May 2012 B2
8297193 Lawson et al. Oct 2012 B1
8365803 Schoenheit et al. Feb 2013 B2
8407868 Chung Apr 2013 B2
20010032577 Swartout et al. Oct 2001 A1
20010048102 Tellis Dec 2001 A1
20020134365 Gray Sep 2002 A1
20030217502 Hansen Nov 2003 A1
20040016846 Blackwell-Thompson et al. Jan 2004 A1
20040212217 Caccuci Oct 2004 A1
20050011396 Burdette et al. Jan 2005 A1
20050016372 Kilvert Jan 2005 A1
20050090338 Scarpa, III Apr 2005 A1
20050155194 Christiansson Jul 2005 A1
20050278098 Breed Dec 2005 A1
20060065111 Henry Mar 2006 A1
20060112817 Lloyd Jun 2006 A1
20060200954 Chung Sep 2006 A1
20070057495 Tesch et al. Mar 2007 A1
20070089597 Ma Apr 2007 A1
20070180983 Farinella et al. Aug 2007 A1
20080164379 Wartmann et al. Jul 2008 A1
20080231067 Nagle Sep 2008 A1
20080257141 Medwell et al. Oct 2008 A1
20080258063 Rapanotti Oct 2008 A1
20090084284 Martinez et al. Apr 2009 A1
20090104422 Sampson Apr 2009 A1
20090173250 Marscher et al. Jul 2009 A1
20090178597 Sliwa, Jr. Jul 2009 A1
20090217811 Leeming Sep 2009 A1
20090266226 Beach et al. Oct 2009 A1
20090266227 Farinella et al. Oct 2009 A1
20090308238 Schwartz Dec 2009 A1
20100224055 Soukos Sep 2010 A1
20100282935 Zannoni Nov 2010 A1
20100288114 Soukos Nov 2010 A1
20100294122 Hoadley et al. Nov 2010 A1
20100294124 Wentzel Nov 2010 A1
20100307328 Hoadley et al. Dec 2010 A1
20100319524 Farinella et al. Dec 2010 A1
20110067561 Joynt Mar 2011 A1
20110079135 Farinella et al. Apr 2011 A1
20110136087 Corridon Jun 2011 A1
20110179944 Farinella et al. Jul 2011 A1
20110185614 Laney et al. Aug 2011 A1
20110192014 Holmes, Jr. et al. Aug 2011 A1
20110203453 Farinella et al. Aug 2011 A1
20110252955 Radstake et al. Oct 2011 A1
20120004056 Cox Jan 2012 A1
20120011993 Malone et al. Jan 2012 A1
20120011994 Hoadley et al. Jan 2012 A1
20120046916 Farinella et al. Feb 2012 A1
20120067199 Farinella et al. Mar 2012 A1
20120152101 Engleman et al. Jun 2012 A1
20120180639 Farinella et al. Jul 2012 A1
20120186436 Parida et al. Jul 2012 A1
20120255431 Hubsch Oct 2012 A1
20120291616 Andrewartha et al. Nov 2012 A1
Foreign Referenced Citations (18)
Number Date Country
691067 Apr 1940 DE
2206404 Oct 1972 DE
24 09 876 Sep 1975 DE
25 07 351 Sep 1976 DE
3722420 Jan 1989 DE
3735426 May 1989 DE
3834367 Apr 1990 DE
4437412 Sep 1995 DE
0655603 May 1995 EP
0872705 Oct 1998 EP
0902250 Mar 1999 EP
2695467 Mar 1994 FR
2449055 Nov 2008 GB
WO 9930966 Jun 1999 WO
WO 2006134407 Dec 2006 WO
WO 2006135432 Dec 2006 WO
WO 2008070001 Jun 2008 WO
WO 2008079001 Jul 2008 WO
Non-Patent Literature Citations (6)
Entry
Written Opinion of the International Searching Authority mailed Jul. 27, 2012 in International Application No. PCT/US 2012/00227 (eight (8) pages total).
Written Opinion of the International Searching Authority mailed Jan. 7, 2010 for International Application No. PCT/US2009/002363, 5 pages, unnumbered.
Written Opinion of the International Searching Authority mailed Dec. 23, 2011 for International Application No. PCT/US2011/01462, 6 pages, unnumbered.
File History of U.S. Patent Publication No. 2008/0164379 (through Mar. 1, 2011), 304 pages, unnumbered.
Written Opinion of the International Searching Authority mailed Jan. 31, 2013 for International Application No. PCT/US2012/063207 (six (6) pages total).
Written Opinion of the International Searching Authority mailed Nov. 13, 2012 for International Application No. PCT/US2011/01459, 5 pages, unnumbered.
Related Publications (1)
Number Date Country
20120011993 A1 Jan 2012 US
Provisional Applications (1)
Number Date Country
61124428 Apr 2008 US
Continuation in Parts (2)
Number Date Country
Parent 12807532 Sep 2010 US
Child 13200296 US
Parent 12386114 Apr 2009 US
Child 12807532 US